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ABSTRACT

Graph generative modeling has seen rapid progress, yet existing approaches of-
ten trade off between fidelity, scalability, and stability. Continuous and discrete
diffusion models capture complementary aspects but remain hampered by either
structural distortion or heavy computational costs. We introduce Efficient Spec-
tral Graph Diffusion (ESGD), a lightweight yet highly competitive framework that
revisits score-based diffusion from the perspective of the Symmetric Normalized
Laplacian. By compressing eigenvalues into a bounded symmetric spectral do-
main, ESGD guarantees balanced information flow, provable stability, and faster
convergence. A novel degree-matrix recovery algorithm closes the gap between
spectral representations and graph reconstruction, enabling faithful generation at
scale. Theoretically, ESGD reduces condition numbers and eliminates hub-node
dominance; empirically, a model with one of the smallest parameter counts among
diffusion approaches, yet capable of matching or surpassing state-of-the-art per-
formance. ESGD converges up to 100x faster in training and requires 6—10x fewer
sampling steps, delivering scalable generation across synthetic and citation bench-
marks and achieves competitive results across molecular benchmarks. Our find-
ings suggest that progress in graph generation may come less from heavier engi-
neering, and more from principled reformulations that unlock both efficiency and
fidelity

1 INTRODUCTION

Graph distribution learning and generation have become central research topics with broad appli-
cations in drug discovery, materials science, and network analysis. The goal is to capture the un-
derlying distribution of graphs and model their intrinsic structural properties, including the inter-
play between nodes, edges, and features. Early generative models such as variational autoencoders
(GraphVAE Simonovsky & Komodakis|(2018))) and generative adversarial networksDe Cao & Kipf
(2018)); Miyato et al.| (2018)) demonstrated feasibility, but VAEs struggle with posterior estimation
on large graphs, while GANSs are prone to mode collapse Jo et al.|(2022). These limitations highlight
the need for more scalable and robust paradigms.

Diffusion-based approaches have recently shown remarkable promise. Early models operate directly
on adjacency matrices or their eigenspaces, applying Gaussian perturbations to both node features
and graph structure Niu et al.|(2020b); Jo et al.|(2022). To preserve sparsity and improve efficiency,
discrete diffusion models such as DiGress|Vignac et al.|(2023b) and DeFoG |Qin et al.| (2025) intro-
duce edit-based noise processes. In addition to discrete models, Laplacian|[Martinkus et al.|(2022b));
Bergmeister et al.|(2024a)) and spectral [Luo et al.| (2024); Minello et al.| (2025) methods which ex-
plore diffusion over eigenvalues and eigenvectors, capturing global structural properties but often
suffering from eigenvalue imbalance or added model complexity.

In this paper, we propose Efficient Spectral Graph Diffusion (ESGD), a framework that advances
spectral graph generation along three key dimensions. (i) By compressing eigenvalues of the
Symmetric Normalized Laplacian (SNL) into a bounded domain, ESGD eliminates spectrum im-
balance and dependence, with theoretical guarantees of stability and faster convergence. (ii) We
design a degree-matrix recovery algorithm that overcomes the reconstruction bottleneck of prior
spectral approaches Martinkus et al.| (2022b)). (iii)) ESGD scales to citation networks datasets with
thousands of nodes, where other models become prohibitively slow or unstable.



Compared with prior spectral and Laplacian methods, ESGD achieves strictly better fidelity with
orders-of-magnitude faster training and sampling. In contrast to discrete and other diffusion mod-
els, which often require massive training epochs, large parameter counts (see Figure [Ta)), and long
sampling chains, ESGD delivers comparable or better accuracy while remaining compact, efficient,
and theoretically grounded. ESGD transforms the adjacency matrix into an SNL matrix, effectively
improving the spectral properties of the dataset (see Figure [Ib). This optimization manifests as a
universal reduction in condition numbers, a more concentrated condition number distribution, and
fewer outliers, which collectively reduces the learning difficulty associated with data distribution
patterns and minority outlier features. This complementary profile highlights ESGD as the best
spectral diffusion method that is not only state-of-the-art within spectral paradigm, but also compet-
itive across different paradigms in both quality and scalability.
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Figure 1: Model performance comparison and spectrum improvements by SNL

Our contributions are threefold:
* Spectral compression with theory: ESGD diffuses in a bounded Laplacian spectral space,
ensuring provable stability, faster training, and efficient sampling.

* Degree-matrix recovery: A principled algorithm reconstructs adjacency matrices from
spectral representations, closing a key gap in spectral models.

» Large-graph scalability: Robust performance on large graphs with thousands of nodes,
where existing discrete and spectral models are too slow or fail to converge.

2 PRELIMINARIES

2.1 SCORE-BASED GENERATIVE MODELS

Diffusion-based generative modeling has emerged as a powerful paradigm for high-dimensional data
generation. In score-based generative models [Song et al.| (2021c), the key idea is to learn the score
function V log p;(z), the gradient of the log-density of a perturbed data distribution at time ¢. This
allows one to simulate the reverse-time stochastic differential equation (SDE) to transform noise
into data samples.

Formally, the forward noising process is defined by an SDE
dzy = f(t, z¢)dt + g(t)dw, t€0,1], (1)
where f and g denote drift and diffusion coefficients, and w; is a standard Wiener process. As

t — 1, z; converges to a simple prior distribution (e.g., Gaussian). The reverse-time SDE takes the
form

dz = (f(t. ) = 9(1)* V. log (=) ) dt + g(t)dy, @

where w; is a reverse-time Wiener process. In practice, the score function is unknown and must be
approximated by a neural network sg (¢, t).



2.2 GRAPH CONVOLUTIONAL NETWORKS (GCN)

Graph Convolutional Networks (GCNs) [Kipf & Welling (2017) are a fundamental building block
for learning on graphs. Given an undirected graph with adjacency matrix A and degree matrix D,
GCN defines a layer-wise propagation rule that aggregates information from neighbors:

HD — a<A HWY WW) A=DV2AD Y2, A=A+1. 3)
where H® is the hidden representation at layer £, W) is a trainable weight matrix, o is a non-
linear activation

From a spectral perspective, GCN layers correspond to applying a low-pass filter in the Laplacian
eigenbasis, which smooths node features across connected nodes. This dual view message passing in
the spatial domain and filtering in the spectral domain makes GCNs a good choice for parameterizing
score functions in graph diffusion models.

3 METHODOLOGY

3.1 PROBLEM SETUP AND ESGD FRAMEWORK

We study the graph generation problem where each graph G = (X, A) consists of a node-feature
matrix X € R”*? and an adjacency matrix A. We define the SNL operator

1 1
S=L-I=-D2AD 2,

Let S = UAU be its eigen-decomposition. ESGD performs diffusion in a fixed eigen-space,
we keep U fixed and only diffuse the eigenvalues A together with node features X. The forward
process is given by two coupled SDEs:

dX; = fx(Xg, t)dt + gx () dWX,  dA; = fa(Ag, t)dt + ga(t)dWH,

with independent Wiener processes for X and A. The reverse SDEs follow standard score-based
formulations using score networks sg and sg.

Score Networks We use GCN-based architectures for both s¢ (node features) and s¢ (eigenvalues).
To avoid double normalization and self loop, the message-passing operator is replaced by —S:

HAY = 5(—SHOYW®),
Objectives We minimize denoising score matching losses:
E(0) = E||so(X;, A, U) — Vx, log pi (X4 Xo)|I*,
E(¢) = E[s¢(X, A, U) — Va, log py (As|Ao)||*.

Sampling After training, we reverse the diffusion to obtain (XO7 AO). The adjacency matrix is
reconstructed using the recovered eigenvectors U':

A=-D'?SD'? S§=UAUT,

where the degree matrix D is uniquely recoverable from S by a provable algorithm (1} This guar-
antees exact graph reconstruction up to numerical thresholds. The full details of the ESGD model
architecture can be found in and supplementary code project files.

3.2 THEORETICAL PROPERTIES

The theoretical guarantees of ESGD can be understood from two complementary perspectives. First,
diffusion in the symmetric normalized Laplacian (SNL) domain enjoys uniformly bounded signal-
to-noise ratio (SNR) and mutual information, independent of the maximum degree. In contrast,
adjacency-based formulations scale with A2 and thus suffer from severe information imbalance
dominated by hub nodes. This boundedness provides several concrete advantages: (i) stable training
across diverse degree distributions, (ii) efficient sampling with fewer function evaluations, (iii) ro-

bustness across heterogeneous graphs without dataset-specific tuning, and (iv) a direct explanation



of the empirical improvements in convergence and fidelity shown in Section 4] Second, the Lip-
schitz properties of the score and drift functions further ensure well-conditioned optimization and
stable numerical solvers. In the SNL domain, curvature grows only linearly with n, whereas in the
adjacency domain it is amplified by A2 . making ESGD inherently robust to graphs with extreme

max?

degree heterogeneity. See appendix [A|for details.

