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ABSTRACT

We present Pyramid Attention Broadcast (PAB), a real-time, high quality and
training-free approach for DiT-based video generation. Our method is founded
on the observation that attention difference in the diffusion process exhibits a
U-shaped pattern, indicating significant redundancy. We mitigate this by broadcast-
ing attention outputs to subsequent steps in a pyramid style. It applies different
broadcast strategies to each attention based on their variance for best efficiency.
We further introduce broadcast sequence parallel for more efficient distributed
inference. PAB demonstrates up to 10.5× speedup across three models compared
to baselines, achieving real-time generation for up to 720p videos. We anticipate
that our simple yet effective method will serve as a robust baseline and facilitate
future research and application for video generation.

latency: 97.5s,  FPS: 2.0

Open-Sora

latency: 9.2s,  FPS: 21.3

(10.5× Faster)

latency: 139.5s,  FPS: 1.6

Open-Sora-Plan

latency: 16.5s,  FPS: 13.4

(8.4× Faster)

latency: 80.5s,  FPS: 0.6

Latte

latency: 9.2s,  FPS: 13.8

(8.7× Faster)

prompt: A serene night scene in a forested area. The first frame ... The second frame ... The third frame ... The video is a 

time-lapse, capturing the transition from day to night, with the lake and forest serving as a constant backdrop. The style 

of the video is naturalistic, emphasizing the beauty of the night sky and the peacefulness of the forest.
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Figure 1: Results and speed comparison of our and original methods. PAB can significantly boost
generation speed while preserving original quality. Latency is measured on 8 H100 GPUs. Video gen-
eration specifications: Open-Sora (2s, 480p), Open-Sora-Plan (2.7s , 512x512), Latte (2s, 512x512).

1 INTRODUCTION

Sora (Brooks et al., 2024) kicks off the door of DiT-based video generation (Peebles & Xie, 2023).
Recent approaches (Ma et al., 2024a; Zheng et al., 2024; Lab & etc., 2024) demonstrate their
superiority compared to CNN-based methods (Blattmann et al., 2023; Wang et al., 2023a) especially
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in generated video quality. However, this improved quality comes from significant costs, i.e., more
memory occupancy, computation, and inference time. Therefore, exploring an efficient approach
for DiT-based video generation becomes urgent for broader GenAI applications (Kumar & Kapoor,
2023; Othman, 2023; Meli et al., 2024).

Model compression methods employ techniques such as distillation (Crowley et al., 2018; Hsieh
et al., 2023), pruning (Han et al., 2015; Ma et al., 2023), quantization (Banner et al., 2019; Lin et al.,
2024), and novel architectures (Lin et al., 2024) to speedup deep learning models and have achieved
remarkably success. Recently, they have also been proven to be effective on diffusion models (Sauer
et al., 2023; Ma et al., 2024b; Chen et al., 2024b). Nevertheless, these methods usually require
additional training with considerable computational resources and datasets, which makes model
compression prohibitive and impractical especially for large-scale pre-trained models.

Most recently, researchers revisit the idea of cache (Smith, 1982; Goodman, 1983; Albonesi, 1999)
to speedup diffusion models. Different from model compression methods, model caching methods
are training-free. They alleviate redundancy by caching and reusing partial network outputs, thereby
eliminating additional training. Some studies utilize high-level convolutional features for reusing
purposes (Ma et al., 2024c) and efficient distributed inference (Li et al., 2024; Wang et al., 2024).
Similar strategies have also been extended to specific attentions (Zhang et al., 2024; Wimbauer et al.,
2024), i.e., cross attention, and standard transformers (Chen et al., 2024c).

However, training-free speedup methods for DiT-based video generation still remains unexplored.
Besides, previous model caching methods are not directly applicable to video DiTs due to two
intrinsic differences: i) Different architecture. The model architecture has shifted from convolutional
networks (Ronneberger et al., 2015) to transformers (Vaswani et al., 2017). This transaction makes
former techniques that aims at convolutional networks not applicable to video generation anymore.
ii) Different components. Video generation relies on three diverse attention mechanisms: spatial,
temporal, and cross attention (Blattmann et al., 2023; Ma et al., 2024a). Such components lead to
more complex dependency and attention interactions, making simple strategies ineffective. They also
increase the time consumed by attentions, making attentions more critical than before.

Figure 2: Comparison of the attention outputs differ-
ences between the current and previous diffusion steps.
Differences are measured by Mean Square Error (MSE)
and averaged across all layers for each diffusion step.

To address these challenges, we take a
closer look at attentions in video DiTs
and empirically obtain two observations
as shown in Figure 2: (i) The attention out-
put differences between adjacent diffusion
steps exhibit a U-shaped pattern, with sta-
bility in the middle 70% steps, indicating
considerable redundancy for attention. (ii)
Within the stable middle segment, differ-
ent attention types also demonstrate vari-
ous degrees of difference. Spatial atten-
tion changes the most with high-frequency
visual elements, temporal attention shows
mid-frequency variations related to move-
ments, and cross-modal attention remains
the most stable, linking text with video con-
tent (Zhang et al., 2024).

Based on these observations, we propose Pyramid Attention Broadcast (PAB), a real-time, high
quality and training-free method for efficient DiT-based video generation. Our method mitigates
attention redundancy by broadcasting the attention outputs to subsequent steps, thus eliminating
attention computation in the diffusion process. Specifically, we apply various broadcast ranges for
different attentions in a pyramid style, based on their stability and differences as shown in Figure
2. We empirically find that such broadcast strategy can also work to MLP layers. Additionally, to
enable efficient distributed inference, we propose broadcast sequence parallel, which significantly
decreases generation time with much lower communication costs.

In summary, to the best of our knowledge, PAB is the first approach that achieves real-time video
generation, reaching up to 35.6 FPS with a 10.5× acceleration without compromising quality. It
consistently delivers excellent and stable speedup across popular open-source video DiTs, including
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Open-Sora (Zheng et al., 2024), Open-Sora-Plan (Lab & etc., 2024), and Latte (Ma et al., 2024a).
Notably, as a training-free and generalized approach, PAB has the potential to empower any future
video DiTs with real-time capabilities.

