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ABSTRACT

Document Visual Question Answering (DocVQA) remains a significant challenge
in the field of document understanding and is a critical evaluation metric for
current general-purpose large model techniques. However, the prevailing pub-
lic datasets are predominantly designed for single scenarios or specific sources.
Furthermore, most available datasets are in English, which limits the verification
of model performance in other languages. This paper presents a novel multi-
domain Chinese document VQA dataset, which includes 39 document types from
7 different domains. The designed question set encompasses both common ex-
tractive questions and complex abstractive questions. Based on this dataset, we
conducted a comprehensive review and analysis of various technical paradigms,
including both traditional and large model-based approaches. Using the popular
in-context learning framework, we propose a strong baseline that achieves com-
mendable few-shot adaptation. Comparative evaluations demonstrate the superior
performance of the proposed method across different solution paradigms. The
dataset and code will be published.

1 INTRODUCTION

Document understanding plays a central role in artificial intelligence, covering various industries
and enhancing daily operational efficiency. Previous endeavors have primarily focused on distinct
subfields driven by different task objectives, encompassing document classification (Mohbat et al.,
2023; Fronteau et al., 2023), key information extraction (KIE) (Zhang et al., 2020; Tang et al., 2021;
Wang et al., 2021a), layout analysis (Zhang et al., 2021; Cheng et al., 2023; Shen et al., 2021),
table understanding (Shigarov, 2023; Li et al., 2022), etc. Recently, the advent and proliferation
of large models have instigated a shift towards a unified paradigm for end-to-end problem repre-
sentation. Document Visual Question Answering (DocVQA) (Mathew et al., 2021) theoretically
aligns with such a paradigm, potentially addressing more intricate task demands compared to the
aforementioned objectives.

Traditional approaches of DocVQA generally fall into two categories: those relying on pure lan-
guage models (Tito et al., 2022) and those leveraging multimodal pretrained models (Xu et al.,
2021a; Huang et al., 2022; Peng et al., 2022; Appalaraju et al., 2021). The latter, integrating ad-
ditional modalities such as vision and layout, demonstrate superior performance. The recent emer-
gence of Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) has intro-
duced innovative solutions. For example, research such as Liu et al. (2023b); Yang et al. (2023b)
incorporates off-the-shelf Optical Character Recognition (OCR) results into the prompt and utilizes
LLMs as information extractors. LVLM-based approaches directly integrate OCR capabilities into
the model, offering a pure end-to-end solution (Alayrac et al., 2022; Yang et al., 2023a; Anil et al.,
2023; Anthropic, 2024; Chen et al., 2023; Zhu et al., 2023; Bai et al., 2023b; Li et al., 2023; Wang
et al., 2023; Zhang et al., 2023), which exhibits promising potential in text-oriented task evaluation.
However, most existing models do not support Chinese document comprehension due to the lack of
corresponding training and evaluation data.

Presently available datasets of DocVQA predominantly originate from homogeneous domains and
are primarily in English, restricting method generalizability to diverse scenarios. For example, the
images from Mathew et al. (2021) are mostly scanned industrial documents, VQA-CD (Mahamoud
et al., 2022) focuses only on invoice scenarios, and both TAT-DQA (Zhu et al., 2022) and BD-VQA
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(a) Business (b) Financial (c) Medical (d) Education

(e) Lifestyle (f) Transportation (g) Culture

Figure 1: Samples from multiple domains in MDCD-VQA dataset.

(Raja et al., 2023) come from financial reports. Chinese, as a crucial language spoken by the largest
population worldwide, presents additional challenges due to its extensive character set (Shi et al.,
2023a). While Qi et al. (2022) pioneers a Chinese DocVQA dataset, all images are sourced from
screenshots of the webpage, and questions are only posed in an extractive way.

