

---

# EFFICIENT SPECTRAL GRAPH DIFFUSION BASED ON SYMMETRIC NORMALIZED LAPLACIAN

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053

## ABSTRACT

Graph generative modeling has seen rapid progress, yet existing approaches often trade off between fidelity, scalability, and stability. Continuous and discrete diffusion models capture complementary aspects but remain hampered by either structural distortion or heavy computational costs. We introduce Efficient Spectral Graph Diffusion (ESGD), a lightweight framework that performs diffusion in the compressed eigenvalue space of the Symmetric Normalized Laplacian (SNL). This spectral compression guarantees bounded eigenvalues, provable stability, and faster convergence while eliminating hub-node dominance. A novel degree-matrix recovery algorithm enables exact graph reconstruction from the spectral representation. ESGD achieves state-of-the-art generation quality with one of the smallest parameter counts, converging up to 100 $\times$  faster in training and requiring 6–10 $\times$  fewer sampling steps with up to 2000 $\times$  less computational cost. Our findings suggest that progress in graph generation may come less from heavier engineering, and more from principled reformulations that unlock both efficiency and fidelity.

## 1 INTRODUCTION

Graph distribution learning and generation have become central research topics with broad applications in drug discovery, materials science, and network analysis. The goal is to capture the underlying distribution of graphs and model their intrinsic structural properties, including the interplay between nodes, edges, and features. Early generative models such as variational autoencoders (GraphVAE Simonovsky & Komodakis (2018)) and generative adversarial networks De Cao & Kipf (2018); Miyato et al. (2018) demonstrated feasibility, but VAEs struggle with posterior estimation on large graphs, while GANs are prone to mode collapse Jo et al. (2022). These limitations highlight the need for more scalable and robust paradigms.

Diffusion-based approaches have recently shown remarkable promise. Early models operate directly on adjacency matrices or their eigenspaces, applying Gaussian perturbations to both node features and graph structure Niu et al. (2020b); Jo et al. (2022). To preserve sparsity and improve efficiency, discrete diffusion models such as DiGress Vignac et al. (2023b) and DeFoG Qin et al. (2025) introduce edit-based noise processes. In addition to discrete models, Laplacian Martinkus et al. (2022b); Bergmeister et al. (2024a) and spectral Luo et al. (2024); Minello et al. (2025) methods which explore diffusion over eigenvalues and eigenvectors, capturing global structural properties but often suffering from eigenvalue imbalance or added model complexity.

In this paper, we propose ESGD, a framework that addresses three fundamental challenges in spectral graph generation. First, we compress eigenvalues of the SNL into the bounded interval [-1, 1], which eliminates the dependence on maximum node degree and provides uniform spectral radius bounds regardless of graph topology. This compression yields theoretical guarantees: bounded signal-to-noise ratios, and improved Lipschitz constants for score functions. Second, we develop a degree-matrix recovery algorithm that uniquely reconstructs the degree matrix from the compressed spectral representation, closing the reconstruction gap that limited prior spectral methods. Third, we demonstrate scalability to citation networks through ego-subgraph decomposition, achieving strong performance on larger graphs and show potentials on graphs with thousands of nodes while maintaining computational tractability. Empirically, ESGD achieves competitive or superior generation quality compared to both spectral and discrete diffusion baselines, while requiring orders of mag-

054  
055  
056  
057  
058  
059  
060  
061  
062  
063  
064  
065  
066  
067  
068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107  
nitude fewer computational resources. Figure 1a intuitively demonstrates the superiority of ESGD over other baselines in terms of generation efficiency and quality.



Figure 1: (a) Comparison of generation efficiency and quality between ESGD and baseline models from recent three years on the Planar dataset. (b) ESGD transforms the adjacency matrix into an SNL matrix (S matrix), suppresses extreme values and yielded a more well-behaved data distribution therefore improving spectral properties.

## 2 RELATED WORK

**Early graph generative models.** Early approaches relied on VAEs and GANs. GraphVAE Simonovsky & Komodakis (2018) and MolGAN De Cao & Kipf (2018); Miyato et al. (2018) showed that deep generative learning on graphs is possible, but inherited the weaknesses of their backbones: VAEs suffer from inaccurate posterior approximation on large graphs, while GANs are prone to instability and mode collapse Jo et al. (2022). These limitations motivated the search for more stable generative paradigms.

**Diffusion-based generative modeling.** Diffusion models—including DDPM Ho et al. (2020), DDIM Song et al. (2021a), score-based diffusion Song et al. (2021b), stable diffusion Rombach et al. (2022), and flow-based variants Lipman et al. (2023); Liu et al. (2022)—have since emerged as a powerful family of generative methods, overcoming many of the weaknesses of VAEs and GANs in high-dimensional domains. Their success in images and molecules has spurred growing interest in graphs, where two main directions have been explored:

**Continuous diffusion.** These models Niu et al. (2020b); Jo et al. (2022) apply Gaussian perturbations to adjacency matrices and node features. While effective, the injected noise often produces dense graphs, degrading sparsity and structural fidelity.

**Discrete diffusion.** In contrast, models such as DiGress Vignac et al. (2023b), EDGE Chen et al. (2023a), local-PPGN Bergmeister et al. (2024b) GEEL Jang et al. (2024) DeFoG Qin et al. (2025) define edit-based noise processes on nodes and edges, preserving sparsity and graph structure. However, they require long training schedules and slow sampling, which limits scalability.

**Spectral and Laplacian approaches.** A complementary line of work leverages graph spectra. SPECTRE Martinkus et al. (2022b) models dominant Laplacian eigencomponents to capture global structure but introduces significant architectural complexity. GSDM Luo et al. (2024) improves efficiency via low-rank spectral diffusion, yet remains sensitive to eigenvalue scaling. GGSD Minello et al. (2025) increases complexity by sampling eigencomponents. These methods illustrate the potential of spectrum, but also reveal persistent limitations in stability, reconstruction, and scalability.

**Our approach.** ESGD addresses these limitations via eigenvalue compression of the symmetric normalized Laplacian, bounding all eigenvalues to  $[-1, 1]$  and eliminating degree-dependent scaling. The SNL’s symmetry naturally aligns with diffusion models’ zero-mean Gaussian priors, simplifying optimization. By diffusing only eigenvalues while fixing eigenvectors, ESGD achieves competitive quality with orders of magnitude lower computational cost.



Figure 2: ESGD pipeline. The spectral decomposition phase computes the SNL matrix for all graphs and extracts eigenvectors  $\mathbf{U}$ , eigenvalues  $\Lambda$  (diag( $\lambda$ )), and node features  $\mathbf{X}$ . The score matching phase trains two networks to denoise  $\mathbf{X}$  and  $\Lambda$ . The generation phase reconstructs the adjacency matrix: generated eigenvalues  $\hat{\Lambda}$  combine with fixed basis  $\mathbf{U}$  to form the predicted SNL matrix, from which Algorithm 1 recovers the degree matrix and adjacency  $\hat{A}$ . The final graph pairs generated node features  $\hat{\mathbf{X}}$  with reconstructed  $\hat{A}$ .

### 3 PRELIMINARIES

#### 3.1 SPECTRAL PROPERTIES AND CONDITION NUMBERS

For a matrix  $M$  with eigenvalues  $\lambda_1, \dots, \lambda_n$ , the condition number is defined as  $\kappa(M) = \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$ , measuring the ratio between the largest and smallest eigenvalue magnitudes. A high condition number indicates that the matrix is ill-conditioned, meaning small perturbations in the input can lead to large changes in the output. In diffusion models, the condition number of the data covariance matrix directly affects optimization stability and convergence speed. In continuous diffusion models, the eigenvalues typically scale as the maximum node degree  $\Delta_{\max}$ . For scale-free graphs,  $\Delta_{\max}$  can be very large, which induces severe information imbalance in the diffusion model: high-degree hub nodes dominate the learning signal, while low-degree nodes receive insufficient gradient updates.

Moreover, in a dataset, the unbalance distribution in condition number means these special graphs are hard to learn, see Figure 1b. This issue affects not only continuous diffusion models built on the adjacency spectrum (GGSD, GSMD), but also discrete diffusion models (Digress, DisCo, DeFoG, Cometh). In discrete models, all graphs in the dataset are considered and the model is trained to predict node labels one by one. Consequently, the model has to accommodate the influence of outlier graphs in the data, which gives rise to two undesired effects: (i) degraded predictive performance, and (ii) increased training cost in terms of both optimization steps and model size, see section 6.4.

#### 3.2 SCORE-BASED GENERATIVE MODELS

Diffusion-based generative modeling has emerged as a powerful paradigm for high-dimensional data generation. In score-based generative models Song et al. (2021c), the key idea is to learn the score function  $\nabla_{\mathbf{z}} \log p_t(\mathbf{z})$ , the gradient of the log-density of a perturbed data distribution at time  $t$ . This simulates the reverse-time stochastic differential equation (SDE) to transform noise into data samples.

Formally, the forward noising process is defined by an SDE

$$d\mathbf{z}_t = f(t, \mathbf{z}_t)dt + g(t)d\mathbf{w}_t, \quad t \in [0, 1], \quad (1)$$

where  $f$  and  $g$  denote drift and diffusion coefficients,  $\mathbf{w}_t$  is a standard Wiener process. As  $t \rightarrow 1$ ,  $\mathbf{z}_t$  converges to a simple prior distribution (e.g., Gaussian). The reverse-time SDE takes the form

$$d\mathbf{z}_t = \left( f(t, \mathbf{z}_t) - g(t)^2 \nabla_{\mathbf{z}} \log p_t(\mathbf{z}_t) \right) dt + g(t)d\bar{\mathbf{w}}_t, \quad (2)$$

where  $\bar{\mathbf{w}}_t$  is a reverse-time Wiener process. In practice, the score function is unknown and must be approximated by a neural network  $s_{\theta}(\mathbf{z}_t, t)$ .

---

162 3.3 GRAPH CONVOLUTIONAL NETWORKS (GCN)  
163

164 Graph Convolutional Networks (GCNs) Kipf & Welling (2017) are a fundamental building block  
165 for learning on graphs. Given an undirected graph with adjacency matrix  $\mathbf{A}$  and degree matrix  $\mathbf{D}$ ,  
166 GCN defines a layer-wise propagation rule that aggregates information from neighbors:

167 
$$\mathbf{H}^{(\ell+1)} = \sigma(\hat{\mathbf{A}} \mathbf{H}^{(\ell)} \mathbf{W}^{(\ell)}), \hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}, \quad \tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}. \quad (3)$$

168 where  $\mathbf{H}^{(\ell)}$  is the hidden representation at layer  $\ell$ ,  $\mathbf{W}^{(\ell)}$  is a trainable weight matrix,  $\sigma$  is a non-  
169 linear activation  
170

172 4 METHODOLOGY  
173

174 We study the graph generation problem where each graph  $G = (\mathbf{X}, \mathbf{A})$  consists of a node-feature  
175 matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  and an adjacency matrix  $\mathbf{A}$ . We define the SNL operator

176 
$$\mathbf{U} \Lambda \mathbf{U}^\top = \mathbf{S} = \mathbf{L} - \mathbf{I} = -\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}},$$

177 Let  $\mathbf{S} = \mathbf{U} \Lambda \mathbf{U}^\top$  be its eigen-decomposition. ESGD performs diffusion in a fixed eigen-space,  
178 we keep  $\mathbf{U}$  fixed and only diffuse the eigenvalues  $\Lambda$  together with node features  $\mathbf{X}$ . The forward  
179 process is given by two coupled SDEs:

180 
$$d\mathbf{X}_t = f_{\mathbf{X}}(\mathbf{X}_t, t)dt + g_{\mathbf{X}}(t)d\mathbf{W}_t^{\mathbf{X}}, \quad d\Lambda_t = f_{\Lambda}(\Lambda_t, t)dt + g_{\Lambda}(t)d\mathbf{W}_t^{\Lambda},$$

181 with independent Wiener processes for  $\mathbf{X}$  and  $\Lambda$ . The reverse SDEs follow standard score-based  
182 formulations using score networks  $s_{\theta}$  and  $s_{\phi}$ .

183 **Score Networks** We use GCN-based architectures for both  $s_{\theta}$  (node features) and  $s_{\phi}$  (eigenvalues).  
184 To avoid double normalization and self loop, the message-passing operator is replaced by  $-\mathbf{S}$ :

185 
$$\mathbf{H}^{(\ell+1)} = \sigma(-\mathbf{S} \mathbf{H}^{(\ell)} \mathbf{W}^{(\ell)}).$$

186 **Objectives** We minimize denoising score matching losses:

187 
$$\begin{aligned} \hat{E}(\theta) &= \mathbb{E}\|s_{\theta}(\mathbf{X}_t, \Lambda_t, \mathbf{U}) - \nabla_{\mathbf{X}_t} \log p_t(\mathbf{X}_t | \mathbf{X}_0)\|^2, \\ \hat{E}(\phi) &= \mathbb{E}\|s_{\phi}(\mathbf{X}_t, \Lambda_t, \mathbf{U}) - \nabla_{\Lambda_t} \log p_t(\Lambda_t | \Lambda_0)\|^2. \end{aligned}$$

188 **Sampling** After training, we reverse the diffusion to obtain  $(\hat{\mathbf{X}}_0, \hat{\Lambda}_0)$ . The adjacency matrix is  
189 reconstructed using the recovered eigenvalues  $\hat{\Lambda}$ :

190 
$$\hat{\mathbf{A}} = -\mathbf{D}^{1/2} \hat{\mathbf{S}} \mathbf{D}^{1/2}, \quad \hat{\mathbf{S}} = \mathbf{U} \hat{\Lambda} \mathbf{U}^\top,$$

191 where the degree matrix  $\mathbf{D}$  is uniquely recoverable from  $\hat{\mathbf{S}}$  by a provable algorithm 1. This guar-  
192 antees exact graph reconstruction up to numerical thresholds. The full details of the ESGD model  
193 architecture can be found in B.2 and supplementary code project files. The ESGD pipeline is illus-  
194 trated in Figure 2.

195 5 THEORETICAL PROPERTIES  
196

197 As we discussed in subsection 3.1, the spectral properties from graph theory influences the models  
198 at the first beginning. Beyond eigenvalue normalization, the symmetry of the operator is particularly  
199 well aligned with diffusion models. In standard diffusion setups, the prior distribution is a standard  
200 Gaussian with zero mean and unit variance. This symmetry reduces the burden on the model, since  
201 it does not need to learn the global mean of the data distribution and can instead focus on higher-  
202 order structure. As a result, optimization becomes easier and computation can be accelerated while  
203 improving the performance. More discussion can be seen in 6 with different aspects: Performance  
204 in 6.1 6.3, Efficiency in 6.4, Generalization in 6.2.

205 We establish three key results: eigenvalue boundedness in Theorem 5.1, information-theoretic ad-  
206 vantages in Theorem 5.3, and optimization stability in Theorem 5.4, 5.5. See Appendix A for  
207 detailed proofs.

---

216 **Theorem 5.1** (Spectral boundedness). *For an undirected graph with adjacency matrix  $\mathbf{A}$  and symmetric normalized Laplacian  $\mathbf{S} = \mathbf{L} - \mathbf{I} = -\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}$ , let  $\Delta_{\max}$  denote the maximum degree. Then:*

220 • (Eigenvalue bounds) *Chung (1997) The eigenvalues satisfy :*

221  $|\lambda_i(\mathbf{L})| \leq 1 \quad \text{while} \quad \sqrt{\Delta_{\max}} \leq |\lambda_i(\mathbf{A})| \leq \Delta_{\max}$

223 • (Spectral radius) *The spectral radius (largest absolute eigenvalue) satisfies:*

225  $\rho(\mathbf{S}) \leq 1 \quad \text{while} \quad \rho(\mathbf{A}) \leq \Delta_{\max}$

227 • (Implications for diffusion) *This boundedness ensures:*

228 – Uniform signal decay independent of graph degree distribution  
 229 – Stable score function regardless of hub nodes  
 230 – Consistent diffusion dynamics across heterogeneous graphs

232 **Theorem 5.2** (Node Permutation Invariance of ESGD). *Let  $G = (\mathbf{X}, \mathbf{A})$  be an undirected graph with adjacency  $\mathbf{A}$  and node features  $\mathbf{X}$ . For any permutation matrix  $\mathbf{P}$ , define  $\mathbf{X}' = \mathbf{P}\mathbf{X}$  and  $\mathbf{A}' = \mathbf{P}\mathbf{A}\mathbf{P}^\top$ . Let  $\mathbf{S} = -\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$  and  $\mathbf{S}' = -\mathbf{D}'^{-1/2}\mathbf{A}'\mathbf{D}'^{-1/2}$ . Then the forward and reverse diffusion processes satisfy*

236  $(\mathbf{X}'_t, \Lambda'_t) \stackrel{d}{=} (\mathbf{P}\mathbf{X}_t, \Lambda_t), \quad \mathbf{A}'_0 = \mathbf{P}\mathbf{A}_0\mathbf{P}^\top,$

238 The permutation invariance established above ensures that ESGD's learned distribution is well-defined over graph isomorphism classes. We now turn to the information-theoretic and optimization  
 239 advantages of the SNL domain.

