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ABSTRACT

Graph generative modeling has seen rapid progress, yet existing approaches of-
ten trade off between fidelity, scalability, and stability. Continuous and discrete
diffusion models capture complementary aspects but remain hampered by either
structural distortion or heavy computational costs. We introduce Efficient Spec-
tral Graph Diffusion (ESGD), a lightweight framework that performs diffusion in
the compressed eigenvalue space of the Symmetric Normalized Laplacian (SNL).
This spectral compression guarantees bounded eigenvalues, provable stability, and
faster convergence while eliminating hub-node dominance. A novel degree-matrix
recovery algorithm enables exact graph reconstruction from the spectral represen-
tation. ESGD achieves state-of-the-art generation quality with one of the smallest
parameter counts, converging up to 100x faster in training and requiring 6—10x
fewer sampling steps with up to 2000x less computational cost. Our findings sug-
gest that progress in graph generation may come less from heavier engineering,
and more from principled reformulations that unlock both efficiency and fidelity.

1 INTRODUCTION

Graph distribution learning and generation have become central research topics with broad appli-
cations in drug discovery, materials science, and network analysis. The goal is to capture the un-
derlying distribution of graphs and model their intrinsic structural properties, including the inter-
play between nodes, edges, and features. Early generative models such as variational autoencoders
(GraphVAE Simonovsky & Komodakis|(2018))) and generative adversarial networks De Cao & Kipf]
(2018)); Miyato et al.| (2018)) demonstrated feasibility, but VAEs struggle with posterior estimation
on large graphs, while GANS are prone to mode collapse Jo et al.|(2022). These limitations highlight
the need for more scalable and robust paradigms.

Diffusion-based approaches have recently shown remarkable promise. Early models operate directly
on adjacency matrices or their eigenspaces, applying Gaussian perturbations to both node features
and graph structure Niu et al.|(2020b)); Jo et al.| (2022). To preserve sparsity and improve efficiency,
discrete diffusion models such as DiGress|Vignac et al.|(2023b) and DeFoG |Qin et al.| (2025) intro-
duce edit-based noise processes. In addition to discrete models, Laplacian Martinkus et al.|(2022b));
Bergmeister et al.|(2024a) and spectral |Luo et al.| (2024); Minello et al.| (2025 methods which ex-
plore diffusion over eigenvalues and eigenvectors, capturing global structural properties but often
suffering from eigenvalue imbalance or added model complexity.

In this paper, we propose ESGD, a framework that addresses three fundamental challenges in spec-
tral graph generation. First, we compress eigenvalues of the SNL into the bounded interval [-1,
1], which eliminates the dependence on maximum node degree and provides uniform spectral ra-
dius bounds regardless of graph topology. This compression yields theoretical guarantees: bounded
signal-to-noise ratios, and improved Lipschitz constants for score functions. Second, we develop a
degree-matrix recovery algorithm that uniquely reconstructs the degree matrix from the compressed
spectral representation, closing the reconstruction gap that limited prior spectral methods. Third, we
demonstrate scalability to citation networks through ego-subgraph decomposition, achieving strong
performance on larger graphs and show potentials on graphs with thousands of nodes while main-
taining computational tractability. Empirically, ESGD achieves competitive or superior generation
quality compared to both spectral and discrete diffusion baselines, while requiring orders of mag-



nitude fewer computational resources. Figure [Iaintuitively demonstrates the superiority of ESGD
over other baselines in terms of generation efficiency and quality.
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Figure 1: (a) Comparison of generation efficiency and quality between ESGD and baseline models
from recent three years on the Planar dataset. (b) ESGD transforms the adjacency matrix into an
SNL matrix (S matrix), suppresses extreme values and yielded a more well-behaved data distribution
therefore improving spectral properties.

2 RELATED WORK

Early graph generative models. Early approaches relied on VAEs and GANs. GraphVAE |Si-
monovsky & Komodakis|(2018) and MolGAN De Cao & Kipf] (2018); Miyato et al.| (2018) showed
that deep generative learning on graphs is possible, but inherited the weaknesses of their backbones:
VAE:s suffer from inaccurate posterior approximation on large graphs, while GANSs are prone to in-
stability and mode collapse Jo et al.[(2022). These limitations motivated the search for more stable
generative paradigms.

Diffusion-based generative modeling. Diffusion models—including DDPM Ho et al.| (2020),
DDIM |Song et al.| (2021a), score-based diffusion |Song et al.| (2021b)), stable diffusion Rombach
et al.| (2022)), and flow-based variants|Lipman et al.|(2023)); Liu et al.| (2022)—have since emerged as
a powerful family of generative methods, overcoming many of the weaknesses of VAEs and GANs
in high-dimensional domains. Their success in images and molecules has spurred growing interest
in graphs, where two main directions have been explored:

Continuous diffusion. These modelsNiu et al.|(2020b); Jo et al.|(2022)) apply Gaussian perturbations
to adjacency matrices and node features. While effective, the injected noise often produces dense
graphs, degrading sparsity and structural fidelity.

Discrete diffusion. In contrast, models such as DiGress |Vignac et al.| (2023b), EDGE |Chen et al.
(2023a), local-PPGN Bergmeister et al.| (2024b) GEEL Jang et al.| (2024) DeFoG |Qin et al.| (2025)
define edit-based noise processes on nodes and edges, preserving sparsity and graph structure. How-
ever, they require long training schedules and slow sampling, which limits scalability.

Spectral and Laplacian approaches. A complementary line of work leverages graph spectra.
SPECTRE Martinkus et al.|(2022b) models dominant Laplacian eigencomponents to capture global
structure but introduces significant architectural complexity. GSDM |Luo et al.| (2024) improves ef-
ficiency via low-rank spectral diffusion, yet remains sensitive to eigenvalue scaling. GGSD Minello
et al.| (2025) increases complexity by sampling eigencomponents. These methods illustrate the po-
tential of spectrum, but also reveal persistent limitations in stability, reconstruction, and scalability.

Our approach. ESGD addresses these limitations via eigenvalue compression of the symmetric
normalized Laplacian, bounding all eigenvalues to [-1,1] and eliminating degree-dependent scaling.
The SNL’s symmetry naturally aligns with diffusion models’ zero-mean Gaussian priors, simplifying
optimization. By diffusing only eigenvalues while fixing eigenvectors, ESGD achieves competitive
quality with orders of magnitude lower computational cost.
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Figure 2: ESGD pipeline. The spectral decomposition phase computes the SNL matrix for all
graphs and extracts eigenvectors U, eigenvalues A (diag())), and node features X. The score
matching phase trains two networks to denoise X and A. The generation phase reconstructs the
adjacency matrix: generated eigenvalues A combine with fixed basis U to form the predicted SNL
matrix, from which Algorithm |l{recovers the degree matrix and adjacency A. The final graph pairs
generated node features X with reconstructed A.

3 PRELIMINARIES

3.1 SPECTRAL PROPERTIES AND CONDITION NUMBERS

_ [Amax]

For a matrix M with eigenvalues Ay, ..., An, the condition number is defined as 1 (M) = 522,
measuring the ratio between the largest and smallest eigenvalue magnitudes. A high condition num-
ber indicates that the matrix is ill-conditioned, meaning small perturbations in the input can lead to
large changes in the output. In diffusion models, the condition number of the data covariance matrix
directly affects optimization stability and convergence speed. In continuous diffusion models, the
eigenvalues typically scale as the maximum node degree A,,... For scale-free graphs, A« can
be very large, which induces severe information imbalance in the diffusion model: high-degree hub
nodes dominate the learning signal, while low-degree nodes receive insufficient gradient updates.

Moreover, in a dataset, the unbalance distribution in condition number means these special graphs
are hard to learn, see Figure[Tb] This issue affects not only continuous diffusion models built on the
adjacency spectrum (GGSD, GSDM), but also discrete diffusion models (Digress, DisCo, DeFoG,
Cometh). In discrete models, all graphs in the dataset are considered and the model is trained to
predict node labels one by one. Consequently, the model has to accommodate the influence of outlier
graphs in the data, which gives rise to two undesired effects: (i) degraded predictive performance,
and (ii) increased training cost in terms of both optimization steps and model size, see section [6.4]

3.2 SCORE-BASED GENERATIVE MODELS

Diffusion-based generative modeling has emerged as a powerful paradigm for high-dimensional
data generation. In score-based generative models |Song et al.| (2021c), the key idea is to learn the
score function V, log p;(z), the gradient of the log-density of a perturbed data distribution at time
t. This simulates the reverse-time stochastic differential equation (SDE) to transform noise into data
samples.

Formally, the forward noising process is defined by an SDE
dzy = f(ta zt)dt + g(t)dwtv te [07 1}7 (1

where f and g denote drift and diffusion coefficients, w; is a standard Wiener process. As t — 1,
z; converges to a simple prior distribution (e.g., Gaussian). The reverse-time SDE takes the form

dz; = (f(t, zt) — g(t)*V, logpt(zt))dt + g(t)dwy, )

where w; is a reverse-time Wiener process. In practice, the score function is unknown and must be
approximated by a neural network sg(z¢,t).



3.3 GRAPH CONVOLUTIONAL NETWORKS (GCN)

Graph Convolutional Networks (GCNs) [Kipf & Welling (2017) are a fundamental building block
for learning on graphs. Given an undirected graph with adjacency matrix A and degree matrix D,
GCN defines a layer-wise propagation rule that aggregates information from neighbors:

HAD — a<A H® WW) A=DV?2AD Y2 A-—A+1 3)

where H () is the hidden representation at layer £, W () is a trainable weight matrix, o is a non-
linear activation

4 METHODOLOGY

We study the graph generation problem where each graph G = (X, A) consists of a node-feature
matrix X € R"*? and an adjacency matrix A. We define the SNL operator

1 1
UAU'=S=L-I=-D 2AD 2,

Let S = UAU be its eigen-decomposition. ESGD performs diffusion in a fixed eigen-space,
we keep U fixed and only diffuse the eigenvalues A together with node features X. The forward
process is given by two coupled SDEs:

dX = fx (X, t)dt + gx ()dWX,  dA; = fa(Ay,t)dt + ga(t)dWP,

with independent Wiener processes for X and A. The reverse SDEs follow standard score-based
formulations using score networks sg and s¢.

