Under review as a conference paper at ICLR 2025

B-STAR: MONITORING AND BALANCING
EXPLORATION AND EXPLOITATION IN SELF-TAUGHT
REASONERS

Anonymous authors
Paper under double-blind review

ABSTRACT

In the absence of extensive human-annotated data for complex reasoning tasks,
self-improvement — where models are trained on their own outputs — has emerged
as a primary method for enhancing performance. Recently, the approach to self-
improvement has shifted toward a more dynamic, online fashion through iterative
training processes. However, the critical factors underlying the mechanism of these
self-improving methods remain poorly understood, such as under what conditions
self-improvement is effective, and what are the bottlenecks in the current iterations.
In this work, we identify and propose methods to monitor two pivotal factors in this
iterative process: (1) the model’s ability to explore and generate high-quality re-
sponses among multiple candidates (exploration); and (2) the reliability of external
rewards in selecting the best responses from the generated outputs (exploitation).
These factors are inherently moving targets throughout the self-improvement cy-
cles, yet their dynamics are rarely discussed in prior research — It remains unclear
what impedes continual model enhancement after only a few iterations. Using
mathematical reasoning as a case study, we begin with a quantitative analysis to
track the dynamics of exploration and exploitation, discovering that a model’s
exploratory capabilities rapidly deteriorate over iterations, and the effectiveness of
exploiting external rewards diminishes as well due to shifts in distribution from the
original policy. Motivated by these findings, we introduce B-STAR, a Self-Taught
Reasoning framework that autonomously adjusts configurations across iterations to
Balance exploration and exploitation, thereby optimizing the self-teaching effective-
ness based on the current policy model and available rewards. Our experiments in
mathematical reasoning demonstrate that B-STAR not only enhances the model’s
exploratory capabilities throughout training but also achieves a more effective
balance between exploration and exploitation, leading to superior performance.
Crucially, this work deconstructs the opaque nature of self-training algorithms,
elucidating the interpretable dynamics throughout the process and highlighting
current limitations for future research to address.

1 INTRODUCTION

Large language models possess advanced reasoning capabilities such as mathematical problem-
solving (Cobbe et al., 2021) or coding challenges (Chen et al., 2021). However, the challenge of
acquiring extensive, high-quality human-curated datasets remains a significant barrier to further
enhancing these reasoning abilities. As tasks grow in complexity, the reliance on human-generated
data becomes increasingly unsustainable, necessitating alternative approaches to training.

To tackle this issue, methods rooted in the concept of “Self-Improvement” (Huang et al., [2022),
such as STaR (Zelikman et al., 2022)), RFT (Yuan et al., [2023)), and ReST (Gulcehre et al., 2023},
Singh et al., 2023)), provide more cost-effective and scalable solutions. Self-Improvement follows an
iterative process where the model generates responses, from which the better are selected to create
higher-quality data for further refinement (Hosseini et al., [2024)). This continuous loop allows the
model to improve its performance over time, reducing the need for large amounts of human-generated
data. Ultimately, this approach enhances the model’s ability to handle complex reasoning tasks,
pushing the limits of its capabilities (Havrilla et al.| [2024)).

Under review as a conference paper at ICLR 2025

- 28 3 73 *
52 LN * r/\.[\ i N
gt 26 SN - 17 . » Y
50 r/ | ¥ g v
: 24 ; 15 : 71
47 [f/\g A,\yruﬂt 1 1\{1"\ I 1 .
KRy v [T
5 Bt 7/
. ‘/\/\ s 1 » K \
42 Na 20 NV) Sy \ ! \
{ AL VoA
20 ‘é,l - SFT 18 - SFT 7 *“ == Base
4 —e— Online RFT Lt | —— onlinerer | —e— Online RFT —e— Online RFT
ELA i / e e STaR/ReST-EM | 16 STaR/ReST-EM 5 STaR/ReST-EM STaR/ReST-EM
- —i lIterative RFT —i Iterative RFT —= Iterative RFT — lterative RFT
—- BSTaR 14 —+- B-STaR 2 — BSER | e —- BSTaR
G 1000 2000 3000 4000 G 1000 2000 3000 4000 G 200 400 600 800 300 600 800
(a) GSM8K (b) MATH (c) APPS (d) ARC-C

Figure 1: [ARC-C results are added during rebuttal] Pass@ 1 accuracy over training steps on GSM8K, MATH,
APPS, ARC-Challenge. We compare multiple baselines, including SFT, Online RFT, STaR/ReST-EM, and
Iterative RFT, against our proposed B-STAR. For ARC-Challenge, we starts from the Mistral-7b-instruct model,
denoted as “Base” in the figure.

Despite significant advancements, we still lack a deep understanding of the key factors that drive
successful self-improvement and the internal optimization mechanisms remain largely opaque. Un-
derstanding the critical components and bottlenecks of these self-improving methods is particularly
important given that performance of current self-improving approaches does not scale well with
increased compute and saturates very quickly after merely 3 to 5 iterations (Singh et al.| 2023} [Wu
et al.| 2024). In this paper, we address the following questions: (1) What key factors play a decisive
role in the self-improvement process? (2) How can these factors be used to analyze the limitations of
current self-improvement methods from a unified perspective? and (3) How can we leverage these
factors to guide the self-improvement process, ultimately maximizing performance gains?

To this end, we identify two crucial capabilities of the model during its self-improvement pro-
cess: (1) the model’s ability to generate correct and diverse solutions among multiple generated
candidates (Singh et al., 2023} [Wang et al., 2024a), and (2) the effectiveness of external rewards
(e.g., a reward model or final answer supervision) in selecting high-quality solutions from these
candidates (Wang et al., |2024b; |Sun et al., [2024). Connecting with traditional RL terminology,
we correspond the two capabilities to exploration and exploitation respectively. Intuitively, these
two factors are dynamic, evolving throughout the training process, a phenomenon that remains
underexplored despite its critical importance. In this work, we first conduct empirical analysis to
quantitatively monitor the dynamics of exploration and exploitation during iterative training processes.
We observe that both capabilities may stagnate or even decline, and imbalances between them can
hinder the model’s ongoing improvement.

Motivated by these insights, we propose a novel approach for self-improvement that automatically
monitors and balances these dynamic factors to optimize the use of the current policy and reward.
This involves adjusting configurations that influence exploration and exploitation, such as sampling
temperature and reward thresholds. These configurations are adaptively modified throughout training
in terms of our proposed metric, query effect. This new metric assesses the potential of a query
based on the current model’s exploration and exploitation capabilities, and our method automatically
balances exploration and exploitation behaviors to maximize the average query effect scores. We
refer to this method as B-STAR, a Balanced Self-Taught Reasoner.