241 **Theorem 5.3** (Spectral SNR and Information Retention). *Let  $\mathbf{X}_0 \in \mathbb{R}^n$  be the spectral embedding  
 242 of a graph. Consider the forward process  $\mathbf{X}_t = \sqrt{\bar{\alpha}_t}\mathbf{X}_0 + \sigma_t \varepsilon$ ,  $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$ , with  $\rho_t = \bar{\alpha}_t/\sigma_t^2$ . Then:*

244 1. **(SNR bound)** *For any fixed initial data  $\mathbf{x}_0$ ,*

246  $\text{SNR}(t) \leq \begin{cases} \rho_t, & \text{SNL domain } \mathbf{S}, \\ \Delta_{\max}^2 \rho_t, & \text{adjacency domain } \mathbf{A}. \end{cases}$

249 2. **(Mutual information)** *For different initial data  $\mathbf{X}_0$  is random with covariance  $\Sigma_0$ , then*

251  $I(\mathbf{X}_0; \mathbf{X}_t) \leq \frac{1}{2} \log \det(\mathbf{I} + \rho_t \Sigma_0) \leq \frac{1}{2} \rho_t \mathbb{E} \|\mathbf{X}_0\|^2$

252 which scales as  $O(\rho_t n)$  in domain  $\mathbf{S}$  and  $O(\rho_t n \Delta_{\max}^2)$  in domain  $\mathbf{A}$ .

254 Theorem 5.3 establishes that the signal-to-noise ratio and mutual information in the SNL domain  
 255 scale as  $\mathcal{O}(\rho_t n)$ , compared to  $\mathcal{O}(\rho_t n \Delta_{\max}^2)$  in the adjacency domain. This  $\Delta_{\max}^2$ -factor reduction  
 256 has three immediate consequences. First, for a fixed SNR target, the SNL formulation requires  
 257  $\Delta_{\max}^2$  times fewer diffusion steps to achieve the same information retention in theorem 5.5, directly  
 258 explaining the sampling acceleration observed in Table 6. Second, the bounded information flow  
 259 ensures that gradient magnitudes remain stable across nodes of different degrees, preventing the  
 260 hub-node dominance that plagues adjacency-based methods in theorem 5.4, 5.6. Third, the uniform  
 261 scaling allows a single set of hyper-parameters to work across diverse graph types, from regular  
 262 grids to scale-free networks, without dataset-specific tuning. The following theorems quantify the  
 263 stability implications through Lipschitz bounds, discretization error analysis and Fisher matrix.

264 **Theorem 5.4** (Score Lipschitz Bound). *For the score  $s(\mathbf{x}, t) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$  we have*

265  $\|\nabla_{\mathbf{x}} s(\mathbf{x}, t)\|_{\text{op}} \leq \sigma_t^{-2} + \frac{\bar{\alpha}_t}{\sigma_t^4} \cdot \frac{D_{\bullet}^2}{4},$

267 where  $D_{\bullet}$  is the spectral diameter. Consequently,

269  $\|\nabla_{\mathbf{x}} s(\mathbf{x}, t)\|_{\text{op}} \leq \begin{cases} \sigma_t^{-2} + \bar{\alpha}_t n / \sigma_t^4, & \mathbf{S}, \\ \sigma_t^{-2} + \bar{\alpha}_t n \Delta_{\max}^2 / \sigma_t^4, & \mathbf{A}. \end{cases}$

---

270 **Algorithm 1** Degree Matrix Recovery from  $\mathbf{S}$

271

272 **Require:** SNL matrix  $\mathbf{L}_{mod}$ , threshold parameter  $\delta > 0$

273 **Ensure:** Unweighted degree matrix  $\mathbf{D}'$  and weighted adjacency matrix  $\mathbf{A}$

274 1: **Step 1:**  $\hat{\mathbf{A}}_{ij} \leftarrow \mathbf{1}_{|(\mathbf{S})_{ij}| > \delta}$  for all  $(i, j)$  ▷ Identify graph structure by thresholding

275 2: **Step 2:**  $d_i \leftarrow \sum_{j=1}^n \hat{\mathbf{A}}_{ij}$  for all  $i$  ▷ Compute unweighted node degrees

276 3: **Step 3:**  $\mathbf{D}' \leftarrow \text{diag}(d_1, \dots, d_n)$  ▷ Construct unweighted degree matrix

277 4: **Step 4 (For weighted graphs):** Recover the weighted adjacency matrix

278 5: **for all**  $(i, j)$  with  $\hat{\mathbf{A}}_{ij} = 1$  **do** ▷ Edge weight recovery for connected pairs

279 6:      $\mathbf{A}_{ij} \leftarrow -(\mathbf{S})_{ij} \cdot \sqrt{d_i d_j}$

280 7: **end for**

281 8:  $\mathbf{A}_{ij} \leftarrow 0$  for all  $(i, j)$  with  $\hat{\mathbf{A}}_{ij} = 0$  ▷ Zero weights for disconnected pairs

282 9: **return**  $\mathbf{D}', \mathbf{A}$

---

283

284

285 **Theorem 5.5** (Drift Lipschitz and EM error). *The reverse-time SDE drift  $b(\mathbf{x}, t) = -\frac{1}{2}\beta(t)\mathbf{x} - \beta(t)s(\mathbf{x}, t)$  has Lipschitz constant*

286

$$L_b(t) \leq \frac{1}{2}\beta(t) + \beta(t)\left(\sigma_t^{-2} + \frac{\bar{\alpha}_t}{4\sigma_t^4}D_\bullet^2\right).$$

287

288 *The Euler–Maruyama strong error satisfies*

289

$$(\mathbb{E}\|\mathbf{X}^{\text{EM}} - \mathbf{X}\|^2)^{1/2} \leq C_{\text{EM}} \left( \int_0^1 L_b(t)^2 dt \right)^{1/2} \Delta t^{1/2}.$$

290

291 **Theorem 5.6** (Fisher spectrum and conditioning). *Let  $\mathbf{F} = \mathbb{E}[\nabla_{\boldsymbol{\theta}} \ell \nabla_{\boldsymbol{\theta}} \ell^\top]$  be the Fisher matrix of the score matching loss. Assume the network Jacobian satisfies  $\|\mathbf{J}_{\boldsymbol{\theta}}(\mathbf{x}, t)\| \leq C_{\text{net}}(t)\|\mathbf{x}\|$  for all  $\mathbf{x}, t$ . Then:*

292

293 1. **(Spectral bound)** The largest eigenvalue scales as

$$\lambda_{\max}(\mathbf{F}) = \begin{cases} O(n), & \text{SNL domain,} \\ O(n\Delta_{\max}^2), & \text{adjacency domain.} \end{cases}$$

294 2. **(Condition number)** If in addition  $\lambda_{\min}(\mathbf{F}) \geq \gamma > 0$ , then

$$\kappa(\mathbf{F}) = \frac{\lambda_{\max}(\mathbf{F})}{\lambda_{\min}(\mathbf{F})} = \begin{cases} O(n/\gamma), & \mathbf{S}, \\ O(n\Delta_{\max}^2/\gamma), & \mathbf{A}. \end{cases}$$

## 306 6 GRAPH GENERATION RESULTS

### 308 6.1 GENERIC GRAPH GENERATION

310 **Datasets:** We test ESGD on *Community-small*, *Enzymes*, *Grid*, *Ego-small*, *Tree*, *Sbm*, and *Planar*.  
311 More details of these datasets are provided in Appendix C.1.

312 **Metrics:** We evaluate the maximum mean discrepancy (MMD) between equal numbers of generated  
313 and test graphs by measuring degree, clustering coefficient, 4-node orbit occurrences, their average  
314 and spectral in Table 1 and Table 2. See Appendix C.3 for details.

315 **Performance Analysis Across Graph Types:** Our experimental results reveal a systematic  
316 relationship between graph spectral properties and model performance. On datasets with bounded  
317 eigenvalue magnitudes (Tree at 3.05, Grid at 3.94), most baseline methods achieve reasonable  
318 performance. However, when eigenvalues increase to Enzymes at 5.30, Community-small at 6.61,  
319 Planar at 6.12, Ego-small at 9.04 and SBM at 14.13, adjacency-based methods (GSMD, GGSD)  
320 exhibit marked degradation due to spectral scaling as  $(\Delta_{\max}^2)$ , where high-degree nodes dominate  
321 the training signal while low-degree nodes receive insufficient gradient updates.

322 **Evaluation Metric Hierarchy and Sensitivity Mechanisms:** This degradation is particularly ev-  
323 ident in degree and clustering coefficient metrics, which we can explain through the hierarchical

324  
325 Table 1: Generic graph generation on Community-small, Enzymes, Grid, and Ego-small. \* The  
326 results were obtained by executing the published source code. Other results are taken from the  
327 published papers Luo et al. (2024); Wen et al. (2024); Jang et al. (2024); Eijkelboom et al. (2024).  
328 Hyphen (-) denotes that results are not provided and were not applicable due to memory issues. The  
329 best results are highlighted in **bold**, and the underline denotes the second best. Due to page limit we  
330 provide the standard deviations in Appendix E.1 and old models before 2022

|                                  | Community-small                    |                    |                     |                   | Enzymes                        |                    |                     |                   | Grid                                 |                    |                     |                   | Ego-small                    |                    |                     |                   |       |       |
|----------------------------------|------------------------------------|--------------------|---------------------|-------------------|--------------------------------|--------------------|---------------------|-------------------|--------------------------------------|--------------------|---------------------|-------------------|------------------------------|--------------------|---------------------|-------------------|-------|-------|
|                                  | Synthetic, ( $12 \leq V \leq 20$ ) |                    |                     |                   | Real, ( $10 \leq V \leq 125$ ) |                    |                     |                   | Synthetic, ( $100 \leq V \leq 400$ ) |                    |                     |                   | Real, ( $4 \leq V \leq 18$ ) |                    |                     |                   |       |       |
|                                  | Deg. $\downarrow$                  | Clus. $\downarrow$ | Orbit. $\downarrow$ | Avg. $\downarrow$ | Deg. $\downarrow$              | Clus. $\downarrow$ | Orbit. $\downarrow$ | Avg. $\downarrow$ | Deg. $\downarrow$                    | Clus. $\downarrow$ | Orbit. $\downarrow$ | Avg. $\downarrow$ | Deg. $\downarrow$            | Clus. $\downarrow$ | Orbit. $\downarrow$ | Avg. $\downarrow$ |       |       |
| WSGM Guth et al. (2022)          | 0.039                              | 0.084              | 0.009               | 0.044             | 0.034                          | 0.097              | 0.013               | 0.048             | 0.083                                | 0.006              | 0.065               | 0.051             | -                            | -                  | -                   | -                 |       |       |
| GDSS Jo et al. (2022)            | 0.045                              | 0.086              | 0.007               | 0.046             | 0.026                          | 0.102              | <u>0.009</u>        | 0.046             | 0.111                                | 0.005              | 0.070               | 0.062             | 0.021                        | 0.024              | 0.007               | 0.017             |       |       |
| HGDM Wen et al. (2024)           | <b>0.014</b>                       | <b>0.050</b>       | <b>0.005</b>        | <b>0.024</b>      | 0.045                          | <b>0.049</b>       | <b>0.003</b>        | 0.032             | 0.137                                | 0.004              | 0.048               | 0.063             | <b>0.015</b>                 | <b>0.023</b>       | <b>0.003</b>        | <b>0.014</b>      |       |       |
| GSDM * Luo et al. (2024)         | 0.016                              | 0.027              | 0.004               | 0.020             | 0.009                          | 0.091              | 0.085               | 0.091             | <u>0.001</u>                         | <b>0.000</b>       | <b>0.000</b>        | <b>0.000</b>      | <b>0.000</b>                 | <b>0.000</b>       | 0.027               | 0.034             | 0.004 | 0.023 |
| GEEL Jang et al. (2024)          | -                                  | -                  | -                   | -                 | <b>0.005</b>                   | <b>0.018</b>       | <u>0.006</u>        | <b>0.010</b>      | <b>0.000</b>                         | <b>0.000</b>       | <b>0.000</b>        | <b>0.000</b>      | -                            | -                  | -                   | -                 |       |       |
| CatFlow Eijkelboom et al. (2024) | 0.018                              | 0.086              | 0.007               | 0.037             | -                              | -                  | -                   | -                 | -                                    | -                  | -                   | -                 | <b>0.013</b>                 | 0.024              | 0.008               | 0.015             |       |       |
| GGSD* Minello et al. (2025)      | 0.027                              | 0.082              | 0.011               | 0.040             | -                              | -                  | -                   | -                 | -                                    | -                  | -                   | -                 | -                            | -                  | -                   | -                 |       |       |
| ESGD (ours)                      | <b>0.005</b>                       | <b>0.006</b>       | <b>0.000</b>        | <b>0.004</b>      | <b>0.005</b>                   | <u>0.026</u>       | <b>0.003</b>        | <u>0.011</u>      | <b>0.000</b>                         | <b>0.000</b>       | <b>0.000</b>        | <b>0.000</b>      | <b>0.005</b>                 | <b>0.021</b>       | <b>0.002</b>        | <b>0.009</b>      |       |       |

339 Table 2: Generic graph generation on Planar, SBM, and Tree. Results are taken from the published  
340 papers Jang et al. (2024); QIN et al. (2025); Bergmeister et al. (2024b).

|                                                  | Planar                    |                    |                     |                    | SBM                                 |                    |                     |                    | Tree                      |                    |                     |                    |
|--------------------------------------------------|---------------------------|--------------------|---------------------|--------------------|-------------------------------------|--------------------|---------------------|--------------------|---------------------------|--------------------|---------------------|--------------------|
|                                                  | Synthetic, ( $ V  = 64$ ) |                    |                     |                    | Synthetic, ( $31 \leq V \leq 187$ ) |                    |                     |                    | Synthetic, ( $ V  = 64$ ) |                    |                     |                    |
|                                                  | Deg. $\downarrow$         | Clus. $\downarrow$ | Orbit. $\downarrow$ | Spec. $\downarrow$ | Deg. $\downarrow$                   | Clus. $\downarrow$ | Orbit. $\downarrow$ | Spec. $\downarrow$ | Deg. $\downarrow$         | Clus. $\downarrow$ | Orbit. $\downarrow$ | Spec. $\downarrow$ |
| SPECTRE Martinkus et al. (2022a)                 | 0.0005                    | 0.0785             | 0.0012              | 0.0112             | 0.0015                              | 0.0521             | 0.0412              | 0.0056             | -                         | -                  | -                   | -                  |
| DiGress Vignac et al. (2023a)                    | 0.0007                    | 0.0780             | 0.0079              | 0.0098             | 0.0018                              | 0.0485             | 0.0415              | 0.0045             | 0.2678                    | 0.0428             | <b>0.0097</b>       | 0.0123             |
| EDGE Chen et al. (2023b)                         | 0.0761                    | 0.3229             | 0.7737              | 0.0957             | 0.0279                              | 0.1113             | 0.0854              | 0.0251             | 0.0211                    | 0.1207             | 0.0374              | 0.0438             |
| GDSS Jo et al. (2022)                            | 0.2500                    | 0.3930             | 0.5870              | -                  | 0.4960                              | 0.4560             | 0.7170              | -                  | -                         | -                  | -                   | -                  |
| GEEL* Jang et al. (2024)                         | 0.0006                    | 0.0458             | <b>0.0000</b>       | 0.0070             | 0.0034                              | 0.0621             | <b>0.0000</b>       | 0.0049             | -                         | -                  | -                   | -                  |
| DisCo Xu et al. (2024)                           | <u>0.0002</u>             | 0.0403             | 0.0009              | -                  | <u>0.0006</u>                       | <b>0.0266</b>      | 0.0510              | -                  | -                         | -                  | -                   | -                  |
| Cometh Siraudin et al. (2025)                    | 0.0006                    | 0.0434             | 0.0016              | <b>0.0049</b>      | 0.0020                              | 0.0498             | <b>0.0383</b>       | <b>0.0024</b>      | -                         | -                  | -                   | -                  |
| DeFoG QIN et al. (2025)                          | 0.0005                    | 0.0501             | 0.0006              | 0.0072             | <b>0.0006</b>                       | 0.0517             | 0.0556              | 0.0054             | <b>0.0002</b>             | <b>0.0000</b>      | <b>0.0000</b>       | 0.0108             |
| Local PPGN (one-shot) Bergmeister et al. (2024b) | 0.0003                    | <b>0.0245</b>      | 0.0006              | 0.0104             | 0.0141                              | 0.0528             | 0.0809              | 0.0071             | 0.0004                    | <b>0.0000</b>      | <b>0.0000</b>       | <b>0.0080</b>      |
| Local PPGN Bergmeister et al. (2024b)            | 0.0005                    | 0.0626             | 0.0017              | 0.0075             | 0.0119                              | 0.0517             | 0.0669              | 0.0067             | <b>0.0001</b>             | <b>0.0000</b>      | <b>0.0000</b>       | 0.0117             |
| GGSD* Minello et al. (2025)                      | 0.0024                    | 0.0807             | 0.0048              | <b>0.0048</b>      | 0.0041                              | 0.0431             | 0.0730              | 0.0090             | -                         | -                  | -                   | -                  |
| ESGD (ours)                                      | <b>0.0001</b>             | <b>0.0228</b>      | <u>0.0002</u>       | 0.0057             | <b>0.0005</b>                       | <b>0.0027</b>      | 0.0462              | <u>0.0039</u>      | <b>0.0000</b>             | 0.0001             | <b>0.0000</b>       | 0.0081             |

354 structure of evaluation metrics and the population statistics of real-world graphs. Degree distribution  
355 operates as a macro-level indicator measuring node connectivity distributions. Clustering co-  
356 efficient functions at the meso-level, quantifying neighborhood connection density. Orbit statistics  
357 capture micro-level patterns through four-node subgraph configurations. Real graphs typically ex-  
358 hibit power-law degree distributions where low-degree nodes comprise 70 to 80 percent of the popu-  
359 lation. For degree distribution, the numerical dominance of low-degree nodes makes their collective  
360 deviation the primary determinant of evaluation outcomes. For clustering coefficient, low-degree  
361 nodes exhibit heightened structural sensitivity: a degree-3 node shows clustering variations from 0  
362 to 1.0 with single edge changes, whereas a degree-100 node requires hundreds of edges among 4950  
363 possible neighbor connections to produce comparable variation.