3.2.1 SPECTRAL REGULARIZATION

Theorem 3.1 (Spectral boundedness). For an undirected graph, eigenvalues of SNL satisfy
[Ai(L)| < 1, while adjacency eigenvalues satisfy /Amax < |Ni(A)] < Apax, Where Apay is
the max degree of the graph. |Chung|(1997)

Theorem 3.2 (Node Permutation Invariance of ESGD). Let G = (X, A) be an undirected graph
with adjacency A and node features X. For any permutation matrix P, define X' = PX and
A'= PAPT. Let S = -DY2AD Y2 and §' = —D' "> A'D'"'/2. Then the forward and
reverse diffusion processes satisfy

(XévAé) g (PXtht)7 A6 = PAOPT,

Theorem 3.3 (Spectral SNR and Information Retention). Let Xy € R"” be the spectral embedding
of a graph. Consider the forward process X; = \/a; X + o¢, € ~ N (0, I,), with p; = dt/UtQ.
Then:

1. (SNR bound) For any fixed initial data x,

Pt, SNL domain S,
SNR(t) <
R(®) = {A?nax pt, adjacency domain A.

2. (Mutual information) For different initial data X is random with covariance X, then

I(Xo; X;) < 3logdet(I + p3o) < 3o B[ X0

2
max

which scales as O(pyn) in domain S and O(p;nAZ,,.) in domain A.

3.2.2 STABILITY AND EFFICIENCY

Theorem 3.4 (Score Lipschitz Bound). For the score s(x,t) = Vg logpi(x) we have

- 2
-2 Qg Do
[Vas(@,t)|op <o " + 0721 T

where Dy is the spectral diameter. Consequently,

2, - 4
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Theorem 3.5 (Drift Lipschitz and EM error). The reverse-time SDE drift b(x,t) = —33(t)x —
B(t)s(x,t) has Lipschitz constant

Ly(t) < 3B +BW) (07 % + 24 D).

The Euler—Maruyama strong error satisfies
1 1/2
(B XM - x|2)"? < CEM(/ Lb(t)%zt) At/?,
0

Remark 3.6 (Sampling efficiency). Combining Theorems[3.T]and[3.5] we conclude that SNL domain
diffusion requires asymptotically fewer function evaluations than adjacency domain. This theoretical
gain matches the A2 __ x reduction in sampling steps observed in Table and Section

Theorem 3.7 (Fisher spectrum and conditioning). Let F = E[V ¢Vl "] be the Fisher matrix of
the score matching loss. Assume the network Jacobian satisfies ||Jg(x,t)| < Chet(t)|||| for all
x,t. Then:



Algorithm 1 Degree Matrix Recovery from S

Require: SNL matrix L, .4, threshold parameter § > 0
Ensure: Unweighted degree matrix D’ and weighted adjacency matrix A

1: Step 1: Aij « 1y(s),,|>s for all (i, j) > Identify graph structure by thresholding
2: Step 2: d; + Z;L:1 Aij for all ¢ > Compute unweighted node degrees
3: Step 3: D’ + diag(dy,...,d,) > Construct unweighted degree matrix
4: Step 4 (For weighted graphs): Recover the weighted adjacency matrix

5: for all (4, j) with A, ;= 1do > Edge weight recovery for connected pairs
6: Aij — 7(5)” . \/didj

7: end for A

8: A;j + Oforall (,5) with A;; =0 > Zero weights for disconnected pairs
9: return D', A

1. (Spectral bound) The largest eigenvalue scales as

O(n), SNL domain,

o ax)s adjacency domain.

2. (Condition number) If in addition \pin(F') > v > 0, then

_ )\Inax(F) _ O<n/7>7 ‘57
K(F) B /\mm(F) {O(nArznax/’wv A.

4 GRAPH GENERATION RESULTS

4.1 GENERIC GRAPH GENERATION

Datasets: We test ESGD on Community-small, Enzymes, Grid, Ego-small, Tree, Sbm, and Planar.
More details of these datasets are provided in Appendix

Metrics: We evaluate the maximum mean discrepancy (MMD) between equal numbers of generated
and test graphs by measuring degree, clustering coefficient, 4-node orbit occurrences, their average,
and spectral (Deg., Clus., Orbit, Avg., and Spec. in Table [T] and Table 2). See Appendix [C.3]for
details.

Table 1: Generic graph generation on Community-small, Enzymes, Grid, and Ego-small. * The
results were obtained by executing the published source code. Other results are taken from the
published papers [Luo et al.| (2024); Wen et al.| (2024)); Jang et al.| (2024); [Eijkelboom et al.| (2024)).
Hyphen (-) denotes that results are not provided and were not applicable due to memory issues.
The best results are highlighted in bold, and the underline denotes the second best. We provide the
standard deviations in Appendix @ due to page limit.

Community-small Enzymes Grid Ego-small
Synthetic, (12 < V' < 20) Real, (10 <V < 125) Synthetic, (100 < V' < 400) Real, (4 <V < 18)
Deg.| Clus.l Orbit] Avg.) Deg) Clus.] Orbitl Avg] Deg.| Clus.| Orbit] Avg.] Degl Clus.] Orbit] Avg.|
DeepGMG|Li et al. |(2018] 0.220  0.950 0400 0.053 - - - - - - - - 0.040  0.100  0.020 0.053
GraphRNN]|You et al.[(2018] 0.080 0.120 0.040 0.080 0.017 0.062 0.046 0.042 0.064 0.043 0.021 0.043 0.090 0.220 0.003 0.104
GraphAF|Shi et al.|(2020) 0.180  0.200  0.020 0.133  1.669 1.283 0.266 1.073 - - - - 0.030  0.110  0.001  0.047

GraphDF|Luo et al. (2021} 0.060 0.120 0.030 0.070 1.503 1.061 0202 0.922 - - - - 0.040  0.130 0.010 0.060
GraphVAE 0.350 0.980 0.540 0.623 1369 0.629 0.191 0.730 1619 0.000 0919 0.846 0.130 0.170 0.050 0.117
GNF|Liu et al. [(2019) 0.200 0200 0.110 0.170 - - - - - - - - 0.030  0.100  0.001 0.044
EDP-GNN|N1u et al.|(2020a} 0.053 0.144 0.026 0.074 0.023 0268 0082 0.124 0455 0.238 0328 0340 0.052 0.093 0.007 0.051
WSGM|Guth et al.|(2022] 0.039  0.084 0.009 0.044 0.034 0.097 0.013 0.048 0.083 0.006 0.065 0.051 - - - -

GDSSJo et al. [(2022 0.045 0.086 0.007 0.046 0.026 0.102 0.009 0.046 0.111 0.005 0.070 0.062 0.021 0.024 0.007 0.017
HGDM|Wen et al. {2024} 0.014 0.050 0.005 0.024 0.045 0.049 0.003 0.032 0.137 0.004 0.048 0.063 0.015 0.023 0.003 0.014
GSDM*|Luo et al. (2024} 0.016  0.027 0.004 0.020 0.098 0.091 0.085 0.091 0.001 0.000 0.000 0.000 0.027 0.034 0.004 0.023

GEEL Jang et al. (2024 - - - - ~ ~ i
CatFlow|Eijkelboom et al.[(2024)  0.018  0.086  0.007  0.037 0.013  0.024  0.008 0.015

ESGD (ours) 0.007 0.010 0.001 0.006 0.007 0.064 0.009 0.027 0.000 0.000 0.000 0.000 0.009 0.022 0.001 0.011

0.005 0.018 0.006 0.010 0.000 0.000 0.000 0.000

Results: As shown in Table[T} ESGD achieves state-of-the-art performance on generic graph gener-
ation. On Community-small and Ego-small, ESGD delivers substantial average MMD reductions of



70% and 21.4% respectively compared to existing methods, ranking first across all evaluation met-
rics. ESGD achieves perfect performance on Grid, matching GSDM and GEEL while significantly
outperforming other baselines. On the challenging Enzymes dataset, ESGD ranks second overall,
remaining competitive with GEEL while offering considerably lower computational overhead. No-
tably, GSDM’s poor performance on complex datasets (Enzymes, Ego-small) confirms our hypoth-
esis that diffusion in normalized Laplacian spectral space provides superior scalability compared
to adjacency matrix spectral approaches. These results establish ESGD as a new state-of-the-art
method that effectively addresses scalability limitations of existing spectral diffusion approaches.

Table 2: Generic graph generation on Planar, SBM, and Tree. Results are taken from the published
papers Jang et al.| (2024)); QIN et al.| (2025)); Bergmeister et al.| (2024b).