The experimental results from mathematical problem-solving and coding challenges demonstrate that
B-STAR significantly surpasses other self-improvement methods through balanced exploration and
rewarding. For instance, B-STAR achieves a nearly 5 point increase absolutely in Pass@1 on both
GSMBS8K and MATH, surpassing various self-improving variants while maintaining a steady upward
trajectory, as depicted in Figure |l} Furthermore, we demonstrate that exploration-related metrics,
such as Pass@32, are continuously improving without any notable degradation as in other baselines.

2 MONITORING EXPLORATION AND EXPLOITATION IN SELF-IMPROVEMENT

2.1 BACKGROUND: SELF-IMPROVEMENT

Given a pre-trained model M and a training set D = (x;, yl)i1 where z; denotes the training
queries and y; their responses, the goal of self-improvement is to iteratively generate high-quality
responses from the current model and update the model itself with such synthetic data. Let T represent

Under review as a conference paper at ICLR 2025

the total number of iterations, with the model at the start of the ¢-th iteration denoted as M;_q. In
the first iteration, My is typically fine-tuned on the initial dataset D, then each subsequent iteration
involves three critical steps generally (Yuan et al.}2023; Gulcehre et al., [2023)):

(1) Generating: For each query x;, the model M;_; generates K candidate responses, forming a new,
self-generated dataset.

(2) Rewarding (Verifying): A reward function r(x,y) is applied to score and select the high-quality
responses from the self-generated dataset. This reward can be binary and utilize additional supervision,
for example, in problem-solving tasks in the math and code domains, it is common to match the final
answer or unit tests pass result as the binary feedback (Yuan et al.,2023;|Chen et al.|2022). In a more
sophisticated case, r(x,y) can be parameterized by a reward model outputting continuous scores,
using outcome-based reward models (ORMs) (Li et al., |2022) or process-based reward models
(PRMs) (Uesato et al.| 2022} [Lightman et al.,[2023; Havrilla et al., 2024)).

(3) Improving: The selected dataset is then used to update M;_1, producing the updated model M;.
To differentiate the generation model M from the reward model, M is also referred to as the policy
model following RL literature. In problem-solving tasks that we are going to focus on in this paper,
SFT loss is commonly used in the Improving step due to its robustness and scalability (Pang et al.}
2024; |Dubey et al., 2024)), as more sophisticated RL losses can be unstable to optimize and scale up.
When SFT loss is adopted, the Rewarding step aims to reject some responses and use the remaining
for training, thus this process is also referred to as rejection fine-tuning (RFT, [Yuan et al.| (2023))).

Discussion on Online Learning. The iterative procedure described above can be contextualized
within the reinforcement learning framework (Singh et al.l 2023)), and the iterative design shifts
the vanilla offline training towards a more dynamic online variant — when iteration intervals are
short and the optimizer is inherited between iterations, the training essentially transforms into a
fully online learning algorithm. For example, PPO (Schulman et al.| 2017)), a prevalent online RL.
algorithm, exemplifies iterative training with small iteration intervals. Iterative RFT implementations
in previous works typically adopt long iteration intervals where each iteration processes all the
queries (Zelikman et al.| 2022;|Sun et al.| [2024). Sometimes, these implementations opted to restart
the training from the initial checkpoint rather than from the last saved model (Zelikman et al., 2022;
Singh et al.||2023)). However, we argue that always starting from the beginning is not scalable for large
datasets particularly in a streaming setting, instead, a more continuous training approach aligning
more closely with RL principles is preferable. Transitioning from offline to online training, Online
RFT (Shao et al.|[2024)) has demonstrated its superiority compared to traditional offline RFT methods.
Compared to conventional iterative RFT, online RFT switches iterations more frequently so that the
synthetic data is always on-policy. In this study, we explore online RFT as our primary framework
for self-improvement, choosing a moderate iteration interval for more stable training. In § 4.2 we
will demonstrate that our online RFT approach surpasses conventional iterative RFT training.

2.2 THE CRITICAL FACTORS — EXPLORATION AND EXPLOITATION

To maximize the gains from self-improvement training and even lift model’s ability fundamentally
from its own outputs, the key is to achieve scalable self-improvement training, where the model
performance is able to scale up with increased compute invested into the training algorithm. However,
all previous works show quick saturation after merely 3-5 self-improvement iterations (Singh et al.
2023;|Wu et al., 2024), where it is hypothesized that the model’s own outputs can only lead to limited
gains. In this work, we seek to dive deeper into the currently opaque process of self-improvement, to
understand the critical factors that make self-improvement successful or failed.

Intuitively, for a certain iteration of training, we argue that two high-level conditions must be met
for the model to make progresses: (1) Diverse Exploration for High-Quality Responses: When
multiple candidates are sampled from the model, a portion of them must be high-quality responses.
This is particularly important for queries where the model fails to produce satisfactory outputs using
greedy decoding. Models often learn the most from queries they struggle with, and achieving this
condition requires the model to explore sufficiently diverse outputs, enabling it to generate responses
that cannot be reached through greedy decoding. (2) Effective Reward Function Discrimination:
The reward function r(x, y) must reliably distinguish high-quality candidates from lower-quality
ones.

Under review as a conference paper at ICLR 2025

If either of these conditions is unmet—such as when the model produces responses overly similar
(i.e. lack of diversity), or when the reward function fails to identify high-quality responses—the
self-improvement will be limited on the gains.

Exploration and Exploitation are Moving Targets. Both exploration and exploitation are dy-
namically influenced by the policy model during the self-improvement process. On one hand, after
multiple iterations, the policy model may overfit the task, failing to explore diverse responses and
instead generating highly similar outputs (i.e., a lack of exploration). Training on these highly similar
responses is unlikely to yield significant improvements. On the other hand, if the model generates
excessively diverse responses, resulting in a distribution that deviates significantly from the reward
model, it becomes challenging for the reward model to reliably distinguish high-quality responses (i.e.,
a lack of exploitation). Thus, maintaining a dynamic balance between exploration and exploitation
is essential throughout the self-improving process. However, such dynamics are rarely discussed in
prior research, while Wu et al.| (2024) reveal a model’s generation diversity tends to decline over the
course of self-training, indicating a decrease in exploration capabilities. Next, we propose methods
to quantify exploration and exploitation, enabling us to monitor their dynamics during training and
deepen our understanding of the mechanisms underlying self-improvement.