364 **Theoretical Foundation for Empirical Performance:** ESGD’s symmetric normalization directly  
365 addresses this challenge by eliminating eigenvalue weight bias, ensuring that nodes receive learning  
366 attention proportional to their population size rather than their degree. Since degree and clustering  
367 coefficient are dominated by the low-degree majority, ESGD’s accurate modeling of this population  
368 translates directly into superior macro and meso-level performance, as confirmed by our experimen-  
369 tal results in Tables 1 and 2. The moderate performance gap on orbit statistics reflects architec-  
370 tural boundaries: ESGD operates in global spectral space where the mapping to specific four-node  
371 configurations remains indirect, whereas explicit edge-level approaches like GEEL provide advan-  
372 tages for fine-grained motif detection. This trade-off is consistent with our design philosophy of  
373 prioritizing efficiency and scalability while maintaining competitive quality on the most population-  
374 representative metrics.

## 375 6.2 LARGE GRAPH GENERATION

376 **Datasets and Preprocessing:** We evaluate ESGD on three widely used citation networks: Cora  
377 (2708 nodes, 5429 edges), Citeseer (3312 nodes, 4715 edges), and PubMed (19717 nodes, 44338

edges). Beyond academic benchmarks, the ability to learn from single large graphs addresses critical industrial needs where data naturally exists as unified structures: social networks maintain billions of users in a single interconnected graph, enterprise knowledge graphs integrate all organizational entities into one coherent structure, and recommendation systems operate on unified user-item interaction networks. In each case, the generative model must extract patterns from one large network rather than learning from multiple independent instances.

Since spectral decomposition has quadratic complexity, we decompose each citation network into  $k$ -hop ego-subgraphs centered on individual nodes, where  $k$  is chosen such that subgraphs contain 50 to 300 nodes on average. Each ego-subgraph preserves the  $k$ -hop neighborhood structure around its center node, capturing representative local motifs and degree patterns. This decomposition provides computational tractability while enabling the model to learn from multiple views of the original network structure. Detailed ego-subgraph statistics are provided in Table 9 and Appendix E.

**Metrics:** We use the same metrics as in Section 6.1.

Table 3: Large graph generation results on Cora, Citeseer, and PubMed. The baselines include diffusion-based generative models in the spectral space (SPECTRE, GSDM, GGSD) and discrete diffusion models (DisCo, Cometh, DeFoG).

|                                   | Citeseer          |                    |                     |                   | Cora              |                    |                     |                   | PubMed            |                    |                     |                   |
|-----------------------------------|-------------------|--------------------|---------------------|-------------------|-------------------|--------------------|---------------------|-------------------|-------------------|--------------------|---------------------|-------------------|
|                                   | Deg. $\downarrow$ | Clus. $\downarrow$ | Orbit. $\downarrow$ | Avg. $\downarrow$ | Deg. $\downarrow$ | Clus. $\downarrow$ | Orbit. $\downarrow$ | Avg. $\downarrow$ | Deg. $\downarrow$ | Clus. $\downarrow$ | Orbit. $\downarrow$ | Avg. $\downarrow$ |
| SPECTRE* Martinkus et al. (2022a) | 1.224             | 1.513              | 1.023               | 1.253             | 1.566             | 1.492              | 1.127               | 1.395             | 1.148             | 1.392              | 0.933               | 1.158             |
| GSDM* Luo et al. (2024)           | 1.043             | 0.943              | 0.843               | 0.943             | 0.932             | 1.042              | 0.980               | 0.985             | 0.885             | 0.727              | 0.762               | 0.791             |
| GGSD* Minello et al. (2025)       | 1.011             | 1.142              | 1.244               | 1.132             | 1.218             | 1.432              | 1.391               | 1.347             | 0.775             | 0.711              | 1.029               | 0.838             |
| DisCo* Xu et al. (2024)           | 0.893             | 0.654              | 0.896               | 0.814             | 0.918             | 0.775              | 0.564               | 0.752             | 0.637             | 0.611              | 0.815               | 0.688             |
| Cometh* Siraudin et al. (2025)    | 0.985             | 0.856              | 1.001               | 0.947             | 0.751             | 0.899              | 0.541               | 0.730             | 0.597             | 0.625              | 0.437               | 0.553             |
| DeFoG* QIN et al. (2025)          | 0.496             | 0.656              | 0.910               | 0.671             | 0.758             | 0.756              | 0.501               | 0.672             | 0.355             | 0.496              | 0.308               | 0.386             |
| ESGD (ours)                       | <b>0.329</b>      | <b>0.606</b>       | <b>0.314</b>        | <b>0.433</b>      | <b>0.311</b>      | <b>0.573</b>       | <b>0.192</b>        | <b>0.359</b>      | <b>0.215</b>      | <b>0.475</b>       | <b>0.109</b>        | <b>0.266</b>      |

**Results and Analysis:** Table 3 shows that ESGD consistently outperforms all baselines on citation networks, achieving the best average MMD across all three datasets. We attribute ESGD’s superior performance to its robustness against the inherent heterogeneity of ego-subgraphs. Unlike synthetic benchmarks with uniform structure, ego-subgraphs extracted from real-world citation networks exhibit highly non-uniform distributions. As shown in Figure 1b, the condition numbers of these subgraphs span multiple orders of magnitude, creating a challenging learning problem. SPECTRE suffers from training instability and convergence difficulties under such heterogeneous conditions, while GGSD fails to effectively capture the coupling between eigenvalues and eigenvectors. Discrete diffusion models require longer training schedules and larger model to accommodate outlier subgraphs with atypical properties. In contrast, ESGD’s achieves strong performance with a lightweight architecture while maintaining structural fidelity across diverse local neighborhoods.

### 6.3 MOLECULES GENERATION

**Datasets:** We test ESGD on four molecule benchmarks: QM9 (Ramakrishnan et al., 2014), ZINC250k (Irwin et al., 2012), Moses (Polykovskiy et al., 2020), and GuacaMol (Brown et al., 2019).

**Metrics:** We evaluate the quality of 10,000 generated graphs using Frechet ChemNet Distance (FCD) (Preuer et al., 2018), Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) MMD (Costa & De Grave, 2010), validity w/o correction abbreviated as Val. w/o, validity, and the generation time for QM9 and ZINC250k. For Moses, we additionally report uniqueness, novelty, filters, SNN (similarity to nearest neighbor), and scaffold similarity (Scaf). For GuacaMol, we report validity, valid & unique (V.U.), valid & unique & novel (V.U.N.), KL divergence, and FCD. Please see Appendix C.4 for more details.

As shown in Tables 4 and 5, ESGD achieves competitive performance across all molecular benchmarks. Notably, the Moses benchmark provides the most comprehensive assessment of whether a generative model truly learns data distributions rather than merely memorizing training samples, as it evaluates validity, uniqueness, novelty, and structural diversity simultaneously. ESGD achieves the highest validity of 94.6% on Moses while maintaining strong performance across all

432 Table 4: Results on the QM9 and ZINC250k. Results were taken from the published papers Luo  
433 et al. (2024); Wen et al. (2024); Jang et al. (2024); Eijkelboom et al. (2024); QIN et al. (2025). We  
434 provide the validity, uniqueness, and novelty values in Appendix E.2 due to page limit.

|                                  | QM9           |               |               |              |              |               | ZINC250k      |               |              |              |  |  |
|----------------------------------|---------------|---------------|---------------|--------------|--------------|---------------|---------------|---------------|--------------|--------------|--|--|
|                                  | Validity (%)↑ | Val. w/o (%)↑ | NSPDK↓        | FCD↓         | Time(s)↓     | Validity (%)↑ | Val. w/o (%)↑ | NSPDK↓        | FCD↓         | Time(s)↓     |  |  |
| GraphAF (Shi et al., 2020)       | <b>100</b>    | 67            | 0.020         | 5.268        | $2.28e^{-3}$ | <b>100</b>    | 68            | 0.044         | 16.289       | $5.72e^{-3}$ |  |  |
| GraphAF+FC                       | <b>100</b>    | 74.43         | 0.021         | 5.625        | $2.32e^{-3}$ | <b>100</b>    | 68.47         | 0.044         | 16.023       | $5.91e^{-3}$ |  |  |
| GraphDF (Luo et al., 2021)       | <b>100</b>    | 82.67         | 0.063         | 10.816       | $5.08e^{-4}$ | <b>100</b>    | 89.03         | 0.176         | 34.202       | $5.87e^{-4}$ |  |  |
| GraphDF+FC                       | <b>100</b>    | 93.88         | 0.064         | 10.928       | $4.72e^{-4}$ | <b>100</b>    | 90.61         | 0.177         | 33.546       | $5.79e^{-4}$ |  |  |
| MoFlow (Zang & Wang, 2020)       | <b>100</b>    | 91.36         | 0.017         | 4.467        | <b>4.58</b>  | <b>100</b>    | 63.11         | 0.046         | 20.931       | <b>25.9</b>  |  |  |
| EDP-GNN (Niu et al., 2020a)      | <b>100</b>    | 47.52         | 0.005         | 2.680        | $4.13e^{-3}$ | <b>100</b>    | 82.97         | 0.049         | 16.737       | $8.41e^{-3}$ |  |  |
| GDSS (Jo et al., 2022)           | <b>100</b>    | 95.72         | 0.003         | 2.900        | $1.06e^{-2}$ | <b>100</b>    | 97.01         | 0.019         | 14.656       | $2.11e^{-3}$ |  |  |
| HGDM (Wen et al., 2024)          | <b>100</b>    | 98.04         | <b>0.002</b>  | 2.131        | $1.23e^{-2}$ | <b>100</b>    | 93.51         | 0.016         | 17.69        | $2.23e^{-3}$ |  |  |
| GSDM* (Luo et al., 2024)         | <b>100</b>    | 99.81         | 0.009         | 3.191        | 18.5         | <b>100</b>    | 93.0          | 0.016         | 12.07        | 86.3         |  |  |
| GEEL Jang et al. (2024)          | <b>100.0</b>  | <b>100</b>    | <b>0.0002</b> | <b>0.089</b> | -            | <b>100</b>    | <b>99.31</b>  | <b>0.0068</b> | <b>0.401</b> | -            |  |  |
| CatFlow Eijkelboom et al. (2024) | <b>100</b>    | <b>99.81</b>  | -             | <b>0.441</b> | -            | <b>100</b>    | 99.21         | -             | 13.211       | -            |  |  |
| DeFog QIN et al. (2025)          | -             | -             | -             | -            | -            | <b>100</b>    | <b>99.22</b>  | <b>0.0008</b> | <b>1.425</b> | -            |  |  |
| ESGD (ours)                      | <b>100</b>    | 99.20         | <b>0.002</b>  | 1.425        | <b>14.6</b>  | <b>100</b>    | 98.29         | 0.010         | 8.80         | <b>72.1</b>  |  |  |

447 Table 5: Results on Moses and GuacaMol. Results were taken from the published papers Vignac  
448 et al. (2023a); Xu et al. (2024); Siraudin et al. (2025); QIN et al. (2025).

|                                      | GuacaMol    |             |             |             |             |             | Moses        |             |             |             |             |             |
|--------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|
|                                      | Val.↑       | V.U.↑       | V.U.N.↑     | KL div↑     | FCD↑        | Val.↑       | Uniq.↑       | Nov.↑       | Filters↑    | FCD↓        | SNN↑        | Scaf↑       |
| DiGress (Vignac et al., 2023a)       | 85.2        | 85.2        | 85.1        | 92.9        | 68.0        | 85.7        | <b>100.0</b> | 95.0        | 97.1        | <b>1.19</b> | 0.52        | 14.8        |
| DisCo (Xu et al., 2024)              | 86.6        | 86.6        | 86.5        | 92.6        | 59.7        | 88.3        | <b>100.0</b> | <b>97.7</b> | 95.6        | 1.44        | 0.50        | 15.1        |
| Cometh (Siraudin et al., 2025)       | 98.9        | 98.9        | 97.6        | 96.7        | 72.7        | 90.5        | 99.9         | 92.6        | <b>99.1</b> | <b>1.27</b> | 0.54        | 16.0        |
| DeFog (10% steps) (QIN et al., 2025) | 91.7        | 91.7        | 91.2        | 92.3        | 57.9        | 83.9        | 99.9         | 96.9        | 96.5        | 1.87        | 0.50        | <b>23.5</b> |
| DeFog (QIN et al., 2025)             | <b>99.0</b> | <b>99.0</b> | <b>97.9</b> | <b>97.7</b> | 73.8        | <b>92.8</b> | 99.9         | 92.1        | <b>98.9</b> | 1.95        | <b>0.55</b> | 14.4        |
| ESGD (ours)                          | <b>99.1</b> | <b>99.1</b> | <b>98.3</b> | <b>98.0</b> | <b>76.9</b> | <b>94.6</b> | 99.9         | <b>93.4</b> | <b>98.9</b> | 1.92        | <b>0.58</b> | 15.7        |

458 metrics, confirming that our spectral approach genuinely captures the underlying molecular distribution.  
459 These results demonstrate ESGD’s effectiveness and generalization capability on complex  
460 molecular graphs with multiple node types and weighted edges.

#### 462 6.4 EFFICIENCY EVALUATION

465 **Computational Efficiency:** We compare the computational efficiency of recent graph generation  
466 models on the *Planar* dataset, as it is widely adopted across most state-of-the-art methods and pro-  
467 vides well-tuned configurations for fair comparison. The results are summarized in Table 6.

468 For a fair evaluation, we compute the parameter counts based on each model’s reported config-  
469 uration for the *Planar* dataset. FLOPs are calculated as the total computational cost required to  
470 generate a single graph with 64 nodes. For GAN-based models such as SPECTRE, we report  
471 only the generator’s FLOPs, while for diffusion-based models, the total FLOPs are computed as:  
472 Total FLOPs = FLOPs per step  $\times$  Number of sampling steps. The “Steps” column indicates the  
473 minimum number of sampling steps required for each model to achieve its best reported per-  
474 formance. For GAN and autoregressive models, this value is fixed at 1. We exclude models published  
475 before 2022 due to their significantly less competitive performance.

477 Table 6: Efficiency comparison on the *Planar* dataset. The best results are highlighted in **bold**.

| Method                | Type                                 | Parameter Counts  | Training Epochs        | FLOPs/Step   | FLOPs                   |
|-----------------------|--------------------------------------|-------------------|------------------------|--------------|-------------------------|
| SPECTRE               | GAN                                  | 0.36M (Generator) | 12,000                 | 2.27G        | 2.27G (1 Step)          |
| DiGress               | Diffusion (Discrete)                 | 8.89M             | 100,000                | 5.29G        | 5.29T (1000 Steps)      |
| GEEL                  | Autoregressive LSTM                  | 7.17M             | 5,000                  | 2.41G        | 2.41G (1 Step)          |
| DisCo                 | Diffusion (Discrete)                 | 4.49M             | 50,000                 | 2.68G        | 134.12G (50 Steps)      |
| Cometh                | Diffusion (Continuous-Time Discrete) | 5.29M             | 150,000                | 5.28G        | 5.28T (1000 Steps)      |
| DeFog                 | Flow-Matching                        | 6.59M             | 100,000                | 5.28G        | 5.28T (1000 Steps)      |
| Local PPGN (one-shot) | Diffusion (Discrete)                 | 3.73M             | $\infty$ (steps-based) | 30.23G       | 7.74T (256 Steps)       |
| GGSD                  | Diffusion (Continuous)               | 20.09M            | $\sim 500K$ (batches)  | 0.92G        | 92.09G (100 Steps)      |
| ESGD (ours)           | Diffusion (Continuous)               | <b>0.21M</b>      | <b>1,000</b>           | <b>45.2M</b> | <b>2.26G (50 Steps)</b> |

486 **Computational Implications.** The spectral compression strategy has direct consequences for model  
 487 complexity and training efficiency. As we discussed in Section 6.1, adjacency-based spectral models  
 488 suffer from eigenvalue imbalance and condition number outliers, requiring large model capacity  
 489 to handle the resulting variance. Discrete diffusion models face complementary challenges: they  
 490 must maintain large parameter counts to model complex categorical transitions over edge states,  
 491 require extensive training schedules spanning hundreds of thousands of iterations, and demand long  
 492 sampling chains with hundreds to thousands of denoising steps to achieve high-quality generation.