Planar SBM Tree
Synthetic, (|V| = 64) Synthetic, (31 <V < 187) Synthetic, (|V| = 64)

Deg.| Clus.) Orbit} Spec.) Deg.| Clus.) Orbit] Spec.|. Deg.| Clus.} Orbit} Spec.}.
GraphRNN/You et al. (2018 0.0049 02779 12543 0.0459  0.0055 0.0584 0.0785  0.0065 - - - -
GRAN|Liao et al.|(2019] 0.0007  0.0426  0.0009  0.0075  0.0113 0.0553 0.0540  0.0054  0.1884  0.0080  0.0199  0.2751
SPECTRE|Martinkus et al.|(2022a) 0.0005  0.0785  0.0012  0.0112  0.0015 0.0521 0.0412  0.0056 - - - -
DiGress|Vignac et al.[(2023a) 0.0007  0.0780  0.0079  0.0098  0.0018 0.0485 0.0415  0.0045 02678  0.0428  0.0097  0.0123
EDGE|Chen et al. {(2023b] 0.0761 03229  0.7737  0.0957  0.0279 0.1113 0.0854  0.0251  0.0211  0.1207  0.0374  0.0438
GDSSJo et al. (2022} 0.2500  0.3930  0.5870 - 0.4960 0.4560 0.7170 - - - - -
GEEL* Jang et al. (2024 0.0006  0.0458  0.0000  0.0070  0.0034 0.0621 0.0000  0.0049
DisCo|Xu et al. |(2024] 0.0002 0.0403 0.0009 - 0.0006 0.0266 0.0510 -
Cometh|Siraudin et al. |(2025] 0.0006  0.0434  0.0016  0.0049  0.0020 0.0498 0.0383  0.0024 - - - -
DeFoG|QIN et al. (2025] 0.0005  0.0501  0.0006  0.0072  0.0006 0.0517 0.0556  0.0054  0.0002  0.0000 0.0000 0.0108
Local PPGN (one-shot) Bergmeister et al.|(2024b] ~ 0.0003 ~ 0.0245  0.0006 ~ 0.0104  0.0141 0.0528 0.0809  0.0071  0.0004  0.0000  0.0000  0.0080
Local PPGN|Bergmeister et al. |(2024b) 0.0005  0.0626  0.0017  0.0075  0.0119 0.0517 0.0669  0.0067  0.0001  0.0000 0.0000 0.0117
ESGD (ours) 0.0001  0.0275  0.0005  0.0069  0.0005  0.00273  0.0462  0.0039  0.0001  0.0000  0.0000  0.0100

On Table 2, ESGD demonstrates strong performance across diverse synthetic datasets. On Planar
graphs, ESGD achieves the best degree metric and consistently ranks second on clustering, orbit,
and spectral metrics. For SBM graphs, ESGD attains the best degree and clustering and second-best
spectral performance, though specialized methods like GEEL excel on orbit through stronger local
motif modeling. Most notably, ESGD achieves state-of-the-art performance on nearly all metrics for
Tree graphs, confirming that SNL diffusion aligns exceptionally well with hierarchical structures.

4.2 LARGE GRAPH GENERATION

Datasets: We evaluate ESGD on three widely used citation networks: Cora, Citeseer, and PubMed.
These datasets contain thousands of nodes and edges, making them substantially larger and struc-
turally more complex than synthetic benchmarks. Directly training generative models on full citation
networks is computationally prohibitive due to the quadratic complexity of spectral decomposition.
To address this challenge, we propose an ego-subgraph decomposition strategy: each large graph is
decomposed into a set of k-hop ego-subgraphs, which serve as training instances. This design not
only reduces computational cost but also preserves essential local structural statistics (degree dis-
tributions, clustering coefficients, orbit counts), while providing multi-view samples of the original
global graph. Additional dataset statistics are provided in Appendix[C.1]

Rationale for ego-subgraphs: Ego-subgraph extraction offers three key advantages. First, it im-
proves computational efficiency: large graphs with tens of thousands of nodes are decomposed into
subgraphs of size 50-300, significantly reducing both memory footprint and spectral computation
cost. Second, it preserves structural fidelity: each ego-subgraph retains the k-hop neighborhood
around a center node, thus capturing local motifs and degree/clustering patterns representative of
the original network. Third, it enhances generalization: by sampling many subgraphs, the model
benefits from a data augmentation effect that alleviates overfitting to a single large graph. This pro-
cedure transforms large-graph generation into a tractable and principled learning problem without
compromising statistical validity (see Appendix [C.2]for detailed justification and statistics).

Metrics: We use the same metrics as in Section 411

Results: Table [3|shows that ESGD consistently outperforms spectral diffusion baselines on citation
networks. Compared to the best prior method (GSDM), ESGD reduces average MMD by 54.1%,
63.6%, and 66.4% on Citeseer, Cora, and PubMed, respectively. Moreover, ESGD achieves uni-
formly better scores across all metrics, whereas existing spectral methods typically incur MMD



Table 3: Large graph generation results on Cora, Citeseer, and PubMed. The baselines (SPECTRE,
GSDM, GGSD) are diffusion-based generative models in the spectral space.

Citeseer Cora PubMed
Deg.] Clus.] Orbit] Avg.l Deg.| Clus.] Orbit] Avg.] Deg.|] Clus.l Orbit]l Avg]
SPECTRE* Martinkus et al.|(2022a) 1.224  1.513  1.023 1.253 1566 1492 1.127 1395 1.148 1.392 0933 1.158

GSDM* |Luo et al.|(2024) 1.043 0943 0.843 0.943 0932 1.042 0980 0985 0.885 0.727 0.762 0.791
GGSD* Minello et al.|(2025) 1.011 1.142 1244 1.132 1218 1432 1391 1347 0.775 0.711 1.029  0.838
ESGD (ours) 0.329 0.656 0.314 0.433 0311 0573 0.192 0359 0.215 0475 0.109 0.266

values three to five times higher. These results demonstrate that combining ego-subgraph training
with SNL diffusion yields scalable and faithful large-graph generation, effectively balancing com-
putational tractability and structural fidelity in real-world networks.

4.3 MOLECULES GENERATION

Datasets: We test ESGD on two molecule benchmarks: ZINC250k (Irwin et al.| [2012) and QM9
(Ramakrishnan et al., [2014).

Metrics: We evaluate the quality of 10,000 generated graphs using Frechet ChemNet Distance
(FCD) (Preuer et al., 2018), Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) MMD
(Costa & De Gravel [2010), validity w/o correction abbreviated as Val. w/o, validity, and the genera-
tion time. Please see Appdenxi[C.4]for more details.

Table 4: Results on the QM9 and ZINC250k. Results were taken from the published papers [Luo
et al.[(2024); Wen et al.| (2024); Jang et al|(2024); [Eijkelboom et al.| (2024); |QIN et al.| (2025). We
provide the validity, uniqueness, and novelty values in Appendix due to page limit.

QM9 ZINC250k

Validity (%) Val. w/o (%)t NSPDK| FCD| Time(s)] Validity (%)t Val. w/o (%)t NSPDK| FCD] Time(s)]
GraphAF (Shi et al.}[2020) 100 67 0.020 5.268 2.28¢3 100 68 0.044 16289  5.72¢3
GraphAF+FC 100 74.43 0.021 5.625 2.32¢% 100 68.47 0.044 16.023 591¢®
GraphDF (Luo et al.{2021} 100 82.67 0.063 10.816 5.08¢* 100 89.03 0.176 34.202 5.87¢*
GraphDF+FC 100 93.88 0.064 10928  4.72¢* 100 90.61 0.177 33546 5.79¢*
MoFlow (Zang & Wang] 2020} 100 91.36 0.017 4.467 4.58 100 63.11 0.046 20.931 25.9
EDP-GNN (Niu et al.[2020a] 100 47.52 0.005 2.680 4.13¢* 100 82.97 0.049 16.737 8.41e?
GDSS (Jo et al.|[2022] 100 95.72 0.003 2.900 1.06¢* 100 97.01 0.019 14.656  2.11€3
HGDM (Wen et al.|[2024] 100 98.04 0.002 2.131 1.23¢2 100 93.51 0.016 17.69 2.23¢3
GSDM* (Luo et al.[2024) 100 99.81 0.009 3.191 18.5 100 93.0 0.016 12.07 86.3
GEELJang et al.|(2024] 100.0 100 0.0002 0.089 - 100 99.31 0.0068 0.401 -
CatFlow|Eijkelboom et al. |(2024) 100 99.81 - 0.441 - 100 99.21 - 13.211
DeFog|QIN et al.|(2025) - - - - - 100 99.22 0.0008 1.425 -
ESGD (ours) 100 99.20 0.002 1.425 14.6 100 98.29 0.010 8.80 72.1

Results: As shown in Table i} ESGD achieves competitive performance on molecular generation
benchmarks while delivering substantial improvements over existing spectral methods. Compared
to GSDM, ESGD improves FCD by 55.3% and 27.1% on QM9 and ZINC250k respectively, and
enhances NSPDK by 77.8% and 37.5%. ESGD also generates molecules substantially faster than
other spectral methods, highlighting its computational efficiency. While specialized methods like
GEEL and DeFoG achieve superior performance through molecular-specific inductive biases, ESGD
establishes new state-of-the-art results among spectral approaches, confirming its effectiveness on
complex graphs with multiple node types and weighted edges.

4.4 EFFICIENCY EVALUATION

Training Efficiency: We report the number of model parameters, training configuration, and the
required training steps to reach 95% of the best performance on the Planar dataset. The results are
summarized in Table

From Table [3] it is evident that ESGD requires significantly fewer training steps to reach near-
optimal performance. Despite having the smallest parameter size (0.381M), ESGD converges within
only 938 steps, which is 7x faster than GSDM and over 100 x faster than SPECTRE and GGSD. In-
terestingly, even compared to DeFoG—a discrete model—ESGD achieves convergence with nearly



Table 5: Training efficiency comparison on the Planar dataset. Steps denote the number of train-
ing iterations required to achieve 95% of the best performance, computed as Steps = Epochs X

[M] . The best results are highlighted in bold.

Batch Size

Model Parameters (M) Training Graphs Batch Size Steps to 95% Best Perf.
SPECTRE 1.64 200 10 124,160

GSDM 0.568 200 64 6,563

GGSD 21.09 200 16 43,750

DeFoG 4.92 200 64 12,188

PPGN (one-shot) 3.72 200 16 51,875

ESGD (ours) 0.381 200 64 938

an order-of-magnitude reduction in training cost. This highlights ESGD’s ability to balance pa-
rameter efficiency and convergence speed, making it particularly suitable for scenarios where both
computational resources and training time are constrained.