Quantifying Exploration and Exploitation. In this work, we mainly focus on complex problem-
solving tasks in the math and coding domains, where the correctness of the responses can be easily
verified on labeled datasets — in the math domain, it is common to verify whether the generated
final answer matches the ground-truth oneﬂ while in code domain we typically verify whether the
generated code passes the given unit tests. This property makes it easier to quantify exploration and
exploitation, for which we detail the metrics below:

» Exploration: Pass@K, which measures whether there is at least one correct response during K
sampled candidates, is a straightforward metric to measure exploration, as it directly reflects
whether the model is able to explore correct solutions. However, Pass@K may be noisy as it only
counts one correct response, while it is desirable to assess whether the model can explore more than
one correct response as well. To this end, we propose to track Pass@K-S as well, which measures
whether there are at least S correct responses among K sampled candidates. Pass@K-S serves
as a more stable proxy to exploration than Pass@K. Pass @K is essentially Pass@K-1 following
such a definition. Besides Pass@K and Pass@K-S, we also track diversity of the generations
using Distinct Equations proposed by |Wu et al.|(2024), which measures the proportion of unique
equations among all correct generated responses.

* Exploitation: Best-of-K accuracy measures whether the top one response ranked by the reward
function is correct or not, which directly reflects how well the reward can potentially select one good
response. Since it is typically required to select multiple responses rather than one in self-improving
training, we are interested in the reward’s exploitation to select multiple responses as well. To this
end, we come up with the Reward@K-S metric, which measures whether the top S candidates
ranked by the reward are all correct or not. Best-of-K accuracy is a special case of Reward@K-S
when S is equal to 1. One may think of Reward @K-S would be equal to Pass@K-S if only the final
answer is used to select responses, then Reward @K-S may not be useful in this case. However,
we emphasize that the exploitation metrics are mainly used to measure the effectiveness when
additional reward models are integrated, as we will show next in §2.3] that our reward function
combines final answer supervision and a reward model.

Next, we conduct a case study to dive into self-improving training through tracking these metrics.

2.3 DYNAMICS OF EXPLORATION AND EXPLOITATION — A CASE STUDY IN MATHEMATICAL
PROBLEM SOLVING

In this section, we perform a case study to analyze the dynamics of exploration and exploitation in a
mathematical reasoning task. Specifically, we follow Singh et al.|(2023) to adopt MATH (Hendrycks

'Strictly speaking, the response may contain incorrect steps even though the final answer is correct, we do
not further distinguish this difference following others (Zelikman et al., 2022} Singh et al.||2023) as it is not the
focus of this work.

Under review as a conference paper at ICLR 2025

48 23 A 50
70
46 22 ,‘/\A I g
¥
21 45
44 \‘\\j \-’ 60
42 —e— Answer 20 40
,\ Answer+PRM 19
20 M Lo LY | N A P
18 350
38 b J/
_____________ T —— Answer 40 —e— Answer —e— Answer
36 16 Answer+PRM Answer+PRM 30 Answer+PRM
34 15 - = SFT 2 - = SFT - = SFT
0 1000 2000 3000 4000 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

(a) Pass@1 on GSM8K (b) Pass@1 on MATH (c) Diversity on GSM8K (d) Diversity on MATH

Figure 2: Pass@1 and Diversity over training steps on GSM8K and MATH

AR TN e
[P .ape) S gy 70 D Y e
60
V2 b o o o
/
o 60| 4
50 4
e
- <
50 T
40 =
‘_/- <
= SFT (pass@32-1) 20 — SFT (reward@32-1)
30 ol r(pass@32-1) - —— g (reward@32-1)
r+PRM (pass@32-1) +PRM (reward@32-1)
32-4) - 324)
@32-4) s@32-4) 30 e An: ard@32-
PRM (pass@32-4) 200w Answers PRM (pass@32-4) Answer+! PRM (reward@32-4)

0 1000 2000 3000 4000 0 1000 2000 3000 4000 [1000 2000 3000 4000 0 1000 2000 3000 4000

(a) Pass@K-S on GSM8K (b) Pass@K-S on MATH (c¢) Reward@K-S GSM8K (d) Reward@K-S MATH

Figure 3: Pass@K-S and Reward @K-S over training steps on GSM 8K and MATH

et al., [2021) training set as the training data, evaluating on the test split of GSM8K (Cobbe et al.,
2021) and MATH.

Setup. As introduced in §2.1} we adopt the online RFT training framework in our implementation
due to its superior efficiency over conventional iterative RFT. We use Mistral-7B (Jiang et al., [2023)
as our base model. We run the SFT baseline on MATH for 3 epochs, and use the checkpoint at the
first epoch as the initial checkpoint to run self-improving training. We experiment with two different
types of reward functions in the dynamics analysis:

* Answer: we just match the predicted answer with the ground-truth final answer and keep the
responses with correct answers, following (Singh et al., 2023).

* PRM: we train a process reward model (PRM) using the approach in Wang et al.| (2024b) based on
Mistral-7B. Then we combine the final answer reward and the PRM reward as:

r=]l(d == a*) + rprm(zvg)v (1)

where a, ax are the predicted answer and the ground-truth answer respectively, 1(-) is the indicator
function, ¢ is the predicted solution. 7, (-) is the PRM score. Since PRM is designed to score
every step of the solution, we choose the minimal score across all steps as the score for the entire
solution, following |Lightman et al.|(2023)). We only keep responses with r > 7 to train the model,
and 7 is a threshold. We found 7 = 0 is a good hyperparameter in our early trials with different
thresholds, thus we keep 7 = 0 in all the experiments on dynamics analysis. In our preliminary
experiments, we also tried another reward alternative where we prefilter responses with the final
answers and then select the remaining ones by PRM, but we found that underperforms the reward
function in Eq.[T}

We train all methods for 4500 training steps. For our online RFT, we adopt an iteration interval with
500 steps, which means the online RFT training has a total of 9 iterations, significantly larger than
the typical iteration numbers 3-5 in previous works (Singh et al.| [2023). We sample 32 candidate
solutions per query during training with a temperature of 1.0. We include the SFT baselines that is
trained for 3 epochs on MATH. Please see Appendix [A]for more setup details.