493 ESGD addresses both limitations through its spectral compression design. First, by bounding all  
 494 eigenvalues to the interval  $[-1, 1]$ , we eliminate degree-dependent scaling that force adjacency-  
 495 based methods to allocate substantial model capacity for counteracting spectral variance. Second,  
 496 by fixing the eigenvectors  $\mathbf{U}$  and diffusing only the eigenvalues  $\Lambda$ , we drastically reduce the effective  
 497 function class that the score network must approximate. The eigenvalue score network  $s_\phi$  operates  
 498 on an  $n$ -dimensional vector rather than an  $n \times n$  matrix. These architectural simplifications achieves  
 499 competitive generation quality with substantially fewer parameters than existing models.

500 Table 6 quantifies these efficiency gains on the Planar dataset. ESGD achieves substantial improve-  
 501 ments in both parameter efficiency and computational cost compared to all baseline methods. With  
 502 only **0.21M** parameters and **2.26G** total FLOPs per generated graph, ESGD attains comparable  
 503 or superior generation quality while matching the efficiency of single-step models such as SPEC-  
 504 TRE and GEEL. Compared to diffusion-based baselines, ESGD reduces computational cost by over  
 505 **2000 $\times$** . This efficiency advantage stems directly from our spectral normalization strategy, which, as  
 506 discussed in Sections 3.1 and 5, transforms heterogeneous graph distributions into well-conditioned  
 507 representations that can be modeled with compact neural architectures. Most existing diffusion  
 508 approaches allocate large model capacity to counteract the variance introduced by unnormalized  
 509 spectra, whereas ESGD’s bounded spectral domain allows the score network to focus its limited  
 510 capacity on learning the essential structural patterns.

511 **Sampling Steps:** A key factor contributing to ESGD’s computational efficiency is its ability to  
 512 achieve high-quality generation with significantly fewer sampling steps compared to other diffusion-  
 513 based methods. As shown in Table 6, while most diffusion models require hundreds to thousands  
 514 of steps (e.g., DiGress, Cometh, and DeFoG with 1000 steps; Local PPGN with 256 steps), ESGD  
 515 achieves optimal performance with only **50 steps**. Even GGSD, which also operates in the spectral  
 516 domain, requires 100 steps to achieve comparable quality.



525 Figure 3: The sub-figures show how evaluation metrics change with different sampling steps. Red  
 526 dashed lines indicate the optimal sampling steps for each dataset.

527 Figure 3 further illustrates how ESGD’s performance metrics stabilize rapidly across diverse  
 528 datasets. On the Enzymes dataset, the MMD metrics converge by 150 steps, while on the Tree  
 529 dataset, near-optimal performance is achieved with just 50 steps. For molecular graphs (QM9),  
 530 ESGD achieves 99.08% validity at 500 steps, demonstrating excellent efficiency without sacrificing  
 531 generation quality.

## 533 7 CONCLUSIONS

536 We have presented a spectral perspective on graph diffusion that achieves both theoretical soundness  
 537 and practical efficiency. The broader lesson is that progress in generative modeling may not always  
 538 come from additional layers of engineering, but from revisiting the core formulations that govern  
 539 stability and scalability. Subtle adjustments to these foundations can sometimes prove more effective  
 than increasingly intricate designs, a direction our work illustrates for graph generation.

---

## 540 REFERENCES

## 541

542 Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient  
543 and scalable graph generation through iterative local expansion. In *International Conference on*  
544 *Learning Representations (ICLR)*, 2024a. URL <https://openreview.net/forum?id=2XkTz7gdpc>.

545 Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient  
546 and scalable graph generation through iterative local expansion. In *The Twelfth International Con-*  
547 *ference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=2XkTz7gdpc>.

548 Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Benchmark-  
549 ing models for de novo molecular design. *Journal of Chemical Information and Modeling*, 59(3):  
550 1096–1108, 2019.

551 Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation  
552 via discrete diffusion modeling. In *Proceedings of the 40th International Conference on Machine*  
553 *Learning*. PMLR, 2023a.

554 Xiaohui Chen, Jiaxing He, Xu Han, and Liping Liu. Efficient and degree-guided graph generation  
555 via discrete diffusion modeling. In *Proceedings of the 40th International Conference on Machine*  
556 *Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 4585–4610. PMLR,  
557 23–29 Jul 2023b.

558 Fan R. K. Chung. *Spectral Graph Theory*, volume 92 of *CBMS Regional Conference Series in*  
559 *Mathematics*. American Mathematical Society, 1997.

560 Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In *Pro-*  
561 , pp. 255–262. Omnipress;  
562 Madison, WI, USA, 2010.

563 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley-Interscience, 2nd  
564 edition, 2006.

565 Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular  
566 graphs. *arXiv preprint arXiv:1805.11973*, 2018.

567 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Associa-*  
568 *tion*, 106(496):1602–1614, 2011.

569 Floor Eijkelboom, Grigory Bartosh, Christian A. Naeseth, Max Welling, and Jan-Willem van de  
570 Meent. Variational flow matching for graph generation. In *Advances in Neural Information*  
571 *Processing Systems*, volume 37, pp. 11735–11764. Curran Associates, Inc., 2024.

572 Florentin Guth, Simon Coste, Valentin De Bortoli, and Stephane Mallat. Wavelet score-based gener-  
573 ative modeling. In *Advances in neural information processing systems*, volume 35, pp. 478–491,  
574 2022.

575 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances*  
576 *in Neural Information Processing Systems (NeurIPS)*, 2020.

577 John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman. Zinc:  
578 A free tool to discover chemistry for biology. *Journal of Chemical Information and Modeling*, 52  
579 (7):1757–1768, 2012. doi: 10.1021/ci3001277. PMID: 22587354.

580 Yunhui Jang, Seul Lee, and Sungsoo Ahn. A simple and scalable representation for graph generation.  
581 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=nO344avRib>.

582 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the  
583 system of stochastic differential equations. In *Proceedings of the 39th International Conference*  
584 *on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 10362–  
585 10383. PMLR, 2022.

---

594 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-  
595 works. In *International Conference on Learning Representations (ICLR)*, 2017.  
596

597 Peter E. Kloeden and Eckhard Platen. *Numerical Solution of Stochastic Differential Equations*.  
598 Springer, 1992.

599 Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative  
600 models of graphs. *arXiv preprint arXiv:1803.03324*, 2018.  
601

602 Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel  
603 Ürtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.  
604 In *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.

605 Yaron Lipman, Ricky T. Q. Chen, and Max Welling. Flow matching for generative modeling. In  
606 *International Conference on Learning Representations (ICLR)*, 2023.  
607

608 Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows.  
609 In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),  
610 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.

611 Xuanqing Liu, Yuxin Wen, Michael K. Ng, and Cho-Jui Hsieh. Flow straight and fast: Learning  
612 to generate and transfer data with rectified flow. In *Advances in Neural Information Processing  
613 Systems (NeurIPS)*, 2022.  
614

615 Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. *IEEE  
616 Transactions on Pattern Analysis and Machine Intelligence*, 46(5):3496–3508, 2024.  
617

618 Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph  
619 generation. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Con-  
620 ference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp.  
621 7192–7203. PMLR, 18–24 Jul 2021.

622 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE:  
623 Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In  
624 *Proceedings of the 39th International Conference on Machine Learning*, volume 162, pp. 15159–  
625 15179. PMLR, 17–23 Jul 2022a.

626 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE:  
627 Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In  
628 *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceed-  
629 ings of Machine Learning Research*, pp. 15159–15179. PMLR, 2022b.

631 Giorgia Minello, Alessandro Bicciato, Luca Rossi, Andrea Torsello, and Luca Cosmo. Graph gen-  
632 eration via spectral diffusion. In *International Conference on Learning Representations*, 2025.

633 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization  
634 for generative adversarial networks. In *International Conference on Learning Representations*,  
635 2018.

637 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-  
638 mutation invariant graph generation via score-based generative modeling. In Silvia Chiappa and  
639 Roberto Calandra (eds.), *Proceedings of the Twenty Third International Conference on Artificial  
640 Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pp. 4474–  
641 4484. PMLR, 26–28 Aug 2020a.

642 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-  
643 tation invariant graph generation via score-based generative modeling. In *Proceedings of the 23rd  
644 International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of  
645 Machine Learning Research*, pp. 4474–4484. PMLR, 2020b.

647 Bernt Øksendal. *Stochastic Differential Equations: An Introduction with Applications*. Springer,  
6th edition, 2003.

---

648 Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai  
649 Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark  
650 Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey Nikolenko, Alán Aspuru-  
651 Guzik, and Alex Zhavoronkov. Molecular sets (moses): A benchmarking platform for molecular  
652 generation models. *Frontiers in Pharmacology*, Volume 11 - 2020, 2020. ISSN 1663-9812.

653 Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.  
654 Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. *Journal  
655 of chemical information and modeling*, 58(9):1736–1741, 2018.

656

657 Yiming QIN, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching  
658 for graph generation. In *Forty-second International Conference on Machine Learning*, 2025. URL  
659 <https://openreview.net/forum?id=KPRIwWhqAZ>.

660

661 Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. DeFoG: Discrete flow matching  
662 for graph generation. In *Proceedings of the 42nd International Conference on Machine Learning*.  
663 PMLR, 2025.

664 Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quan-  
665 tum chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1(1):1–7, 2014.

666

667 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
668 resolution image synthesis with latent diffusion models. In *IEEE Conference on Computer Vision  
669 and Pattern Recognition (CVPR)*, 2022.

670 Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a  
671 flow-based autoregressive model for molecular graph generation. In *International Conference on  
672 Learning Representations*, 2020.

673

674 Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using  
675 variational autoencoders. In *International Conference on Artificial Neural Networks and Machine  
676 Learning*, pp. 412–422. Springer, 2018.

677 Antoine Siraudin, Fragkiskos D. Malliaros, and Christopher Morris. Cometh: A continuous-time  
678 discrete-state graph diffusion model. *Transactions on Machine Learning Research*, 2025. ISSN  
679 2835-8856.

680

681 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-  
682 national Conference on Learning Representations (ICLR)*, 2021a.

683

684 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
685 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-  
686 national Conference on Learning Representations (ICLR)*, 2021b.

687

688 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
689 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-  
690 national Conference on Learning Representations*, 2021c.

691

692 Clément Vignac and Pascal Frossard. Top-N: Equivariant set and graph generation without ex-  
693 changeability. *arXiv preprint arXiv:2110.02096*, 2022.

694

695 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal  
696 Frossard. DiGress: Discrete denoising diffusion for graph generation. In *The Eleventh Interna-  
697 tional Conference on Learning Representations*, 2023a. URL [https://openreview.net/  
698 forum?id=UaAD-Nu86WX](https://openreview.net/forum?id=UaAD-Nu86WX).

699

700 Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal  
701 Frossard. DiGress: Discrete denoising diffusion for graph generation. In *International Con-  
702 ference on Learning Representations*, 2023b.

703

704 Ulrike von Luxburg. A tutorial on spectral clustering. *Statistics and Computing*, 17(4):395–416,  
705 2007.

---

702 Lingfeng Wen, Xuan Tang, Mingjie Ouyang, Xiangxiang Shen, Jian Yang, Dixin Zhu, Mingsong  
703 Chen, and Xian Wei. Hyperbolic graph diffusion model. In *Proceedings of the AAAI Conference*  
704 *on Artificial Intelligence*, pp. 15823–15831, 2024.

705 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural  
706 networks? In *International Conference on Learning Representations (ICLR)*, 2019.

708 Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,  
709 Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gen-  
710 eration. In *Advances in Neural Information Processing Systems*, volume 37, pp. 79704–79740.  
711 Curran Associates, Inc., 2024.

712 Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating  
713 realistic graphs with deep auto-regressive models. In Jennifer Dy and Andreas Krause (eds.), *Pro-  
714 ceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings  
715 of Machine Learning Research*, pp. 5708–5717. PMLR, 10–15 Jul 2018.

716 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Russ R. Salakhutdinov, and  
717 Alexander J. Smola. Deep sets. In *Advances in Neural Information Processing Systems (NeurIPS)*,  
718 pp. 3391–3401, 2017.

720 Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In  
721 *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data  
722 mining*, pp. 617–626, 2020.

723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755

---

## 756 LLM USAGE DECLARATION

758 LLM involvement: restricted to language refinement and document formatting

## 760 A THEORETICAL SUPPORT

763 **Theorem A.1** (Permutation invariance). *Let  $G = (\mathbf{X}, \mathbf{A})$  be an undirected graph with adjacency*  
 764  *$\mathbf{A}$  and node features  $\mathbf{X}$ . For any permutation matrix  $\mathbf{P}$ , set  $\mathbf{X}' = \mathbf{P}\mathbf{X}$  and  $\mathbf{A}' = \mathbf{P}\mathbf{A}\mathbf{P}^\top$ .*  
 765 *Let  $\mathbf{S} = -\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$  and  $\mathbf{S}' = -\mathbf{D}'^{-1/2}\mathbf{A}'\mathbf{D}'^{-1/2}$ . Then the ESGD forward and reverse*  
 766 *diffusion processes satisfy*

$$767 \quad (\mathbf{X}'_t, \mathbf{\Lambda}'_t) \stackrel{d}{=} (\mathbf{P}\mathbf{X}_t, \mathbf{\Lambda}_t), \quad \mathbf{A}'_0 = \mathbf{P}\mathbf{A}_0\mathbf{P}^\top,$$

769 *so the generative distribution is invariant to node permutations.*

771 *Proof.* **(1) Operator similarity.** Since  $\mathbf{D}' = \text{diag}(\mathbf{A}'\mathbf{1}) = \text{diag}(\mathbf{P}\mathbf{A}\mathbf{P}^\top\mathbf{1}) = \mathbf{P}\mathbf{D}\mathbf{P}^\top$  and  $\mathbf{P}$  is  
 772 orthogonal, we have

$$774 \quad \mathbf{S}' = -\mathbf{D}'^{-1/2}\mathbf{A}'\mathbf{D}'^{-1/2} = -(\mathbf{P}\mathbf{D}\mathbf{P}^\top)^{-1/2}(\mathbf{P}\mathbf{A}\mathbf{P}^\top)(\mathbf{P}\mathbf{D}\mathbf{P}^\top)^{-1/2} = \mathbf{P}\mathbf{S}\mathbf{P}^\top.$$

776 Hence  $\mathbf{S}$  and  $\mathbf{S}'$  are similar and share eigenvalues; their eigenvectors transform as  $\mathbf{U}' = \mathbf{P}\mathbf{U}$   
 777 (e.g., (Chung, 1997, Ch. 1)). **(2) Equivariance of message passing layers.** Consider a standard  
 778 (normalized) GCN/MPNN layer

$$779 \quad \Phi(\mathbf{H}; \mathbf{S}) = \sigma(-\mathbf{S}\mathbf{H}\mathbf{W}),$$

781 with elementwise activation  $\sigma$  and weight matrix  $\mathbf{W}$ . Using  $\mathbf{P}\mathbf{H}\mathbf{W} = (\mathbf{P}\mathbf{H})\mathbf{W}$  and  
 782  $\mathbf{P}\mathbf{S}\mathbf{P}^\top\mathbf{P}\mathbf{H} = \mathbf{P}(-\mathbf{S}\mathbf{H}\mathbf{W})$ ,

$$783 \quad \Phi(\mathbf{P}\mathbf{H}; \mathbf{P}\mathbf{S}\mathbf{P}^\top) = \sigma(-(\mathbf{P}\mathbf{S}\mathbf{P}^\top)(\mathbf{P}\mathbf{H})\mathbf{W}) = \mathbf{P}\sigma(-\mathbf{S}\mathbf{H}\mathbf{W}) = \mathbf{P}\Phi(\mathbf{H}; \mathbf{S}).$$

785 Thus each layer is permutation-equivariant; stacked networks and the score nets inherit equivariance  
 786 (see also Zaheer et al. (2017); Xu et al. (2019)). **(3) Forward SDE equivariance.** The forward  
 787 SDEs read

$$788 \quad d\mathbf{X}_t = f_{\mathbf{X}}(\mathbf{X}_t, \mathbf{\Lambda}_t, t; \mathbf{S}) dt + g_{\mathbf{X}}(t) d\mathbf{W}_t^{(\mathbf{X})}, \quad d\mathbf{\Lambda}_t = f_{\mathbf{\Lambda}}(\mathbf{\Lambda}_t, t) dt + g_{\mathbf{\Lambda}}(t) d\mathbf{W}_t^{(\mathbf{\Lambda})}.$$

790 Define  $\mathbf{X}'_t = \mathbf{P}\mathbf{X}_t$ ,  $\mathbf{\Lambda}'_t = \mathbf{\Lambda}_t$ , and  $\mathbf{W}_t^{(\mathbf{X})'} = \mathbf{P}\mathbf{W}_t^{(\mathbf{X})}$ . Since Brownian motion is invariant under  
 791 orthogonal transforms and  $f_{\mathbf{X}}(\cdot; \mathbf{S})$  is permutation-equivariant by (2), we obtain

$$793 \quad d\mathbf{X}'_t = f_{\mathbf{X}}(\mathbf{X}'_t, \mathbf{\Lambda}'_t, t; \mathbf{S}') dt + g_{\mathbf{X}}(t) d\mathbf{W}_t^{(\mathbf{X})'}.$$

795 Therefore the forward process is permutation-equivariant (e.g., (Øksendal, 2003, Ch. 3)).

796 **(4) Scores and reverse SDE.** Let  $p_t$  be the joint density of  $(\mathbf{X}_t, \mathbf{\Lambda}_t)$ . For any permutation  $\mathbf{P}$ ,  
 797  $p_t^{(\mathbf{P})}(\mathbf{x}, \lambda) = p_t(\mathbf{P}^\top\mathbf{x}, \lambda)$

$$798 \quad \Rightarrow \quad \nabla_{\mathbf{x}} \log p_t(\mathbf{P}\mathbf{x}, \lambda) = \mathbf{P} \nabla_{\mathbf{x}} \log p_t(\mathbf{x}, \lambda), \quad \nabla_{\lambda} \log p_t(\mathbf{P}\mathbf{x}, \lambda) = \nabla_{\lambda} \log p_t(\mathbf{x}, \lambda).$$

800 Hence the ground-truth scores are permutation-equivariant and so are consistent score networks  
 801 trained by score matching. The reverse-time SDE (variance-exploding case) is

$$802 \quad d\mathbf{X}_t = \left( -\frac{1}{2}\beta(t)\mathbf{X}_t - \beta(t)s(\mathbf{X}_t, t) \right) dt + \sqrt{\beta(t)} d\bar{\mathbf{W}}_t,$$

804 which remains permutation-equivariant when replacing  $(\mathbf{X}_t, s)$  by  $(\mathbf{P}\mathbf{X}_t, \mathbf{P}s)$ .