Score Networks We use GCN-based architectures for both sg (node features) and s (eigenvalues).
To avoid double normalization and self loop, the message-passing operator is replaced by —.S"

H" = o(-SHOW®).
Objectives We minimize denoising score matching losses:
E(6) = Ellso(X, A, U) — Vx, log pi (X Xo) 1%,
E(¢) = E|s¢(X, A, U) — Va, log pi (As|Ag)||*.

Sampling After training, we reverse the diffusion to obtain (Xo, Ao). The adjacency matrix is
reconstructed using the recovered eigenvalues A:

A=-D'?SD'? S§=UAUT,

where the degree matrix D is uniquely recoverable from S by a provable algorithm|l| This guar-
antees exact graph reconstruction up to numerical thresholds. The full details of the ESGD model
architecture can be found in[B.2]and supplementary code project files. The ESGD pipeline is illus-
trated in Figure[2]

5 THEORETICAL PROPERTIES

As we discussed in subsection [3.1] the spectral properties from graph theory influences the models
at the first beginning. Beyond eigenvalue normalization, the symmetry of the operator is particularly
well aligned with diffusion models. In standard diffusion setups, the prior distribution is a standard
Gaussian with zero mean and unit variance. This symmetry reduces the burden on the model, since
it does not need to learn the global mean of the data distribution and can instead focus on higher-
order structure. As a result, optimization becomes easier and computation can be accelerated while
improving the performance. More discussion can be seen in [] with different aspects: Performance

in Efficiency in Generalization in

We establish three key results: eigenvalue boundedness in Theorem [5.1] information-theoretic ad-
vantages in Theorem [5.3] and optimization stability in Theorem [5.4] [5.5] See Appendix [A] for
detailed proofs.



Theorem 5.1 (Spectral boundedness). For an undirected graph with adjacency matrix Aand sym-

metric normalized Laplacian S = L — I = —D 3AD" 3, let Anax denote the maximum degree.
Then:

* (Eigenvalue bounds)Chung|(1997) The eigenvalues satisfy :
IM(L)| <1 while /Amax < |Ai(A)| < Apmax

* (Spectral radius) The spectral radius (largest absolute eigenvalue) satisfies:
p(S) <1 while p(A) < Apax

 (Implications for diffusion) This boundedness ensures:

— Uniform signal decay independent of graph degree distribution
— Stable score function regardless of hub nodes
— Consistent diffusion dynamics across heterogeneous graphs

Theorem 5.2 (Node Permutation Invariance of ESGD). Let G = (X, A) be an undirected graph
with adjacency A and node features X. For any permutation matrix P, define X' = PX and
A' = PAPT. Let S = -D"Y2AD V2 and §' = -D' "2 A'D'"'/2. Then the forward and
reverse diffusion processes satisfy

(X!, A) L (PX,,A), A,=PAPT,

The permutation invariance established above ensures that ESGD’s learned distribution is well-
defined over graph isomorphism classes. We now turn to the information-theoretic and optimization
advantages of the SNL domain.

Theorem 5.3 (Spectral SNR and Information Retention). Let Xy € R" be the spectral embedding
of a graph. Consider the forward process X; = \/a; Xo + o1&, € ~ N (0, I,,), with p; = ay;/o?.
Then:

1. (SNR bound) For any fixed initial data x,

Pt, SNL domain S,
SNR(t) <
®) < {Afnax pt, adjacency domain A.

2. (Mutual information) For different initial data X is random with covariance X, then
I(Xo; X1) < g logdet(I + p:%o) < §p: E[ Xo?

2

2 ox) in domain A.

which scales as O(pyn) in domain S and O(pynA

Theorem [5.3] establishes that the signal-to-noise ratio and mutual information in the SNL domain
scale as O(p;n), compared to O(p;nAZ ) in the adjacency domain. This A2 _-factor reduction
has three immediate consequences. First, for a fixed SNR target, the SNL formulation requires
A2 times fewer diffusion steps to achieve the same information retention in theorem directly
explaining the sampling acceleration observed in Table [f] Second, the bounded information flow
ensures that gradient magnitudes remain stable across nodes of different degrees, preventing the
hub-node dominance that plagues adjacency-based methods in theorem [5.6]. Third, the uniform
scaling allows a single set of hyper-parameters to work across diverse graph types, from regular
grids to scale-free networks, without dataset-specific tuning. The following theorems quantify the
stability implications through Lipschitz bounds, discretization error analysis and Fisher matrix.

Theorem 5.4 (Score Lipschitz Bound). For the score s(x,t) = Vg log p:(x) we have
5 a; D?
[Vas(@,t)|op < oy 2+ 07? : T.a
where D, is the spectral diameter. Consequently,

2, = 4
oy © + aun/o;,

—2 —~ 2 4
O + atnAmax/Ut ’

& W0

Va5, 1) op < {



Algorithm 1 Degree Matrix Recovery from S

Require: SNL matrix L, .4, threshold parameter § > 0
Ensure: Unweighted degree matrix D’ and weighted adjacency matrix A

1: Step 1: Aij « 1y(s),,|>s for all (i, j) > Identify graph structure by thresholding
2: Step 2: d; + Z;;l Aij for all ¢ > Compute unweighted node degrees
3: Step 3: D’ + diag(dy,...,d,) > Construct unweighted degree matrix
4: Step 4 (For weighted graphs): Recover the weighted adjacency matrix

5: for all (4, j) with A, ;= 1do > Edge weight recovery for connected pairs
6: Aij — 7(5)” . \/didj

7: end for A

8: A;j < Oforall (,7) with A;; =0 > Zero weights for disconnected pairs
9: return D', A

Theorem 5.5 (Drift Lipschitz and EM error). The reverse-time SDE drift b(x,t) = —1B(t)x —
B(t)s(x,t) has Lipschitz constant

Li(t) < 3B(t) + () (072 + 24 D2).

The Euler—Maruyama strong error satisfies
1 1/2
(B XM - x|2)"/* < CEM</ Lb(t)th) AtV/2,
0

Theorem 5.6 (Fisher spectrum and conditioning). Let F = E[V¢{V gl "] be the Fisher matrix of
the score matching loss. Assume the network Jacobian satisfies ||Jg(x,t)|| < Chet(t)||x|| for all
x,t. Then:

1. (Spectral bound) The largest eigenvalue scales as

N (F) = O(n), SNL domain,
A - O(nA2,)), adjacency domain.

max

2. (Condition number) If in addition Ayin (F') > v > 0, then

_ )\max(F) _ O(”/V)? S,
M) =3 ) {O(nA?nax/v)» A.

6 GRAPH GENERATION RESULTS

6.1 GENERIC GRAPH GENERATION

Datasets: We test ESGD on Community-small, Enzymes, Grid, Ego-small, Tree, Sbm, and Planar.
More details of these datasets are provided in Appendix [C.T}

Metrics: We evaluate the maximum mean discrepancy (MMD) between equal numbers of generated
and test graphs by measuring degree, clustering coefficient, 4-node orbit occurrences, their average
and spectral in Table[T]and Table 2} See Appendix for details.

Performance Analysis Across Graph Types: Our experimental results reveal a systematic re-
lationship between graph spectral properties and model performance. On datasets with bounded
eigenvalue magnitudes (Tree at 3.05, Grid at 3.94), most baseline methods achieve reasonable per-
formance. However, when eigenvalues increase to Enzymes at 5.30, Community-small at 6.61,
Planar at 6.12, Ego-small at 9.04 and SBM at 14.13, adjacency-based methods (GSDM, GGSD)
exhibit marked degradation due to spectral scaling as (A2, ), where high-degree nodes dominate

max
the training signal while low-degree nodes receive insufficient gradient updates.

Evaluation Metric Hierarchy and Sensitivity Mechanisms: This degradation is particularly ev-
ident in degree and clustering coefficient metrics, which we can explain through the hierarchical



Table 1: Generic graph generation on Community-small, Enzymes, Grid, and Ego-small. * The
results were obtained by executing the published source code. Other results are taken from the
published papers |Luo et al.|(2024); Wen et al.| (2024); Jang et al.[(2024); Eijkelboom et al.| (2024).
Hyphen (-) denotes that results are not provided and were not applicable due to memory issues. The
best results are highlighted in bold, and the underline denotes the second best. Due to page limit we
provide the standard deviations in Appendix and old models before 2022

Community-small Enzymes Grid Ego-small
Synthetic, (12 < V' < 20) Real, (10 <V < 125) Synthetic, (100 < V' < 400) Real, (4 <V < 18)
Deg.| Clus. Orbit] Avg.] Deg) Clus.l, Orbitl Avg.| Degl Clus.] Orbitl Avg] Deg.| Clus.] Orbit] Avg.|
WSGM|Guth et al.|(2022] 0.039 0.084 0.009 0.044 0.034 0.097 0.013 0.048 0.083 0.006 0.065 0.051 - - - -
GDSS o et al. [(2022] 0.045 0.086 0.007 0.046 0.026 0.102 0.009 0.046 0.I111 0.005 0.070 0.062 0.021 0.024 0.007 0.017
HGDM|Wen et al. (2024} 0.014 0.050 0.005 0.024 0045 0.049 0.003 0032 0.137 0.004 0048 0063 0.015 0.023 0.003 0.014
GSDM |Luo et al. (2024} 0.016  0.027 0.004 0.020 0.098 0.091 0.085 0.091 0.001 0.000 0.000 0.000 0.027 0.034 0.004 0.023

GEEL Jang et al. [(2024] - - - - 0.005 0.018 0.006 0.010 0.000 0.000 0.000 0.000 - B - -
CatFlow|Erjkelboom et al.[(2024)  0.018  0.086  0.007  0.037 - - - - - - - - 0.013 0.024 0.008 0.015
GGSD* Minello et al. [{2025] 0.027  0.082  0.011 0.040 - -

ESGD (ours) 0.005 0.006 0.000 0.004 0.005 0.026 0.003 0011 0.000 0.000 0.000 0.000 0.005 0.021 0.002 0.009

Table 2: Generic graph generation on Planar, SBM, and Tree. Results are taken from the published
papers Jang et al.| (2024)); QIN et al.| (2025)); Bergmeister et al.| (2024b).