2 HOW TO ACHIEVE REAL-TIME VIDEO GENERATION

2.1 PRELIMINARIES

Denoising diffusion models. Diffusion models are inspired by the physical process where particles
spread out over time due to random motion, which consists of forward and reverse diffusion processes.
The forward diffusion process gradually adds noise to the data over T steps. Starting with data x0

from a distribution q(x), noise is added at each step:
xt =

√
αtxt−1 +

√
1− αtzt for t = 1, . . . , T, (1)

where αt controls the noise level and zt ∼ N (0, I) is Gaussian noise. As t increases, xt becomes
noisier, eventually approximating a normal distribution N (0, I) when t = T . The reverse diffusion
process aims to recover the original data from the noisy version:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)
where µθ and Σθ are learned parameters defining the mean and covariance.

spatial attn.
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Figure 3: Overview of DiT-based
video generation models, which
compromises spatial and temporal
transformer block. Cross attention
incorporates information from text.

Video generation models. The remarkable success of Sora
(Brooks et al., 2024) has demonstrated the great potential of
diffusion transformers (DiT) (Peebles & Xie, 2023) in video
generation, which leads to a series of research including Open-
Sora (Zheng et al., 2024), Open-Sora-Plan (Lab & etc., 2024),
and Latte (Ma et al., 2024a).

In this work, we focus on accelerating the DiT-based video
generation models. As illustrated in Figure 3, we present the
fundamental architecture of video DiTs. Different from tran-
sitional transformers, the model is composed of two types of
transformer blocks: spatial and temporal. Spatial transformer
blocks capture spatial information among tokens that share the
same temporal index, while temporal transformer blocks han-
dle information across different temporal dimensions. Cross-
attention enables the model to incorporate information from
the conditioning input at each step, ensuring that the generated
output is coherent and aligned with the given context. Note that
cross-attention mechanisms are not included in the temporal
blocks of some video generation models (Ma et al., 2024a).

2.2 ATTENTION REDUNDANCY IN VIDEO DITS

Attention’s rising costs. Video DiTs employ three distinct types of attentions: spatial, temporal, and
cross attention. Consequently, the computational cost of attention in these models is significantly
higher than in previous methods. As Figure 4(b) illustrates, the proportion of time for total attention
in video DiTs is significantly larger than in CNN approaches, which will further increases with larger
video sizes. This dramatic increase poses a significant challenge to the efficiency of video generation.

Unmasking attention patterns. To accelerate costly attention components, we conduct an in-depth
analysis of their behavior. Figure 4(a) shows the visualized differences in attention outputs across
various stages. We observe that for middle segments, the differences are minimal and patterns appear
similar. The first few steps show vague patterns, likely due to the initial arrangement of content. In
contrast, the final steps exhibit significant differences, presumably as the model sharpens features.

Similarity and diversity. To further investigate this phenomenon, we quantify the differences in at-
tention outputs across all diffusion steps, as illustrated in Figure 4(c). Our analysis reveals that the dif-
ferences in attention outputs demonstrate low difference for approximately 70% of the diffusion steps
in the middle segment. Additionally, the variance in their outputs is also low, but still with slight dif-
ferences: spatial attention shows the highest variance, followed by temporal and then cross-attention.

3
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prompt: 

slow pan upward 

of blazing oak fire 

in an indoor 
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s
p

a
ti
a

l 
a
tt
n

.
te

m
p

o
ra

l 
a

tt
n
.

c
ro

s
s
 a

tt
n
.

diff 24-25 diff 14-15 diff 0-1diff 34-35diff 49-50

a) visualized examples of attention difference c) quantitative attn. difference

b) total attn. cost comparison

Figure 4: a) Visualization of attention differences in Latte. diff i-j represents the difference between
step i and step j. b) Comparison of total attention time cost between Stable Video Diffusion (Blattmann
et al., 2023) (U-Net) and Open-Sora (DiT). c) Quantitative analysis of attention differences in Open-
Sora, assessed using mean squared error (MSE). The dashed line represents the average value of the
corresponding attention difference.

2.3 PYRAMID ATTENTION BROADCAST

Figure 5: Overview of Pyramid Attention Broadcast. Our method (shown on the right side) which sets
different broadcast ranges for three attentions based on their differences. The smaller the variation in
attention, the longer the broadcast range. During runtime, we broadcast attention results to the next
several steps (shown on the left side) to avoid redundant attention computations.

Building on the findings above, we propose Pyramid Attention Broadcast (PAB), a real-time, high
quality and training-free method to speedup DiT-based video generation by alleviating redundancy
in attention computations. As shown in Figure 5, PAB employs a simple yet effective strategy
to broadcast the attention output from some diffusion steps to their subsequent steps within the
stable middle segment of diffusion process. Different from previous approaches that reuse attention
scores (Treviso et al., 2021), we choose to broadcast the entire attention module’s outputs, as we
find this method to be equally effective but significantly more efficient. This approach allows us to
completely bypass redundant attention computations in those subsequent steps, thereby significantly
reducing computational costs. This can be formulated as:

Oattn. = {F (Xt), Y
∗
t , · · · , Y ∗

t︸ ︷︷ ︸
broadcast range

, F (Xt−n), Y
∗
t−n, · · · , Y ∗

t−n︸ ︷︷ ︸
broadcast range

, · · · }. (3)

where Oattn. refers to the output of the attention module at all timesteps, F (Xt) denotes the attentions
are calculated at timestep t and Y ∗

t indicates the attentions results are broadcast from timestep t. We
also apply similar strategy to mlp modules as depicted in Appendix A.2.2.

Furthermore, our research reveals that a single strategy across all attention types is still far from
optimal, as each attention vary a lot as shown in Figure 2 and 4(c). To improve efficiency while
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preserving quality, we propose to tailor different broadcast ranges for each attention, as depicted in
Figure 5. The determination of the broadcast ranges is based on two key factors: the rate of change
and the stability of each attention type. Attention types that exhibit more changes and fluctuations
at consecutive step are assigned smaller broadcast ranges for their outputs. This adaptive strategy
enables more efficient handling of diverse attentions within the model architecture.

2.4 BROADCAST SEQUENCE PARALLELISM

Figure 6: Comparison between original sequence parallelism
and ours. When temporal attention is broadcast, we can avoid
all communication.

We introduce broadcast sequence par-
allel, which leverages PAB’s unique
characteristics to improve distributed
inference speed. Sequence parallel
methods (Jacobs et al., 2023; Zhao
et al., 2024) distributes workload
across GPUs, thus reducing genera-
tion latency. But they incur significant
communication overhead for tempo-
ral attention as shown in Figure 6. By
broadcasting temporal attention, we
naturally eliminate extra communications, substantially reducing overhead without quality loss,
which enables more efficient, scalable distributed inference for real-time video generation.

3 EXPERIMENTS

In this section, we present our experimental settings, followed by our results and ablation studies. We
then evaluate the scaling capabilities of our approach and visualize the results.