Sampling efficiency: To show our efficiency gains, we compare ESGD with other state-of-the-
art spectral diffusion models. GGSD, which also operates in the spectral space, requires 100-200
sampling steps to achieve comparable quality. The recently proposed DeFoG model demonstrates
impressive efficiency by achieving good validity with only 5-10% of traditional diffusion steps, yet
ESGD matches or exceeds this efficiency on structured graph datasets while maintaining superior
graph quality metrics.

Figure [2]illustrates how ESGD’s performance metrics stabilize rapidly across four diverse datasets.
On the Enzymes dataset, the MMD metrics converge by 150 steps, while on the Tree dataset, near-
optimal performance is achieved with just 50 steps. For molecular graphs (QM9), ESGD achieves
99.08% validity at 500 steps, demonstrating excellent sampling efficiency without sacrificing gen-
eration quality.

These experimental findings confirm our theoretical analysis in Section[3] which explains that ESGD
enhances sampling efficiency by eliminating edge-number dependencies in eigenvalues, constrain-
ing the eigenvalue space to the bounded interval (e.g., [-1,1] for generic graph datasets). The rapid
convergence observed across all datasets validates that our normalized Laplacian spectral represen-
tation provides a more efficient diffusion trajectory compared to adjacency-based approaches.

5 RELATED WORK

Early graph generative models. Early approaches relied on VAEs and GANs. GraphVAE |Si-
monovsky & Komodakis|(2018) and MolGAN De Cao & Kipf]| (2018); Miyato et al.|(2018)) showed
that deep generative learning on graphs is possible, but inherited the weaknesses of their backbones:
VAEs suffer from inaccurate posterior approximation on large graphs, while GANs are prone to in-
stability and mode collapse [Jo et al.| (2022). These limitations motivated the search for more stable
generative paradigms.

Diffusion-based generative modeling. Diffusion models—including DDPM Ho et al.[ (2020),
DDIM [Song et al.| (2021a), score-based diffusion |Song et al.| (2021b)), stable diffusion Rombach
et al.[(2022), and flow-based variants Lipman et al. (2023);[Liu et al.|(2022)—have since emerged as
a powerful family of generative methods, overcoming many of the weaknesses of VAEs and GANs
in high-dimensional domains. Their success in images and molecules has spurred growing interest
in graphs, where two main directions have been explored:

Continuous diffusion. These models|Niu et al.|(2020b); Jo et al.|(2022) apply Gaussian perturbations
to adjacency matrices and node features. While effective, the injected noise often produces dense
graphs, degrading sparsity and structural fidelity.

Discrete diffusion. In contrast, models such as DiGress |Vignac et al.| (2023b), EDGE |Chen et al.
(2023a)), local-PPGN Bergmeister et al.| (2024b) GEEL Jang et al.| (2024) DeFoG |Qin et al.| (2025)



0.09 0.00035
Optimal: 150 steps —O— Degree Optimal:150 steps —O— Degree
20-08 —O— Clustering = 0.00030 —O— Clustering
% 0.07 Orbit g 0.00025 Orbit
[0
@ 0.06 @
‘n ©  0.00020
C 0.05 =
o @ 0.00015
20,04 2
= 3 0.00010{ &
Q0% 2 0.00005
Zo02 N
0.011 o A 0.00000 ™ n n
—0.00005
50 150 500 1000 50 150 500 1000
Sampling Steps Sampling Steps
(a) Enzymes Dataset (b) Tree Dataset
0.7 2.00
—0— Degree Optimal: 500 steps ) 5
= 0.6 O~ Clustering Optimal: 500 steps 1.75 %
g Orbit 1.50@
205 @
° o T — 125§
g 04 1.003
Z <
303 0750
o ]
= Validity w/o (%) [ 0.50 2
So2 FCD a
0.258
NSPDK Q
0.1 ; 0.00
50 150 500 1000 50 150 500 1000
Sampling Steps Sampling Steps
(c) PubMed Dataset (d) QM9 Dataset

Figure 2: Sampling efficiency of ESGD across different datasets. The figures show how evaluation
metrics change with different sampling steps. Red dashed lines indicate the optimal sampling steps
for each dataset.

define edit-based noise processes on nodes and edges, preserving sparsity and graph structure. How-
ever, they require long training schedules and slow sampling, which limits scalability.

Spectral and Laplacian approaches. A complementary line of work leverages graph spectra.
SPECTRE Martinkus et al.| (2022b) models dominant Laplacian eigencomponents to capture global
structure but introduces significant architectural complexity. GSDM |Luo et al.[ (2024) improves ef-
ficiency via low-rank spectral diffusion, yet remains sensitive to eigenvalue scaling. GGSD Minello
et al.| (2025) increases complexity by sampling eigencomponents. These methods illustrate the po-
tential of spectral domains, but also reveal persistent limitations in stability, reconstruction, and
scalability.

Our approach. Existing methods for graph diffusion each suffer from fundamental trade-offs: con-
tinuous approaches are effective but local information, discrete approaches preserve structure but
are computationally expensive. Spectral approaches trying to combine eigenspace and eigenvalues
to capture local information but enlarge the model size and increase complexity. ESGD provides a
different perspective: it reinterprets score-based diffusion in the spectral domain, where eigenvalue
compression of the normalized Laplacian ensures stable score estimation with theoretical guaran-
tees. This spectral view makes it capture more local information or mitigate the effects of matrix
heterogeneity. As a result, ESGD unifies the advantages of stability, efficiency, and scalability, and
demonstrates empirically that spectral diffusion can compete not only within its own paradigm but
also with discrete models on both fidelity and large-graph generalization.

6 CONCLUSIONS

We have presented a spectral perspective on graph diffusion that achieves both theoretical soundness
and practical efficiency. The broader lesson is that progress in generative modeling may not always
come from additional layers of engineering, but from revisiting the core formulations that govern
stability and scalability. Subtle adjustments to these foundations can sometimes prove more effective
than increasingly intricate designs, a direction our work illustrates for graph generation.



REFERENCES

Andreas Bergmeister, Karolis Martinkus, Nathana€l Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In International Conference on
Learning Representations (ICLR), 2024a. URL https://openreview.net/forum?id=
2XkTz7gdpc.

Andreas Bergmeister, Karolis Martinkus, Nathanaél Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In The Twelfth International Con-
ference on Learning Representations, 2024b. URL https://openreview.net/forum?
1id=2XkTz7gdpc.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In Proceedings of the 40th International Conference on Machine
Learning. PMLR, 2023a.

Xiaohui Chen, Jiaxing He, Xu Han, and Liping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 4585-4610. PMLR,
23-29 Jul 2023b.

Fan R. K. Chung. Spectral Graph Theory, volume 92 of CBMS Regional Conference Series in
Mathematics. American Mathematical Society, 1997.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In Pro-
ceedings of the 26th International Conference on Machine Learning, pp. 255-262. Omnipress;
Madison, WI, USA, 2010.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, 2nd
edition, 2006.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Associa-
tion, 106(496):1602-1614, 2011.

Floor Eijkelboom, Grigory Bartosh, Christian A. Naesseth, Max Welling, and Jan-Willem van de
Meent. Variational flow matching for graph generation. In Advances in Neural Information
Processing Systems, volume 37, pp. 11735-11764. Curran Associates, Inc., 2024.

Florentin Guth, Simon Coste, Valentin De Bortoli, and Stephane Mallat. Wavelet score-based gener-
ative modeling. In Advances in neural information processing systems, volume 35, pp. 478-491,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman. Zinc:
A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52
(7):1757-1768, 2012. doi: 10.1021/ci3001277. PMID: 22587354.

Yunhui Jang, Seul Lee, and Sungsoo Ahn. A simple and scalable representation for graph generation.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=n0344avRibl

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 10362—
10383. PMLR, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

10


https://openreview.net/forum?id=2XkTz7gdpc
https://openreview.net/forum?id=2XkTz7gdpc
https://openreview.net/forum?id=2XkTz7gdpc
https://openreview.net/forum?id=2XkTz7gdpc
https://openreview.net/forum?id=nO344avRib
https://openreview.net/forum?id=nO344avRib

Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations.
Springer, 1992.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Yaron Lipman, Ricky T. Q. Chen, and Max Welling. Flow matching for generative modeling. In
International Conference on Learning Representations (ICLR), 2023.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Xuanging Liu, Yuxin Wen, Michael K. Ng, and Cho-Jui Hsieh. Flow straight and fast: Learning
to generate and transfer data with rectified flow. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. /IEEE
Transactions on Pattern Analysis and Machine Intelligence, 46(5):3496-3508, 2024.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
7192-7203. PMLR, 18-24 Jul 2021.

Karolis Martinkus, Andreas Loukas, Nathanaél Perraudin, and Roger Wattenhofer. SPECTRE:
Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
Proceedings of the 39th International Conference on Machine Learning, volume 162, pp. 15159—
15179. PMLR, 17-23 Jul 2022a.

Karolis Martinkus, Andreas Loukas, Nathanaél Perraudin, and Roger Wattenhofer. SPECTRE:
Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pp. 15159-15179. PMLR, 2022b.

Giorgia Minello, Alessandro Bicciato, Luca Rossi, Andrea Torsello, and Luca Cosmo. Graph gen-
eration via spectral diffusion. In International Conference on Learning Representations, 2025.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In Silvia Chiappa and
Roberto Calandra (eds.), Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 4474—
4484. PMLR, 26-28 Aug 2020a.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In Proceedings of the 23rd
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, pp. 4474-4484. PMLR, 2020b.