805 **(5) Reconstruction.** At termination,  $(\mathbf{X}_0, \mathbf{\Lambda}_0) \mapsto (\mathbf{P}\mathbf{X}_0, \mathbf{\Lambda}_0)$  and

$$807 \quad \mathbf{S}'_0 = (\mathbf{P}\mathbf{U}_0)\mathbf{\Lambda}_0(\mathbf{P}\mathbf{U}_0)^\top = \mathbf{P}\mathbf{S}_0\mathbf{P}^\top.$$

809 With  $\mathbf{A}_0 = -\mathbf{D}^{1/2}\mathbf{S}_0\mathbf{D}^{1/2}$  and  $\mathbf{A}'_0 = -\mathbf{D}'^{1/2}\mathbf{S}'_0\mathbf{D}'^{1/2}$ , and  $\mathbf{D}' = \mathbf{P}\mathbf{D}\mathbf{P}^\top$ , we get  $\mathbf{A}'_0 = \mathbf{P}\mathbf{A}_0\mathbf{P}^\top$ . This proves the claim.  $\square$

Let  $S_t = U_0 \Lambda_t U_0^\top$  with fixed  $U_0$  chosen once by eigendecomposition. For any block-orthogonal rotation  $R$  acting within degenerate eigenspaces of  $U_0$ , set  $U'_0 = U_0 R$ . Then

$$U'_0 \Lambda_t U'^\top = U_0 R \Lambda_t R^\top U_0^\top = U_0 \Lambda_t U_0^\top,$$

so the reconstructed operator and hence the generated distribution are independent of the particular basis within degenerate subspaces (cf. von Luxburg (2007)).

**Definition A.2** (Spectral diameter). Let  $\mathbb{X}_\bullet \subset \mathbb{R}^n$  be the feasible spectral set in domain  $\bullet \in \{S, A\}$  (SNL  $S$  or adjacency  $A$ ). There exist absolute constants

$$D_S = 2\sqrt{n}, \quad D_A = 2\Delta_{\max}\sqrt{n}$$

such that any spectral embedding  $\mathbf{x}_0 \in \mathbb{X}_\bullet$  satisfies  $\|\mathbf{x}_0\|^2 \leq D_\bullet^2/4$ . For  $S$ , this follows from the spectrum lying in  $[-1, 1]$ ; for  $A$ , from  $\|A\| \leq \Delta_{\max}$  (see Chung (1997)).

**Theorem A.3** (Spectral SNR and information retention). *Let  $\mathbf{X}_0 \in \mathbb{R}^n$  be a spectral embedding. Consider*

$$\mathbf{X}_t = \sqrt{\bar{\alpha}_t} \mathbf{X}_0 + \sigma_t \varepsilon, \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad \rho_t := \bar{\alpha}_t / \sigma_t^2.$$

Then:

1. (**SNR bound**) For any fixed  $\mathbf{x}_0$ ,

$$\text{SNR}(t) := \frac{\bar{\alpha}_t \|\mathbf{x}_0\|^2}{n \sigma_t^2} \leq \begin{cases} \rho_t, & \bullet = S, \\ \Delta_{\max}^2 \rho_t, & \bullet = A. \end{cases}$$

2. (**Mutual information**) If  $\mathbf{X}_0$  has covariance  $\Sigma_0$ , then

$$I(\mathbf{X}_0; \mathbf{X}_t) \leq \frac{1}{2} \log \det(\mathbf{I} + \rho_t \Sigma_0) \leq \frac{1}{2} \rho_t \mathbb{E} \|\mathbf{X}_0\|^2,$$

with  $\mathbb{E} \|\mathbf{X}_0\|^2 = O(n)$  in domain  $S$  and  $O(n \Delta_{\max}^2)$  in domain  $A$ .

*Proof.* (1) By Definition A.2,  $\|\mathbf{x}_0\|^2 \leq D_\bullet^2/4$ , hence

$$\text{SNR}(t) = \rho_t \frac{\|\mathbf{x}_0\|^2}{n} \leq \rho_t \cdot \frac{D_\bullet^2}{4n} = \begin{cases} \rho_t, & D_S^2/4 = n, \\ \Delta_{\max}^2 \rho_t, & D_A^2/4 = n \Delta_{\max}^2. \end{cases}$$

(2) Since  $\mathbf{X}_t = \sqrt{\bar{\alpha}_t} \mathbf{X}_0 + \sigma_t \varepsilon$  with  $\varepsilon \perp \mathbf{X}_0$ , the Gaussian channel formula gives  $I(\mathbf{X}_0; \mathbf{X}_t) = \frac{1}{2} \log \det(\mathbf{I} + \rho_t \Sigma_0)$  (e.g., (Cover & Thomas, 2006, Ch. 9)). Using  $\log \det(\mathbf{I} + \mathbf{M}) \leq \text{tr}(\mathbf{M})$  for  $\mathbf{M} \succeq \mathbf{0}$ ,

$$I(\mathbf{X}_0; \mathbf{X}_t) \leq \frac{1}{2} \text{tr}(\rho_t \Sigma_0) = \frac{1}{2} \rho_t \mathbb{E} \|\mathbf{X}_0\|^2.$$

By Definition A.2, any  $\mathbf{X}_0$  supported on  $\mathbb{X}_\bullet$  satisfies  $\mathbb{E} \|\mathbf{X}_0\|^2 \leq D_\bullet^2/4$ , which yields the stated domain scalings.  $\square$

**Theorem A.4** (Score Lipschitz). *Let  $p_t$  be the density of  $\mathbf{X}_t = \sqrt{\bar{\alpha}_t} \mathbf{X}_0 + \sigma_t \varepsilon$  with  $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$  and define the score  $s(\mathbf{x}, t) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ . Then*

$$\|\nabla_{\mathbf{x}} s(\mathbf{x}, t)\|_{\text{op}} \leq \sigma_t^{-2} + \frac{\bar{\alpha}_t}{\sigma_t^4} \cdot \frac{D_\bullet^2}{4} \leq \begin{cases} \sigma_t^{-2} + \bar{\alpha}_t n / \sigma_t^4, & \bullet = S, \\ \sigma_t^{-2} + \bar{\alpha}_t n \Delta_{\max}^2 / \sigma_t^4, & \bullet = A. \end{cases}$$

*Proof.* Fix  $t$  and write  $\bar{\alpha} = \bar{\alpha}_t$ ,  $\sigma = \sigma_t$ . Denote  $m(\mathbf{x}) := \mathbb{E}[\mathbf{X}_0 \mid \mathbf{X} = \mathbf{x}]$ . By Tweedie's identity for additive Gaussian noise (see Efron (2011) and also (Song et al., 2021b, Sec. 3)),

$$\sqrt{\bar{\alpha}} m(\mathbf{x}) = \mathbf{x} + \sigma^2 s(\mathbf{x}, t) \iff s(\mathbf{x}, t) = \frac{\sqrt{\bar{\alpha}} m(\mathbf{x}) - \mathbf{x}}{\sigma^2}. \quad (4)$$

Differentiating equation 4 in  $\mathbf{x}$  yields

$$\nabla s(\mathbf{x}, t) = \frac{\sqrt{\bar{\alpha}}}{\sigma^2} \nabla m(\mathbf{x}) - \frac{1}{\sigma^2} \mathbf{I}. \quad (5)$$

For the Gaussian corruption channel  $\mathbf{X} = \sqrt{\bar{\alpha}} \mathbf{X}_0 + \sigma \varepsilon$ , a standard covariance identity (Stein's lemma / Bayes rule differentiation) gives

$$\nabla m(\mathbf{x}) = \frac{\sqrt{\bar{\alpha}}}{\sigma^2} \text{Cov}(\mathbf{X}_0 \mid \mathbf{X} = \mathbf{x}), \quad (6)$$

864 see, e.g., (Efron, 2011, Sec. 2). Substituting equation 6 into equation 5,  
 865

$$866 \quad \nabla s(\mathbf{x}, t) = \frac{\bar{\alpha}}{\sigma^4} \operatorname{Cov}(\mathbf{X}_0 \mid \mathbf{X} = \mathbf{x}) - \frac{1}{\sigma^2} \mathbf{I}. \quad (7)$$

868 Since  $\mathbf{X}_0 \in \mathbb{X}_\bullet$  almost surely, any conditional distribution  $\mathbf{X}_0 \mid \mathbf{X} = \mathbf{x}$  is supported on  $\mathbb{X}_\bullet$ . Hence,  
 869 by a diameter (Popoviciu-type) bound for bounded random vectors,

$$870 \quad \|\operatorname{Cov}(\mathbf{X}_0 \mid \mathbf{X} = \mathbf{x})\|_{\text{op}} \leq \frac{D_\bullet^2}{4}.$$

872 Taking operator norms in equation 7 and using the triangle inequality yields  
 873

$$874 \quad \|\nabla s(\mathbf{x}, t)\|_{\text{op}} \leq \frac{1}{\sigma^2} + \frac{\bar{\alpha}}{\sigma^4} \cdot \frac{D_\bullet^2}{4},$$

876 and substituting  $D_S^2/4 = n$  and  $D_A^2/4 = n\Delta_{\max}^2$  completes the proof.  $\square$   
 877

878 **Theorem A.5** (Drift Lipschitz and EM error). *Consider the reverse-time SDE in variance-exploding  
 879 form*

$$880 \quad d\mathbf{X}_t = \underbrace{\left( -\frac{1}{2}\beta(t)\mathbf{X}_t - \beta(t)s(\mathbf{X}_t, t) \right)}_{=:b(\mathbf{X}_t, t)} dt + \sqrt{\beta(t)} d\bar{\mathbf{W}}_t.$$

883 Then, for each  $t$ ,

$$884 \quad L_b(t) := \sup_{\mathbf{x}} \|\nabla_{\mathbf{x}} b(\mathbf{x}, t)\|_{\text{op}} \leq \frac{1}{2}\beta(t) + \beta(t) \left( \sigma_t^{-2} + \frac{\bar{\alpha}_t}{4\sigma_t^4} D_\bullet^2 \right).$$

886 Moreover, the Euler–Maruyama (EM) strong error with step size  $\Delta t$  satisfies  
 887

$$888 \quad (\mathbb{E}\|\mathbf{X}_1^{\text{EM}} - \mathbf{X}_1\|^2)^{1/2} \leq C_{\text{EM}} \left( \int_0^1 L_b(t)^2 dt \right)^{1/2} \Delta t^{1/2}.$$

891 *Proof.* The Jacobian of  $b(\cdot, t)$  is

$$892 \quad \nabla_{\mathbf{x}} b(\mathbf{x}, t) = -\frac{1}{2}\beta(t)\mathbf{I} - \beta(t)\nabla_{\mathbf{x}} s(\mathbf{x}, t).$$

893 Hence

$$894 \quad \|\nabla_{\mathbf{x}} b(\mathbf{x}, t)\|_{\text{op}} \leq \frac{1}{2}\beta(t) + \beta(t) \|\nabla_{\mathbf{x}} s(\mathbf{x}, t)\|_{\text{op}}.$$

895 Applying Theorem A.4 gives the bound on  $L_b(t)$ . For EM, consider the time-inhomogeneous SDE  
 896  $d\mathbf{X}_t = b(\mathbf{X}_t, t) dt + \sigma(t) d\bar{\mathbf{W}}_t$  with  $\sigma(t) = \sqrt{\beta(t)}\mathbf{I}$  independent of  $\mathbf{x}$ . Under global  $\mathbf{x}$ -Lipschitz  
 897 continuity of  $b(\cdot, t)$  with modulus  $L_b(t)$  and linear growth (both satisfied here), the classical EM  
 898 estimate (e.g., (Kloeden & Platen, 1992, Thm. 10.2.2)) yields  
 899

$$900 \quad (\mathbb{E}\|\mathbf{X}_1^{\text{EM}} - \mathbf{X}_1\|^2)^{1/2} \leq C_{\text{EM}} \left( \int_0^1 (L_b(t)^2 + L_\sigma(t)^2) dt \right)^{1/2} \Delta t^{1/2}.$$

903 Because  $\sigma$  does not depend on  $\mathbf{x}$ ,  $L_\sigma(t) = 0$ , which gives the stated bound.  $\square$

904 **Theorem A.6** (Fisher spectrum and conditioning). *Let  $\mathbf{F} = \mathbb{E}[\nabla_{\boldsymbol{\theta}} \ell \nabla_{\boldsymbol{\theta}} \ell^\top]$  be the Fisher (or general-  
 905 alized Gauss–Newton) matrix associated with the score matching loss. Assume the score network  
 906  $S_{\boldsymbol{\theta}}(\cdot, t)$  has input Jacobian  $\mathbf{J}_{\boldsymbol{\theta}}(\mathbf{x}, t) = \partial S_{\boldsymbol{\theta}}(\mathbf{x}, t)/\partial \mathbf{x}$  satisfying*

$$907 \quad \|\mathbf{J}_{\boldsymbol{\theta}}(\mathbf{x}, t)\| \leq C_{\text{net}}(t) \|\mathbf{x}\| \quad \forall \mathbf{x}, t.$$

908 Then:

909 1. **(Spectral bound)** The largest eigenvalue of  $\mathbf{F}$  scales as

$$910 \quad \lambda_{\max}(\mathbf{F}) = \begin{cases} O(n), & \text{normalized Laplacian domain } \mathbf{S}, \\ O(n\Delta_{\max}^2), & \text{adjacency domain } \mathbf{A}. \end{cases}$$

911 2. **(Condition number)** If in addition  $\lambda_{\min}(\mathbf{F}) \geq \gamma > 0$ , then

$$912 \quad \kappa(\mathbf{F}) = \frac{\lambda_{\max}(\mathbf{F})}{\lambda_{\min}(\mathbf{F})} = \begin{cases} O(n/\gamma), & \mathbf{S}, \\ O(n\Delta_{\max}^2/\gamma), & \mathbf{A}. \end{cases}$$

918 *Proof.* Let  $\ell(\boldsymbol{\theta}; \mathbf{X}_t, t)$  denote the score-matching loss at time  $t$ , with gradient

$$919 \quad \nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathbf{X}_t, t) = \mathbf{J}_{\boldsymbol{\theta}}(\mathbf{X}_t, t)^\top (S_{\boldsymbol{\theta}}(\mathbf{X}_t, t) - s(\mathbf{X}_t, t)),$$

920 where  $s(\cdot, t)$  is the ground-truth score. **Step 1 (upper bound).** For any unit vector  $\mathbf{u}$ , the Rayleigh–  
921 Ritz principle gives

$$922 \quad \mathbf{u}^\top \mathbf{F} \mathbf{u} = \mathbb{E}[\langle \nabla_{\boldsymbol{\theta}} \ell, \mathbf{u} \rangle^2] \leq \mathbb{E} \|\nabla_{\boldsymbol{\theta}} \ell\|^2.$$

923 Hence  $\lambda_{\max}(\mathbf{F}) \leq \mathbb{E} \|\nabla_{\boldsymbol{\theta}} \ell\|^2$ . By submultiplicativity,

$$924 \quad \|\nabla_{\boldsymbol{\theta}} \ell\| \leq \|\mathbf{J}_{\boldsymbol{\theta}}(\mathbf{X}_t, t)\| \|S_{\boldsymbol{\theta}}(\mathbf{X}_t, t) - s(\mathbf{X}_t, t)\|.$$

925 Using the Jacobian bound, this yields

$$926 \quad \|\nabla_{\boldsymbol{\theta}} \ell\|^2 \leq C_{\text{net}}(t)^2 \|\mathbf{X}_t\|^2 \|S_{\boldsymbol{\theta}}(\mathbf{X}_t, t) - s(\mathbf{X}_t, t)\|^2.$$