Planar SBM Tree
Synthetic, (V| = 64) Synthetic, (31 < V < 187) Synthetic, (|V| = 64)

Deg.| Clus.| Orbit| Spec.|. Deg.| Clus.| Orbit| Spec.| Deg.| Clus.) Orbit) Spec.|
SPECTRE Martinkus et al. |(2022a 0.0005  0.0785  0.0012  0.0112  0.0015 0.0521  0.0412  0.0056 - - - -
DiGress|Vignac et al.[(2023a} 0.0007  0.0780  0.0079  0.0098  0.0018  0.0485  0.0415 00045 02678  0.0428  0.0097  0.0123
EDGE |Chen et al. (2023b) 0.0761 03229 0.7737  0.0957  0.0279  0.1113  0.0854  0.0251 0.0211 0.1207  0.0374  0.0438
GDSS[Jo et al. [(2022] 0.2500  0.3930  0.5870 - 04960 04560  0.7170 - - - - -
GEEL*Jang et al.|(2024) 0.0006  0.0458  0.0000 0.0070  0.0034  0.0621  0.0000  0.0049 -
DisCo[Xu et al.[(2024] 0.0002  0.0403  0.0009 - 0.0006  0.0266  0.0510 - - -
Cometh|Siraudin et al.|(2025) 0.0006  0.0434  0.0016  0.0049  0.0020  0.0498  0.0383  0.0024 - - - -
DeFoG|QIN et al. (2025} 0.0005  0.0501  0.0006  0.0072  0.0006 0.0517  0.0556  0.0054  0.0002  0.0000 0.0000 0.0108
Local PPGN (one-shot)Bergmeister et al.[(2024b] ~ 0.0003 ~ 0.0245  0.0006 ~ 0.0104 ~ 0.0141 ~ 0.0528  0.0809  0.0071  0.0004  0.0000  0.0000  0.0080
Local PPGN|Bergmeister et al. [(2024b] 0.0005 0.0626 0.0017 0.0075 0.0119 0.0517 0.0669 0.0067 0.0001 0.0000 0.0000 0.0117
GGSD* Minello et al. (2025 0.0024  0.0807  0.0048  0.0048  0.0041  0.0431  0.0730  0.0090 - - - -
ESGD (ours) 0.0001  0.0228  0.0002  0.0057  0.0005 0.0027 0.0462  0.0039  0.0000  0.0001  0.0000  0.0081

structure of evaluation metrics and the population statistics of real-world graphs. Degree distribu-
tion operates as a macro-level indicator measuring node connectivity distributions. Clustering co-
efficient functions at the meso-level, quantifying neighborhood connection density. Orbit statistics
capture micro-level patterns through four-node subgraph configurations. Real graphs typically ex-
hibit power-law degree distributions where low-degree nodes comprise 70 to 80 percent of the popu-
lation. For degree distribution, the numerical dominance of low-degree nodes makes their collective
deviation the primary determinant of evaluation outcomes. For clustering coefficient, low-degree
nodes exhibit heightened structural sensitivity: a degree-3 node shows clustering variations from 0
to 1.0 with single edge changes, whereas a degree-100 node requires hundreds of edges among 4950
possible neighbor connections to produce comparable variation.

Theoretical Foundation for Empirical Performance: ESGD’s symmetric normalization directly
addresses this challenge by eliminating eigenvalue weight bias, ensuring that nodes receive learning
attention proportional to their population size rather than their degree. Since degree and clustering
coefficient are dominated by the low-degree majority, ESGD’s accurate modeling of this population
translates directly into superior macro and meso-level performance, as confirmed by our experimen-
tal results in Tables [T] and 2] The moderate performance gap on orbit statistics reflects architec-
tural boundaries: ESGD operates in global spectral space where the mapping to specific four-node
configurations remains indirect, whereas explicit edge-level approaches like GEEL provide advan-
tages for fine-grained motif detection. This trade-off is consistent with our design philosophy of
prioritizing efficiency and scalability while maintaining competitive quality on the most population-
representative metrics.

6.2 LARGE GRAPH GENERATION

Datasets and Preprocessing: We evaluate ESGD on three widely used citation networks: Cora
(2708 nodes, 5429 edges), Citeseer (3312 nodes, 4715 edges), and PubMed (19717 nodes, 44338



edges). Beyond academic benchmarks, the ability to learn from single large graphs addresses critical
industrial needs where data naturally exists as unified structures: social networks maintain billions
of users in a single interconnected graph, enterprise knowledge graphs integrate all organizational
entities into one coherent structure, and recommendation systems operate on unified user-item in-
teraction networks. In each case, the generative model must extract patterns from one large network
rather than learning from multiple independent instances.

Since spectral decomposition has quadratic complexity, we decompose each citation network into k-
hop ego-subgraphs centered on individual nodes, where £ is chosen such that subgraphs contain 50
to 300 nodes on average. Each ego-subgraph preserves the k-hop neighborhood structure around its
center node, capturing representative local motifs and degree patterns. This decomposition provides
computational tractability while enabling the model to learn from multiple views of the original
network structure. Detailed ego-subgraph statistics are provided in Table[9]and Appendix [E]

Metrics: We use the same metrics as in Section [6.1]
Table 3: Large graph generation results on Cora, Citeseer, and PubMed. The baselines include

diffusion-based generative models in the spectral space (SPECTRE, GSDM, GGSD) and discrete
diffusion models (DisCo, Cometh, DeFoG).

Citeseer Cora PubMed
Deg.| Clus.l Orbitl Avg| Deg] Clus.] Orbit] Avg.] Deg.| Clus.] Orbit] Avg.]
SPECTRE* Martinkus et al.|(2022a) 1.224  1.513  1.023 1.253 1.566 1492 1.127 1395 1.148 1.392 0933 1.158

GSDM* |Luo et al. |[(2024) 1.043 0943 0843 0943 0932 1.042 0980 0985 0.885 0.727 0.762 0.791
GGSD* Minello et al. |(2025) 1.011  1.142 1244 1.132 1218 1432 1391 1347 0.775 0.711 1.029  0.838
DisCo* | Xu et al.|(2024) 0893 0.654 0.896 0.814 0918 0.775 0.564 0.752 0.637 0.611 0.815 0.688
Cometh®|Siraudin et al.|(2025) 0985 0.856 1.001 0.947 0.751 0899 0.541 0.730 0.597 0.625 0437 0.553
DeFoG* |QIN et al.|(2025) 0496 0.656 0.910 0.671 0.758 0.756 0.501 0.672 0.355 0.496 0.308 0.386
ESGD (ours) 0329 0.606 0314 0433 0311 0573 0192 0359 0215 0475 0109 0.266

Results and Analysis: Table [3] shows that ESGD consistently outperforms all baselines on cita-
tion networks, achieving the best average MMD across all three datasets. We attribute ESGD’s
superior performance to its robustness against the inherent heterogeneity of ego-subgraphs. Un-
like synthetic benchmarks with uniform structure, ego-subgraphs extracted from real-world citation
networks exhibit highly non-uniform distributions. As shown in Figure the condition numbers
of these subgraphs span multiple orders of magnitude, creating a challenging learning problem.
SPECTRE suffers from training instability and convergence difficulties under such heterogeneous
conditions, while GGSD fails to effectively capture the coupling between eigenvalues and eigenvec-
tors. Discrete diffusion models require longer training schedules and larger model to accommodate
outlier subgraphs with atypical properties. In contrast, ESGD’s achieves strong performance with a
lightweight architecture while maintaining structural fidelity across diverse local neighborhoods.

6.3 MOLECULES GENERATION

Datasets: We test ESGD on four molecule benchmarks: QM9 (Ramakrishnan et al. 2014),
ZINC250k (Irwin et al, [2012), Moses (Polykovskiy et al.| 2020), and GuacaMol (Brown et al.,
2019).

Metrics: We evaluate the quality of 10,000 generated graphs using Frechet ChemNet Distance
(FCD) (Preuer et al., 2018)), Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) MMD
(Costa & De Grave, |2010), validity w/o correction abbreviated as Val. w/o, validity, and the gener-
ation time for QM9 and ZINC250k. For Moses, we additionally report uniqueness, novelty, filters,
SNN (similarity to nearest neighbor), and scaffold similarity (Scaf). For GuacaMol, we report va-
lidity, valid & unique (V.U.), valid & unique & novel (V.U.N.), KL divergence, and FCD. Please see
Appendix [C.4] for more details.

As shown in Tables [ and [5] ESGD achieves competitive performance across all molecular bench-
marks. Notably, the Moses benchmark provides the most comprehensive assessment of whether
a generative model truly learns data distributions rather than merely memorizing training sam-
ples, as it evaluates validity, uniqueness, novelty, and structural diversity simultaneously. ESGD
achieves the highest validity of 94.6% on Moses while maintaining strong performance across all



Table 4: Results on the QM9 and ZINC250k. Results were taken from the published papers |Luo
et al.[(2024); Wen et al.| (2024); Jang et al|(2024); [Eijkelboom et al.| (2024); |QIN et al.| (2025). We
provide the validity, uniqueness, and novelty values in Appendix due to page limit.

QM9 ZINC250k
Validity (%) Val. w/o (%)t NSPDK| FCDJ] Time(s)] Validity (%) Val. w/o (%)t NSPDK| FCD] Time(s)]

GraphAF (Shi et al.}[2020) 100 67 0.020 5.268 2.28¢3 100 68 0.044 16.289  5.72¢3
GraphAF+FC 100 74.43 0.021 5.625 2.32¢% 100 68.47 0.044 16.023 591¢®
GraphDF (Luo et al.{2021}) 100 82.67 0.063 10.816  5.08¢* 100 89.03 0.176 34202 5.87¢*
GraphDF+FC 100 93.88 0.064 10.928  4.72¢% 100 90.61 0.177 33546 5.79¢*
MoFlow (Zang & Wang}{2020) 100 91.36 0.017 4.467 4.58 100 63.11 0.046 20.931 25.9
EDP-GNN (Niu et al.[2020a] 100 47.52 0.005 2.680 4.13¢3 100 82.97 0.049 16.737 8.41e?
GDSS (Jo et al.||2022] 100 95.72 0.003 2.900 1.06¢2 100 97.01 0.019 14.656  2.11€3
HGDM (Wen et al.[[2024] 100 98.04 0.002 2.131 1.23¢* 100 93.51 0.016 17.69 2.23¢%
GSDM* (Luo et al.|[2024) 100 99.81 0.009 3.191 18.5 100 93.0 0.016 12.07 86.3
GEEL Jang et al.[(2024) 100.0 100 0.0002 0.089 - 100 99.31 0.0068 0.401 -
CatFlow|Erkelboom et al. [(2024) 100 99.81 - 0.441 - 100 99.21 - 13.211 -
DeFog|QIN et al.|(2025) - - - - - 100 99.22 0.0008 1.425 -
ESGD (ours) 100 99.20 0.002 1.425 14.6 100 98.29 0.010 8.80 72.1

Table 5: Results on Moses and GuacaMol. Results were taken from the published papers [Vignac
et al.| (2023al); [ Xu et al.| (2024); |Siraudin et al.| (2025); |QIN et al.| (2025).