Observation 1: Self-improving training increases accuracy significantly, while PRM slightly
helps. Compared to SFT, the Self-Improvement method significantly enhances the model’s perfor-
mance in generating accurate solutions via greedy decoding. As illustrated in Figure [2] Left, both
methods achieved an approximate 10 acc increase in pass@1 on GSM 8K, and about a 5 acc increase

Under review as a conference paper at ICLR 2025

on MATH, compared to direct SFT. However, we observed that the performance gains from both
methods gradually stagnated as iterations progressed, with pass@1 plateauing or even declining after
around 3,000 steps when only the final answer provides the reward. After integrating PRMs, about
3 point again is achieved compared to the final answer reward on GSM8K, and the decline trend
of accuracy is mitigated. In contrast, the combined reward did not show a significant advantage on
MATH. We hypothesis that this is because the MATH problems are too difficult for the 7B reward
model to discriminate solutions well.

Observation 2: Exploration decreases over training, and PRM helps retain the exploration
ability: As shown in Figure[2]right, the diversity metric on both datasets decreases dramatically,
a similar phenomenon observed in|Wu et al.|(2024)). Surprisingly, the combined answer and PRM
reward is able to overcome the declining trend and retain exploration. We suspect that this is because
filtering solutions solely based on answer correctness often leads to many homogeneous results.
In contrast, the fine-grained reward strategy promotes the selection of high-quality steps, which
indirectly helps preserve solution diversity. Investigating the Pass@K-S metrics in Figure 3] Left,
Pass@K-S increases in the beginning, which implies the model’s exploration is improved first, yet
then Pass@K-S starts to decrease if only final-answer reward is adopted. Critically, the Pass@K-1
accuracy even falls close to the SFT baseline. The integration of PRM is able to improve Pass@K-S
on GSMBSK slightly, but ineffective on MATH potentially due to the limited capability of the reward
model. The plateau pattern of exploration is not a good sign, as it implies that the model may not
learn new things to explore better. Given that our reward is fixed during training, the model’s ability
will stop increasing quickly if exploration stops improving.

Observation 3: Exploitation saturates on GSMS8K while keeps improving on MATH: As shown in
Figure B|Right, we observe different behaviors of exploitation on GSM8K and MATH — Reward @K-S
shows saturation on GSMSK, yet continually improves on MATH, potentially because we are training
with the MATH dataset. We note that our reward is static during training as we do not update it or
change how we select responses, then exploitation performance is closely related to exploration from
the policy model, which is a moving target and unfortunately, from our previous analysis, exploration
of the model does not show continual improvement in all cases. We hypothesize this is the key factor
that bottlenecks self-improving training. Exploration is related to configurations such as how we
sample responses from the model, how many samples to draw. Similarly, exploitation depends on
how we utilize the reward to select responses. While all previous works treat these configurations
as static during training as far as we know, can we adjust them dynamically so that exploration and
exploitation better fit each other? We study this question next.

3 B-STAR — BALANCED SELF-TAUGHT REASONERS

In this section, we first introduce a metric designed to guide us to balance exploration and exploitation,
then we analyze its relationship with various configurations. Finally, we present our full algorithm
that automatically adjusts exploration and exploitation abilities.

3.1 QUERY EFFECT

§2] highlights the importance of a model’s exploration and exploitation capabilities for self-
improvement, emphasizing their continuous evolution during training. Now we seek for a metric that
could provide us information on the interplay of these two factors. Intuitively, we hope the model can
explore more high-quality responses and the reward can select them out. As a result of this interplay,
given a query, we expect two conditions to be satisfied so that the selected responses can contribute
effectively to training: (1) the high-quality responses among the selected ones cannot be too small,
otherwise we do not have enough good data for training; (2) the percentage of the high-quality
responses among the selected ones must be large enough, otherwise we may mix too many bad data
points into the training data. The former focuses on the quantity of high-quality responses selected,
whereas the latter prioritizes the ratio (but not the absolute quantity) of the high-quality responses
among all selected responses. For example, if we select only 2 response and they are correct, then
the ratio is 100% while the absolute number is only 2, which cannot give us enough training data; if
we select all 64 candidates, suppose 16 of them are correct and others are wrong, then we have 16
high-quality responses, but the ratio is only 25% — feeding many incorrect responses into training is

Under review as a conference paper at ICLR 2025

1.0 0.2
0.8
0.1
0.6
0.0
0.4
II —=~ # Sample = 16 -0.1
0.3 1 —e— # Sample = 32 0.2
’ II —i= # Sample = 48
'] =+ # Sample = 64 0.0 0.2
500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
(a) Query Effect Score (b) Best Temperature (c) Best Threshold

Figure 4: Left: the average query effect scores on 600 MATH training queries at different training steps, varying
the number of samples to draw per query; Middle: the best sampling temperature to achieve the max average
query effect scores at different training steps; Right: the best reward threshold to achieve the max average query
effect scores at different training steps;

undesirable. Therefore, these two capture different aspects of the data. Following these two intuitions,
we propose a metric, query effect, to measure the potential positive effect of the responses selected
from a query, given the exploration- and exploitation-related configurations. We detail it below.

For each query z;, let n; represent the total number of selected responses for it, and n denote the
number of unique, correct responses among them, then the query effect is defined as:

i !/
ge; = min (17 1) : 717 (2)
n n;
where (%, 1) is a discount factor that encourages the number of correct solutions to be larger than

a pre-specified parameter n* — there is no discount when we have more than n* correct responses.
We impose 1 as the cap, rather than encouraging n; to be as large as possible, because otherwise the
number of responses among queries will be severely imbalanced [2024), where the easy
queries will occupy most of the correct responses to maximize the average query effect. The second
term, n; /n;, is the ratio of the correct responses. We note that this ratio is always 100% if only the
final-answer reward is used. n* is the only hyperparameter in this metric, and it roughly implies the
correct responses that we aim to have per query. Suppose we aim to select N samples per iteration,
and each iteration we feed in M queries where N > M, then we simply decide n* = (%1 As N
and M are just general training hyperparameters related to data loader, we never tune them in the
paper and just set them as reasonable numbers as we will describe later. This means, the query effect
metric does not introduce additional hyperparameters for us to tune.

Our goal is to adjust exploration and exploitation to maximize the average query effect of a subset of
training queries — the max value of ge; is 1 and the average query effect is maximized when all the
selected responses are correct and there are at least n* correct responses for each query.

3.2 CONFIGURATIONS OF EXPLORATION AND EXPLOITATION

We explore various configurations that directly relate to exploration and exploitation. Below we
introduce them and analyze their influence on the average query effect scores. Specifically, we obtain
the policy model checkpoints and reward model checkpoints of different iterations from the online
RFT with final answer + PRM reward run, then we apply different configurations to these checkpoints,
and compute the average query effect scores on 600 randomly sampled MATH training queries.