Bernt @ksendal. Stochastic Differential Equations: An Introduction with Applications. Springer,
6th edition, 2003.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. Journal
of chemical information and modeling, 58(9):1736-1741, 2018.

11



Yiming QIN, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
for graph generation. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=KPRIwWWhgAZ.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. DeFoG: Discrete flow matching
for graph generation. In Proceedings of the 42nd International Conference on Machine Learning.
PMLR, 2025.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quan-
tum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):1-7, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. In International Conference on
Learning Representations, 2020.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks and Machine
Learning, pp. 412-422. Springer, 2018.

Antoine Siraudin, Fragkiskos D. Malliaros, and Christopher Morris. Cometh: A continuous-time
discrete-state graph diffusion model. Transactions on Machine Learning Research, 2025. ISSN
2835-8856.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations (ICLR), 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021c.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In The Eleventh Interna-
tional Conference on Learning Representations, 2023a. URL https://openreview.net/
forum?id=UaAD-Nu86WX.

Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. DiGress: Discrete denoising diffusion for graph generation. In International Con-
ference on Learning Representations, 2023b.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416,
2007.

Lingfeng Wen, Xuan Tang, Mingjie Ouyang, Xiangxiang Shen, Jian Yang, Daxin Zhu, Mingsong
Chen, and Xian Wei. Hyperbolic graph diffusion model. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 15823-15831, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gen-
eration. In Advances in Neural Information Processing Systems, volume 37, pp. 79704—79740.
Curran Associates, Inc., 2024.

12


https://openreview.net/forum?id=KPRIwWhqAZ
https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=UaAD-Nu86WX

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
realistic graphs with deep auto-regressive models. In Jennifer Dy and Andreas Krause (eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 5708-5717. PMLR, 10-15 Jul 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R. Salakhutdinov, and
Alexander J. Smola. Deep sets. In Advances in Neural Information Processing Systems (NeurIPS),
pp- 3391-3401, 2017.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 617-626, 2020.

13



LLM USAGE DECLEARATION

LLM involvement: restricted to language refinement and document formatting

A THEORETICAL SUPPORT

Theorem A.1 (Permutation invariance). Let G = (X, A) be an undirected graph with adjacency
A and node features X. For any permutation matrix P, set X' = PX and A’ = PAP".

Let S = —D"Y2AD Y2 and §' = —D' "> A'D' "%, Then the ESGD forward and reverse
diffusion processes satisfy

AWARK:! / T
(X, A = (PXy, Ay, A, =PA,P
so the generative distribution is invariant to node permutations.

Proof. (1) Operator similarity. Since D’ = diag(A’1) = diag(PAP"1) = PDP" and P is
orthogonal, we have

S =-D 7 V?*AD"Y? = (PDPT)"V2(PAPT)(PDP")"/2= PSP".

Hence S and S’ are similar and share eigenvalues; their eigenvectors transform as U’ = PU
(e.g., (Chung, |1997, Ch. 1)). (2) Equivariance of message passing layers. Consider a standard
(normalized) GCN/MPNN layer

®(H;S) =o(-SHW),

with elementwise activation o and weight matrix W. Using PHW = (PH)W and
PSP" PH = P(-SHW),

®(PH;PSP")=0(—(PSP")(PH)W) =Po(-SHW) = P®(H;S).

Thus each layer is permutation-equivariant; stacked networks and the score nets inherit equivariance
(see also [Zaheer et al.| (2017); [Xu et al| (2019)). (3) Forward SDE equivariance. The forward
SDEs read

AX; = fx (X, A, t;S) dt + gx () AW, ), dAy = fa(Ag,t) dt + ga(t) AW,

Define X, = PX;, A}, = Ay, and Wt(X)/ = PWt(X). Since Brownian motion is invariant under
orthogonal transforms and fx (-; S) is permutation-equivariant by (2), we obtain

dX{ = fx (X}, A}, 68" dt + gx () AW,

Therefore the forward process is permutation-equivariant (e.g., (@ksendall 2003, Ch. 3)).
(4) Scores and reverse SDE. Let p; be the joint density of (X;, A;). For any permutation P,

PP (@, \) = p(PTx, \)
= Vglogp(Px,\) = PVglogp(x,\), Vilogp,(Px,\)=Vylogpi(xz, ).

Hence the ground-truth scores are permutation-equivariant and so are consistent score networks
trained by score matching. The reverse-time SDE (variance-exploding case) is

dX, = (= 18(t) X, — B(t) s(Xy, 1)) dt + /B(t) AW,

which remains permutation-equivariant when replacing (X4, s) by (P X3, Ps).
(5) Reconstruction. At termination, (X, Ag) — (PXy, Ap) and

S = (PUy)Ao(PU,)" = PS,P".
With Ay = —D'/28,D'/2 and A, = —D'"/*S,D'"/? and D' = PDP7, we get A, =
PAyP". This proves the claim. O
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Let S; = UpA:U, with fixed Uy chosen once by eigendecomposition. For any block-orthogonal
rotation R acting within degenerate eigenspaces of Uy, set U = Uy R. Then

U AU =UyRAR'U, = UyA U

so the reconstructed operator and hence the generated distribution are independent of the particular
basis within degenerate subspaces (cf. von Luxburg| (2007)).

Definition A.2 (Spectral diameter). Let X, C R" be the feasible spectral set in domain e € {S, A}
(SNL S or adjacency A). There exist absolute constants

DS = 2\/77'7 Dy = 2Amax\/ﬁ
such that any spectral embedding x € X, satisfies ||zo||?> < D2/4. For S, this follows from the
spectrum lying in [—1, 1]; for A, from || A|| < Apax (see Chung|(1997)).

Theorem A.3 (Spectral SNR and information retention). Let Xy € R"™ be a spectral embedding.
Consider

X, = Va; X + oqe, e~N(0,1,), pt = /ol
Then:

1. (SNR bound) For any fixed x,

= 2
SNR(r) = 2Zoll” {X;

noy max Pts

2. (Mutual information) If X has covariance X, then
I(Xo; X¢) < 2logdet(I + pXo) < 1pE|| X0,

with E|| Xo||? = O(n) in domain S and O(nAZ

2 ax) i domain A.

Proof. (1) By Deﬁnition lxo||? < D2/4, hence

BNl Dy {p, D% /4 =n,
NR(t) = p, 120 < ) . Zo
SR = P = P 4 =\ A2 DA/A =2,
(2) Since X; = /&y X + ore with € L X, the Gaussian channel formula gives I(X; X;) =
3 logdet(I + p;3o) (e.g., (Cover & Thomas, 2006, Ch. 9)). Using log det(I + M) < tr(M) for
M > 0,

I(Xo; X¢) < 2 tr(pe20) = 30 E|| X0
By Definition any X supported on X, satisfies E||X(||? < D2/4, which yields the stated

domain scalings. O

Theorem A.4 (Score Lipschitz). Let p; be the density of X; = v/a; X + o withe ~ N(0, I,,)
and define the score s(x,t) = Vg logpi(x). Then
_ a; D? 072+O_ztn/04 o=
vm 7t o < 2 — - — < i v ’
|| S(:E )H p =t +O’? 4 = {O’t2+atnA?HaX/O’?7 oe=A.

Proof. Fix t and write & = &, 0 = ;. Denote m(x) := E[X, | X = x]. By Tweedie’s identity
for additive Gaussian noise (see Efron|(2011) and also (Song et al.,2021b, Sec. 3)),

\/am(w) =x + 023(537 t) < 8(%, t) = \/&Lf)_w (4)
o
Differentiating equation d]in @ yields
O 1
Vs(x,t) = \/75 Vm(z) - 1. %)
o o

For the Gaussian corruption channel X = +/aX, + o¢, a standard covariance identity (Stein’s
lemma / Bayes rule differentiation) gives

Vm(zx) = g Cov(Xyp | X = x), (6)
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see, e.g., (Efron| 2011} Sec. 2). Substituting equation [f]into equation 3]
Q 1
Vs(x,t) = p Cov(Xp | X =x) — ;I. (7

Since X € X, almost surely, any conditional distribution X | X = x is supported on X,. Hence,
by a diameter (Popoviciu-type) bound for bounded random vectors,

D2
|[Cov(Xo | X = w)Hop < T.
Taking operator norms in equation [/|and using the triangle inequality yields
1 a D?
IVs(@, )lop < —5 + —3- %
and substituting D% /4 = n and D% /4 = nA2,,, completes the proof. O

Theorem A.5 (Drift Lipschitz and EM error). Consider the reverse-time SDE in variance-exploding
form

aX, = (= 180X, — B(1)s(X0,1)) dt +/B(K) AW,

=:b0(Xy,t)

Then, for each t,
Lo(t) 1= sup [ Vab(@, ) lop < 3A(E) + B(8) (072 + 24 D2).

Moreover, the Euler—Maruyama (EM) strong error with step size At satisfies
1/2

1
(Bl XT™ — X1||2)1/2 < CeMm (/ Ly(t)? dt> Att/2.
0
Proof. The Jacobian of b(-, t) is
Vab(m,t) = —3B8(t) — B(t)Vas(x, t).