GuacaMol Moses

Valt V.Ut V.UNS KLdivt FCDt Val.t Uniq.t Nov.t Filterst FCD| SNN7T Scaff
DiGress (Vignac et al.|[2023a) 852 852 85.1 92.9 68.0 857 1000 950 97.1 1.19 0.52 14.8
DisCo (Xu et al.|2024) 86.6  86.6 86.5 92.6 59.7 883 1000 977 95.6 1.44 0.50 15.1
Cometh (Siraudin et al.|[2025) 98.9 989 97.6 96.7 727 905 99.9 92.6 99.1 127 0.54 16.0
DeFoG (10% steps) (QIN et al.|2025)  91.7  91.7 91.2 92.3 579 839 99.9 96.9 96.5 1.87 0.50 23.5
DeFoG (QIN et al.}2025) 99.0 99.0 97.9 97.7 738  92.8 99.9 92.1 98.9 1.95 0.55 14.4
ESGD (ours) 99.1 99.1 98.3 98.0 769  94.6 99.9 934 989 1.92 0.58 15.7

metrics, confirming that our spectral approach genuinely captures the underlying molecular distri-
bution. These results demonstrate ESGD’s effectiveness and generalization capability on complex
molecular graphs with multiple node types and weighted edges.

6.4 EFFICIENCY EVALUATION

Computational Efficiency: We compare the computational efficiency of recent graph generation
models on the Planar dataset, as it is widely adopted across most state-of-the-art methods and pro-
vides well-tuned configurations for fair comparison. The results are summarized in Table [6]

For a fair evaluation, we compute the parameter counts based on each model’s reported config-
uration for the Planar dataset. FLOPs are calculated as the total computational cost required to
generate a single graph with 64 nodes. For GAN-based models such as SPECTRE, we report
only the generator’s FLOPs, while for diffusion-based models, the total FLOPs are computed as:
Total FLOPs = FLOPs per step x Number of sampling steps. The “Steps” column indicates the
minimum number of sampling steps required for each model to achieve its best reported perfor-
mance. For GAN and autoregressive models, this value is fixed at 1. We exclude models published
before 2022 due to their significantly less competitive performance.

Table 6: Efficiency comparison on the Planar dataset. The best results are highlighted in bold.

Method Type Parameter Counts Training Epochs FLOPs/Step FLOPs
SPECTRE GAN 0.36M (Generator) 12,000 227G 2.27G (1 Step)
DiGress Diffusion (Discrete) 8.89M 100,000 5.29G 5.29T (1000 Steps)
GEEL Autoregressive LSTM 7.1TM 5,000 241G 2.41G (1 Step)
DisCo Diffusion (Discrete) 4.49M 50,000 2.68G 134.12G (50 Steps)
Cometh Diffusion (Continuous-Time Discrete) 5.29M 150,000 5.28G 5.28T (1000 Steps)
DeFoG Flow-Matching 6.59M 100,000 528G 5.28T (1000 Steps)
Local PPGN (one-shot) Diffusion (Discrete) 3.73M o0 (steps-based) 30.23G 7.74T (256 Steps)
GGSD Diffusion (Continuous) 20.09M ~500K (batches) 0.92G 92.09G (100 Steps)
ESGD (ours) Diffusion (Continuous) 0.21IM 1,000 45.2M 2.26G (50 Steps)




Computational Implications. The spectral compression strategy has direct consequences for model
complexity and training efficiency. As we discussed in Section[6.1] adjacency-based spectral models
suffer from eigenvalue imbalance and condition number outliers, requiring large model capacity
to handle the resulting variance. Discrete diffusion models face complementary challenges: they
must maintain large parameter counts to model complex categorical transitions over edge states,
require extensive training schedules spanning hundreds of thousands of iterations, and demand long
sampling chains with hundreds to thousands of denoising steps to achieve high-quality generation.

ESGD addresses both limitations through its spectral compression design. First, by bounding all
eigenvalues to the interval [—1, 1], we eliminate degree-dependent scaling that force adjacency-
based methods to allocate substantial model capacity for counteracting spectral variance. Second,
by fixing the eigenvectors U and diffusing only the eigenvalues A, we drastically reduce the effective
function class that the score network must approximate. The eigenvalue score network s4 operates
on an n-dimensional vector rather than an n x n matrix. These architectural simplifications achieves
competitive generation quality with substantially fewer parameters than existing models.

Table [6] quantifies these efficiency gains on the Planar dataset. ESGD achieves substantial improve-
ments in both parameter efficiency and computational cost compared to all baseline methods. With
only 0.21M parameters and 2.26G total FLOPs per generated graph, ESGD attains comparable
or superior generation quality while matching the efficiency of single-step models such as SPEC-
TRE and GEEL. Compared to diffusion-based baselines, ESGD reduces computational cost by over
2000x. This efficiency advantage stems directly from our spectral normalization strategy, which, as
discussed in Sections[3.T]and 5] transforms heterogeneous graph distributions into well-conditioned
representations that can be modeled with compact neural architectures. Most existing diffusion
approaches allocate large model capacity to counteract the variance introduced by unnormalized
spectra, whereas ESGD’s bounded spectral domain allows the score network to focus its limited
capacity on learning the essential structural patterns.

Sampling Steps: A key factor contributing to ESGD’s computational efficiency is its ability to
achieve high-quality generation with significantly fewer sampling steps compared to other diffusion-
based methods. As shown in Table [6] while most diffusion models require hundreds to thousands
of steps (e.g., DiGress, Cometh, and DeFoG with 1000 steps; Local PPGN with 256 steps), ESGD
achieves optimal performance with only 50 steps. Even GGSD, which also operates in the spectral
domain, requires 100 steps to achieve comparable quality.
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Figure 3: The sub-figures show how evaluation metrics change with different sampling steps. Red
dashed lines indicate the optimal sampling steps for each dataset.

Figure [3] further illustrates how ESGD’s performance metrics stabilize rapidly across diverse
datasets. On the Enzymes dataset, the MMD metrics converge by 150 steps, while on the Tree
dataset, near-optimal performance is achieved with just 50 steps. For molecular graphs (QM9),
ESGD achieves 99.08% validity at 500 steps, demonstrating excellent efficiency without sacrificing
generation quality.

7 CONCLUSIONS

We have presented a spectral perspective on graph diffusion that achieves both theoretical soundness
and practical efficiency. The broader lesson is that progress in generative modeling may not always
come from additional layers of engineering, but from revisiting the core formulations that govern
stability and scalability. Subtle adjustments to these foundations can sometimes prove more effective
than increasingly intricate designs, a direction our work illustrates for graph generation.
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LLM USAGE DECLARATION

LLM involvement: restricted to language refinement and document formatting

A THEORETICAL SUPPORT

Theorem A.1 (Permutation invariance). Ler G = (X, A) be an undirected graph with adjacency
A and node features X. For any permutation matrix P, set X' = PX and A’ = PAP".

Let S = —D"Y2AD Y2 and §' = —D' "> A'D' "%, Then the ESGD forward and reverse
diffusion processes satisfy

AWARK:! / T
(X, A = (PXy, Ay), A, =PA,P
so the generative distribution is invariant to node permutations.

Proof. (1) Operator similarity. Since D’ = diag(A’1) = diag(PAP"1) = PDP" and P is
orthogonal, we have

S =-D 7 '?*AD7 Y = (PDPT)"V2(PAPT)(PDP") /2= PSP".

Hence S and S’ are similar and share eigenvalues; their eigenvectors transform as U’ = PU
(e.g., (Chung |1997, Ch. 1)). (2) Equivariance of message passing layers. Consider a standard
(normalized) GCN/MPNN layer

®(H;S) =o(-SHW),

with elementwise activation o and weight matrix W. Using PHW = (PH)W and
PSP" PH = P(-SHW),

®(PH;PSP")=0o(—(PSP")(PH)W) =Po(-SHW) = P®(H;S).

Thus each layer is permutation-equivariant; stacked networks and the score nets inherit equivariance
(see also [Zaheer et al.| (2017); [Xu et al| (2019)). (3) Forward SDE equivariance. The forward
SDEs read

AX; = fx (X, A, ;. S) dt + gx () AW, ), dAy = fa(Ag,t) dt + ga(t) AW,

Define X, = PX;, A}, = Ay, and Wt(X)/ = PWt(X). Since Brownian motion is invariant under
orthogonal transforms and fx (-; S) is permutation-equivariant by (2), we obtain

dX{ = fx (X}, A}, 68" dt + gx () AW,

Therefore the forward process is permutation-equivariant (e.g., (@ksendall 2003, Ch. 3)).
(4) Scores and reverse SDE. Let p; be the joint density of (X;, A;). For any permutation P,

PP (@, \) = p(PTx, \)
= Vglogp(Px,\) = PVglogpi(x, ), Vilogp,(Px,\)=Vylogpi(xz, ).