927 Taking expectations and bounding the training error term by a finite constant  $C_{\text{err}} = \sup_t \mathbb{E} \|S_{\boldsymbol{\theta}}(\mathbf{X}_t, t) - s(\mathbf{X}_t, t)\|^2$  a.e, we obtain

$$928 \quad \lambda_{\max}(\mathbf{F}) \leq C_{\text{err}} \mathbb{E}[C_{\text{net}}(t)^2 \|\mathbf{X}_t\|^2]. \quad (8)$$

929 **Step 2 (domain scaling of  $\mathbb{E} \|\mathbf{X}_t\|^2$ ).** The forward corruption process is  $\mathbf{X}_t = \sqrt{\bar{\alpha}_t} \mathbf{X}_0 + \sigma_t \varepsilon$ ,  
930  $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$ . Then

$$931 \quad \mathbb{E} \|\mathbf{X}_t\|^2 = \bar{\alpha}_t \mathbb{E} \|\mathbf{X}_0\|^2 + n \sigma_t^2.$$

932 By Definition A.2,  $\mathbb{E} \|\mathbf{X}_0\|^2 = O(n)$  in domain  $\mathbf{S}$  and  $O(n \Delta_{\max}^2)$  in domain  $\mathbf{A}$ . Thus the scaling  
933 of  $\lambda_{\max}(\mathbf{F})$  in equation 8 matches the theorem. **Step 3 (condition number).** If  $\lambda_{\min}(\mathbf{F}) \geq \gamma > 0$ ,  
934 then

$$935 \quad \kappa(\mathbf{F}) = \frac{\lambda_{\max}(\mathbf{F})}{\lambda_{\min}(\mathbf{F})} = \begin{cases} O(n/\gamma), & \mathbf{S}, \\ O(n \Delta_{\max}^2/\gamma), & \mathbf{A}. \end{cases}$$

936 This completes the proof. □

945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971

---

972 **B ADDITIONAL INFORMATION OF ESGD**
973

974 **B.1 DEGREE MATRIX RECOVERY**
975

976 We begin by analyzing the structure of the SNL  $\mathbf{S} = -(\mathbf{D}')^{-1/2} \mathbf{A} (\mathbf{D}')^{-1/2}$ . For an undirected,
977 weighted graph with no self-loops:

978 
$$S_{i,j} = \begin{cases} 0 & \text{if } i = j \text{ (since } A_{i,i} = 0 \text{ for no self-loops)} \\ -\frac{A_{i,j}}{\sqrt{d_i d_j}} & \text{if } i \neq j \text{ and } (i, j) \in \mathbf{E} \\ 0 & \text{if } i \neq j \text{ and } (i, j) \notin \mathbf{E} \end{cases} \quad (9)$$
980
981

982 where  $d_i$  represents the unweighted degree of node  $i$ , which is simply the number of edges connected
983 to node  $i$  (regardless of their weights),  $A_{i,j}$  is the weight of the edge between nodes  $i$  and  $j$ , and  $\mathbf{E}$ 
984 is the set of edges. For a weighted graph with unweighted degree matrix, when nodes  $i$  and  $j$  are
985 adjacent:

986 
$$S_{i,j} = -\frac{A_{i,j}}{\sqrt{d_i d_j}} \quad (10)$$
987

988 This means that for any edge  $(i, j) \in \mathbf{E}$ , the product of the degrees  $d_i$  and  $d_j$  is related to  $\mathbf{S}$  and the
989 edge weight  $A_{i,j}$ :

990 
$$d_i d_j = \frac{A_{i,j}^2}{S_{i,j}^2} \quad (11)$$
991
992

993 For any node  $i$  with at least two neighbors  $j, k \in \mathcal{N}(i)$ , we have:

994 
$$\frac{d_j}{d_k} = \frac{S_{i,k}^2 \cdot A_{i,j}^2}{S_{i,j}^2 \cdot A_{i,k}^2} \quad (12)$$
995
996

997 Since the graph is connected, we can establish proportional relationships between all node degrees
998 by traversing the graph. This gives us a system of equations that determines the degrees up to a
999 constant factor. To resolve this remaining degree of freedom, we use the fact that the sum of all
1000 unweighted degrees equals twice the number of edges:

1001 
$$\sum_{i=1}^n d_i = 2|\mathbf{E}| \quad (13)$$
1002
1003

1004 The number of edges  $|\mathbf{E}|$  can be determined from the structure of  $\mathbf{S}$  by counting the number of
1005 non-zero off-diagonal elements and dividing by 2. This yields a system of equations that uniquely
1006 determines the degree matrix  $\mathbf{D}'$ .

1007 **Practical algorithm for estimating unweighted degree matrix:** In practical applications, the
1008 generated  $\mathbf{S}$  may contain numerical errors or noise. Theoretically, elements corresponding to non-edges
1009 should be exactly zero, but in practice, they might appear as small non-zero values due to stochastic
1010 sampling process. Therefore, we introduce a thresholding parameter  $\delta$  to distinguish between actual
1011 edges and numerical artifacts. The threshold parameter  $\delta$  may need to be tuned based on the specific
1012 characteristics of the graph.

1013 **B.2 ESGD MODEL ARCHITECTURE**
1014

1015 ESGD (Efficient Spectral Graph Diffusion) is a spectral graph diffusion model based on symmetric
1016 normalized Laplacian matrices for graph generation tasks.

1017 **B.2.1 CORE COMPONENTS**

1018 **SDE Framework:** The model employs Variance Preserving SDE (VPSDE):

1019 
$$d\mathbf{x} = -\frac{1}{2} \beta(t) \mathbf{x} dt + \sqrt{\beta(t)} d\mathbf{w} \quad (14)$$
1020

1021 
$$\beta(t) = \beta_{min} + t(\beta_{max} - \beta_{min}) \quad (15)$$
1022

1023 where  $\beta_{min} = 0.1$ ,  $\beta_{max} = 20$ , and  $t \in [0, 1]$ .

1024 **Score Networks:** Two main networks predict scores for node features and adjacency matrices:

1025

---

1026     • *ScoreNetworkX*: Uses modified GCN layers with  $S$  convolution  
 1027     • *ScoreNetworkA\_eigen*: Operates in eigenvalue space with pooled node representations  
 1028

1029     **Modified GCN Layer:** Unlike traditional GCN, uses symmetric normalized Laplacian:

1030

$$1031 \quad \mathbf{H}^{(l+1)} = \tanh \left( \mathbf{S} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right) \quad (16)$$

1032

1033     **Graph Multi-Head Attention:** Enhances representation with attention mechanism:

1034

$$1035 \quad \mathbf{A}_{att} = \tanh \left( \frac{\mathbf{Q} \mathbf{K}^T}{\sqrt{d}} \right) \quad (17)$$

1036

1037     B.2.2 LOSS FUNCTION

1038     Score matching loss in both node and spectral domains:

1039

$$1040 \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[ \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) + \frac{\epsilon}{\sqrt{1 - \alpha_t}} \right\|^2 \right] \quad (18)$$

1041

1042     B.2.3 KEY FEATURES

1043

- 1044     • Spectral domain diffusion for stability
- 1045     • Support for both generic graphs and molecular generation
- 1046     • Multiple  $\beta(t)$  scheduling (linear, exponential, cosine)
- 1047     • Computational complexity:  $O(N^2d + Nd^2)$
- 1048     • Datasets: Community-small, Grid, Enzymes, Ego-small, QM9, ZINC250k

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

---

1080 **C EXPERIMENT DETAILS**

1081  
1082 In this section, we provide the detailed experimental settings. The hyperparameters of ESGD in this  
1083 paper are provided in Table 7.

1084  
1085 Table 7: Hyperparameters of ESGD used in the generic graph generation tasks and the molecule gen-  
1086 eration tasks. We provide the hyperparameters of the score-based models ( $s_\theta$  and  $s_\phi$ ), the diffusion  
1087 processes (SDE for X and A), the SDE solver, and the training.

|            | Hyperparameter             | Ego-small                | Community-small    | Enzymes            | Grid               | Planar             | SBM                | Tree               | QM9                | ZINC250k           |
|------------|----------------------------|--------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| $s_\theta$ | Number of GCN layers       | 4                        | 3                  | 5                  | 5                  | 5                  | 4                  | 4                  | 4                  | 3                  |
|            | Hidden dimension           | 32                       | 32                 | 32                 | 32                 | 32                 | 32                 | 32                 | 16                 | 16                 |
|            | Number of attention heads  | 4                        | 4                  | 4                  | 4                  | 4                  | 4                  | 4                  | 4                  | 4                  |
|            | Number of initial channels | 2                        | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  |
|            | Number of hidden channels  | 8                        | 8                  | 8                  | 8                  | 8                  | 8                  | 8                  | 8                  | 8                  |
|            | Number of final channels   | 4                        | 4                  | 4                  | 4                  | 4                  | 4                  | 4                  | 4                  | 4                  |
| $s_\phi$   | Number of GCN layers       | 5                        | 5                  | 7                  | 7                  | 6                  | 7                  | 6                  | 6                  | 6                  |
|            | Hidden dimension           | 32                       | 32                 | 32                 | 32                 | 32                 | 32                 | 32                 | 16                 | 16                 |
|            | Type                       | VP                       | VP                 | VP                 | VP                 | VP                 | VP                 | VP                 | VP                 | VP                 |
|            | SDE for X                  | Number of sampling steps | 1000               | 1000               | 1000               | 1000               | 1000               | 1000               | 1000               | 1000               |
|            | $\beta_{min}$              | 0.1                      | 0.1                | 0.1                | 0.1                | 0.1                | 0.1                | 0.1                | 0.1                | 0.1                |
|            | $\beta_{max}$              | 1.0                      | 1.0                | 1.0                | 1.0                | 1.0                | 1.0                | 1.0                | 10.0               | 4.0                |
| $s_\phi$   | Type                       | VP                       | VP                 | VP                 | VP                 | VP                 | VP                 | VP                 | VP                 | VP                 |
|            | SDE for A                  | Number of sampling steps | 1000               | 1000               | 1000               | 1000               | 1000               | 1000               | 1000               | 1000               |
|            | $\beta_{min}$              | 0.1                      | 0.1                | 0.1                | 0.2                | 0.2                | 0.1                | 0.1                | 0.1                | 0.2                |
|            | $\beta_{max}$              | 1.0                      | 1.0                | 1.0                | 0.8                | 0.9                | 1.0                | 1.0                | 1.0                | 1.0                |
|            | Type                       | EM                       | EM + Langevin      |
|            | SNR                        | —                        | 0.05               | 0.2                | 0.1                | 0.10               | 0.15               | 0.10               | 0.2                | 0.2                |
| Solver     | Scale coefficient          | —                        | 0.8                | 0.9                | 0.7                | 0.8                | 0.6                | 0.6                | 0.9                | 0.9                |
|            | Optimizer                  | Adam                     | Adam               | Adam               | Adam               | Adam               | Adam               | Adam               | Adam               | Adam               |
|            | Learning rate              | $1 \times 10^{-2}$       | $1 \times 10^{-2}$ | $1 \times 10^{-2}$ | $1 \times 10^{-2}$ | $1 \times 10^{-3}$ | $1 \times 10^{-2}$ | $5 \times 10^{-3}$ | $5 \times 10^{-3}$ | $5 \times 10^{-3}$ |
|            | Weight decay               | $1 \times 10^{-4}$       | $1 \times 10^{-4}$ | $1 \times 10^{-4}$ | $1 \times 10^{-4}$ | $1 \times 10^{-4}$ | $1 \times 10^{-4}$ | $1 \times 10^{-4}$ | $1 \times 10^{-4}$ | $1 \times 10^{-4}$ |
|            | Batch size                 | 128                      | 128                | 64                 | 8                  | 64                 | 32                 | 128                | 1024               | 1024               |
|            | Number of epochs           | 5000                     | 200                | 5000               | 5000               | 3000               | 1000               | 300                | 500                | —                  |
| Train      | EMA                        | —                        | —                  | 0.999              | 0.999              | 0.999              | 0.999              | —                  | —                  | —                  |

1105 **C.1 DETAILS OF DATASETS**

1106 In this section, we provide key statistics of the datasets employed in the experiments, as shown in  
1107 Table 8, for a better illustration of the experimental results. The statistics include the graph number  
1108 in each dataset, the range of node numbers, the range of edge numbers for each node, the number of  
1109 edge types, and the maximum eigenvalue.

1112 Table 8: Statistics for the datasets in our experiments.

|          | Name            | Graph Number | Node range     | Edge number of node | Number of edge types | Maximum eigenvalue |
|----------|-----------------|--------------|----------------|---------------------|----------------------|--------------------|
| Generic  | Ego-small       | 200          | [4, 18]        | [1, 16]             | 1                    | 9.036              |
|          | Community-small | 100          | [12, 20]       | [1, 9]              | 1                    | 6.6145             |
|          | Enzymes         | 587          | [10, 125]      | [1, 9]              | 1                    | 5.3045             |
|          | Grid            | 100          | [100, 400]     | [1, 4]              | 1                    | 3.9454             |
|          | Planar          | 200          | [64, 64]       | [2, 12]             | 1                    | 6.1230             |
|          | SBM             | 200          | [44, 187]      | [1, 23]             | 1                    | 14.1320            |
| Molecule | Tree            | 200          | [64, 64]       | [1, 8]              | 1                    | 3.0510             |
|          | QM9             | 133,885      | [2, 9]         | [1, 4]              | 3                    | 3.7063             |
|          | ZINC250k        | 249,455      | [6, 38]        | [1, 4]              | 3                    | 3.5823             |
|          | Cora            | 1            | [2708, 2708]   | [5429, 5429]        | 1                    | -                  |
| Large    | Citeseer        | 1            | [3312, 3312]   | [4715, 4715]        | 1                    | -                  |
|          | PubMed          | 1            | [19717, 19717] | [44338, 44338]      | 1                    | -                  |

1126 Note: For large citation networks, "Graph Number" is 1 since each dataset consists of a single giant  
1127 graph. Node and edge ranges reduce to single values (the total counts).

1130 **C.2 DETAILS OF EGO-SUBGRAPH DECOMPOSITION**

1131 To make training on large graphs feasible, we employ an ego-subgraph decomposition strategy im-  
1132 plemented with NetworkX's `ego_graph` function. Given a center node and a radius  $r$ , an ego-  
1133 subgraph contains the center and all nodes within  $r$ -hop distance, together with induced edges. We

1134 apply size filters ( $50 \leq |V| \leq 400$ ) to control computational complexity, remove self-loops, and  
1135 relabel nodes to contiguous IDs. Datasets are split into training and test sets with an 80/20 ratio.  
1136

1137 Table 9 reports the aggregated statistics of the constructed ego-subgraph datasets.

1138 Table 9: Statistics of ego-subgraph datasets derived from large citation networks.  
1139

| Dataset  | Num. subgraphs | Node range | Avg. nodes | Edge range | Avg. edges | Avg. degree |
|----------|----------------|------------|------------|------------|------------|-------------|
| Cora     | 100            | 50–219     | 112.8      | 65–428     | 207.2      | 3.67        |
| Citeseer | 80             | 51–300     | 141.7      | 65–788     | 271.0      | 3.82        |
| PubMed   | 100            | 50–282     | 112.5      | 60–1177    | 236.8      | 4.21        |

1145  
1146 This decomposition provides three main benefits:  
1147

1148 • **Efficiency**: smaller subgraphs reduce quadratic spectral costs and fit within GPU memory.  
1149 • **Structural fidelity**: local neighborhood motifs and degree/clustering statistics are pre-  
1150 served.  
1151 • **Generalization**: sampling multiple ego-subgraphs introduces data augmentation, mitigat-  
1152 ing overfitting to a single global graph.  
1153

### 1154 C.3 IMPLEMENTATION DETAILS FOR THE EXPERIMENTS ON GENERIC DATASETS 1155

1156 To evaluate the generated graphs, we employ the maximum mean discrepancy (MMD) to compare  
1157 distributions of graph statistics between generated and test graphs. The evaluated statistics include  
1158 degree, clustering coefficient, and occurrences of 4-node orbits. We compute the MMDs using the  
1159 Gaussian Earth Mover’s Distance (EMD) kernel on Ego-small, Community-small, Enzymes, and  
1160 Grid following (Jo et al., 2022) and using the Gaussian Total Variation Distance (TV) kernel on  
1161 Planar, SBM, and Tree following QIN et al. (2025).

1162 As the setting from (Jo et al., 2022), we report the results of ESGD and GSDM on the Ego-  
1163 small and Community-small datasets by 15 runs, 3 runs for 5 independently trained models,  
1164 and on the Enzymes and Grid datasets by 3 runs. For GSDM, we use the hyperparameters  
1165 given by the original paper and further search for the best performance if specific parame-  
1166 ters do not exist. To get the best hyperparameters, we perform a grid search to choose the  
1167 best signal-to-noise ratio (SNR) in  $\{0.05, 0.1, 0.15, 0.2, 0.25, 0.3\}$  and the scale coefficient in the  
1168  $\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ . We select the best MMD with the lowest average per-  
1169 formance in Deg., Clus., and Orbit, respectively. Following (Jo et al., 2022), we quantize the value  
1170 of each edge in the sampled adjacency matrix with the operator  $1_{x>0.5}$  to get the 0-1 adjacency  
1171 matrix. The specific hyperparameters are shown in Table 7.