Exploration — sample size. There are two configurations which affect exploration: the number
of samples to draw per query and the sampling temperature. We begin by examining the impact of
sample size, where the sampling temperature is fixed at 1.0, the reward threshold is set to 0.0, and
we adjust the sample sizes to 16, 32, 48, and 64, using models from the 1st, 3rd, 5th, 7th, and 9th
iteration. The results, shown in Figure fi(a)] indicate that increasing the sample size always enhances
query effect. This suggests that we should always use the max samples size allowed by sampling
budget.

Under review as a conference paper at ICLR 2025

Algorithm 1 B-STAR Algorithm

Input: Total iterations I, initial policy model Py, reward model RM, full dataset D, temperature set 7, sample
size k, reward threshold set ©. Initialized optimizer Oy, learning rate scheduler Lo

Output: Final updated model Pr

1: fori=1toIdo

: // Determine exploration and exploitation configurations

Choose sampling temperature ¢; € 7 to maximize the average query effect score (§3.1)
Choose sampling temperature 7; € © to maximize the average query effect score (§3.1)
// Generate
Generate dataset D; by sampling M queries from D, and then sampling k responses per query with the
adjusted temperature ¢;

7: // Improve

8: Annotate reward r for D;, then only keep the samples with reward larger than 7;

9: Update the policy model with the selected data, P; < P;_1
10: // We inherit optimizer and learning rate scheduler for online RFT
11: O; %01_1,[@' — Li 1
12: end for

AR

Exploration — temperature. We next examine how sampling temperature affects query effect.
With the reward threshold fixed at 0.0 and a sample size of 32, we adjust the sampling temperature
t00.5,0.7,0.9,and 1.1. In Figurewe show the best temperature we obtained that maximizes
the average query effect at different iterations (training steps). It reveals the optimal temperature
is different as training progresses — lower temperature is preferred in the beginning while higher
temperature is better later on. This phenomenon can be explained by the model’s shifting limitations
during training. In the early stages, the model’s ability to generate correct solutions is weak, so
lower temperatures help to sample more accurately (Yang et al.} [2023). As training advances, the
challenge shifts to preserving diversity in the generated solutions, requiring higher temperatures to
ensure broader sampling.

Exploitation — threshold. We investigate the impact of reward thresholds on query effect, the
configuration that decides how the reward exploit the samples. In our experiments, we fix the
sampling temperature at 1.0 and the sample size at 32, while varying the reward threshold and
selecting only solutions that exceed the threshold. Figure [d(c)| presents the optimal threshold that
maximizes the average query effect score. It indicate that higher threshold is preferred in the
beginning and it may need to decrease subsequently. Intuitively, that suggests that we should adopt
more rigorous filtering in the beginning when the model is weaker, and relax the threshold a bit when
the model grows stronger.

3.3 B-STAR

Building on the findings from §3] we propose B-STAR, shorten for Balanced Self-Taught Reasoners,
a method that maximizes the average query effect by dynamically adjusting configurations to balance
exploration and exploitation. Specifically, § [3.2] shows that the sample size is the best to be chosen
as large as possible obeying our sampling budget, while temperature and threshold may need to be
dynamically adjusted. Therefore, we adjust temperature and threshold automatically at every iteration,
to maximize the average query effect. Notably, we only need to compute the query effect score on
a small subset of training queries to decide the balanced configurations, thus incurring negligible
additional costs compared to the baselines. For example, we only use 600 MATH queries in our
experiments. The full algorithm is summarized in Algorithm|[I}

4 MAIN EXPERIMENTS

4.1 SETUP

We evaluate B-STAR’s effectiveness in enhancing self-improvement for mathematical problem-
solving, coding challenges and commonsense reasoning. For mathematical problem-solving, we
largely maintain the experimental setup from § 2.3] including datasets and baselines. Based on
findings from § [3.2]that show a monotonic increase in query effect with sample size, we set sample
size to 64 for all methods. We vary temperature from 0.5 to 1.2 in 0.1 increments and reward

Under review as a conference paper at ICLR 2025

Methods GSM 8K MATH APPS ARC-C
P@l P@32 P@32-4 P@l P@32 P@324 P@l P@32 P@324 P@l
SFT 36.6 885 62.2 17.0 60.8 31.2 9.3 435 25.5 —
Rest-EM (w/o RM) 405 899 69.8 228 60.0 33.6 145 439 28.2 70.7
Rest-EM (w/ RM) 46.3 90.7 72.2 242 628 37.4

Iterative RFT (w/o RM) 428 88.9 71.3 242 634 38.2 152 443 28.0 70.3
Iterative RFT (w/ RM) 466 90.2 74.9 244 62.6 39.0 — — —
Online RFT (w/0 RM) 440 88.1 69.7 23.0 572 38.2 173 458 27.8 712
Online RFT (w/ RM) 46.8 914 76.5 232 62.6 39.2 — — — —

B-STAR 538 93.6 81.0 278 672 42.2 196 493 30.7 73.0

Table 1: [ARC-C results are added during rebuttal] Comparison of self-improvement methods across MATH,
GSM 8K, APPS and ARC-Challenge, showing highest Pass@1 (P@1) scores with corresponding Pass @32
(P@32) and Pass@32-4 (P@32-4). Methods include variants with and without a reward model ("w/ RM" and
"w/o RM"). Online RFT (w/o RM) is the Answer baseline, while Online RFT (w/ RM) is the Answer+PRM
baseline.

Step 500 1000 1500 2000 2500 3000 3500 4000 4500
Sample Number 64 64 64 64 64 64 64 64 64
Temperature 0.5 0.8 0.9 1 1.1 1.1 0.9 1.1 1.1
Reward thresholds 0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
Query Effect 0.470 0.538 0.589 0.621 0.646 0.660 0.673 0.678 0.679

Table 2: Dynamic changes in B-STAR hyperparameters.

threshold from -1.0 to 1.0 in 0.1 increment. Throughout the self-improvement process, we use
Pass@1, Pass@K-S, and Reward @K-S metrics to track changes in the performance and model’s
exploration and exploitation capabilities.

To evaluate the generalization of B-STAR, we further conduct experiments on coding challenges and
commonsense reasoning. Specifically, for coding challenge, following |Singh et al.| (2023), we adopt
the APPS (Hendrycks et al.| 2021)) dataset for both training and testing. To balance the number of
solutions per question, we sample 5 solutions from the original APPS training set forming a dataset
with 13K examples. We use Llama-3-8B (Dubey et al., 2024) as our base model, keeping the rest
of the settings consistent with those of the math domain. For baselines, we uniformly sample 32
candidate solutions per query with a temperature of 0.4. For B-STAR, we explore temperatures
0.4 to 1.1 in 0.1 increment to determine the optimal configuration. We do not apply reward models
to the coding task and instead use unit tests as the binary reward, which means only the sampling
temperature is automatically adjusted in B-STAR.