Hence the ground-truth scores are permutation-equivariant and so are consistent score networks
trained by score matching. The reverse-time SDE (variance-exploding case) is

dX, = (= 18(t) X, — B(t) s(Xy, 1)) dt + /B(t) AW,

which remains permutation-equivariant when replacing (X4, s) by (P X, Ps).
(5) Reconstruction. At termination, (X, Ag) — (PXy, Ap) and

S, = (PUy)Ao(PUy)" = PS,P".
With Ay = —D'/28,D'/2 and A, = —D'"/*S,D'"/? and D' = PDPT, we get A, =
PAyP". This proves the claim. O
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Let S; = UpA:U, with fixed Uy chosen once by eigendecomposition. For any block-orthogonal
rotation R acting within degenerate eigenspaces of Uy, set U = Uy R. Then

U AU =UyRAR'U, = UyA U

so the reconstructed operator and hence the generated distribution are independent of the particular
basis within degenerate subspaces (cf. von Luxburg| (2007)).

Definition A.2 (Spectral diameter). Let X, C R" be the feasible spectral set in domain e € {S, A}
(SNL S or adjacency A). There exist absolute constants

DS = 2\/77'7 Dy = 2Amax\/ﬁ
such that any spectral embedding x € X, satisfies ||zo||?> < D2/4. For S, this follows from the
spectrum lying in [—1, 1]; for A, from || A|| < Anax (see Chung|(1997)).

Theorem A.3 (Spectral SNR and information retention). Let X, € R"™ be a spectral embedding.
Consider

X, = Va; X + oqe, e ~N(0,1,), pt = /ol
Then:

1. (SNR bound) For any fixed x,

= 2
SNR(r) = 2Zoll” {X;

noy max Pts

2. (Mutual information) If X has covariance X, then
I(Xo; X¢) < 2logdet(I +pXo) < 1pE|| X0,

with E|| Xo||? = O(n) in domain S and O(nAZ

2 ax) i domain A.

Proof. (1) By Deﬁnition lzo||? < D2/4, hence

BN Dy {p, D% /4 =n,
NR(t) = p, 120 < ) . Zo
SR = P = P 4 =\ A2 DA/A =2,
(2) Since X; = /&y X + oe with € L X, the Gaussian channel formula gives I(X; X;) =
3 logdet(I + p;30) (e.g., (Cover & Thomas, 2006, Ch. 9)). Using log det(I + M) < tr(M) for
M > 0,

I(Xo; X¢) < 2tr(pe30) = 30 E|| X0
By Definition any X supported on X, satisfies E||X,||? < D2/4, which yields the stated

domain scalings. O

Theorem A.4 (Score Lipschitz). Let p; be the density of X; = v/a; X + o withe ~ N(0, I,,)
and define the score s(x,t) = Vg logpi(x). Then
_ a; D? 072+O_ztn/04 o=
vm 7t o < 2 — - — < i v ’
|| S(:E )H p =t +O’? 4 = {O’t2+atnA?HaX/O’?7 oe=A.

Proof. Fix t and write & = &, 0 = ;. Denote m(x) := E[X, | X = x]. By Tweedie’s identity
for additive Gaussian noise (see Efron|(2011) and also (Song et al.,2021b, Sec. 3)),

\/am(w) =+ 023(537 t) 5 8(%, t) = \/&Lf)_x (4)
o
Differentiating equation d]in @ yields
8 1
Vs(x,t) = \/75 Vm(z) - 1. %)
o o

For the Gaussian corruption channel X = +/aX, + o¢, a standard covariance identity (Stein’s
lemma / Bayes rule differentiation) gives

Vm(zx) = g Cov(Xy | X = x), (6)
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see, e.g., (Efron| 2011} Sec. 2). Substituting equation [f]into equation 3]
Q 1
Vs(x,t) = p Cov(Xp | X =x) — ;I. (7

Since X € X, almost surely, any conditional distribution X | X = x is supported on X,. Hence,
by a diameter (Popoviciu-type) bound for bounded random vectors,

D2
|[Cov(Xo | X = w)Hop < T.
Taking operator norms in equation [/|and using the triangle inequality yields
1 a D?
IVs(@, )lop < —5 + —3 - %
and substituting D% /4 = n and D% /4 = nA2,,, completes the proof. O

Theorem A.5 (Drift Lipschitz and EM error). Consider the reverse-time SDE in variance-exploding
form

aX, = (= 180X, — B(t)s(X0,1)) b+ /B(K) AW

=:b(Xy,t)

Then, for each t,
Lo(t) 1= sup [ Vab(@, ) lop < 3A(8) + 8(8) (072 + 24 D2).

Moreover, the Euler-Maruyama (EM) strong error with step size At satisfies
1/2

1
(Bl XT™ — X1||2)1/2 < Cem (/ Ly (t)? dt> At/
0
Proof. The Jacobian of b(-, t) is
Vab(m,t) = —3B8(t)I — B(t)Vas(x, t).

Hence

IVab(®, t)llop < 58(t) + B(t) [ Vas(z, t)llop-
Applying Theorem gives the bound on L (t). For EM, consider the time-inhomogeneous SDE
dX; = b(Xy,t)dt + o(t) dW, with o(t) = \/B(¢)I independent of z. Under global z-Lipschitz
continuity of b(-,t) with modulus L;(t) and linear growth (both satisfied here), the classical EM
estimate (e.g., (Kloeden & Platen, |1992, Thm. 10.2.2)) yields

1 1/2
(B XM — X, |2) 2 < C’EM(/O (Lolt)? + Lo (1)) dt) "~ AtH2,

Because o does not depend on x, L, (t) = 0, which gives the stated bound. O

Theorem A.6 (Fisher spectrum and conditioning). Let F' = E[VgﬁVgéT] be the Fisher (or gener-
alized Gauss—Newton) matrix associated with the score matching loss. Assume the score network
So(+,t) has input Jacobian Jg(x,t) = 0S¢(x,t)/0x satisfying

[ Jo(x,t)|| < Chet(t) ||lz|| Va,t.
Then:

1. (Spectral bound) The largest eigenvalue of F scales as

A (F) = O(n), normalized Laplacian domain S,
e - |O(nA2,)), adjacency domain A.

2. (Condition number) If in addition Ay (F') > v > 0, then

K(F) Amax (F) _ {O(n/7)7 S,

- Amin(-F) O<nA12nax/,Y)7 A
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Proof. Let £(6; X;,t) denote the score-matching loss at time ¢, with gradient
Vol(0; X¢,t) = Jo( Xy, t) " (So(Xy,t) — s(X4,t)),
where s(-,t) is the ground-truth score. Step 1 (upper bound). For any unit vector u, the Rayleigh—
Ritz principle gives
u' Fu=E[(Vel,u)?] <E|Ve/|>
Hence Apax (F) < E||Ve/||?. By submultiplicativity,
IVol|| < [[Jo(Xt, D) [|So (X, 1) — s(Xe, ).
Using the Jacobian bound, this yields
IVolll* < Cuet (8)* 1 Xel|* [[S6 (X, 1) — s(Xe, 1)1
Taking expectations and bounding the training error term by a finite constant Cg,, =
sup, E||So (X, t) — s(X¢,t)||? a.e, we obtain
)\max(F) S Cverr ]E[Cjniet(t)2 ||Xt||2} (8)

Step 2 (domain scaling of E|| X ||?). The forward corruption process is X; = /& X + o,
e ~N(0,1,). Then
E|| Xy = a; Bl Xol|* + no?.

By Definition [A.2] E[| X,|?> = O(n) in domain S and O(nAZ2,,. ) in domain A. Thus the scaling

of Apax (F) in equationmatches the theorem. Step 3 (condition number). If Ay, (F') > v > 0,

then
_ Amax (F') _ O(n/v), S,
P = 52 = {On, 4

This completes the proof. O
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B ADDITIONAL INFORMATION OF ESGD

B.1 DEGREE MATRIX RECOVERY

We begin by analyzing the structure of the SNL § = —(D’)~'/2A(D’)~'/2. For an undirected,
weighted graph with no self-loops:

0 if i = j (since A; ; = 0 for no self-loops)
Ais e .
Sij=14-— d;ij ifi#jand (i,j) € E )
0 ifi#jand (i,j) ¢ E

where d; represents the unweighted degree of node ¢, which is simply the number of edges connected
to node 7 (regardless of their weights), A; ; is the weight of the edge between nodes ¢ and j, and E
is the set of edges. For a weighted graph with unweighted degree matrix, when nodes ¢ and j are
adjacent:

Ai
5] (10)
Vdid;
This means that for any edge (4, j) € E, the product of the degrees d; and d; is related to S and the
edge weight A; ;:

Sij =~

A2 .
didj = =52 (11)
%,J
For any node ¢ with at least two neighbors j, k € N (i), we have:
d; S A%,
hut AR L B (12)
di 575 Aix
Since the graph is connected, we can establish proportional relationships between all node degrees
by traversing the graph. This gives us a system of equations that determines the degrees up to a
constant factor. To resolve this remaining degree of freedom, we use the fact that the sum of all
unweighted degrees equals twice the number of edges:
> di =2|E| (13)

i=1

The number of edges |E| can be determined from the structure of S by counting the number of
non-zero off-diagonal elements and dividing by 2. This yields a system of equations that uniquely
determines the degree matrix D’.

Practical algorithm for estimating unweighted degree matrix: In practical applications, the gen-
erated .S may contain numerical errors or noise. Theoretically, elements corresponding to non-edges
should be exactly zero, but in practice, they might appear as small non-zero values due to stochastic
sampling process. Therefore, we introduce a thresholding parameter J to distinguish between actual
edges and numerical artifacts. The threshold parameter § may need to be tuned based on the specific
characteristics of the graph.

B.2 ESGD MODEL ARCHITECTURE

ESGD (Efficient Spectral Graph Diffusion) is a spectral graph diffusion model based on symmetric
normalized Laplacian matrices for graph generation tasks.

B.2.1 CORE COMPONENTS

SDE Framework: The model employs Variance Preserving SDE (VPSDE):

dx = —%ﬂ(t)xdt +/B(t)dw (14)
ﬁ(t) = Bmin + t(ﬂmam - ﬁmin) (15)

where Bin = 0.1, Bimaz = 20, and ¢ € [0, 1].