3.1 EXPERIMENTAL SETUP

Models. We select three state-of-the-art open-source DiT-based video generation models including
Open-Sora-v1.2 (Zheng et al., 2024), Open-Sora-Plan-v1.1.0 (Lab & etc., 2024), and Latte-1.0 (Ma
et al., 2024a) as our experimental models.

Metrics. Following previous works (Li et al., 2024; Ma et al., 2024a), we evaluate video quality
using the following metrics: VBench (Huang et al., 2024), Peak Signal-to-Noise Ratio (PSNR),
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and Structural Similarity
Index Measure (SSIM) (Wang & Bovik, 2002). VBench evaluates video generation quality, aligning
with human perception. PSNR quantifies pixel-level fidelity between outputs, while LPIPS measures
perceptual similarity, and SSIM assesses the structural similarity. The details of evaluation metrics
are presented in Appendix A.4.

Baselines. We employ ∆-DiT (Chen et al., 2024c) and T-GATE (Zhang et al., 2024), which are both
training-free caching methods to accelerate DiTs. We show details in Appendix A.3.

Implementation details. All experiments are carried out on the NVIDIA H100 80GB GPUs with
Pytorch. We enable FlashAttention (Dao et al., 2022) by default for all experiments.

3.2 MAIN RESULTS

Quality results. Table 1 presents quality comparisons between our method and baselines across
four metrics and three models. We generate videos based on VBench’s (Huang et al., 2024) prompts.
Then evaluate VBench for each method, and calculate other metrics including PSNR, LPIPS, and
SSIM with respect to the original results. PABαβγ denotes broadcast ranges of spatial (α), temporal
(β), and cross (γ) attentions. More experiments on other datasets can be found in Appendix B.1.

Based on the results, we make the following observations: i) Our method achieves superior quality
results compared with two baselines while simultaneously achieving significantly higher acceleration
by up to 1.58× on a single GPU. This demonstrates our method’s ability to improve efficiency with
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model method VBench (%) ↑ PSNR ↑ LPIPS ↓ SSIM ↑ FLOPs (T) ↓ latency (s) ↓ speedup

Open-Sora

original 79.22 – – – 3230.24 26.54 –

∆-DiT 78.21 11.91 0.5692 0.4811 3166.47 25.87 1.03×
T-GATE 77.61 15.50 0.3495 0.6760 2818.40 22.22 1.19×

PAB246 78.51 27.04 0.0925 0.8847 2657.70 19.87 1.34×
PAB357 77.64 24.50 0.1471 0.8405 2615.15 19.35 1.37×
PAB579 76.95 23.58 0.1743 0.8220 2558.25 18.52 1.43×

Open-Sora-
Plan

original 80.39 – – – 12032.40 46.49 –

∆-DiT 77.55 13.85 0.5388 0.3736 12027.72 46.08 1.01×
T-GATE 80.15 18.32 0.3066 0.6219 10663.32 39.37 1.18×

PAB246 80.30 18.80 0.3059 0.6550 9276.57 33.83 1.37×
PAB357 77.54 16.40 0.4490 0.5440 8899.32 31.61 1.47×
PAB579 71.81 15.47 0.5499 0.4717 8551.26 29.50 1.58×

Latte

original 77.40 – – – 3439.47 11.18 –

∆-DiT 52.00 8.65 0.8513 0.1078 3437.33 10.85 1.02×
T-GATE 75.42 19.55 0.2612 0.6927 3059.02 9.88 1.13×

PAB235 76.32 19.71 0.2699 0.7014 2767.22 8.91 1.25×
PAB347 73.69 18.07 0.3517 0.6582 2648.45 8.45 1.32×
PAB469 73.13 17.16 0.3903 0.6421 2576.77 8.21 1.36×

Table 1: Quality results on single GPU. PABαβγ denotes broadcast ranges of spatial (α), temporal
(β), and cross (γ) attentions. Video generation specifications: Open-Sora (2s, 480p), Open-Sora-Plan
(2.7s, 512x512), Latte (2s, 512x512). PSNR, SSIM, and LPIPS are calculated against the original
model results. FLOPs indicate floating-point operations per video generation.

negligible quality loss. ii) Our method consistently performs well across all three models, which
utilize diverse training strategies and noise schedulers, demonstrating its generalizability.

Speedups. Figure 7 illustrates the significant speedup achieved by our method when leveraging
multiple GPUs with broadcast sequence parallelism. Our method demonstrates almost linear speedups
as the GPU number increases across three different models. Notably, it achieves an impressive 10.50×
speedup when utilizing 8 GPUs. These results highlight the significant reduction in communication
overhead and underscore the efficacy of our broadcast sequence parallelism strategy.

10.50×
6.08×

3.22×

1.33×

8.43×
4.79×

2.53×

1.38×

8.70×4.72×

2.46×

1.35×

Figure 7: Speedups. We evaluate the latency and speedup achieved by PAB246/PAB235 (the strategy
with best quality, but less speedup) for single video generation across up to 8 NVIDIA H100 GPUs.
The results are presented for three models utilizing broadcast sequence parallelism. The multiple
GPUs’ speedup is compared with single GPU’s speed.

3.3 ABLATION STUDY

To thoroughly examine the characteristics of our method, we conduct extensive ablation studies.
Unless otherwise stated, we apply PAB246 (the best quality, but less speedup) to Open-Sora for
generating 2s 480p videos using a single NVIDIA H100 GPU.

Evaluation of components. As shown in Table 2, we compare the contribution of each component
in terms of speed and quality. We disable the broadcast strategy for each component individually
and measure the VBench scores and increase in latency. While the impacts on VBench scores
are negligible, all components contribute to the overall speedup. Spatial and temporal attentions
yield the most computational savings, as they address more extensive redundancies compared to
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Table 2: Evaluation of components. w/o indicates
the broadcast strategy is disabled only for that com-
ponent. ∆ represents the corresponding increased
latency compared with all components.

broadcast strategy latency (s) ∆ VBench (%) ↑

w/o spatial attn. 21.74 +1.87 78.45
w/o temporal attn. 23.95 +4.08 78.98
w/o cross attn. 20.98 +1.11 78.58
w/o mlp 20.27 +0.40 78.59

all components 19.87 – 78.51

Table 3: Broadcast object comparison. We
compare the speedup and effect for different
broadcasting object. attention outputs refer to
the final output of attention. attention scores
denotes attention score map.

broadcast object VBench (%) latency (s)

original 79.22 26.54

attention scores 78.53 29.12
attention outputs 78.51 19.87

other components. Cross attention follows, offering moderate improvements despite its relatively
lightweight computation. The mlp shows limited speedup due to its inherently low redundancy.