For commonsense reasoning, following |[Pang et al.| (2024), we conduct experiments on ARC-
Challenge (Clark et al.| [2018]), a dataset consisting of multiple-choice science questions designed
to evaluate commonsense reasoning beyond mathematics and coding challenges. We start with the
Mistral-7b-instruct model and omit the SFT stage due to the absence of the Chain-of-Thought (CoT)
data for this dataset. Other configurations, such as sample size and temperature, are the same as
those used in the coding tasks. The ground-truth answer serves as the binary reward, and we report
only Pass@1 results for the ARC-Challenge dataset. Given the constrained answer space inherent
to multiple-choice questions, Pass@K and Pass @K-S metrics (where K > 1) yield no additional
insights and are therefore excluded.

4.2 RESULTS

Mathematical Reasoning. Table|[I] provides a comprehensive comparison of B-STAR with various
self-improvement methods, including Rest-EM, Iterative RFT, Online RFT, and their reward model
variants. The results show that B-STAR consistently achieves higher pass@1 scores across both the
GSM 8K and MATH datasets, highlighting its ability to effectively steer the model toward correct
solutions via greedy decoding. Moreover, B-STAR demonstrates significantly better pass @K-S
values, reflecting an enhanced exploration capacity that facilitates the generation of a wider range
of high-quality responses. Notably, Online RFT outperforms predominantly offline methods like
Rest-EM, illustrating that dynamic, on-policy approaches strike a more effective balance between
learning efficiency and performance gains.

Under review as a conference paper at ICLR 2025

80 PR —
i JIENp N I
75 Ry T N 1 a
//x”_r--.__- 40 % \,:::.._,__‘:. 30 ./'
70 .I//f—"’ e Y /' Rt —
f 35 4 = v
4 28 F\ r—
s /{ N a4
______________________________ S »
1)/ SRR NP
60 | 30 ”: - =N
- SFT - SFT e e | e | . SFT
ss5if — STaR/ReST-EM Y | —=- STaR/ReST-EM —=- STaR/ReST-EM
/ Online RFT] Online RFT 2l Online RFT
50 —i lterative RFT —i Iterative RFT —i Iterative RFT
— BSTaR 20 l — B-STaR b —- BSTaR
5 Te00 2000 3000 4000 0 1000 2000 3000 4000 G 1000 2000 3000 4000
(a) GSMSK (b) MATH (c) APPS
Figure 5: Pass@K-S over training steps on GSM8K, MATH and APPS.
60 i 20 7 " Lt
/'/ B 3 ’_/
55 o 18 - \/ 60 —
o~ DU 4 s
i sn=l i T
/ T TE—a d n_* a 50 7 37z Ll il dubobels SE
w4 14 'S £ oeeta 4
||/ uf / /1)
f 12 K = 40
40 4" /);;,_ il .{/I
- — ST 1 0117 - SFT 30 —-= SFT
s - STaR/ReST-EM ke 7 o el ~a- STaR/ReST-EM | —&- STaR/ReST-EM
Online RFT l/ Online RFT 20 Online RFT
30 —i lterative RFT —+ lIterative RFT —+ lIterative RFT
s —. BSTR i —- BSBR | o —- BSTR
0 1000 2000 3000 4000 45 Too0 2000 3000 4000 101500 2000 3000 4000
(a) GSM8K (b) MATH (c) Query Effect

Figure 6: Reward @K-S over training steps on GSMS8K (left), MATH (middle). Query Effect over training steps
(right).

In Figures[I]] and[6} we illustrate the dynamic evolution of B-STAR and Online RFT throughout the
self-improvement process. Figure[I|reveals that B-STAR significantly outperforms other approaches
in generating accurate responses through greedy decoding. In addition, Figures [5|and [] demonstrate
that B-STAR effectively balances exploration and exploitation during the self-improvement process,
enabling the model to generate a broader set of accurate solutions while efficiently integrating
feedback from the reward model. This balance is reflected in the higher and more stable Pass@K-S
and Reward @K-S metrics for B-STAR across both datasets.

Table [2] showcases the configurations automatically tuned by B-STAR at different training iterations,
along with their corresponding query effects. During the initial training stages, B-STAR reduces the
sampling temperature to lower values, such as 0.5. As training progresses, the temperature gradually
increases, aligning with our observations in Section[3.2] Moreover, B-STAR dynamically adjusts
the reward thresholds to moderate range, maximizing the query effect and effectively leveraging
feedback from the reward model.

Coding and Commonsense Reasoning. As shown in Figure[T]and [3 all the self-improvement
methods exhibit significant performance improvement after the first iteration. However, as the number
of iterations increases, the growth trends of other baseline methods slows down and eventually
stagnate. In contrast, B-STAR maintains a substantial growth rate and consistently outperforms the
two baselines, SFT and RFT. This suggests that balancing exploration and exploitation is crucial for
achieving stable and efficient self-improvement, further validating the generalizability of B-STAR.

5 DISCUSSION

In this paper, we conduct a comprehensive investigation into the intrinsic mechanisms of self-
improvement, identifying two critical factors: (1) the model’s ability to explore and generate high-
quality responses from a diverse set of candidates (exploration), and (2) the reliability of external
rewards for selecting optimal responses (exploitation). Through quantitative experiments, we track
the evolution of these capabilities throughout the self-improvement process. Our findings indicate
that balance of them is required. To this end, we propose B-STAR, a method that dynamically adjusts
configurations during the self-improvement process to maintain a balance between exploration and
exploitation. Our experiments in mathematical reasoning and coding challenges demonstrate that
B-STaR significantly improves the performance.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-
learning with adaptive hyperparameters. Advances in neural information processing systems, 33:
20755-20765, 2020.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. arXiv preprint arXiv:1703.04782,
2017.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi- Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Hadi S Jomaa, Josif Grabocka, and Lars Schmidt-Thieme. Hyp-rl: Hyperparameter optimization by
reinforcement learning. arXiv preprint arXiv:1906.11527, 2019.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
large language models better reasoners with step-aware verifier. arXiv preprint arXiv:2206.02336,
2022.

11

Under review as a conference paper at ICLR 2025

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Ozgiir Simsek and Andrew G Barto. An intrinsic reward mechanism for efficient exploration. In
Proceedings of the 23rd international conference on Machine learning, pp. 833—840, 2006.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jachoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1-learning rate,
batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. arXiv preprint arXiv:2407.13690, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation. arXiv preprint arXiv:2409.03733, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426-9439, 2024b.