### 1172 C.4 IMPLEMENTATION DETAILS FOR THE EXPERIMENTS ON MOLECULE DATASETS 1173

1174 We assess the quality of 10,000 generated graphs using multiple metrics. Frechet ChemNet Distance  
1175 (FCD) leverages activations from ChemNet’s penultimate layer to calculate the distance between  
1176 test and generated graphs (Preuer et al., 2018). Neighborhood Subgraph Pairwise Distance Kernel  
1177 (NSPDK) MMD measures the maximum mean discrepancy between test and generated graphs, ac-  
1178 counting for both node and edge features (Costa & De Grave, 2010). Additionally, we report validity  
1179 metrics: validity w/o correction and Validity represent the fractions of valid molecules without and  
1180 with valency correction or edge resampling, respectively.

1181 As the setting of (Jo et al., 2022), we report the results of ESGD and GSDM on QM9 and ZINC250k  
1182 by 3 runs. We preprocess each molecule into a graph with the node features  $X \in \{0, 1\}^{N \times F}$  and  
1183 the adjacency matrix  $A \in \{0, 1, 2, 3\}^{N \times N}$ , where  $N$  is the maximum number of atoms and  $F$  is the  
1184 number of atom types. We also use the grid search for the best SNR in  $\{0.5, 1, 1.5, 2, 2.5, 3\}$  and the  
1185 scale coefficient in  $\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ . The specific hyperparameters are  
1186 shown in Table 7. We select the hyperparameters for the best FCD value. We quantize the entries of  
1187 the adjacency matrices to  $\{0, 1, 2, 3\}$  by clipping the value  $(-\infty, 0.5)$  to 0,  $[0.5, 1.5]$  to 1,  $[1.5, 2.5]$   
1188 to 2, and  $[2.5, \infty)$  to 3 following (Jo et al., 2022).

---

1188 C.5 COMPUTING RESOURCES  
1189  
1190 For all experiments, we use PyTorch to implement ESGD and train the score models on an NVIDIA  
1191 RTX A4000 GPU with intel i7-14700K CPU.  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241

---

## D EXPERIMENTS MAKEUP AND MODIFICATION

Table 10: Generic graph generation on Community-small, Enzymes, Grid, and Ego-small. \* The results were obtained by executing the published source code. Other results are taken from the published papers Luo et al. (2024); Wen et al. (2024); Jang et al. (2024); Eijkelboom et al. (2024). Hyphen (-) denotes that results are not provided and were not applicable due to memory issues. The best results are highlighted in **bold**, and the underline denotes the second best. We provide the standard deviations in Appendix E.1 due to page limit.

|                                  | Community-small                      |                    |                     | Enzymes                          |                    |                     | Grid                                   |                    |                     | Ego-small                      |                    |                     |              |              |              |              |
|----------------------------------|--------------------------------------|--------------------|---------------------|----------------------------------|--------------------|---------------------|----------------------------------------|--------------------|---------------------|--------------------------------|--------------------|---------------------|--------------|--------------|--------------|--------------|
|                                  | Synthetic, (12 $\leq$ $V$ $\leq$ 20) |                    |                     | Real, (10 $\leq$ $V$ $\leq$ 125) |                    |                     | Synthetic, (100 $\leq$ $V$ $\leq$ 400) |                    |                     | Real, (4 $\leq$ $V$ $\leq$ 18) |                    |                     |              |              |              |              |
|                                  | Deg. $\downarrow$                    | Clus. $\downarrow$ | Orbit. $\downarrow$ | Deg. $\downarrow$                | Clus. $\downarrow$ | Orbit. $\downarrow$ | Deg. $\downarrow$                      | Clus. $\downarrow$ | Orbit. $\downarrow$ | Deg. $\downarrow$              | Clus. $\downarrow$ | Orbit. $\downarrow$ |              |              |              |              |
| DeepGMG Li et al. (2018)         | 0.220                                | 0.950              | 0.400               | 0.053                            | -                  | -                   | -                                      | -                  | -                   | 0.040                          | 0.100              | 0.020               | 0.053        |              |              |              |
| GraphRNN You et al. (2018)       | 0.080                                | 0.120              | 0.040               | 0.080                            | 0.017              | 0.062               | 0.046                                  | 0.042              | 0.064               | 0.043                          | 0.021              | <u>0.043</u>        | 0.090        | 0.220        | 0.010        | 0.107        |
| GraphAF Shi et al. (2020)        | 0.180                                | 0.200              | 0.020               | 0.133                            | 1.669              | 1.283               | 0.266                                  | 1.073              | -                   | -                              | -                  | -                   | 0.030        | 0.110        | 0.006        | 0.049        |
| GraphDF Luo et al. (2021)        | 0.060                                | 0.120              | 0.030               | 0.070                            | 1.503              | 1.061               | 0.202                                  | 0.922              | -                   | -                              | -                  | -                   | 0.040        | 0.130        | 0.010        | 0.060        |
| GraphVAE                         | 0.350                                | 0.980              | 0.540               | 0.623                            | 1.369              | 0.629               | 0.191                                  | 0.730              | 1.619               | <b>0.000</b>                   | 0.919              | 0.846               | 0.130        | 0.170        | 0.050        | 0.117        |
| GNF Liu et al. (2019)            | 0.200                                | 0.200              | 0.110               | 0.170                            | -                  | -                   | -                                      | -                  | -                   | -                              | -                  | -                   | 0.030        | 0.100        | 0.006        | 0.045        |
| EDP-GNN Niu et al. (2020a)       | 0.053                                | 0.144              | 0.026               | 0.074                            | 0.023              | 0.268               | 0.082                                  | 0.124              | 0.455               | 0.238                          | 0.328              | 0.340               | 0.052        | 0.093        | 0.007        | 0.051        |
| WSGM Guth et al. (2022)          | 0.039                                | 0.084              | 0.009               | 0.044                            | 0.034              | 0.097               | 0.013                                  | 0.048              | 0.083               | 0.006                          | 0.065              | 0.051               | -            | -            | -            | -            |
| GDSS Jo et al. (2022)            | 0.045                                | 0.086              | 0.007               | 0.046                            | 0.026              | 0.102               | <u>0.009</u>                           | 0.046              | 0.111               | 0.005                          | 0.070              | 0.062               | 0.021        | 0.024        | 0.007        | 0.017        |
| HGDM Wen et al. (2024)           | <u>0.014</u>                         | <u>0.050</u>       | <u>0.005</u>        | <u>0.024</u>                     | 0.045              | 0.049               | <b>0.003</b>                           | 0.032              | 0.137               | 0.004                          | 0.048              | 0.063               | <u>0.015</u> | <u>0.023</u> | <u>0.003</u> | <u>0.014</u> |
| GSDM* Luo et al. (2024)          | 0.016                                | 0.027              | 0.004               | 0.020                            | 0.098              | 0.091               | 0.085                                  | 0.091              | <u>0.001</u>        | <b>0.000</b>                   | <b>0.000</b>       | <b>0.000</b>        | 0.027        | 0.034        | 0.004        | 0.023        |
| GEEL Jang et al. (2024)          | -                                    | -                  | -                   | -                                | <b>0.005</b>       | <b>0.018</b>        | <u>0.006</u>                           | <b>0.010</b>       | <b>0.000</b>        | <b>0.000</b>                   | <b>0.000</b>       | <b>0.000</b>        | -            | -            | -            | -            |
| CatFlow Eijkelboom et al. (2024) | 0.018                                | 0.086              | 0.007               | 0.037                            | -                  | -                   | -                                      | -                  | -                   | -                              | -                  | -                   | <u>0.013</u> | 0.024        | 0.008        | 0.015        |
| GGSD* Minello et al. (2025)      | 0.027                                | 0.082              | 0.011               | 0.040                            | -                  | -                   | -                                      | -                  | -                   | -                              | -                  | -                   | -            | -            | -            | -            |
| ESGD (ours)                      | <b>0.005</b>                         | <b>0.006</b>       | <b>0.000</b>        | <b>0.004</b>                     | <b>0.005</b>       | <b>0.026</b>        | <b>0.003</b>                           | <b>0.011</b>       | <b>0.000</b>        | <b>0.000</b>                   | <b>0.000</b>       | <b>0.000</b>        | <b>0.005</b> | <b>0.021</b> | <b>0.002</b> | <b>0.009</b> |

Table 11: Generic graph generation on Planar, SBM, and Tree. Results are taken from the published papers Jang et al. (2024); QIN et al. (2025); Bergmeister et al. (2024b).

|                                                  | Planar                   |                    |                     |                    | SBM                                   |                    |                     |                    | Tree                     |                    |                     |                    |
|--------------------------------------------------|--------------------------|--------------------|---------------------|--------------------|---------------------------------------|--------------------|---------------------|--------------------|--------------------------|--------------------|---------------------|--------------------|
|                                                  | Synthetic, ( $ V $ = 64) |                    |                     | Spec. $\downarrow$ | Synthetic, (31 $\leq$ $V$ $\leq$ 187) |                    |                     | Spec. $\downarrow$ | Synthetic, ( $ V $ = 64) |                    |                     | Spec. $\downarrow$ |
|                                                  | Deg. $\downarrow$        | Clus. $\downarrow$ | Orbit. $\downarrow$ | Spec. $\downarrow$ | Deg. $\downarrow$                     | Clus. $\downarrow$ | Orbit. $\downarrow$ | Spec. $\downarrow$ | Deg. $\downarrow$        | Clus. $\downarrow$ | Orbit. $\downarrow$ | Spec. $\downarrow$ |
| GraphRNN You et al. (2018)                       | 0.0049                   | 0.2779             | 1.2543              | 0.0459             | 0.0055                                | -                  | -                   | -                  | -                        | -                  | -                   | -                  |
| GRAN Liao et al. (2019)                          | 0.0007                   | 0.0426             | 0.0009              | 0.0075             | 0.0113                                | 0.0553             | 0.0540              | 0.0054             | 0.1884                   | <u>0.0080</u>      | 0.0199              | 0.2751             |
| SPECTRE Martinkus et al. (2022a)                 | 0.0005                   | 0.0785             | 0.0012              | 0.0112             | 0.0015                                | 0.0521             | 0.0412              | 0.0056             | -                        | -                  | -                   | -                  |
| DiGress Vignac et al. (2023a)                    | 0.0007                   | 0.0780             | 0.0079              | 0.0098             | 0.0018                                | 0.0485             | 0.0415              | 0.0045             | 0.2678                   | 0.0428             | <u>0.0097</u>       | 0.0123             |
| EDGE Chen et al. (2023b)                         | 0.0761                   | 0.3229             | 0.7737              | 0.0957             | 0.0279                                | 0.1113             | 0.0854              | 0.0251             | 0.0211                   | 0.1207             | 0.0374              | 0.0438             |
| GDSS Jo et al. (2022)                            | 0.2500                   | 0.3930             | 0.5870              | -                  | 0.4960                                | 0.4560             | 0.7170              | -                  | -                        | -                  | -                   | -                  |
| GEEL* Jang et al. (2024)                         | 0.0006                   | 0.0458             | <b>0.0000</b>       | 0.0070             | 0.0034                                | 0.0621             | <b>0.0000</b>       | 0.0049             | -                        | -                  | -                   | -                  |
| DisCo Xu et al. (2024)                           | <u>0.0002</u>            | 0.0403             | 0.0009              | -                  | <u>0.0006</u>                         | <u>0.0266</u>      | 0.0510              | -                  | -                        | -                  | -                   | -                  |
| Cometh Siraudin et al. (2025)                    | 0.0006                   | 0.0434             | 0.0016              | <u>0.0049</u>      | 0.0020                                | 0.0498             | <u>0.0383</u>       | <u>0.0024</u>      | -                        | -                  | -                   | -                  |
| DeFoG QIN et al. (2025)                          | 0.0005                   | 0.0501             | 0.0006              | 0.0072             | <u>0.0006</u>                         | 0.0517             | 0.0556              | 0.0054             | <u>0.0002</u>            | <b>0.0000</b>      | <b>0.0000</b>       | 0.0108             |
| Local PPGN (one-shot) Bergmeister et al. (2024b) | 0.0003                   | <u>0.0245</u>      | 0.0006              | 0.0104             | 0.0141                                | 0.0528             | 0.0809              | 0.0071             | 0.0004                   | <u>0.0000</u>      | <u>0.0000</u>       | <u>0.0080</u>      |
| Local PPGN Bergmeister et al. (2024b)            | 0.0005                   | 0.0626             | 0.0017              | 0.0075             | 0.0119                                | 0.0517             | 0.0669              | 0.0067             | <u>0.0001</u>            | <u>0.0000</u>      | <u>0.0000</u>       | 0.0117             |
| GGSD* Minello et al. (2025)                      | 0.0024                   | 0.0807             | 0.0048              | <b>0.0048</b>      | 0.0041                                | 0.0431             | 0.0730              | 0.0090             | -                        | -                  | -                   | -                  |
| ESGD (ours)                                      | <b>0.0001</b>            | <b>0.0228</b>      | <u>0.0002</u>       | 0.0057             | <b>0.0005</b>                         | <b>0.0027</b>      | 0.0462              | <u>0.0039</u>      | <b>0.0000</b>            | 0.0001             | <b>0.0000</b>       | 0.0081             |

Table 12: Sampling results with statistical analysis across multiple random seeds (mean  $\pm$  std over 5 runs).

| Dataset            | Degree $\downarrow$ | Cluster $\downarrow$ | Orbit $\downarrow$  | Spectral $\downarrow$ | Validity $\uparrow$ | Uniqueness $\uparrow$ | Novelty $\uparrow$ |
|--------------------|---------------------|----------------------|---------------------|-----------------------|---------------------|-----------------------|--------------------|
| <i>ESGD (Ours)</i> |                     |                      |                     |                       |                     |                       |                    |
| ENZYMES            | 0.0049 $\pm$ 0.0008 | 0.0263 $\pm$ 0.0041  | 0.0027 $\pm$ 0.0005 | 0.0213 $\pm$ 0.0032   | 0.932 $\pm$ 0.024   | 0.853 $\pm$ 0.031     | 1.000 $\pm$ 0.000  |
| Community          | 0.0052 $\pm$ 0.0011 | 0.0064 $\pm$ 0.0015  | 0.0003 $\pm$ 0.0001 | 0.0500 $\pm$ 0.0078   | 1.000 $\pm$ 0.000   | 0.550 $\pm$ 0.045     | 0.500 $\pm$ 0.052  |
| Ego                | 0.0045 $\pm$ 0.0009 | 0.0208 $\pm$ 0.0033  | 0.0024 $\pm$ 0.0004 | 0.0729 $\pm$ 0.0112   | 0.900 $\pm$ 0.031   | 0.500 $\pm$ 0.041     | 0.444 $\pm$ 0.058  |
| Grid               | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000  | 0.0000 $\pm$ 0.0000 | 0.0257 $\pm$ 0.0039   | 1.000 $\pm$ 0.000   | 0.700 $\pm$ 0.037     | 0.650 $\pm$ 0.043  |
| Planar             | 0.0001 $\pm$ 0.0000 | 0.0228 $\pm$ 0.0036  | 0.0002 $\pm$ 0.0001 | 0.0057 $\pm$ 0.0009   | 1.000 $\pm$ 0.000   | 0.925 $\pm$ 0.028     | 1.000 $\pm$ 0.000  |
| SBM                | 0.0005 $\pm$ 0.0001 | 0.0027 $\pm$ 0.0009  | 0.0462 $\pm$ 0.0098 | 0.0039 $\pm$ 0.0010   | 0.975 $\pm$ 0.018   | 0.872 $\pm$ 0.029     | 1.000 $\pm$ 0.000  |
| Tree               | 0.0000 $\pm$ 0.0000 | 0.0001 $\pm$ 0.0000  | 0.0000 $\pm$ 0.0000 | 0.0081 $\pm$ 0.0012   | 1.000 $\pm$ 0.000   | 0.875 $\pm$ 0.029     | 0.775 $\pm$ 0.041  |

1296 Table 13: Random seeds used for experiments across different datasets.  
1297

| 1298 | Dataset         | Random Seeds                      |
|------|-----------------|-----------------------------------|
| 1299 | Community-small | 34941, 82137, 86966, 5683, 39812  |
| 1300 | Ego-small       | 13022, 15400, 28451, 4360, 19692  |
| 1301 | ENZYMES         | 81925, 49667, 45730, 63059, 91579 |
| 1302 | Grid            | 7517, 5740, 79457, 74714, 12309   |
| 1303 | Planar          | 36429, 90321, 61220, 30920, 602   |
| 1304 | SBM             | 53237, 41582, 67839, 28914, 95273 |
| 1305 | Tree            | 87562, 42318, 65491, 13847, 79205 |