Effect of attention broadcast range. We conduct a comparative analysis of different broadcast
ranges for spatial, temporal, and cross attentions. As illustrated in Figure 8, our findings reveal a clear
inverse relationship between broadcast range and video quality. Moreover, we observe that the effect
of different broadcast range varies across different attention, suggesting that each type of attention
has its own distinct characteristics and requirements for optimal performance.
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Figure 8: Evaluation of attention broadcast ranges. Comparison of latency and video quality across
varying attention broadcast ranges in spatial, temporal, and cross attentions.

What to broadcast in attention? While previous works (Treviso et al., 2021) typically reuse
attention scores, we find that broadcasting attention outputs is superior. Table 3 compares the
speedup and video quality achieved by broadcasting attention scores versus attention outputs. Our
results demonstrate that broadcasting attention outputs maintains similar quality while offering much
better efficiency, for two primary reasons:

i) Attention output change rates are low, as the accumulated results after attention aggregation
remain similar despite pixel-level changes. This further indicates significant redundancy in attention
computations. ii) Broadcasting attention scores prevents the use of efficient attention kernels such as
FlashAttention (Dao et al., 2022). It also requires complete attention-related computations, including
attention calculation and linear projection, which are avoided when broadcasting outputs.

3.4 SCALING ABILITY

To evaluate our method’s scalability, we conduct a series of experiments. In each experiment, we
apply PAB246 (the best quality, but less speedup) to Open-Sora as our baseline configuration, change
only the video sizes, parallel method and GPU numbers.

Scaling to multiple GPUs. We compare the scaling efficiency with and without our method using 8
GPUs in Table 4 for four sequence parallelism methods including Megatron-SP (Korthikanti et al.,
2023), DS-Ulysses (Jacobs et al., 2023) and DSP (Zhao et al., 2024). Our broadcast sequence parallel
is implemented based on DSP, and is also adaptable to other methods. The results demonstrate
that: i) PAB significantly reduces communication volume for all sequence parallelism methods.
Furthermore, our method achieves the lowest communication cost compared to other techniques,
and achieving near-linear scaling on 8 GPUs. With a larger temporal broadcast range, it can yield
even greater performance improvements. ii) Applying sequence parallelism alone is insufficient for
optimal performance because of the significant communication overhead across multiple devices.
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Table 4: Communication and latency comparison of dif-
ferent sequence parallelism methods on 8 NVIDIA H100
GPUs with and without our method. original refers to our
method on single GPU. comm. represents the total commu-
nication volume required to generate a single 8s 480p video.

method
w/o PAB w/ PAB

comm. (G) latency (s) comm. (G) latency (s)

original – 97.51 – 73.25

Megatron-SP 184.63 17.17 104.62 14.78
DS-Ulysses 46.16 12.34 26.16 9.85
DSP 23.08 12.01 – –

ours – – 13.08 9.29

4.0s (102 frames), 480p
0.0

7.8

15.6

23.5

31.3

39.1

FP
S

20.67

35.56

4.0s (102 frames), 720p
0.0

3.6

7.1

10.7

14.3

17.8

8.79

16.22

ours (8 devices) ours (16 devices)

Figure 9: Real-time video generation
performance. We evaluate our methods’
speed in frames per second (FPS) using
8 and 16 NVIDIA H100 GPUs for 480p
and 720p videos.
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1.31×
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5.61×
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1.26×

Figure 10: Scaling video size. Validating our method’s acceleration and scaling capabilities on single
and multi-GPU setups for generating larger videos.

Scaling to larger video size. Currently, most models are limited to generating short, low-resolution
videos. However, the ability to generate longer, higher-quality videos is both inevitable and necessary
for future applications. To evaluate our model’s capacity to accelerate processing for larger video
sizes, we conducted tests across various video lengths and resolutions, as illustrated in Figure 10. Our
results demonstrate that as video size increases, we can deliver stable speedup on a single GPU and
better scaling capabilities when extending to multiple GPUs. These findings underscore the efficacy
and potential of our method for processing larger video sizes.

Real-time video generation. We evaluate our method’s speed in terms of FPS on 8 and 16 devices.
Since in inference, the batch size of diffusion is often 2 because of CFG. Therefore, we split the batch
first and apply sequence parallelism to each batch; in this way, PAB can extend to 16 devices with
almost linear acceleration. As shown in Figure 9, we can achieve real-time with very high FPS video
generation for 480p videos on 8 devices and even for 720p on 16 devices. Note that with acceleration
techniques like Torch Compiler (Ansel et al., 2024), we are able to achieve even better speed.

Runtime breakdown. To further investigate how our method achieves such significant speedup, we
provide a breakdown of the time consumption for various components, as shown in Figure 11. The
analysis reveals that the attention calculation itself does not consume a large portion of time because
the sequence length for attention will be much shorter if we do attention separately for each dimension.
However, attention-related operations, such as normalization and projection, are considerably more
time-consuming than the attention mechanism itself, which mainly contribute to our speedup.

0 3 6 9 12 15 18 21 24 27 30

latency (s)

ours

org.

spatial attn.
spatial attn. related

temporal attn.
temporal attn. related

cross attn.
cross attn. related

mlp other

Figure 11: Runtime breakdown for generating a 2s 480p video. attn. denotes the time consumed by
attention operations alone, while attn. related includes the time for additional operations associated
with attention, such as normalization and projection.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3.5 VISUALIZATION

As shown in Figure 12, we visualize the video results generated by our method compared to the
original model. The generation specifications are the same with those in Table 1, and we employ the
highest quality strategy outlined in the table. The visualized results demonstrate that our method
maintains the original quality and details.

prompt: white smoke on black background. simply drop it in and change its blending mode to screen or add.

Open-Sora
OursOriginal

Open-Sora-Plan
OursOriginal

Latte
OursOriginal

prompt: summer landscape on a mountain lake. small rustic wooden pier on the water waves. morning and sunlight through the clouds waves, in the background of the mountain in the fog.

prompt: korean popular dish, samgyopsal, is being baked on a stone plate with kimchi. close-up, macro shot.

prompt: slow pan upward of blazing oak fire in an indoor fireplace.

prompt: snow falling over multiple houses and trees on winter landscape against night sky. christmas festivity and celebration concept.

Figure 12: Qualitative results. We compare the generation quality between our method and original
model. The figures are randomly sampled from the generated video.