Hence

IVab(®, t)llop < 38(t) + B(t) [ Vas(z, t)llop-
Applying Theorem gives the bound on L (t). For EM, consider the time-inhomogeneous SDE
dX; = b(Xy,t)dt + o(t) dW, with o(t) = \/B(¢)I independent of z. Under global z-Lipschitz
continuity of b(-,t) with modulus L;(t) and linear growth (both satisfied here), the classical EM
estimate (e.g., (Kloeden & Platen, |1992, Thm. 10.2.2)) yields

1 1/2
(B XM — X, |2) % < C’EM(/O (Lo(t)? + Lo (1)) )~ AtH2,

Because o does not depend on x, L, (t) = 0, which gives the stated bound. O

Theorem A.6 (Fisher spectrum and conditioning). Let F' = E[VgﬁVgéT] be the Fisher (or gener-
alized Gauss—Newton) matrix associated with the score matching loss. Assume the score network
So(+,t) has input Jacobian Jg(x,t) = 0S¢(x,t)/0x satisfying

[ Jo(x,t)|| < Chet(t) ||lz|| Va,t.
Then:

1. (Spectral bound) The largest eigenvalue of F scales as

A (F) = O(n), normalized Laplacian domain S,
e - |O(nA2,)), adjacency domain A.

2. (Condition number) If in addition Ay (F') > v > 0, then

K(F) Amax (F) _ {O(n/7)7 S,

- Amin(-F) O<nA12nax/,Y)7 A
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Proof. Let £(6; X;,t) denote the score-matching loss at time ¢, with gradient
Vol(0; X¢,t) = Jo(Xy,t) " (So(Xy,t) — s(Xy,t)),
where s(-,t) is the ground-truth score. Step 1 (upper bound). For any unit vector u, the Rayleigh—
Ritz principle gives
u' Fu=E[(Vel,u)?] <E|Ve/|>
Hence Apax (F) < E||Vg/||?. By submultiplicativity,
IVol|| < [[Jo(Xt, D) | So (X, 1) — s(Xe, ).
Using the Jacobian bound, this yields
IVolll* < Cuet (8)* 1 Xel|* [[So (X, 1) — s(Xe, t)]I*.
Taking expectations and bounding the training error term by a finite constant Cg,, =
sup, E||So (X, t) — s(X¢,t)||? a.e, we obtain
)\max(F) S Cverr ]E[Cnet(t)2 ||Xt||2} (8)

Step 2 (domain scaling of E|| X ||?). The forward corruption process is X; = /& X + o,
e ~N(0,1,). Then
E|| Xy = a; Bl Xol|* + no?.

By Definition [A.2] E[| X,|?> = O(n) in domain S and O(nA2,,. ) in domain A. Thus the scaling

of Apax (F) in equationmatches the theorem. Step 3 (condition number). If Ay, (F') > v > 0,

then
_ Amax (F') _ O(n/v), S,
P = 52 = {Oan, 4

This completes the proof. O
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B ADDITIONAL INFORMATION OF ESGD

B.1 DEGREE MATRIX RECOVERY

We begin by analyzing the structure of the SNL § = —(D’)~/2A(D’)~'/2. For an undirected,
weighted graph with no self-loops:

0 if i = j (since A; ; = 0 for no self-loops)
Ais e .
Sij=14-— d;ij ifi #jand (i,5) € E )
0 ifi#jand (i,j) ¢ E

where d; represents the unweighted degree of node 4, which is simply the number of edges connected
to node 7 (regardless of their weights), A; ; is the weight of the edge between nodes ¢ and j, and E
is the set of edges. For a weighted graph with unweighted degree matrix, when nodes ¢ and j are
adjacent:

Ai
5] (10)
Vdid;
This means that for any edge (4, j) € E, the product of the degrees d; and d; is related to S and the
edge weight A; ;:

Sij =~

A2 .
didj = =52 (11)
%,J
For any node ¢ with at least two neighbors j, k € N (i), we have:
d; S A%,
hut AR L B (12)
di 575 Ak
Since the graph is connected, we can establish proportional relationships between all node degrees
by traversing the graph. This gives us a system of equations that determines the degrees up to a
constant factor. To resolve this remaining degree of freedom, we use the fact that the sum of all
unweighted degrees equals twice the number of edges:
> di =2|E| (13)

i=1

The number of edges |E| can be determined from the structure of S by counting the number of
non-zero off-diagonal elements and dividing by 2. This yields a system of equations that uniquely
determines the degree matrix D’.

Practical algorithm for estimating unweighted degree matrix: In practical applications, the gen-
erated .S may contain numerical errors or noise. Theoretically, elements corresponding to non-edges
should be exactly zero, but in practice, they might appear as small non-zero values due to stochastic
sampling process. Therefore, we introduce a thresholding parameter J to distinguish between actual
edges and numerical artifacts. The threshold parameter § may need to be tuned based on the specific
characteristics of the graph.

B.2 ESGD MODEL ARCHITECTURE

ESGD (Efficient Spectral Graph Diffusion) is a spectral graph diffusion model based on symmetric
normalized Laplacian matrices for graph generation tasks.

B.2.1 CORE COMPONENTS

SDE Framework: The model employs Variance Preserving SDE (VPSDE):

dx = —%ﬂ(t)xdt +/B(t)dw (14)
ﬁ(t) = Bmin + t(ﬂmam - ﬁmin) (15)

where Bin = 0.1, Bimaz = 20, and t € [0, 1].

Score Networks: Two main networks predict scores for node features and adjacency matrices:
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» ScoreNetworkX: Uses modified GCN layers with S convolution

* ScoreNetworkA _eigen: Operates in eigenvalue space with pooled node representations
Modified GCN Layer: Unlike traditional GCN, uses symmetric normalized Laplacian:

HOD = tanh (SH“)W(”) (16)

Graph Multi-Head Attention: Enhances representation with attention mechanism:

KT
Auts = tanh (Q > (a7
Vd
B.2.2 Loss FUNCTION
Score matching loss in both node and spectral domains:
2
£O) = 1iE so(xt 1) + —— (18)
2 t,%X0,€ ts m

B.2.3 KEY FEATURES

* Spectral domain diffusion for stability
 Support for both generic graphs and molecular generation

Multiple 5(t) scheduling (linear, exponential, cosine)
 Computational complexity: O(N?2d + Nd?)
* Datasets: Community-small, Grid, Enzymes, Ego-small, QM9, ZINC250k
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C EXPERIMENT DETAILS

In this section, we provide the detailed experimental settings. The hyperparameters of ESGD in this
paper are provided in Table 6]

Table 6: Hyperparameters of ESGD used in the generic graph generation tasks and the molecule gen-
eration tasks. We provide the hyperparameters of the score-based models (sg and s,), the diffusion
processes (SDE for X and A), the SDE solver, and the training.

Hyperparameter Ego-small Community-small Enzymes Grid Planar SBM Tree QM9 ZINC250k
s Number of GCN layers 4 3 5 5 5 4 4 4
56 Hidden dimension 32 32 32 32 32 32 32 16 16
Number of attention heads 4 4 4 4 4 4 4 4 4
Number of initial channels 2 2 2 2 2 2 2 2 2
sy Number of hidden channels 8 8 8 8 8 8 8 8 8
oo Number of final channels 4 4 4 4 4 4 4 4 4
Number of GCN layers 5 5 7 7 7 6 7 6 6
Hidden dimension 32 32 3 32 32 32 32 16 16
Type VP VP VP VP VP VP VP VP VP
SDE for X Number of sampling steps 1000 1000 1000 1000 1000 1000 1000 1000 1000
Bmin 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Bmaz 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 4.0
Type VP VP VP VP VP VP VP VP VP
SDE for A Number of sampling steps 1000 1000 1000 1000 1000 1000 1000 1000 1000
Bmin 0.1 0.1 0.1 02 0.2 0.1 0.1 0.1 0.2
Bmaz 1.0 1.0 1.0 0.8 0.9 1.0 1.0 1.0 1.0
Type EM EM + Langevin  EM + Langevin EM + Langevin EM + Langevin EM + Langevin EM + Langevin EM + Langevin EM + Langevin
SNR - 0.05 0.2 0. 0.1 15 0. . 0.2
Solver Scale coefficient - 0.8 0.9 0.7 0.8 0.6 0.6 0.9 0.9
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam
Learning rate 1x107%2  1x1072 1x1072 1x1072 1x1072 1x107° 1x1072 5x 1073 5x107°
Train Weight decay 1x107%  1x107* 1x 1074 1x107* 1x 1074 1x107% 1x107* 1x107% 1x 1074
Batch size 128 128 64 8 64 32 128 1024 1024
Number of epochs 5000 200 5000 5000 1000 3000 1000 300 500
EMA - - 0.999 0.999 0.999 0.999 0.999 - -

C.1 DETAILS OF DATASETS

In this section, we provide key statistics of the datasets employed in the experiments, as shown in
Table[7] for a better illustration of the experimental results. The statistics include the graph number
in each dataset, the range of node numbers, the range of edge numbers for each node, the number of
edge types, and the maximum eigenvalue.

Table 7: Statistics for the datasets in our experiments.