Score Networks: Two main networks predict scores for node features and adjacency matrices:
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» ScoreNetworkX: Uses modified GCN layers with S convolution

* ScoreNetworkA_eigen: Operates in eigenvalue space with pooled node representations
Modified GCN Layer: Unlike traditional GCN, uses symmetric normalized Laplacian:

H+Y = tanh (SHU)W(”) (16)

Graph Multi-Head Attention: Enhances representation with attention mechanism:

KT
Aus = tanh (Q > (a7
Vd
B.2.2 Loss FUNCTION
Score matching loss in both node and spectral domains:
2
£O) = 1 so(xt 1) + —— (18)
2 t,X0,€ ts m

B.2.3 KEY FEATURES

* Spectral domain diffusion for stability
 Support for both generic graphs and molecular generation

Multiple 5(t) scheduling (linear, exponential, cosine)
 Computational complexity: O(N?2d + Nd?)
* Datasets: Community-small, Grid, Enzymes, Ego-small, QM9, ZINC250k
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C EXPERIMENT DETAILS

In this section, we provide the detailed experimental settings. The hyperparameters of ESGD in this
paper are provided in Table

Table 7: Hyperparameters of ESGD used in the generic graph generation tasks and the molecule gen-
eration tasks. We provide the hyperparameters of the score-based models (sg and s,), the diffusion
processes (SDE for X and A), the SDE solver, and the training.

Hyperparameter Ego-small Community-small Enzymes Grid Planar SBM Tree QM9 ZINC250k
s Number of GCN layers 4 3 5 5 5 4 4 4
56 Hidden dimension 32 32 32 32 32 32 32 16 16
Number of attention heads 4 4 4 4 4 4 4 4 4
Number of initial channels 2 2 2 2 2 2 2 2 2
sy Number of hidden channels 8 8 8 8 8 8 8 8 8
oo Number of final channels 4 4 4 4 4 4 4 4 4
Number of GCN layers 5 5 7 7 7 6 7 6 6
Hidden dimension 32 32 3 32 32 32 32 16 16
Type VP VP VP VP VP VP VP VP VP
SDE for X Number of sampling steps 1000 1000 1000 1000 1000 1000 1000 1000 1000
Bmin 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Bmaz 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 4.0
Type VP VP VP VP VP VP VP VP VP
SDE for A Number of sampling steps 1000 1000 1000 1000 1000 1000 1000 1000 1000
Bmin 0.1 0.1 0.1 02 0.2 0.1 0.1 0.1 0.2
Bmaz 1.0 1.0 1.0 0.8 0.9 1.0 1.0 1.0 1.0
Type EM EM + Langevin  EM + Langevin EM + Langevin EM + Langevin EM + Langevin EM + Langevin EM + Langevin EM + Langevin
SNR - 0.05 0.2 0. 0.1 15 0. . 0.2
Solver Scale coefficient - 0.8 0.9 0.7 0.8 0.6 0.6 0.9 0.9
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam
Learning rate 1x1072  1x1072 1x1072 1x1072 1x1072 1x107° 1x1072 5x 1073 5x107°
Train Weight decay 1x107%  1x107* 1x 1074 1x107* 1x 1074 1x107* 1x107* 1x107% 1x 1074
Batch size 128 128 64 8 64 32 128 1024 1024
Number of epochs 5000 200 5000 5000 1000 3000 1000 300 500
EMA - - 0.999 0.999 0.999 0.999 0.999 - -

C.1 DETAILS OF DATASETS

In this section, we provide key statistics of the datasets employed in the experiments, as shown in
Table[8] for a better illustration of the experimental results. The statistics include the graph number
in each dataset, the range of node numbers, the range of edge numbers for each node, the number of
edge types, and the maximum eigenvalue.

Table 8: Statistics for the datasets in our experiments.

Name Graph Number ~ Node range ~ Edge number of node Number of edge types Maximum eigenvalue
Ego-small 200 [4, 18] [1, 16] 1 9.036
Community-small 100 [12,20] [1,9] 1 6.6145
Enzymes 587 [10, 125] [1,9] 1 5.3045
Generic Grid 100 [100, 400] [1,4] 1 3.9454
Planar 200 [64, 64] [2,12] 1 6.1230
SBM 200 [44, 187] [1,23] 1 14.1320
Tree 200 [64, 64] [1,8] 1 3.0510
QM9 133,885 [2,9] [1,4] 3 3.7063
Molecule 7 1Nc250k 249455 [6. 38] [1.4] 3 35823
Cora 1 [2708, 2708] [5429, 5429] 1 -
Large Citeseer 1 [3312, 3312] [4715, 4715] 1 -
PubMed 1 [19717, 19717] [44338, 44338] 1 -

Note: For large citation networks, ”"Graph Number” is 1 since each dataset consists of a single giant
graph. Node and edge ranges reduce to single values (the total counts).

C.2 DETAILS OF EGO-SUBGRAPH DECOMPOSITION
To make training on large graphs feasible, we employ an ego-subgraph decomposition strategy im-

plemented with NetworkX’s ego_graph function. Given a center node and a radius r, an ego-
subgraph contains the center and all nodes within r-hop distance, together with induced edges. We
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apply size filters (50 < |V| < 400) to control computational complexity, remove self-loops, and
relabel nodes to contiguous IDs. Datasets are split into training and test sets with an 80/20 ratio.

Table 9] reports the aggregated statistics of the constructed ego-subgraph datasets.

Table 9: Statistics of ego-subgraph datasets derived from large citation networks.

Dataset ~ Num. subgraphs Node range Avg. nodes Edgerange Avg. edges Avg. degree

Cora 100 50-219 112.8 65-428 207.2 3.67
Citeseer 80 51-300 141.7 65-788 271.0 3.82
PubMed 100 50-282 1125 60-1177 236.8 4.21

This decomposition provides three main benefits:

* Efficiency: smaller subgraphs reduce quadratic spectral costs and fit within GPU memory.

* Structural fidelity: local neighborhood motifs and degree/clustering statistics are pre-
served.

* Generalization: sampling multiple ego-subgraphs introduces data augmentation, mitigat-
ing overfitting to a single global graph.

C.3 IMPLEMENTATION DETAILS FOR THE EXPERIMENTS ON GENERIC DATASETS

To evaluate the generated graphs, we employ the maximum mean discrepancy (MMD) to compare
distributions of graph statistics between generated and test graphs. The evaluated statistics include
degree, clustering coefficient, and occurrences of 4-node orbits. We compute the MMDs using the
Gaussian Earth Mover’s Distance (EMD) kernel on Ego-small, Community-small, Enzymes, and
Grid following (Jo et al.| [2022) and using the Gaussian Total Variation Distance (TV) kernel on
Planar, SBM, and Tree following |QIN et al.[(2025).

As the setting from (Jo et al,, 2022), we report the results of ESGD and GSDM on the Ego-
small and Community-small datasets by 15 runs, 3 runs for 5 independently trained models,
and on the Enzymes and Grid datasets by 3 runs. For GSDM, we use the hyperparameters
given by the original paper and further search for the best performance if specific parame-
ters do not exist. To get the best hyperparameters, we perform a grid search to choose the
best signal-to-noise ratio (SNR) in {0.05,0.1,0.15,0.2,0.25,0.3} and the scale coefficient in the
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. We select the best MMD with the lowest average per-
formance in Deg., Clus., and Orbit, respectively. Following (Jo et al.l2022), we quantize the value
of each edge in the sampled adjacency matrix with the operator 1,-¢.5 to get the 0-1 adjacency
matrix. The specific hyperparameters are shown in Table[7]

C.4 IMPLEMENTATION DETAILS FOR THE EXPERIMENTS ON MOLECULE DATASETS

We assess the quality of 10,000 generated graphs using multiple metrics. Frechet ChemNet Distance
(FCD) leverages activations from ChemNet’s penultimate layer to calculate the distance between
test and generated graphs (Preuer et al.| 2018]). Neighborhood Subgraph Pairwise Distance Kernel
(NSPDK) MMD measures the maximum mean discrepancy between test and generated graphs, ac-
counting for both node and edge features (Costa & De Gravel[2010). Additionally, we report validity
metrics: validity w/o correction and Validity represent the fractions of valid molecules without and
with valency correction or edge resampling, respectively.

As the setting of (Jo et al.,[2022), we report the results of ESGD and GSDM on QM9 and ZINC250k
by 3 runs. We preprocess each molecule into a graph with the node features X € {0, 1}V *¥ and
the adjacency matrix A € {0,1,2,3}V*¥ where N is the maximum number of atoms and F is the
number of atom types. We also use the grid search for the best SNR in {0.5,1,1.5,2,2.5, 3} and the
scale coefficient in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}. The specific hyperparameters are
shown in Table[7] We select the hyperparameters for the best FCD value. We quantize the entries of
the adjacency matrices to {0, 1, 2, 3} by clipping the value (—o00,0.5) to 0, [0.5,1.5) to 1, [1.5, 2.5)
to 2, and [2.5, c0) to 3 following (Jo et al.,|[2022).
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C.5 COMPUTING RESOURCES

For all experiments, we use PyTorch to implement ESGD and train the score models on an NVIDIA
RTX A4000 GPU with intel i7-14700K CPU.
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D EXPERIMENTS MAKEUP AND MODIFICATION

Table 10: Generic graph generation on Community-small, Enzymes, Grid, and Ego-small. * The
results were obtained by executing the published source code. Other results are taken from the
published papers [Luo et al.|(2024); [Wen et al.| (2024)); Jang et al.| (2024); |[Eijkelboom et al.| (2024).
Hyphen (-) denotes that results are not provided and were not applicable due to memory issues.
The best results are highlighted in bold, and the underline denotes the second best. We provide the
standard deviations in Appendix@ due to page limit.