Lilian Weng. The multi-armed bandit problem and its solutions. lilian-
weng.github.io, 2018. URL |https://lilianweng.github.io/posts/
2018-01-23-multi-armed-bandit/|

Wikipedia contributors. Exploration-exploitation dilemma — Wikipedia, the free en-
cyclopedia, 2024. URL https://en.wikipedia.org/w/index.php?title=
Exploration—-exploitation_dilemma&oldid=1247645791. [Online; accessed 26-
November-2024].

Ting Wu, Xuefeng Li, and Pengfei Liu. Progress or regress? self-improvement reversal in post-
training. arXiv preprint arXiv:2407.05013, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

12

https://lilianweng.github.io/posts/2018-01-23-multi-armed-bandit/
https://lilianweng.github.io/posts/2018-01-23-multi-armed-bandit/
https://en.wikipedia.org/w/index.php?title=Exploration-exploitation_dilemma&oldid=1247645791
https://en.wikipedia.org/w/index.php?title=Exploration-exploitation_dilemma&oldid=1247645791

Under review as a conference paper at ICLR 2025

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuangi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

13

Under review as a conference paper at ICLR 2025

Step 500 1000 1500 2000 2500 3000 3500 4000 4500
Sample Number 64 64 64 64 64 64 64 64 64
Temperature 0.65 0.75 1.05 095 1.05 0.85 1.05 1.15 1.05
Reward Thresholds -0.02 -0.04 -0.09 -0.09 -0.14 -0.14 -0.14 -0.15 -0.06
Query Effect 0.500 0.557 0591 0.626 0.652 0.665 0.679 0.682 0.684

Table 3: Finer-grained dynamic changes in B-STAR hyperparameters.

A EXPERIMENT SETUP FOR THE CASE STUDY

Datasets We use the MATH dataset for training and validate the model’s mathematical reasoning
ability using test sets from both the MATH (Hendrycks et al., 2021) and GSM 8K (Cobbe et al.}
2021)datasets. For the MATH dataset, we follow previous setting (Lightman et al., [2023; [Wang et al.|
2024b; [Sun et al., 2024) by using a subset of 500 representative problems (MATHS500) as our test
data. We uniformly sample an additional 500 problems for validation and use the remaining 4,000
problems from the MATH test set along with the original 7,500 training problems as our training
data.

Implementation details For SFT, we use Mistral-7B (Jiang et al.,[2023) as the base model with a
learning rate of 5e-6, a batch size of 128, and train for 3 epochs. After the first epoch, the model
(denoted as M) is used as the starting point for self-improvement. We then proceed with 9 iterations,
where each iteration consists of 500 training steps with a batch size of 128. At the beginning of each
iteration, we sample 32 candidate solutions for each query, using a temperature of 1.0.

For the Process Reward Model (PRM), we automatically generate process annotations following
the MATH-Shepherd approach (Wang et al., 2024b)). Using the SFT model trained for 1 epoch, we
sample 15 solutions for each query in the training set. The SFT model trained for 3 epochs serves as
the completer, decoding 8 solutions per step to annotate the sampled data. This process results in
approximately 270 K process reward annotations. We train the reward model using the Mistral-7B
base, with a learning rate of 2e-6, for 2 epochs. During rewarding, we use the lowest step score in the
solution as the PRM Reward, normalize it to a range of [-1, 1] and combine it with a sparse reward to
form the final reward score. We set the reward threshold to 0.0, selecting only those responses with
final reward scores exceeding this threshold.

B DETAILS OF SELF-IMPROVEMENT

Supervised Fine-tuning Loss

Supervised fine-tuning (SFT) is employed to tailor a LLM to specific downstream tasks. Given a
pre-trained model M parameterized by 6, and a training set D = {(z;, y;)}.,, where z; denotes
the training queries and y; their corresponding responses, the objective is to fine-tune the model. The
training objective of SFT is to minimize the negative log-likelihood of the answers:

Lspr(0) = —E gz)~p logp(y | ;0) 3)

Here, p(y|z; 0) represents the probability of generating answer y given the input query x, as deter-
mined by the model with parameters 6.

Greedy Decoding
Greedy decoding is a deterministic decoding strategy that selects the most probable token at each
time step:

ye = argmaxp(y | 2;y<t;0))
Here, p(y | ; y<+; 6) represents the probability of generating token y given the input query 2 and the

tokens generated so far y;.

Sample Decoding
Sample decoding introduces randomness by sampling from the probability distribution over possible
tokens at each step. Formally, at each time step, the next token y; is sampled as:

ye ~ oy | T39<t;0) (5)

This means that y; is selected based on the likelihood given by the model, introducing variability and
allowing for more diverse outputs.

14

Under review as a conference paper at ICLR 2025

Fixed Reward Function

A fixed reward function r(z,y) is a predefined, static function that does not adapt based on the
training process or model parameters. For instance, binary feedback (e.g., whether a math problem is
solved correctly or a unit test passes) is an example of a fixed reward function.

The fixed reward function can be represented as:

1, if y satisfies a predefined condition (e.g., test passes),
0, otherwise.

r(z,y) = { 6)

Reward Model

A trained reward function r(z, y; ¢) is parameterized by ¢ and adapts based on the training process.
These reward functions (such as output-based reward models (ORMs) or process-based reward
models (PRMs)) are learned from data, where the model learns to assign continuous scores based on
supervision signals.

The trained reward model can be represented as:

r(z,y;) = f(z,y;0) @)

where f(x,y; ¢) is a learned function (e.g., a neural network) that maps the input and the response
1y to a continuous reward score.

Rejection Sampling Fine-tuning

Rejection Sampling Fine-tuning (RFT) first samples multiple outputs from the supervised fine-tuned
LLMs for each query and then trains LLMs on the sampled responses with the correct answer.
Formally, the objective of RFT is to maximize the following objectives:

Lrrr(0) = Exop [I(y) logp(y | 2;0)] (8)

The indicator function I(y) is defined as:

1, if the answer of y is correct,
I(y) = { i ©)

0, if the answer of y is incorrect.