Name Graph Number ~ Node range ~ Edge number of node Number of edge types Maximum eigenvalue
Ego-small 200 [4, 18] [1, 16] 1 9.036
Community-small 100 [12,20] [1,9] 1 6.6145
Enzymes 587 [10, 125] [1,9] 1 5.3045
Generic Grid 100 [100, 400] [1,4] 1 3.9454
Planar 200 [64, 64] [2,12] 1 6.1230
SBM 200 [44, 187] [1,23] 1 14.1320
Tree 200 [64, 64] [1,8] 1 3.0510
QM9 133,885 [2,9] [1,4] 3 3.7063
Molecule 7 1Nc250k 249455 [6. 38] [1.4] 3 35823
Cora 1 [2708, 2708] [5429, 5429] 1 -
Large Citeseer 1 [3312, 3312] [4715, 4715] 1 -
PubMed 1 [19717, 19717] [44338, 44338] 1 -

Note: For large citation networks, ”"Graph Number” is 1 since each dataset consists of a single giant
graph. Node and edge ranges reduce to single values (the total counts).

C.2 DETAILS OF EGO-SUBGRAPH DECOMPOSITION
To make training on large graphs feasible, we employ an ego-subgraph decomposition strategy im-

plemented with NetworkX’s ego_graph function. Given a center node and a radius r, an ego-
subgraph contains the center and all nodes within r-hop distance, together with induced edges. We

20



apply size filters (50 < |V| < 400) to control computational complexity, remove self-loops, and
relabel nodes to contiguous IDs. Datasets are split into training and test sets with an 80/20 ratio.

Table [§]reports the aggregated statistics of the constructed ego-subgraph datasets.

Table 8: Statistics of ego-subgraph datasets derived from large citation networks.

Dataset ~ Num. subgraphs Node range Avg. nodes Edgerange Avg. edges Avg. degree

Cora 100 50-219 112.8 65-428 207.2 3.67
Citeseer 80 51-300 141.7 65-788 271.0 3.82
PubMed 100 50-282 1125 60-1177 236.8 4.21

This decomposition provides three main benefits:

* Efficiency: smaller subgraphs reduce quadratic spectral costs and fit within GPU memory.

* Structural fidelity: local neighborhood motifs and degree/clustering statistics are pre-
served.

* Generalization: sampling multiple ego-subgraphs introduces data augmentation, mitigat-
ing overfitting to a single global graph.

C.3 IMPLEMENTATION DETAILS FOR THE EXPERIMENTS ON GENERIC DATASETS

To evaluate the generated graphs, we employ the maximum mean discrepancy (MMD) to compare
distributions of graph statistics between generated and test graphs. The evaluated statistics include
degree, clustering coefficient, and occurrences of 4-node orbits. We compute the MMDs using the
Gaussian Earth Mover’s Distance (EMD) kernel on Ego-small, Community-small, Enzymes, and
Grid following (Jo et al.| [2022) and using the Gaussian Total Variation Distance (TV) kernel on
Planar, SBM, and Tree following |QIN et al.[(2025).

As the setting from (Jo et al,, 2022), we report the results of ESGD and GSDM on the Ego-
small and Community-small datasets by 15 runs, 3 runs for 5 independently trained models,
and on the Enzymes and Grid datasets by 3 runs. For GSDM, we use the hyperparameters
given by the original paper and further search for the best performance if specific parame-
ters do not exist. To get the best hyperparameters, we perform a grid search to choose the
best signal-to-noise ratio (SNR) in {0.05,0.1,0.15,0.2,0.25,0.3} and the scale coefficient in the
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. We select the best MMD with the lowest average per-
formance in Deg., Clus., and Orbit, respectively. Following (Jo et al.l2022), we quantize the value
of each edge in the sampled adjacency matrix with the operator 1,95 to get the 0-1 adjacency
matrix. The specific hyperparameters are shown in Table [6]

C.4 IMPLEMENTATION DETAILS FOR THE EXPERIMENTS ON MOLECULE DATASETS

We assess the quality of 10,000 generated graphs using multiple metrics. Frechet ChemNet Distance
(FCD) leverages activations from ChemNet’s penultimate layer to calculate the distance between
test and generated graphs (Preuer et al.| 2018]). Neighborhood Subgraph Pairwise Distance Kernel
(NSPDK) MMD measures the maximum mean discrepancy between test and generated graphs, ac-
counting for both node and edge features (Costa & De Gravel[2010). Additionally, we report validity
metrics: validity w/o correction and Validity represent the fractions of valid molecules without and
with valency correction or edge resampling, respectively.

As the setting of (Jo et al.,[2022), we report the results of ESGD and GSDM on QM9 and ZINC250k
by 3 runs. We preprocess each molecule into a graph with the node features X € {0, 1}V <" and
the adjacency matrix A € {0, 1,2,3}V>*¥ where N is the maximum number of atoms and F is the
number of atom types. We also use the grid search for the best SNR in {0.5,1,1.5,2,2.5, 3} and the
scale coefficient in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}. The specific hyperparameters are
shown in Table[6] We select the hyperparameters for the best FCD value. We quantize the entries of
the adjacency matrices to {0, 1, 2, 3} by clipping the value (—o0,0.5) to 0, [0.5,1.5) to 1, [1.5, 2.5)
to 2, and [2.5, c0) to 3 following (Jo et al.,|[2022).
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C.5 COMPUTING RESOURCES
For all experiments, we use PyTorch to implement ESGD and train the score models on an NVIDIA

RTX A4000 GPU with intel 17-14700K CPU.

D ADDITIONAL EXPERIMENTAL RESULTS
In this section, we provide additional experimental results.

D.1 GENERIC GRAPH GENERATION

We report the standard deviation of the generation results of Table [I]in Table 0] and Table [T0} We
provide sampling acceleration of ESGD on the Community-small and Ego-small datasets in Table

Table 9: Generation results of ESGD on Ego-small and Community-small. * denotes that the results
are obtained by running open-source codes. The results of GDSS and HGDM are taken from (Luo
et al., 2024} Wen et al., 2024} [Eijkelboom et al. 2024). The best results are highlighted in bold
(lower is better), and the underline denotes the second best. We report the MMD distance between
the test datasets and the generated graphs with the standard deviation.

Ego-small Community-small
Deg.| Clus.) Orbit] Deg.| Clus.| Orbit]
GDSS (Jo et al.|2022) 0.021£0.008  0.024£0.007 0.0074+0.005  0.045+0.028 0.086+0.022 0.007+0.004
HGDM (Wen et al.[[2024) 0.015£0.005 0.023+0.006 0.003+0.005 0.017+0.029  0.050+0.018  0.005+0.003
GSDM* (Luo et al.[[2024) 0.027£0.000 0.034+0.007  0.004+£0.001 0.016+0.018 0.027+0.026 0.004+0.005
CatFlow [Egjkelboom et al.|{(2024)  0.013+0.007  0.024£0.009  0.001+0.005 0.018£0.012 0.086+0.021  0.007+0.005
ESGD (Ours) 0.009+£0.003  0.022+0.002  0.001+0.000 0.007+0.003  0.010+£0.004  0.001+0.000

Table 10: Generation results of ESGD on Enzymes and Grid. * denotes that the results are obtained
by running open-source codes. The results of GDSS and HGDM are taken from (Luo et al., [2024;
Wen et al., 2024} [Eijjkelboom et al.l 2024)). The best results are highlighted in bold (lower is better),
and the underline denotes the second best. We report the MMD distance between the test datasets
and the generated graphs with the standard deviation.

Enzymes Grid
Deg.| Clus.) Orbit] Deg.| Clus.| Orbit]
GDSS (Jo et al.|[2022) 0.026£0.008 0.102£0.010  0.0094+0.005 0.111£0.012  0.004+£0.000 0.070+0.044
HGDM (Wen et al.|[2024) 0.045+0.008  0.049+0.011  0.003+0.001 0.137+0.019 0.004+0.000 0.070+0.044
GSDM* (Luo et al.|[2024) 0.098+0.010 0.091+£0.003 0.085+0.010 0.001+0.000  0.000+0.000  0.000+-0.000
CatFlow Eijkelboom et al.|(2024) 0.013+0.012  0.062+0.011  0.008+0.007 0.1154+0.010 0.004+0.002 0.075+0.071
ESGD (ours) 0.007+£0.001  0.064+£0.002  0.0094+0.001  0.000+0.000  0.000-£0.000  0.000+0.000

Table 11: Sampling efficiency of ESGD by 1 run on Community-small and Ego-small.

Dataset Steps Deg.l Clus.] Orbit] Time (s))

1000 0.011 0.015 0.001 1.51
500 0.011 0.015 0.001 0.94
250  0.011 0.015 0.001 0.58
200 0.058 0.106 0.012 0.48

1000 0.012 0.019 0.001 1.13
800  0.014 0.014 0.001 0.9
750  0.015 0.014 0.001 0.86
700 0.018 0.029 0.003 0.82

Community-small

Ego-small
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D.2 MOLECULE GENERATION

We additionally report the validity, uniqueness, and novelty of the generated molecules aside from
the results in Table d]to comprehensively illustrate the performance of molecule generation. Validity
is the fraction of the generated molecules that do not violate the chemical valency rule. Uniqueness
is the fraction of the valid molecules that are unique. Novelty is the fraction of the valid molecules
that are not in the training set. Moreover, the standard deviation of each metric is also provided in
this section. The results of molecule generation are shown in Table[T2]and Table[T3]

As shown in Table[12} the generated molecules of ESGD have lower novelty and comparable unique-
ness. As discussed in (Wen et al.}[2024), high novelty does not necessarily represent good generation
quality due to the property of the QM9 dataset, such as the generated molecules of GraphDF and
GraphEBM. In other words, the models that can generate molecules with high novelty fail to capture
adequate properties of the dataset.