4 RELATED WORK

4.1 VIDEO GENERATION

Early approaches of video generation primarily leveraged GANs (Goodfellow et al., 2014), VA-
VAE (Van Den Oord et al., 2017), autoregressive Transformer (Rakhimov et al., 2020) and convolution-
based diffusion models (Ho et al., 2022b). Recently Video generation has seen remarkable progress
driven by diffusion models, which iteratively refine noisy inputs to generate high-fidelity video
frames (Ho et al., 2022b; An et al., 2023; Esser et al., 2023; Chen et al., 2024a). While many works
focus on conv-based diffusions (Ho et al., 2020; Harvey et al., 2022; Singer et al., 2022; Ho et al.,
2022a; Luo et al., 2023; Wang et al., 2023b; Zhang et al., 2023) and achieve good results, researchers
begin to explore Transformer-based diffusion models for video generation (Zheng et al., 2024; Lab &
etc., 2024; Ma et al., 2024a) because of scalability and efficiency (Peebles & Xie, 2023).
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4.2 DIFFUSION MODEL ACCELERATION

Advancements in video diffusion models have demonstrated their potential for high-quality video
generation, yet their practical application is often limited by slow inference speeds. Previous research
about speeding up diffusion model inference can be broadly classified into four categories.

Scheduler. Reducing the sampling steps with schedulers has been explored through methods such as
DDIM (Song et al., 2020), which enables fewer sampling steps without compromising generation
quality. Other works also explore efficient solver of ODE or SDE (Song et al., 2021; Jolicoeur-
Martineau et al., 2021; Lu et al., 2022; Karras et al., 2022; Lu et al., 2023), which employs a pseudo
numerical method to achieve faster sampling.

Compression. Researchers aimed at reducing the workload and inference time at each sampling
step, including distillation (Salimans & Ho, 2022; Li et al., 2023d), quantization (Li et al., 2023c; He
et al., 2023; So et al., 2023a; Shang et al., 2023) and joint optimization (Li et al., 2023a; Liu et al.,
2023). However, these methods demand extra training, using significant resources and data, making
compression impractical especially for large-scale pre-trained models.

Caching. Recently, researchers have revisited the concept of caching (Smith, 1982) in video
generation to achieve training-free acceleration. Some works (Ma et al., 2024c; Li et al., 2023b;
Wimbauer et al., 2024; So et al., 2023b) reusing high-level features in U-Net structures while updating
only the low-level ones based on the observation that high-level features typically undergo minimal
changes between consecutive steps. However, these convolutional-based methods can not directly
apply to video DiTs. For transformer architectures, T-GATE (Zhang et al., 2024) introduce caching
different attention at different stages, while ∆-DiT (Chen et al., 2024c) propose to cache feature
offsets of DiT blocks. Nevertheless, neither approach effectively addresses the unique attention
features present in video DiTs, resulting in suboptimal performance.

Parallelism. Sequence parallelism techniques (Korthikanti et al., 2023; Jacobs et al., 2023; Zhao
et al., 2024) have been proposed to reduce generation latency through distributed inference. However,
these methods introduce additional communication costs, particularly when processing large videos.
To address this issue, some works (Li et al., 2024; Wang et al., 2024) leverage convolutional features
in distributed inference to reduce communication overhead. Nevertheless, these approaches are still
limited to convolutions.

5 DISCUSSION AND CONCLUSION

In this work, we introduce Pyramid Attention Broadcast (PAB), a novel real-time, high quality,
and training-free approach to enhance the efficiency of DiT-based video generation. PAB reduces
attention redundancy through pyramid-style broadcasting by exploiting the U-shaped attention pattern
in the diffusion process. Moreover, our broadcast sequence parallel significantly improves distributed
inference efficiency. Overall, PAB achieves up to 10.5× speedup with negligible quality loss and
consistently outperforms baselines across various models. We believe that PAB provides a simple yet
effective foundation for advancing future research and practical applications in video generation.

Limitation. Our approach shows promise but has some limitations. PAB’s performance may vary
depending on the input data’s complexity, especially with dynamic scenes. The fixed broadcast
strategy might not work best for all video types and tasks. Also, we only focused on reducing
redundancy in attention mechanisms, not other parts of the model like Feed-Forward Networks. Future
work could explore ways to make PAB more flexible and effective across different applications, such
as developing adaptive strategies and expanding redundancy reduction to other model components.

Future works. Our work opens several promising avenues for future research. One key direction is
extending the to a wider range of video models with diverse architectures could broaden its applica-
bility and impact. Another area is the substantial redundancy observed in MLPs, which constitute a
large proportion of the networks, remains under-explored and warrants further investigation. Further-
more, our findings regarding significant redundancy in attention mechanisms suggest potential for
developing more efficient attention algorithms specifically tailored for video generation, potentially
leading to improved computational efficiency for both training and inference.
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Real-Time Video Generation with Pyramid Attention Broadcast

Appendix

We organize our appendix as follows:

Experimental Settings:

• Section A.1: Models

• Section A.2: PAB generation settings

– Section A.2.1: Attention
– Section A.2.2: MLP

• Section A.3: Baselines generation settings

• Section A.4: Metrics

Additional Experimental Results and Findings:

• Section B.1: Additional quantitative results

• Section B.2: Findings for MLP broadcast

• Section B.3: Results for long, complex and dynamic scenes

• Section B.4: Breakdown of PAB’s contribution with multiple GPUs

• Section B.5: Breakdown of time cost within attention module

• Section B.6: Workflow comparison for broadcasting different objects

• Section B.8: Extension to Text-to-Image model

• Section B.7: Various metrics for evaluating redundancy

Guidelines for supplementary materials:

• Section C.1: Supplementary materials overview

• Section C.2: Getting started with code

A EXPERIMENT SETTINGS

A.1 MODELS

As we focus on DiT-based video generation, three popular state-of-the-art open-source DiT-based
video generation models are selected in the evaluation, including Open-Sora (Zheng et al., 2024),
Open-Sora-Plan (Lab & etc., 2024), and Latte (Ma et al., 2024a). Open-Sora-Plan (Lab & etc., 2024)
utilizes CausalVideoVAE to compress visual representations and DiT with the 3D full attention
module. Open-Sora (Zheng et al., 2024) combines 2D-VAE with 3D-VAE for better video
compression and uses an SD-DiT block in the diffusion process. Latte (Ma et al., 2024a) uses spatial
Transformer blocks and temporal Transformer blocks to capture video information in the diffusion
process. The inference configs of three models are shown in Table 5, which strictly follow the official
settings.