Our evaluation compares several baseline methods: STaR/ResT-EM, Iterative RFT, and Online
RFT. The STaR/ResT-EM approach involves multiple iterations, where each iteration samples from
the latest policy model but resets and retrains the model from scratch. In contrast, Iterative RFT
builds on the previous iteration by inheriting the checkpoint and continuing training from that point.
Online RFT extends this further by inheriting both the checkpoint and the full training state, enabling
seamless progress across iterations. Additionally, we evaluate two variants: "without RM" (Answer)
and "with RM" (Answer+PRM), as described in Section § 23]

C MORE FINE-GRAINED CONFIGURATION ADJUSTMENTS

In Section {.1] we initially set the increments for both the temperature and reward threshold to
0.1. To explore the effects of using finer-grained increments on B-STAR, we further conduct finer-
grained hyper-parameters search with the granularity of 0.05 for temperature and 0.01 for reward
threshold. Table [3]illustrates how B-STAR dynamically adjusts its configuration and the resulting
impact on query effect. A comparison of Table [2]and Table [3|reveals that finer-grained configuration
adjustments introduce more dynamic changes to temperature and reward thresholds throughout the
training process, resulting in significantly higher query effect.

D IMPACT OF FIXED CONFIGURATION COMBINATIONS

To confirm that the improvements achieved by B-STAR are due to its dynamic configuration ad-
justments rather than suboptimal configuration settings, we conduct a grid search to evaluate differ-
ent configuration combinations for Online RFT. The temperature values are selected from the set
[0.5,0.7,0.9,1.1] and the reward thresholds are chosen from [-0.4,-0.2,0.0,0.2,0.4]. For comparison,
we also include two specific configurations: the default combination from our paper, (1.0,0.0), and
the parameters obtained from B-STAR’s final iteration, (1.1,-0.1).

15

Under review as a conference paper at ICLR 2025

24

< <
S 420 39.2 50 S
23
48
S 427 42.0 3
22
k] ©
2 “° 2
o o
@o 40.9 42.6 g S 21
S a4 S
-20
g 40.7 40.9 g
-42
< < -19
S 42.2 42.3 40 S
-18
Temp 0.5 Temp 0.7 Temp 0.9 Temp 1.1 Temp 0.5 Temp 0.7 Temp 0.9 Temp 1.1
(a) GSM 8K (b) MATH

Figure 7: Performance of Online RFT using different configuration combinations, where the horizontal axis
represents changes in temperature and the vertical axis represents changes in reward threshold. B-STAR’s
GSMSK accuracy is 53.1%, while its MATH accuracy is 27.8%.

Configuration GSM 8K MATH
Temp = 1.0; Threshold = 0.0 46.8 232
Temp = 1.1; Threshold = -0.1 40.4 18.2
B-STaR 53.1 27.8

Table 4: Comparison of Online RFT using specific configurations and B-STaR Performance. This table reports
the results with the stable hyperparameter combinations we found in our B-STaR experiments (Temperature =
1.1, Reward thresholds = -0.1) (Table.

Figure [7]and Table []illustrate that while grid search-based configuration combinations offer some
performance improvements for online RFT, they remain less effective compared to the dynamic con-
figuration adjustments enabled by B-STAR. This further emphasizes the critical need for dynamically
balancing exploration and exploitation throughout the training process.

E RELATED WORK OF DYNAMIC HYPERPARAMETER ADJUSTMENT

Dynamic hyperparameter optimization addresses the shortcomings of static configurations, which
cannot adapt to the evolving dynamics of machine learning. Early work by [Loshchilov & Hutter|
(2016) introduced the use of a cosine function to modulate learning rates, ensuring smoother conver-
gence. Building on this, |Baydin et al.|(2017) proposed gradient-based methods to dynamically adjust
learning rates in real-time by analyzing gradient trends, significantly accelerating convergence. Ex-
panding the scope, (2018) introduced a systematic approach to setting hyperparameters, such
as learning rate, batch size, momentum, and weight decay, while highlighting their interdependence
to improve training efficiency. Subsequently, [Jaderberg et al.| (2017)) integrated model and hyperpa-
rameter optimization by asynchronously evolving a population of models through performance-based
selection and mutation. Jomaa et al.|(2019) framed hyperparameter tuning as a sequential decision-
making problem, leveraging reinforcement learning to learn a policy for efficient hyperparameter
selection. More recently, (2020) adopted a meta-learning framework to dynamically
generate task- and step-specific hyperparameters, improving inner-loop optimization in few-shot
learning tasks. Inspired by these innovations, our approach focuses on dynamically monitoring
and balancing configurations between exploration and exploitation, optimizing the synergy between
current policies and reward mechanisms to drive further performance gains.

16

Under review as a conference paper at ICLR 2025

F THEORETICAL JUSTIFICATION FOR EXPLORATION AND EXPLOITATION

The objective of self-improvement can be expressed in the framework of reinforcement learning as
follows:

g = argmax By e gt 1) [R(G:57)] (10)
m

where D represents the dataset, = and y* denote the sampled input and its corresponding ground-truth

answer, respectively, and ¢ is the sampled response. Here, 7} corresponds to the language model in

the ¢-th iteration. R is the reward function. According to the policy gradient algorithm:
VGEx,y*ND,@NTrg [-]] [R(Q, y*)} = Ex,y*ND,g)NW" []2] VGR(Z% y*) IOg 7T(§ [Zﬂx] (1 1)

6

When R(g,y*) is binary, the above equation turns to be simple data selection and supervised
training loss that is exactly what we are doing. Thus, self-improvement can be viewed as a form of
reinforcement learning, where maintaining a balance between exploration and exploitation is crucial
and has been studied for years (Simsek & Barto} 2006} [Sutton & Barto} 2018} [Weng, 2018}, [Wikipedia
contributors, [2024). Conceptually in classic RL, exploration involves exploring the environment
(analogous to reasoning tasks in our paper) by trying random actions (corresponding to sampling
multiple candidates in our work) to gather more information about the environment. Exploitation,
on the other hand, involves utilizing the known information to maximize the reward (similar to how
we use the reward function to select data samples). Insufficient exploration may cause the training
process to stagnate, while insufficient exploitation can lead to instability and large variance during
training.

17

	Introduction
	Monitoring Exploration and Exploitation in Self-Improvement
	Background: Self-Improvement
	The Critical Factors – Exploration and Exploitation
	Dynamics of Exploration and Exploitation – A Case Study in Mathematical Problem Solving

	B-STaR – Balanced Self-Taught Reasoners
	Query Effect
	Configurations of Exploration and Exploitation
	B-STaR

	Main Experiments
	Setup
	Results

	Discussion
	Experiment Setup for the Case Study
	Details of SELF-IMPROVEMENT
	More Fine-Grained Configuration Adjustments
	Impact of Fixed Configuration Combinations
	Related Work of Dynamic Hyperparameter Adjustment
	Theoretical Justification for Exploration and Exploitation