Table 12: Generation results on QM9. * denotes that the results are obtained by running open-source
codes. Other results of the baselines are taken from the published papers|Luo et al.|(2024); Wen et al.
(2024); Jang et al.|(2024); Eijkelboom et al.|(2024)). The best results are highlighted in bold, and the
underline denotes the second best.

Method Val. w/o (%) NSPDK MMD] FCDJ Validity UniquenessT Novelty T
GraphAF (Shi et al.|[2020) 67 0.020+0.003 5.26840.403 100.00 94.51 88.83
GraphDF (Luo et al.{[2021) 82.67 0.063+0.001 10.816+0.020 100.00 97.62 98.10
MoFlow (Zang & Wang|[2020) 91.36+1.23 0.017+0.003 4.467+0.595  100.00+0.00  98.65+0.57  94.72+0.77
EDP-GNN (Niu et al.||2020a) 47.5243.60 0.005+0.001 2.6804+0.221 100.00+£0.00  99.25+0.05 86.58+1.85
GDSS (Jo et al.[[2022) 95.794+1.93 0.003+0.000 2.813+0.278  100.00£0.00  98.02+0.63  82.55+3.11
HGDM (Wen et al.|[2024) 98.04+1.27 0.002+0.000 2.13+0.254 100.00+£0.00  97.27+0.71  69.63+2.75
GSDM* (Luo et al..|[2024) 99.81+0.08 0.009+0.000 3.191+0.014  100.00-+0.00 94.7+0.15 68.5+0.47
CatFlow [Eijkelboom et al.|(2024) ~ 99.81 + 0.03 - 0.441 +0.023  100.00 £ 0.00 99.95 + 0.02 -
GEEL [Jang et al.|(2024) 100.0 0.0002 0.089 100.00 96.08 22.30
ESGD (ours) 99.2040.02 0.002+0.000 1.4254+0.009  100.00+£0.00  96.61+0.16  60.64+0.00

Table 13: Generation results on ZINC250k. * denotes that the results are obtained by running open-
source codes. Other results of the baselines are taken from the published papers [Luo et al.| (2024);
Wen et al.|(2024); Jang et al.| (2024); |[Eijkelboom et al.| (2024); |QIN et al.| (2025). The best results
are highlighted in bold, and the underline denotes the second best.

Method Val. w/o (%) NSPDK MMD|] FCDJ Validity Uniqueness?T Noveltyt
GraphAF (Shi et al.|[2020) 68 0.044+0.006 16.289+0.482 100.00 99.10 100.00
GraphDF (Luo et al.{[2021) 89.03 0.176+0.001 34.202+0.160 100.00 99.16 100.00
MoFlow (Zang & Wang|[2020) 63.114+5.17 0.046+0.002 20.9314+0.184  100.00-£0.00 99.99+0.01 100.00-£0.00
EDP-GNN (Niu et al.[|2020a) 82.97+2.73 0.049+0.006 16.737+1.300  100.00-+0.00 99.794+0.08  100.00+0.00
GDSS (Jo et al.[|2022) 95.90+1.01 0.019+0.001 16.621+1.213  100.00-£0.00 99.674+0.14  100.00+0.00
HGDM (Wen et al.[|2024) 93.51+0.87 0.016+0.001 17.69+1.146 100.00-£0.00 99.824+0.18  100.00+0.00
GSDM* (Luo et al.|[2024) 93.0+0.04 0.016+0.000 12.074+0.062 100.00-£0.00 99.9740.09  100.00+0.00
CatFlow [Eijkelboom et al.|(2024)  99.21 + 0.04 - 13211 £0.012  100.00 = 0.00  100.00 + 0.00 -
GEEL Jang et al.|(2024) 99.31 0.0068 0.401 100.00 99.97 99.89
DeFoG|QIN et al.|(2025) 99.22 +£0.08  0.0008 + 0.0001  1.425 £+ 0.0001 100.00 +0.00  99.99 + 0.01 -
ESGD (ours) 98.294+0.58 0.010+0.000 8.80+0.132 100.00-£0.00 99.76+0.12  100.00-+0.00

We present acceleration results for ESGD sampling with 1,000-step training on both QM9 and
ZINC250k datasets in Table For QM9, ESGD maintains comparable accuracy when using
600 sampling steps. Although validity scores without correction decrease at lower step counts,
both NSPDK and FCD metrics remain robust even when using as few as 500 sampling steps. This
demonstrates that ESGD maintains excellent sampling efficiency when applied to molecule datasets.

23



Table 14: Sampling efficiency of ESGD by 1 run on QM9 and ZINC250k.

Dataset Steps  Val. w/o (%)t FCD| NSPDK MMD] Time (s)

1000 99.23 1421 0.002 143
oM 800 99.35 1.427 0.002 11.2
600 99.22 1.485 0.002 8.1
500 99.08 1.595 0.003 5.4
1000 98.81 8.856 0011 716
800 97.34 8.623 0011 60.2
ZINC250k 55 95.94 8.813 0.010 375
400 95.44 8.989 0.010 30.6

E VISUALIZATION

E.1 GENERIC GRAPH GENERATION

We visualize a randomly selected subset of samples from the training datasets and the generated
graph set in Figures [3}[9]

e=26, n=14 e=37,n=16 e=37,n=16 e=26, n=14 e=37,n=16 e=49, n=18 e=21,n=12 e=26, n=14

e=60, n=20 e=37,n=16 e=21,n=12 e=60, n=20 e=21, n=12 e=37,n=16 e=60, n=20 e=26, n=14

e=21,n=12 e=21, n=12 e=21,n=12 e=21,n=12 e=60, n=20 e=60, n=20 e=49, n=18 e=21,n=12

e=23,n=12 e=60, n=20 e=26, n=14 e=21,n=12 e=60, n=20 e=26, n=14 e=26, n=14 e=21,n=12
(a) Training Data (b) ESGD (ours)

Figure 3: Visualization of the graphs from the Community-small dataset and the generated graphs
of ESGD.

e=10, n=6 e=15, n=13 e=10, n=6 e=55, n=15 e=3,n=4 e=26, n=10 e=5, n=4 e=5,n=5

e=3,n=4 e=4,n=4 e=3,n=4 e=22,n=11 e=4,n=4 e=29, n=16 e=3,n=4 e=29, n=10
e=12,n=12 e=6, n=5 e=6, n=6 e=16, n=11 e=11, n=7 e=6, n=5 e=4, n=5 e=6, n=5
e=8, n=7 e=17,n=9 e=3, n=4 e=3, n=4 e=11, n=10 e=20, n=16 e=13,n=10 e=7,n=6
(a) Training Data (b) ESGD (ours)

Figure 4: Visualization of the graphs from the Ego-small dataset and the generated graphs of ESGD.
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e=275, n=150 e=511, n=272 e=351, n=190 e=402, n=216 e=507, n=270

e=356,

e=610, n=323 e=304, n=165

n=180 e=325, n=176 e=220, n=121 e=310,

e=412, n=221 e=425, n=228

e=684, n=361 e=647, n=342 e=449, n=240 e=391, n=210 e=445, n=238 e=647, n=342

(a) Training Data (b) ESGD (ours)

Figure 5: Visualization of the graphs from the Grid dataset and the generated graphs of ESGD.

e=84, n=37 e=51, n=23 e=46, n=25 e=45, n=24 e=30, n=15 e=78, n=48 e=79, n=35 e=52, n=27

e=45, n=23 e=46, n=24 e=59, n=26 e=133, n=88 e=52, n=30 e=35, n=19 e=81, n=40 e=37,n=18

e=39, n=23 e=53, n=32 e=28, n=14 e=75, n=42 e=26,n=14 e=80, n=48 e=60, n=32 e=96, n=44

e=73, n=41 e=64, n=36 e=97, n=55 e=95, n=40 e=31, n=13 e=74,n=32 e=60, n=32 e=47, n=25
(a) Training Data (b) ESGD (ours)

Figure 6: Visualization of the graphs from the Enzymes dataset and the generated graphs of ESGD.

e=177, n=64 e=180, n=64 e=176, n=64 e=174, n=64

e=178, n=64 e=177, n=64 e=179, n=64

(a) Training Data (b) ESGD (ours)

Figure 7: Visualization of the graphs from the Planar dataset and the generated graphs of ESGD.

E.2 MOLECULE GRAPH GENERATION

We visualize a randomly selected subset of the generated graph set in Figures
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e=881, n=172 e=414, n=92 e=267, n=61 e=315, n=64 e=500, n=97 e=270, n=61 e=446, n=77 e=845, n=165

b L Toe T P

e=526, n=115 e=412, n=101 e=428, n=90 e=644, n=123 e=492, n=98 e=316, n=79 e=500, n=97 e=224, n=58

=5 o~ = L PN

e=303, n=61 e=643, n=130 e=292, n=62 e=943, n=168

S

e=842, n=163 e=264, n=58 e=401, n=71

== " ITT

(a) Training Data (b) ESGD (ours)

e=653, n=141 e=530, n=102

e=402, n=103

Figure 8: Visualization of the graphs from the SBM dataset and the generated graphs of ESGD.

e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64

e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64

e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64

e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64
(a) Training Data (b) ESGD (ours)

Figure 9: Visualization of the graphs from the Tree dataset and the generated graphs of ESGD.
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Figure 10: Visualization of the random samples generated by ESGD trained on QM9.
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Figure 11: Visualization of the random samples generated by ESGD trained on ZINC250k.
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