Table 5: The inference config of three models.

model scheduler inference steps

Open-Sora RFLOW 30
Open-Sora-Plan PSNR 150

Latte DDIM 50
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Table 6: The attention broadcast configuration of PAB. diffusion timesteps represents the start and
end diffusion timestep of the broadcast, where 1000 is the beginning and 0 is the end.

model method
broadcast range

diffusion timesteps
spatial temporal cross

Open-Sora
PAB246 2 4 6

[930-450]PAB357 3 5 7
PAB579 5 7 9

Open-Sora-Plan
PAB246 2 4 6

[850-100]PAB357 3 5 7
PAB579 5 7 9

Latte
PAB235 2 3 5

[800-100]PAB347 3 4 7
PAB469 4 6 9

A.2 PAB GENERATION SETTINGS

A.2.1 ATTENTION

In Table 6 we demonstrate the detailed settings of attention broadcast in experiments.

A.2.2 MLP

As demonstrated in Section 2.3 and Figure 4(c), the attention outputs exhibit low difference across
approximately 70% of the diffusion steps within the middle segment. Spatial attention shows the
highest variance, followed by temporal attention and, finally, cross-attention. Empirically, we
perform a similar analysis on the MLP module to investigate whether it also involves redundant
computations during the diffusion process.

In our current evaluation experiments, we select the skippable MLP modules for each model through
empirical analysis in Appendix B.2. We show our detailed configuration for MLP modules in Table 7.

Table 7: The MLP broadcast configuration of PAB. diffusion timesteps represents the starting diffusion
timestep of the broadcast and the Block indicates the index of the broadcast block.

model diffusion timesteps block broadcast range

Open-Sora [864, 788, 676] [0, 1, 2, 3, 4] 2

Open-Sora-Plan
[738, 714, 690, 666, 642,

[0, 1, 2, 3, 4, 5, 6] 2618, 594, 570, 546, 522,
498, 474, 450, 426]

Latte [720, 640, 560, 480, 400] [0, 1, 2, 3, 4] 2

A.3 BASELINES GENERATION SETTINGS

We employ ∆-DiT (Chen et al., 2024c) and T-GATE (Zhang et al., 2024), which are cache-based
methods as baselines in the evaluation.

Table 8: Configuration of ∆-DiT. b represents the gate step of two stages and k is the cache interval.
Block range refers to the index of the front blocks that are skipped. Block range refers to the specific
indices of the blocks in the DiT-based video generation model that are skipped during the process.
For example, Block range [0, 2] means that the first three blocks in the model block 0, block 1, and
block 2—are skipped.

∆-DiT diffusion steps b k block range

Open-Sora 30 25 2 [0, 5]
Open-Sora-Plan 150 148 2 [0, 1]
Latte 50 48 2 [0, 2]
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∆-DiT (Chen et al., 2024c) uses the offset of hidden states (the deviations between feature maps)
rather than the feature maps themselves. ∆-DiT is applied to the back blocks in the DiT during the
early outline generation stage of the diffusion model and on front blocks during the detail generation
stage. The stage is bounded by a hyperparameter b, and the cache interval is k. Since the source code
for ∆-DiT is not publicly available, we implement the baseline based on the methods in the paper.
Additionally, we selected the parameters based on experimental results on video generation models.
We only jump the computation of the front blocks during the Outline Generation stage. The detailed
configuration is shown in Table 8.

Table 9: Configuration of T-GATE. m represents the gate step of the Semantics-Planning Phase and
the Fidelity-Improving Phase, and k is the cache interval.

T-GATE diffusion steps m k

Open-Sora 30 12 2
Open-Sora-Plan 150 90 3
Latte 50 20 2

T-GATE (Zhang et al., 2024) reuses self-attention in semantics-planning phase and then skip
cross-attention in the fidelity-improving phase. T-GATE segments the diffusion process into two
phases: the semantics-planning phase and the fidelity-improving phase. Suppose m represent the
gate step of the transition between phases. Before gate step m, during the Semantics-Planning Phase,
cross-attention (CA) remains active continuously, whereas self-attention (SA) is calculated and
reused every k steps following an initial warm-up period. After gate step m, cross-attention is
replaced by a caching mechanism, with self-attention continuing to function. We present details in
Table 9.

A.4 METRICS

In this work, we evaluate our methods using several established metrics to comprehensively assess
video quality and similarity. On the one hand, we assess video generation quality by the benchmark
VBench, which is well aligned with human perceptions.

VBench. VBench (Huang et al., 2024) is a benchmark suite designed for evaluating video generative
models, which uses a hierarchical approach to break down ’video generation quality’ into various
specific, well-defined dimensions. Specifically, VBench comprises 16 dimensions in video
generation, including Subject Consistency, Background Consistency, Temporal Flickering, Motion
Smoothness, Dynamic Degree, Aesthetic Quality, Imaging Quality, Object Class, Multiple Objects,
Human Action, Color, Spatial Relationship, Scene, Appearance Style, Temporal Style, Overall
Consistency. In experiments, we adopt the VBench evaluation framework and utilize the official code
to apply weighted scores to assess generation quality.

On the other hand, we also evaluate the performance of the accelerated video generation model by
the following metrics. We compare the generated videos from the original model (used as the
baseline) with those from the accelerated model. The metrics are computed on each frame of the
video and then averaged over all frames to provide a comprehensive assessment.

Peak Signal-to-Noise Ratio (PSNR). PSNR is a widely used metric for measuring the quality of
reconstruction in image processing. It is defined as:

PSNR = 10 · log10
(

R2

MSE

)
, (4)

where R is the maximum possible pixel value of the image and MSE denotes the Mean Squared
Error between the reference image and the reconstructed image. Higher PSNR values indicate better
quality, as they reflect a lower error between the compared images. For video evaluation, PSNR is
computed for each frame and the results are averaged to obtain the overall PSNR for the video.
However, PSNR primarily measures pixel-wise fidelity and may not always align with perceived
image quality.
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Learned Perceptual Image Patch Similarity (LPIPS). LPIPS (Zhang et al., 2018) is a metric
designed to capture perceptual similarity between images more effectively than pixel-based measures.
It is based on deep learning models that learn to predict perceptual similarity by training on large
datasets. It measures the distance between features extracted from pre-trained deep networks. The
LPIPS score is computed as:

LPIPS =
∑
i

αi · Dist(Fi(I1), Fi(I2)), (5)

where Fi represents the feature maps from different layers of the network, I1 and I2 are the images
being compared, Dist is a distance function (often L2 norm), and αi are weights for each feature
layer. Lower LPIPS values indicate higher perceptual similarity between the images, aligning better
with human visual perception compared to PSNR. LPIPS is calculated for each frame of the video
and averaged across all frames to produce a final score.