Community-small Enzymes Grid Ego-small
Synthetic, (12 < V' < 20) Real, (10 < V < 125) Synthetic, (100 < V' < 400) Real, (4 <V < 18)
Deg.| Clus. Orbit] Avg.] Deg) Clus., Orbitl Avg.| Degl| Clus.] Orbitl Avg] Deg.| Clus.] Orbit] Avg.|

0.220 0950 0400 0.053 - - - - - - - - 0.040  0.100  0.020 0.053
0.080 0.120 0.040 0.080 0.017 0.062 0.046 0.042 0.064 0043 0.021 0043 0.090 0220 0.010 0.107
0.180  0.200  0.020 0.133  1.669 1.283 0.266 1.073 - - - - 0.030  0.110  0.006  0.049
0.060 0.120 0.030 0.070 1503 1.061 0202 0.922 - - - - 0.040  0.130  0.010  0.060
0.350 0980 0.540 0.623 1369 0.629 0.191 0.730 1.619 0.000 0919 0846 0.130 0.170 0.050 0.117
0.200  0.200  0.110  0.170 - - - - - - - - 0.030  0.100  0.006 0.045
0.053 0.144 0.026 0.074 0.023 0268 0.082 0.124 0455 0238 0328 0340 0.052 0.093 0.007 0.051
0.039  0.084 0.009 0.044 0.034 0097 0013 0048 0.083 0.006 0.065 0.051 - - - -

0.045 0.086 0.007 0.046 0.026 0.102 0.009 0.046 0.111 0.005 0.070 0.062 0.021 0.024 0.007 0.017
0.014 0.050 0.005 0.024 0.045 0.049 0.003 0032 0.137 0.004 0.048 0.063 0.015 0.023 0.003 0.014
0.016 0.027 0.004 0.020 0.098 0.091 0.085 0.091 0.001 0.000 0.000 0.000 0.027 0.034 0.004 0.023
- - - - 0.005 0.018 0.006 0.010 0.000 0.000 0.000 0.000 - - - -

0.018 0.086  0.007 0.037 - - - - - - - - 0.013  0.024  0.008 0.015
0.027 0.082  0.011 0.040 - - - -

ESGD (ours) 0.005 0.006 0.000 0.004 0.005 0.026 0.003 0011 0.000 0.000 0.000 0.000 0.005 0.021 0.002 0.009

Table 11: Generic graph generation on Planar, SBM, and Tree. Results are taken from the published

papers Jang et al|(2024);|QIN et al.| (2025)); Bergmeister et al.| (2024b).

Planar SBM Tree
Synthetic, (|V| = 64) Synthetic, (31 <V < 187) Synthetic, (|V| = 64)
Deg.| Clus.} Orbit| Spec.|. Deg.| Clus.| Orbit| Spec.| Deg.| Clus.| Orbit| Spec.|
0.0049 02779  1.2543  0.0459  0.0055 0.0584  0.0785  0.0065

GraphRNN|You et 2018

GRAN 00007 00426 00009 00075 00113 00553 00540 00054 0.1884 00080 00199 02751
SPEC ot al.|(2 00005 00785 00012 00112 00015 00521 0.0412  0.0056 - - - -
DiGress|Vignac et al.|(2023a) 00007 00780 00079 00098 0.0018 00485 00415 00045 02678 0.0428 00097  0.0123
EDGE al |(2023 00761 03229 07737 00957 00279 0.1113 00854 00251 00211 0207 00374  0.0438
GDSS|Jo et al.| 02500 03930  0.5870 - 04960  0.4560 07170 - - - - -
GEEL-Jang et al. (20: 00006  0.0458  0.0000 00070 00034 00621  0.0000  0.0049 - -

DisCo[Xu et al [(2024] 00002  0.0403  0.0009 - 00006  0.0266 00510 - -

Cometh m 0.0006  0.0434  0.0016 0049 0.0020  0.0498  0.0383  0.0024 - - - -
DeFoG|QIN et al. 00005 0.0501  0.0006 00072 00006 00517 00556  0.0054 00002  0.0000 0.0000 00108
Local PPGN (one-shot) [Bergmeister et al. (2024b] ~ 0.0003 ~ 0.0245 00006  0.0104 ~ 0.0141  0.0528  0.0809 00071 00004  0.0000  0.0000  0.0080

=
=}

Local PPGN|Bergmeister et al. 12024]) 0.0005  0.0626  0.0017  0.0075  0.0119  0.0517  0.0669  0.0067  0.0001  0.0000 0.0000 0.0117
GGSD*Minello et al. (2025 0.0024  0.0807  0.0048  0.0048  0.0041 0.0431 0.0730  0.0090 - - - -
ESGD (ours) 0.0001  0.0228  0.0002  0.0057  0.0005 0.0027 0.0462  0.0039  0.0000  0.0001 0.0000  0.0081

Table 12: Sampling results with statistical analysis across multiple random seeds (mean =+ std over
5 runs).

Dataset Degree| Cluster] Orbit] Spectral Validity Uniqueness?T Novelty?
ESGD (Ours)

ENZYMES  0.0049+0.0008 0.0263+0.0041  0.0027+0.0005 0.021340.0032  0.932+0.024  0.853+0.031  1.000+0.000
Community  0.0052£0.0011  0.0064+0.0015 0.00034+0.0001  0.050040.0078  1.000£0.000  0.5504+0.045 0.5004-0.052

Ego 0.0045£0.0009  0.0208+0.0033  0.002440.0004  0.07294+0.0112  0.900£0.031  0.500+0.041  0.44440.058
Grid 0.0000-0.0000  0.000040.0000  0.00004:0.0000 0.025740.0039  1.000£0.000  0.700£0.037  0.650+0.043
Planar 0.0001£0.0000  0.0228+0.0036  0.000240.0001  0.005740.0009  1.000£0.000  0.925+0.028  1.000+0.000
SBM 0.0005£0.0001  0.0027£0.0009  0.046240.0098  0.00394+0.0010  0.975+0.018  0.8724+0.029  1.0004-0.000
Tree 0.0000£0.0000  0.0001£0.0000  0.000040.0000  0.00814+0.0012  1.000£0.000  0.8754+0.029  0.77540.041
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Table 13: Random seeds used for experiments across different datasets.

Random Seeds
34941, 82137, 86966, 5683, 39812

Dataset

Community-small

Ego-small 13022, 15400, 28451, 4360, 19692
ENZYMES 81925, 49667, 45730, 63059, 91579
Grid 7517, 5740, 79457, 74714, 12309
Planar 36429, 90321, 61220, 30920, 602
SBM 53237, 41582, 67839, 28914, 95273
Tree 87562, 42318, 65491, 13847, 79205

Table 14: 95% Confidence intervals for key metrics.

Dataset Degree| Cluster. Spectral| Validity{

ENZYMES [0.0038, 0.0060] [0.0210,0.0316] [0.0168, 0.0258] [0.898, 0.966]
Community [0.0038, 0.0066] [0.0044, 0.0084] [0.0398, 0.0602] [1.000, 1.000]
Ego [0.0033, 0.0057] [0.0164,0.0252] [0.0585, 0.0873] [0.856, 0.944]
Grid [0.0000, 0.0000]  [0.0000, 0.0000] [0.0206, 0.0308] [1.000, 1.000]
Planar [0.0001, 0.0001] [0.0182, 0.0274] [0.0045, 0.0069] [1.000, 1.000]
SBM [0.0002, 0.0005] [0.0027,0.0069] [0.0039, 0.0066] [0.950, 1.000]
Tree [0.0000, 0.0000]  [0.0001, 0.0001]  [0.0064, 0.0098] [1.000, 1.000]

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results.

E.1 GENERIC GRAPH GENERATION

We report the standard deviation of the generation results of Table|l|in Table|15|and Table We
provide sampling acceleration of ESGD on the Community-small and Ego-small datasets in Table

Table 15: Generation results of ESGD on Ego-small and Community-small. * denotes that the
results are obtained by running open-source codes. The results of GDSS and HGDM are taken from
(Luo et al.| [2024; |Wen et al.|[2024; |[Eijkelboom et al.|[2024). The best results are highlighted in bold
(lower is better), and the underline denotes the second best. We report the MMD distance between
the test datasets and the generated graphs with the standard deviation.

Ego-small Community-small
Deg.| Clus.) Orbit], Deg.| Clus.| Orbit]
GDSS (Jo et al.||2022) 0.021£0.008  0.024£0.007 0.0074£0.005  0.045+0.028 0.086=£0.022  0.007+0.004
HGDM (Wen et al.|[2024) 0.0154+0.005 0.023+0.006 0.003+0.005 0.017£0.029 0.050+0.018  0.0054-0.003
GSDM* (Luo et al.|[2024) 0.027+0.000  0.034+0.007 0.0044+0.001 0.016+0.018 0.027+0.026 0.004+0.005
CatFlow Eijkelboom et al.|(2024)  0.013+0.007  0.024+0.009  0.001+£0.005 0.0184+0.012 0.086+0.021  0.007+0.005
ESGD (Ours) 0.009+£0.003  0.022+£0.002  0.001+0.000 0.007+0.003  0.010-£0.004  0.001+0.000

E.2 MOLECULE GENERATION

We additionally report the validity, uniqueness, and novelty of the generated molecules aside from
the results in Table d]to comprehensively illustrate the performance of molecule generation. Validity
is the fraction of the generated molecules that do not violate the chemical valency rule. Uniqueness
is the fraction of the valid molecules that are unique. Novelty is the fraction of the valid molecules
that are not in the training set. Moreover, the standard deviation of each metric is also provided in
this section. The results of molecule generation are shown in Table|18|and Table
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Table 16: Generation results of ESGD on Enzymes and Grid. * denotes that the results are obtained
by running open-source codes. The results of GDSS and HGDM are taken from (Luo et al., [2024;
Wen et al., 2024} Eijjkelboom et al.,2024)). The best results are highlighted in bold (lower is better),
and the underline denotes the second best. We report the MMD distance between the test datasets
and the generated graphs with the standard deviation.

Enzymes Grid
Deg.| Clus.) Orbit], Deg.| Clus.| Orbit]
GDSS (Jo et al.||2022) 0.026£0.008  0.102£0.010  0.0094+0.005 0.111+0.012  0.004-+£0.000  0.070£0.044
HGDM (Wen et al.|[2024) 0.045+0.008  0.049+0.011  0.003+0.001 0.137+0.019 0.004+0.000 0.070+0.044
GSDM* (Luo et al.|[2024) 0.098+0.010  0.091+£0.003 0.0854+0.010 0.001+0.000  0.000+0.000  0.000+0.000
CatFlow Eijkelboom et al.|{(2024)  0.013+0.012  0.062+0.011  0.008+£0.007 0.1154+0.010 0.004+0.002  0.075+0.071
ESGD (ours) 0.007£0.001  0.064£0.002  0.0094+0.001  0.0000.000  0.000-£0.000  0.000+0.000

Table 17: Sampling efficiency of ESGD by 1 run on Community-small and Ego-small.