1307 Table 14: 95% Confidence intervals for key metrics.  
1308

| 1309 | Dataset   | Degree $\downarrow$ | Cluster $\downarrow$ | Spectral $\downarrow$ | Validity $\uparrow$ |
|------|-----------|---------------------|----------------------|-----------------------|---------------------|
| 1311 | ENZYMES   | [0.0038, 0.0060]    | [0.0210, 0.0316]     | [0.0168, 0.0258]      | [0.898, 0.966]      |
| 1312 | Community | [0.0038, 0.0066]    | [0.0044, 0.0084]     | [0.0398, 0.0602]      | [1.000, 1.000]      |
| 1313 | Ego       | [0.0033, 0.0057]    | [0.0164, 0.0252]     | [0.0585, 0.0873]      | [0.856, 0.944]      |
| 1314 | Grid      | [0.0000, 0.0000]    | [0.0000, 0.0000]     | [0.0206, 0.0308]      | [1.000, 1.000]      |
| 1315 | Planar    | [0.0001, 0.0001]    | [0.0182, 0.0274]     | [0.0045, 0.0069]      | [1.000, 1.000]      |
| 1316 | SBM       | [0.0002, 0.0005]    | [0.0027, 0.0069]     | [0.0039, 0.0066]      | [0.950, 1.000]      |
| 1317 | Tree      | [0.0000, 0.0000]    | [0.0001, 0.0001]     | [0.0064, 0.0098]      | [1.000, 1.000]      |

## 1320 E ADDITIONAL EXPERIMENTAL RESULTS

1322 In this section, we provide additional experimental results.

## 1324 E.1 GENERIC GRAPH GENERATION

1326 We report the standard deviation of the generation results of Table 1 in Table 15 and Table 16. We  
1327 provide sampling acceleration of ESGD on the Community-small and Ego-small datasets in Table  
1328 17.1329 Table 15: Generation results of ESGD on Ego-small and Community-small. \* denotes that the  
1330 results are obtained by running open-source codes. The results of GDSS and HGDM are taken from  
1331 (Luo et al., 2024; Wen et al., 2024; Eijkelboom et al., 2024). The best results are highlighted in **bold**  
1332 (lower is better), and the underline denotes the second best. We report the MMD distance between  
1333 the test datasets and the generated graphs with the standard deviation.

|                                  | Ego-small                |                          |                          | Community-small          |                          |                          |
|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                                  | Deg. $\downarrow$        | Clus. $\downarrow$       | Orbit $\downarrow$       | Deg. $\downarrow$        | Clus. $\downarrow$       | Orbit $\downarrow$       |
| GDSS (Jo et al., 2022)           | 0.021 $\pm$ 0.008        | 0.024 $\pm$ 0.007        | 0.007 $\pm$ 0.005        | 0.045 $\pm$ 0.028        | 0.086 $\pm$ 0.022        | 0.007 $\pm$ 0.004        |
| HGDM (Wen et al., 2024)          | 0.015 $\pm$ 0.005        | <u>0.023</u> $\pm$ 0.006 | <u>0.003</u> $\pm$ 0.005 | 0.017 $\pm$ 0.029        | 0.050 $\pm$ 0.018        | 0.005 $\pm$ 0.003        |
| GSDM* (Luo et al., 2024)         | 0.027 $\pm$ 0.000        | 0.034 $\pm$ 0.007        | 0.004 $\pm$ 0.001        | 0.016 $\pm$ 0.018        | <u>0.027</u> $\pm$ 0.026 | <u>0.004</u> $\pm$ 0.005 |
| CatFlow Eijkelboom et al. (2024) | <u>0.013</u> $\pm$ 0.007 | 0.024 $\pm$ 0.009        | <b>0.001</b> $\pm$ 0.005 | 0.018 $\pm$ 0.012        | 0.086 $\pm$ 0.021        | 0.007 $\pm$ 0.005        |
| ESGD (Ours)                      | <b>0.009</b> $\pm$ 0.003 | <b>0.022</b> $\pm$ 0.002 | <b>0.001</b> $\pm$ 0.000 | <b>0.007</b> $\pm$ 0.003 | <b>0.010</b> $\pm$ 0.004 | <b>0.001</b> $\pm$ 0.000 |

## 1343 E.2 MOLECULE GENERATION

1345 We additionally report the validity, uniqueness, and novelty of the generated molecules aside from  
1346 the results in Table 4 to comprehensively illustrate the performance of molecule generation. Validity  
1347 is the fraction of the generated molecules that do not violate the chemical valency rule. Uniqueness  
1348 is the fraction of the valid molecules that are unique. Novelty is the fraction of the valid molecules  
1349 that are not in the training set. Moreover, the standard deviation of each metric is also provided in  
this section. The results of molecule generation are shown in Table 18 and Table 19.

1350 Table 16: Generation results of ESGD on Enzymes and Grid. \* denotes that the results are obtained  
 1351 by running open-source codes. The results of GDSS and HGDM are taken from (Luo et al., 2024;  
 1352 Wen et al., 2024; Eijkelboom et al., 2024). The best results are highlighted in **bold** (lower is better),  
 1353 and the underline denotes the second best. We report the MMD distance between the test datasets  
 1354 and the generated graphs with the standard deviation.

1355

|                                  | Enzymes                  |                          |                          | Grid                     |                          |                          |
|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                                  | Deg. $\downarrow$        | Clus. $\downarrow$       | Orbit $\downarrow$       | Deg. $\downarrow$        | Clus. $\downarrow$       | Orbit $\downarrow$       |
| GDSS (Jo et al., 2022)           | 0.026 $\pm$ 0.008        | 0.102 $\pm$ 0.010        | 0.009 $\pm$ 0.005        | 0.111 $\pm$ 0.012        | <u>0.004</u> $\pm$ 0.000 | 0.070 $\pm$ 0.044        |
| HGDM (Wen et al., 2024)          | 0.045 $\pm$ 0.008        | <b>0.049</b> $\pm$ 0.011 | <u>0.003</u> $\pm$ 0.001 | 0.137 $\pm$ 0.019        | <u>0.004</u> $\pm$ 0.000 | 0.070 $\pm$ 0.044        |
| GSDM* (Luo et al., 2024)         | 0.098 $\pm$ 0.010        | 0.091 $\pm$ 0.003        | 0.085 $\pm$ 0.010        | <u>0.001</u> $\pm$ 0.000 | <u>0.000</u> $\pm$ 0.000 | <b>0.000</b> $\pm$ 0.000 |
| CatFlow Eijkelboom et al. (2024) | 0.013 $\pm$ 0.012        | 0.062 $\pm$ 0.011        | 0.008 $\pm$ 0.007        | 0.115 $\pm$ 0.010        | 0.004 $\pm$ 0.002        | 0.075 $\pm$ 0.071        |
| ESGD (ours)                      | <b>0.007</b> $\pm$ 0.001 | 0.064 $\pm$ 0.002        | 0.009 $\pm$ 0.001        | <b>0.000</b> $\pm$ 0.000 | <b>0.000</b> $\pm$ 0.000 | <b>0.000</b> $\pm$ 0.000 |

1362

1363 Table 17: Sampling efficiency of ESGD by 1 run on Community-small and Ego-small.

1364

| Dataset         | Steps | Deg. $\downarrow$ | Clus. $\downarrow$ | Orbit $\downarrow$ | Time (s) $\downarrow$ |
|-----------------|-------|-------------------|--------------------|--------------------|-----------------------|
| Community-small | 1000  | 0.011             | 0.015              | 0.001              | 1.51                  |
|                 | 500   | 0.011             | 0.015              | 0.001              | 0.94                  |
|                 | 250   | 0.011             | 0.015              | 0.001              | 0.58                  |
|                 | 200   | 0.058             | 0.106              | 0.012              | 0.48                  |
| Ego-small       | 1000  | 0.012             | 0.019              | 0.001              | 1.13                  |
|                 | 800   | 0.014             | 0.014              | 0.001              | 0.9                   |
|                 | 750   | 0.015             | 0.014              | 0.001              | 0.86                  |
|                 | 700   | 0.018             | 0.029              | 0.003              | 0.82                  |

1375

1376

1377 As shown in Table 18, the generated molecules of ESGD have lower novelty and comparable uniqueness.  
 1378 As discussed in (Wen et al., 2024), high novelty does not necessarily represent good generation  
 1379 quality due to the property of the QM9 dataset, such as the generated molecules of GraphDF and  
 1380 GraphEBM. In other words, the models that can generate molecules with high novelty fail to capture  
 1381 adequate properties of the dataset. Also as discussed in Vignac & Frossard (2022) QM9 is  
 1382 an exhaustive enumeration of the small molecules that satisfy a given set of constraints, generating  
 1383 molecules outside this set is not necessarily a good sign that the network has correctly captured the  
 1384 data distribution.

1385

1386 Table 18: Generation results on QM9. \* denotes that the results are obtained by running open-source  
 1387 codes. Other results of the baselines are taken from the published papers Luo et al. (2024); Wen et al.  
 1388 (2024); Jang et al. (2024); Eijkelboom et al. (2024). The best results are highlighted in **bold**, and the  
 1389 second best.

1390

| Method                           | Val. w/o (%) $\uparrow$ | NSPDK MMD $\downarrow$   | FCD $\downarrow$   | Validity $\uparrow$      | Uniqueness $\uparrow$   | Novelty $\uparrow$ |
|----------------------------------|-------------------------|--------------------------|--------------------|--------------------------|-------------------------|--------------------|
| GraphAF (Shi et al., 2020)       | 67                      | 0.020 $\pm$ 0.003        | 5.268 $\pm$ 0.403  | <b>100.00</b>            | 94.51                   | 88.83              |
| GraphDF (Luo et al., 2021)       | 82.67                   | 0.063 $\pm$ 0.001        | 10.816 $\pm$ 0.020 | <b>100.00</b>            | 97.62                   | <b>98.10</b>       |
| MoFlow (Zang & Wang, 2020)       | 91.36 $\pm$ 1.23        | 0.017 $\pm$ 0.003        | 4.467 $\pm$ 0.595  | <b>100.00</b> $\pm$ 0.00 | 98.65 $\pm$ 0.57        | 94.72 $\pm$ 0.77   |
| EDP-GNN (Niu et al., 2020a)      | 47.52 $\pm$ 3.60        | 0.005 $\pm$ 0.001        | 2.680 $\pm$ 0.221  | <b>100.00</b> $\pm$ 0.00 | 99.25 $\pm$ 0.05        | 86.58 $\pm$ 1.85   |
| GDSS (Jo et al., 2022)           | 95.79 $\pm$ 1.93        | 0.003 $\pm$ 0.000        | 2.813 $\pm$ 0.278  | <b>100.00</b> $\pm$ 0.00 | 98.02 $\pm$ 0.63        | 82.55 $\pm$ 3.11   |
| HGDM (Wen et al., 2024)          | 98.04 $\pm$ 1.27        | <u>0.002</u> $\pm$ 0.000 | 2.13 $\pm$ 0.254   | <b>100.00</b> $\pm$ 0.00 | 97.27 $\pm$ 0.71        | 69.63 $\pm$ 2.75   |
| GSDM* (Luo et al., 2024)         | <u>99.81</u> $\pm$ 0.08 | 0.009 $\pm$ 0.000        | 3.191 $\pm$ 0.014  | <b>100.00</b> $\pm$ 0.00 | 94.7 $\pm$ 0.15         | 68.5 $\pm$ 0.47    |
| CatFlow Eijkelboom et al. (2024) | <u>99.81</u> $\pm$ 0.03 | —                        | 0.441 $\pm$ 0.023  | <b>100.00</b> $\pm$ 0.00 | <b>99.95</b> $\pm$ 0.02 | —                  |
| GEEL Jang et al. (2024)          | <b>100.0</b>            | <b>0.0002</b>            | <b>0.089</b>       | <b>100.00</b>            | 96.08                   | 22.30              |
| ESGD (ours)                      | 99.20 $\pm$ 0.02        | 0.002 $\pm$ 0.000        | 1.425 $\pm$ 0.009  | <b>100.00</b> $\pm$ 0.00 | 96.61 $\pm$ 0.16        | 60.64 $\pm$ 0.00   |

1398

1399

1400 We present acceleration results for ESGD sampling with 1,000-step training on both QM9 and  
 1401 ZINC250k datasets in Table 20. For QM9, ESGD maintains comparable accuracy when using  
 1402 600 sampling steps. Although validity scores without correction decrease at lower step counts,  
 1403 both NSPDK and FCD metrics remain robust even when using as few as 500 sampling steps. This  
 demonstrates that ESGD maintains excellent sampling efficiency when applied to molecule datasets.

Table 19: Generation results on ZINC250k. \* denotes that the results are obtained by running open-source codes. Other results of the baselines are taken from the published papers Luo et al. (2024); Wen et al. (2024); Jang et al. (2024); Eijkelboom et al. (2024); QIN et al. (2025). The best results are highlighted in **bold**, and the underline denotes the second best.

| Method                             | Val. w/o (%)↑ | NSPKD MMD↓             | FCD↓           | Validity↑            | Uniqueness↑          | Novelty↑            |
|------------------------------------|---------------|------------------------|----------------|----------------------|----------------------|---------------------|
| GraphAF (Shi et al., 2020)         | 68            | 0.044±0.006            | 16.289±0.482   | <b>100.00</b>        | 99.10                | <b>100.00</b>       |
| GraphDF (Luo et al., 2021)         | 89.03         | 0.176±0.001            | 34.202±0.160   | <b>100.00</b>        | 99.16                | <b>100.00</b>       |
| MoFlow (Zang & Wang, 2020)         | 63.11±5.17    | 0.046±0.002            | 20.931±0.184   | <b>100.00</b> ±0.00  | 99.99±0.01           | <b>100.00</b> ±0.00 |
| EDP-GNN (Niu et al., 2020a)        | 82.97±2.73    | 0.049±0.006            | 16.737±1.300   | <b>100.00</b> ±0.00  | 99.79±0.08           | <b>100.00</b> ±0.00 |
| GDSS (Jo et al., 2022)             | 95.90±1.01    | 0.019±0.001            | 16.621±1.213   | <b>100.00</b> ±0.00  | 99.67±0.14           | <b>100.00</b> ±0.00 |
| HGDM (Wen et al., 2024)            | 93.51±0.87    | 0.016±0.001            | 17.69±1.146    | <b>100.00</b> ±0.00  | 99.82±0.18           | <b>100.00</b> ±0.00 |
| GSDM* (Luo et al., 2024)           | 93.0±0.04     | 0.016±0.000            | 12.07±0.062    | <b>100.00</b> ±0.00  | 99.97±0.09           | <b>100.00</b> ±0.00 |
| CatFlow Eijkelenboom et al. (2024) | 99.21 ± 0.04  | -                      | 13.211 ± 0.012 | <b>100.00</b> ± 0.00 | <b>100.00</b> ± 0.00 | -                   |
| GEEL Jang et al. (2024)            | <b>99.31</b>  | <b>0.0068</b>          | <b>0.401</b>   | <b>100.00</b>        | 99.97                | 99.89               |
| DeFoG QIN et al. (2025)            | 99.22 ± 0.08  | <b>0.0008</b> ± 0.0001 | 1.425 ± 0.0001 | <b>100.00</b> ± 0.00 | 99.99 ± 0.01         | -                   |
| ESGD (ours)                        | 98.29±0.58    | 0.010±0.000            | 8.80±0.132     | <b>100.00</b> ±0.00  | 99.76±0.12           | <b>100.00</b> ±0.00 |

Table 20: Sampling efficiency of ESGD by 1 run on QM9 and ZINC250k.

| Dataset  | Steps | Val. w/o (%) $\uparrow$ | FCD $\downarrow$ | NSPDK MMD $\downarrow$ | Time (s) $\downarrow$ |
|----------|-------|-------------------------|------------------|------------------------|-----------------------|
| QM9      | 1000  | 99.23                   | 1.421            | 0.002                  | 14.3                  |
|          | 800   | 99.35                   | 1.427            | 0.002                  | 11.2                  |
|          | 600   | 99.22                   | 1.485            | 0.002                  | 8.1                   |
|          | 500   | 99.08                   | 1.595            | 0.003                  | 5.4                   |
| ZINC250k | 1000  | 98.81                   | 8.856            | 0.011                  | 71.6                  |
|          | 800   | 97.34                   | 8.623            | 0.011                  | 60.2                  |
|          | 500   | 95.94                   | 8.813            | 0.010                  | 37.5                  |
|          | 400   | 95.44                   | 8.989            | 0.010                  | 30.6                  |

## F VISUALIZATION

## F.1 GENERIC GRAPH GENERATION

We visualize a randomly selected subset of samples from the training datasets and the generated graph set in Figures 4-10.



Figure 4: Visualization of the graphs from the Community-small dataset and the generated graphs of ESGD.



Figure 5: Visualization of the graphs from the Ego-small dataset and the generated graphs of ESGD.



Figure 6: Visualization of the graphs from the Grid dataset and the generated graphs of ESGD.



Figure 7: Visualization of the graphs from the Enzymes dataset and the generated graphs of ESGD.

## F.2 MOLECULE GRAPH GENERATION

We visualize a randomly selected subset of the generated graph set in Figures 11-12.



Figure 8: Visualization of the graphs from the Planar dataset and the generated graphs of ESGD.



Figure 9: Visualization of the graphs from the SBM dataset and the generated graphs of ESGD.



Figure 10: Visualization of the graphs from the Tree dataset and the generated graphs of ESGD.



Figure 11: Visualization of the random samples generated by ESGD trained on QM9.



Figure 12: Visualization of the random samples generated by ESGD trained on ZINC250k.