Structural Similarity Index Measure (SSIM). SSIM (Wang & Bovik, 2002) evaluate the similarity
between two images by considering changes in structural information, luminance, and contrast.
SSIM is computed as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (6)

where µx and µy are the mean values of image patches, σ2
x and σ2

y are the variances, σxy is the
covariance, and C1 and C2 are constants to stabilize the division with weak denominators. SSIM
values range from -1 to 1, with 1 indicating perfect structural similarity. It provides a measure of
image quality that reflects structural and perceptual differences. For video evaluation, SSIM is
calculated for each frame and then averaged over all frames to provide an overall similarity measure.

B ADDITIONAL EXPERIMENTAL RESULTS AND FINDINGS

B.1 ADDITIONAL QUANTITATIVE RESULTS.

model method
PSNR ↑ LPIPS ↓ SSIM ↑

w/ g.t. w/ org. w/ g.t. w/ org. w/ g.t. w/ org.

Open-Sora

original 8.62 – 0.7582 – 0.3506 –

∆-DiT 9.44 12.01 0.7397 0.5263 0.3387 0.4676
T-GATE 8.38 14.22 0.7658 0.3951 0.3811 0.6286

PAB246 8.69 26.53 0.7652 0.1001 0.3606 0.8635
PAB357 8.79 24.12 0.7719 0.1597 0.3695 0.8133
PAB579 8.84 22.48 0.7821 0.2129 0.3741 0.7745

Open-Sora-
Plan

original 8.32 – 0.7701 – 0.2619 –

∆-DiT 7.88 12.26 0.7719 0.5572 0.1884 0.3865
T-GATE 8.39 13.60 0.7734 0.4750 0.2436 0.4544

PAB246 8.65 19.84 0.7653 0.2575 0.2759 0.6847
PAB357 8.87 17.39 0.7637 0.3814 0.2766 0.5767
PAB579 9.20 16.06 0.7610 0.4905 0.3025 0.4831

Latte

original 8.83 – 0.7670 – 0.3008 –

∆-DiT 7.09 9.64 0.8071 0.7787 0.0741 0.1567
T-GATE 9.27 19.13 0.7655 0.2585 0.3202 0.6416

PAB235 9.94 19.18 0.7743 0.2667 0.3742 0.6461
PAB347 10.38 17.49 0.7775 0.3577 0.4032 0.5813
PAB469 10.60 16.76 0.7832 0.3934 0.4190 0.5619

Table 10: Quality results on webvid. Latency and speedup are calculated on one GPU. PABαβγ

denotes broadcast ranges of spatial (α), temporal (β), and cross (γ) attentions. Video generation
specifications: Open-Sora (2s, 480p), Open-Sora-Plan (2.7s, 512x512), Latte (2s, 512x512). w/ g.t.
indicates evaluating the metrics based on the ground-truth videos, while w/ org. means with the
original methods’ outputs.
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In Section 3.2, we present results only based on Vbench prompts. To further evaluate the efficacy of
our method, we expand our analysis using a subset of 1000 videos from WebVid (Bain et al., 2021), a
large-scale text-video dataset sourced from stock footage websites. We apply PAB to this subset,
assessing its performance across three models and four metrics. The results of this additional
experimentation are summarized in Table 10.

B.2 FINDINGS FOR MLP BROADCAST.
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Figure 13: Quantitative analysis of MLP module differences in Latte by mean squared error (MSE)
of the MLP output across continuous time steps. In Figures (a) and (c), we present the results for the
spatial MLP, while Figures (b) and (d) illustrate the outcomes for the temporal MLP. Additionally, in
Figure (a) and (b), we show the average MSE across all layers. In Figures (c) and (d), we select the
block 0, 8, 16, and 24 to illustrate the characteristics of MLPs across different layers.

We present a quantitative analysis of the FFN output differences in Latte, Open-Sora, and
Open-Sora-Plan, using mean squared error (MSE) as the evaluation metric in Figure 13, 14 and 15.

We observe that during the intermediate stages of diffusion, the MSE exhibits a periodic spiking
pattern, where local maxima occurs at specific timesteps, followed by consistently low values in
subsequent timesteps. Therefore, we can retain the MLP output at the peak and reuse it during the
following low-value timesteps. Additionally, by analyzing the FFN modules across different blocks
in Figure, we found that the output differences in the lower layers’ MLPs are relatively small, while
those in the upper layers’ MLPs are significantly larger. Based on these findings, we empirically
selected MLP modules to broadcast and corresponding broadcast ranges for each model, including
Latte, Open-Sora, and Open-Sora-Plan.

B.3 RESULTS FOR LONG, COMPLEX AND DYNAMIC SCENES.

In this section, we evaluate the quantitative and qualitative results for PAB when dealing with long,
complex and dynamic scenes.

Quantitative results. For model settings, we specifically use Open-Sora to generate videos of 16
seconds duration. This longer duration purposefully challenges our method with more complex and
dynamic scenes. Open-Sora is the only model used as other models are restricted to fixed short
lengths.

For dataset, from VBench’s comprehensive 16-dimensional evaluation metrics, we strategically
select 7 categories that best assess complex and dynamic scenes. Total performance scores are
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(b) Average MSE of temporal MLP

548 636 708 764 808 848 880
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

Block 0
Block 8
Block 16
Block 24

(c) MSE of different layers of spatial MLP
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Figure 14: Quantitative analysis of MLP module differences in Open-Sora by mean squared error
(MSE) of the MLP output across continuous time steps. Figures (a) and (c) present the results for the
spatial MLP, while Figures (b) and (d) show the outcomes for the temporal MLP. Figures (a) and (b)
display the average MSE across all layers, and Figures (c) and (d) examine block 0, 8, 16, and 24 to
showcase the MLP characteristics across different layers.
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Figure 15: Quantitative analysis of MLP module differences in Open-Sora-Plan by mean squared
error (MSE) of the MLP output across continuous time steps. In Figures (a) and (c), the results for
the spatial MLP are shown, while Figures (b) and (d) show the results for the temporal MLP. Figures
(a) and (b) display the average MSE across all layers, and Figures (c) and (d) highlight block 0, 8, 16,
and 24 to illustrate the MLP behavior across different layers.

calculated based exclusively on these 7 categories to provide focused evaluation of complex and
dynamic capabilities.