Dataset Steps Deg.] Clus.] Orbit] Time (s){

1000 0.011 0.015 0.001 1.51
500 0.011 0.015 0.001 0.94
250 0.011 0.015 0.001 0.58
200 0.058 0.106 0.012 0.48

1000 0.012 0.019 0.001 1.13
800 0.014 0.014 0.001 0.9
750  0.015 0.014 0.001 0.86
700 0.018 0.029 0.003 0.82

Community-small

Ego-small

As shown in Table[T8] the generated molecules of ESGD have lower novelty and comparable unique-
ness. As discussed in (Wen et al.}[2024), high novelty does not necessarily represent good generation
quality due to the property of the QM9 dataset, such as the generated molecules of GraphDF and
GraphEBM. In other words, the models that can generate molecules with high novelty fail to cap-
ture adequate properties of the dataset. Also as discussed in [Vignac & Frossard| (2022) QM0 is
an exhaustive enumeration of the small molecules that satisfy a given set of constrains, generating
molecules outside this set is not necessarily a good sign that the network has correctly captured the
data distribution.

Table 18: Generation results on QM9. * denotes that the results are obtained by running open-source
codes. Other results of the baselines are taken from the published papers|Luo et al.|(2024); Wen et al.
(2024); Jang et al.|(2024)); [Eijkelboom et al.|(2024)). The best results are highlighted in bold, and the
underline denotes the second best.

Method Val. w/o (%) NSPDK MMD|] FCDJ Validity T Uniqueness?T Novelty
GraphAF (Shi et al.|[2020) 67 0.020-£0.003 5.268+0.403 100.00 94.51 88.83
GraphDF (Luo et al.[[2021) 82.67 0.063+0.001 10.816+0.020 100.00 97.62 98.10
MoFlow (Zang & Wang[[2020) 91.36+1.23 0.017-+0.003 4.467+0.595  100.00+0.00  98.65+0.57  94.724+0.77
EDP-GNN (N1u et al.|[2020a) 47.5243.60 0.005-+0.001 2.680+0.221  100.00+£0.00  99.25+0.05 86.58+1.85
GDSS (Jo et al.[[2022) 95.79+1.93 0.003+0.000 2.813+0.278  100.00+£0.00  98.02+0.63  82.55+3.11
HGDM (Wen et al.|[2024) 98.04+1.27 0.002-+0.000 2.13+0.254 100.00+£0.00  97.27+0.71  69.63+2.75
GSDM* (Luo et al.[[2024) 99.81+0.08 0.009-+0.000 3.191+£0.014  100.00+0.00 94.7+0.15 68.5+0.47
CatFlow [Eijkelboom et al.|(2024)  99.81 + 0.03 - 0.441 4+ 0.023  100.00 + 0.00 99.95 + 0.02 -
GEEL Jang et al.[(2024) 100.0 0.0002 0.089 100.00 96.08 22.30
ESGD (ours) 99.20+0.02 0.002-+0.000 1.4254£0.009  100.00+0.00  96.61+£0.16  60.64+0.00

We present acceleration results for ESGD sampling with 1,000-step training on both QM9 and
ZINC250k datasets in Table 20l For QM9, ESGD maintains comparable accuracy when using
600 sampling steps. Although validity scores without correction decrease at lower step counts,
both NSPDK and FCD metrics remain robust even when using as few as 500 sampling steps. This
demonstrates that ESGD maintains excellent sampling efficiency when applied to molecule datasets.
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Table 19: Generation results on ZINC250k. * denotes that the results are obtained by running open-
source codes. Other results of the baselines are taken from the published papers (2024);

Wen et al.|(2024)); Jang et al.|(2024)); [Eijkelboom et al.| (2024); |QIN et al.| (2025). The best results
are highlighted in bold, and the underline denotes the second best.

Method Val. w/o (%) NSPDK MMDJ FCDJ Validity UniquenessT Noveltyt
GraphAF (Shi et al.| 68 0.044+0.006 16.289+0.482 100.00 99.10 100.00
GraphDF (Luo et al.| 2021 89.03 0.176+0.001 34.202+0.160 100.00 99.16 100.00
MoFlow (Zang & Wang||2020] 63.114+5.17 0.0460.002 20.9314+0.184  100.00-£0.00 99.99+0.01 100.00-£0.00
EDP-GNN (Niu et al./[20 82.97+2.73 0.049+0.006 16.737£1.300  100.00-+0.00 99.794+0.08  100.00+0.00
GDSS (Jo et al.[[2022] 95.90+1.01 0.019+0.001 16.621£1.213  100.00+0.00 99.67+0.14  100.00-0.00
HGDM (Wen et al.| 93.51+0.87 0.016+0.001 17.69+1.146 100.00-£0.00 99.824+0.18  100.00+0.00
GSDM* (Luo et al.|[2024) 93.0+0.04 0.016£0.000 12.0740.062 100.00-£0.00 99.97+0.09  100.00-0.00
CatFlow (2024)  99.21 +0.04 - 13211 £0.012  100.00 £ 0.00  100.00 + 0.00 -
GEELJJang et al.[(2024] 99.31 0.0068 0.401 100.00 99.97 99.89
DeFoG|QIN et al.|(2025] 99.22 £0.08  0.0008 + 0.0001  1.425 £ 0.0001  100.00 + 0.00  99.99 + 0.01 -
ESGD (ours 98.2940.58 0.010£0.000 8.80+0.132 100.00-£0.00 99.76+0.12  100.00-+0.00

Table 20: Sampling efficiency of ESGD by 1 run on QM9 and ZINC250k.

Dataset Steps  Val. w/o (%)! FCD] NSPDK MMD, Time (s)|

1000 99.23 1.421 0.002 14.3
QM9 800 99.35 1.427 0.002 11.2
600 99.22 1.485 0.002 8.1
500 99.08 1.595 0.003 54
1000 98.81 8.856 0.011 71.6
800 97.34 8.623 0.011 60.2
ZINC250k 500 95.94 8.813 0.010 37.5
400 95.44 8.989 0.010 30.6

F VISUALIZATION

F.1 GENERIC GRAPH GENERATION

We visualize a randomly selected subset of samples from the training datasets and the generated
graph set in Figures @}{I0]

e=26, n=14 e=37,n=16 e=37,n=16 e=26, n=14 e=37,n=16 e=49,n=18 e=21,n=12 e=26, n=14

e=60, n=20 e=37,n=16 e=21,n=12 e=60, n=20 e=21,n=12 e=37,n=16 e=60, n=20 e=26, n=14

e=21,n=12 e=21,n=12 e=21,n=12 e=21,n=12 e=60, n=20 e=60, n=20 e=49, n=18 e=21,n=12

e=23,n=12 e=60, n=20 e=26, n=14 e=21,n=12 e=60, n=20 e=26, n=14 e=26, n=14 e=21, n=12
(a) Training Data (b) ESGD (ours)

Figure 4: Visualization of the graphs from the Community-small dataset and the generated graphs
of ESGD.
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e=10, n=6 e=15, n=13 e=10, n=6 e=3, n=4 e=26, n=10 e=5, n=4 e=5,n=5
e=3,n=4 e=4, n=4 e=3, n=4 e=22,n=11 e=4, n=4 e=29, n=16 e=3, n=4 e=29, n=10
e=12,n=12 e=6, n=5 e=6, n=6 e=16, n=11 e=11, n=7 e=6, n=5 e=4, n=5 e=6, n=5
e=8, n=7 e=17,n=9 e=3,n=4 e=3, n=4 e=11, n=10 e=20,n=16 e=13,n=10 e=7,n=6
(a) Training Data (b) ESGD (ours)

Figure 5: Visualization of the graphs from the Ego-small dataset and the generated graphs of ESGD.

e=275, n=150 e=511, n=272 e=351, n=190 e=536, n=285 e=402, n=216 e=507, n=270 e=462, n=247 e=356, n=192

e=437, n=234 e=610, n=323 e=333, n=180 e=275, n=150 e=356, n=192

e=325,n=176  e=220, n=121 e=351, n=190 e=511,n=272  e=425,n=228

e=647, n=342

e=391, n=210 e=304, n=165 e=647, n=342

(a) Training Data (b) ESGD (ours)

Figure 6: Visualization of the graphs from the Grid dataset and the generated graphs of ESGD.

e=84, n=37 e=51, n=23 e=46, n=25 e=45, n=24 e=30, n=15 e=78, n=48 e=79,n=35 e=52, n=27

e=45, n=23 e=46, n=24 e=59, n=26 e=133, n=88 e=52,n=30 e=35,n=19 e=81, n=40 e=37,n=18

e=39, n=23 e=53, n=32 e=28, n=14 e=75, n=42 e=26, n=14 e=80, n=48 e=60, n=32 e=96, n=44

e=73, n=41 e=64, n=36 e=97, n=55 e=95, n=40 e=31,n=13 e=74, n=32 e=60, n=32 e=47, n=25
(a) Training Data (b) ESGD (ours)

Figure 7: Visualization of the graphs from the Enzymes dataset and the generated graphs of ESGD.

F.2 MOLECULE GRAPH GENERATION

We visualize a randomly selected subset of the generated graph set in Figures [1 1112}
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(a) Training Data (b) ESGD (ours)

Figure 8: Visualization of the graphs from the Planar dataset and the generated graphs of ESGD.

e=881, n=172 e=414, n=92 e=267, n=61 e=315, n=64 e=500, n=97 e=270, n=61 e=446, n=77 e=845, n=165
e=526, n=115 e=644, n=123 e=492, n=98 e=316, n=79 e=500, n=97

e=889, n=168

=

e=292, n=62 e=943, n=168 e=653, n=141 e=530, n=102

e=842, n=163 e=264, n=58 e=401, n=71 e=403, n=92 e=402, n=103
(a) Training Data (b) ESGD (ours)

Figure 9: Visualization of the graphs from the SBM dataset and the generated graphs of ESGD.

e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64

e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64

e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64

e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64 e=63, n=64
(a) Training Data (b) ESGD (ours)

Figure 10: Visualization of the graphs from the Tree dataset and the generated graphs of ESGD.
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Figure 11: Visualization of the random samples generated by ESGD trained on QM9.
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Figure 12: Visualization of the random samples generated by ESGD trained on ZINC250k.
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