As shown in Table 11, we specifically test our method under the most challenging conditions by
using the longest videos and selecting the more complex tasks in the dataset. The results show that
PAB performs consistently well, with PAB246 showing comparable performance.
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Table 11: Quantitative results of Open-Sora (16s 480p) on subset dimensions of Vbench datasets for
long, complex and dynamic scenes.

method human overall imaging aesthetic dynamic motion subject totalaction consistency quality quality degree smoothness consistency

original 92.67 73.65 61.40 56.59 21.07 96.43 90.26 74.54
PAB246 91.33 73.43 60.18 56.24 19.91 97.05 90.08 73.98
PAB357 89.33 72.53 58.17 54.86 19.45 96.40 88.35 72.58
PAB579 88.33 72.36 57.92 54.63 18.05 96.50 88.32 72.15

What’s particularly encouraging is that PAB maintains good scores even in the most difficult
dimensions we tested, like human action and dynamic degree. This shows that our model stays
reliable even under demanding conditions.

Qualitative results. As shown in Figure 16, our method demonstrates robust performance in
processing dynamic, complex scenes while maintaining high-quality output.

Figure 16: Qualitative results of Open-Sora (16s 480p) on subset dimensions of Vbench datasets for
long, complex and dynamic scenes.

B.4 BREAKDOWN OF PAB’S CONTRIBUTION WITH MULTIPLE GPUS

As shown in Table B.4, we evaluate the independent contribution of PAB from computation and
communication and come with the following conclusions:

• With PAB’s computation speedup (save computation by attention broadcast), the latency is
further reduced by 24% compared with DSP only.

• With PAB’s communication speedup (can save all communication cost when temporal
attention is skipped), the latency can be further reduced by 5.0% compared with
computation speedup only.

• Since we only evaluate based on PAB246 (better quality but less speedup), PAB is able
achieve more speedup if using more aggressive strategies.

Table 12: Breakdown of PAB’s contribution with multiple GPUs using Open-Sora (8s 480p).

method latency (s)

original (1 gpu) 96.90
DSP (8 gpus) 11.53
DSP + PAB (with computation speedup) (8 gpus) 9.29
DSP + PAB (with computation and communication speedup) (8 gpus) 8.85
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B.5 BREAKDOWN OF TIME COST WITHIN ATTENTION MODULE

As shown in Figure 11, the attention operation takes only a small proportion of time in attention
module for 2s 480p Open-Sora. In this section, we further investigate what the main cost in attention
module.

As shown in Table 13;14;15, our findings show that attention operation isn’t actually the main thing
slowing down the model. The real bottleneck comes from other parts - specifically layernorm and
positional embedding. Even though these operations have fewer calculations and FLOPs, they run
much slower in practice. Because modern GPUs are built to handle big matrix calculations super
efficiently, but they struggle with operations that work on one element at a time, which is exactly
what LayerNorm and positional embedding do.

Table 13: Breakdown of time cost in spatial attention.

time layernorm1 mask modulate qkv proj layernorm2 o proj attn reshape

absolute (ms) 1.132 0.149 0.616 0.473 2.160 0.176 1.595 0.312
normalized 17.1% 2.2% 9.3% 7.2% 32.7% 2.7% 24.1% 4.7%

Table 14: Breakdown of time cost in temporal attention.

time layernorm1 mask modulate qkv proj layernorm2 pos emb o proj attn reshape

absolute (ms) 1.126 0.150 0.616 0.477 2.154 2.610 0.176 0.896 0.314
normalized 13.1% 1.8% 7.2% 5.6% 25.3% 30.7% 2.1% 10.6% 3.6%

Table 15: Breakdown of time cost in cross attention.

time qkv proj attn o proj reshape

absolute (ms) 0.771 0.362 0.176 0.912
normalized 34.8% 16.2% 7.9% 41.1%

B.6 WORKFLOW COMPARISON FOR BROADCASTING DIFFERENT OBJECTS

In Table 3, we demonstrate the efficiency of broadcasting different objects. In this section, we further
demonstrate why there will be such difference:

• Broadcasting attention outputs enables us to bypass all intermediate computations within
the attention module (including layer normalization, positional embedding, and qkvo
projections) while maintaining compatibility with efficient attention kernels such as
FlashAttention (we enable FlashAttention in all experiments by default to be closer to
real-world usage).

• But broadcasting attention scores still requires partial computation in the attention module
(e.g., attention calculation and linear projection). Its performance may even degrade below
baseline due to incompatibility with FlashAttention.

To be more clear, here are the workflows in attention module for different broadcast strategies:

• original:
x → q, k, v = proj(x) → q, k = pos emb(layer norm(q, k)) → o = attn(q, k, v) →
o = proj(o)

• attention score (cannot use FlashAttention because we need attention score explicitly):
x → v = proj(x) → o = attn(broadcast score, v) → o = proj(o)

• attention outputs:
o = broadcast outputs
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B.7 VARIOUS METRICS FOR EVALUATING REDUNDANCY

We evaluate different metrics for measuring redundancy as shown in Figure 17.

Figure 17: Various metrics for evaluating redundancy.

B.8 EXTENSION TO TEXT-TO-IMAGE MODEL

PAB also has the potential to extend to Text-to-Image model like FLUX. In this section, we
demonstrate our speedup, qualitative and quantitative results on FLUX.

Figure 18: Qualitative results of FLUX with PAB55.

As shown in Table 16, we can achieve 1.77× speedup compared with original method. We choose
PAB55 because it offers best balance between speedup and image quality. Note that this is only ran
on single GPU.
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Table 16: Speedup of FLUX. PABαγ denotes broadcast ranges of spatial (α) and cross (γ) attentions.

method latency (s)

original 13.8
PAB55 7.8

As shown in Figure 18, we visualize the quantitative results on FLUX. Our method can achieve
comparable results compared with baseline.

C GUIDELINES FOR SUPPLEMENTARY MATERIALS

C.1 SUPPLEMENTARY MATERIALS OVERVIEW

Our supplementary materials is organized as follows:

supplementary material
slides.pdf
code

eval
examples
...

slides.pdf contains a presentation of our work. The code folder holds our source code. Within this
folder, eval contains our evaluation code, and examples includes demo code to run PAB.

C.2 GETTING STARTED WITH CODE

To get start with our code, you can run the following code:

1 # install requirements
2 cd code
3 pip install -r requirements.txt
4

5 # run demo
6 python/examples/open_sora/sample.py
7 python/examples/open_sora_plan/sample.py
8 ...
9

10 # run eval
11 cd eval/pab
12 python experiments/opensora.py
13 python experiments/open_sora_plan.py
14 ...

You can find more instructions through the readme in the code.
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