This paper introduces a novel Multi-Domain Chinese Document Visual Question Answering
(MDCD-VQA) dataset, which aims to encompass a broad spectrum of document types across var-
ious real-world domains. The construction of the dataset involved the aggregation of data from
multiple public and private databases. In contrast to previous datasets, which were predominantly
composed of documents with regular text (e.g., extracted from PDF or web pages), MDCD-VQA
incorporates a significant amount of real-world data sourced from photographed or scanned scenes.
Consequently, these introduce perceptual challenges to models like skew, curvature, blur and over-
lap. The MDCD-VQA dataset comprises 5,071 images and 34,170 questions, and some samples
from different domains are shown in Figure 1. The construction of question-answer (Q&A) pairs
was guided by rigorous principles to ensure diversity. The dataset encompasses both extractive ques-
tions, where the answer is located within the image, and more complex abstractive questions that
involving tasks such as summarization, judgment, inference, and calculation.

Using our proposed MDCD-VQA dataset, we conduct a comprehensive evaluation and analysis of
various method types for DocVQA tasks. This evaluation encompasses traditional full-training-
based methods as well as zero/few-shot-based approaches leveraging LLMs and LVLMs. Further-
more, we introduce a novel baseline method based on the In-Context Learning (ICL) framework
(Dong et al., 2023), which integrates powerful LLMs. This model leverages the retrieval of the
most similar examples from the image, text, and question perspectives in the training set to acti-
vate the underlying capabilities of LLMs. This approach represents a viable option offering optimal
comprehensive performance and generalization at the current stage of development.

The main contributions of this paper are as follows:

• We present a new Chinese DocVQA dataset, which, to the best of our knowledge, is the first
comprehensive dataset to include both extractive and abstractive questions across multiple
domains.

• We conducted extensive experiments to evaluate four different architectural solutions for
this Chinese DocVQA task. The results underscore the substantial potential for improve-
ment in Chinese document understanding by current large models.

• We introduce a strong baseline model based on the ICL framework. The experimental
results show that this method outperforms previous approaches on the proposed dataset.
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Dataset Language Scene Source Imaging Source Question Type #Document #Q&A pairs

DocVQA (Mathew et al., 2021) English Industry documents Scan Extractive 12,767 50,000
InfographicVQA (Mathew et al., 2022) English Infographics BD Extractive/Abstractive 5,485 30,035
VisualMRC (Tanaka et al., 2021) English Web pages BD Abstractive 10,234 30,562
VQA-CD (Mahamoud et al., 2022) English Invoices Scan Extractive 693 3,000
DuReaderVis (Qi et al., 2022) Chinese Web pages BD Extractive 15,000 15,000
DocVQA-ZH 1 Chinese Insurance related docs BD/Scan Extractive 5,243 40,385

MP-DocVQA † (Tito et al., 2022) English Industry documents Scan Extractive 5,928 46,176
TAT-DQA† (Zhu et al., 2022) English Financial reports BD Extractive/Abstractive 2,758 16,558
SlideVQA † (Tanaka et al., 2023) English Slide decks BD Extractive 2,600 14,500
DUDE † (Van Landeghem et al., 2023) English Multi-domain BD/Scan Extractive/Abstractive 5,000 41,541

MDCD-VQA (ours) Chinese Multi-domain BD/Scan/Camera Extractive/Abstractive 5,071 34,170

Table 1: Comparisons with existing Document VQA datasets. Dataset with † means the document has multiple
pages.“#” means “the number of”. “BD” is short for “Born Digital”.

2 RELATED WORKS

2.1 DATASETS OF DOCVQA

DocVQA is a subset of text-oriented VQA tasks. Unlike typical tasks where the questions focus pri-
marily on prominent text in the image, as seen in tasks like TextVQA (Singh et al., 2019), OCRVQA
(Mishra et al., 2019), and STVQA (Biten et al., 2019), DocVQA images have denser text with more
fine-grained associated questions.

Most of the existing public datasets for DocVQA are tailored for specific domains or from specific
sources. For example, the datasets presented in Mathew et al. (2021); Tito et al. (2022) are con-
structed using images selected from the UCSF Industry Documents Library. VQA-CD (Mahamoud
et al., 2022) contains invoice images from an industry document collection. TAT-DQA (Zhu et al.,
2022) and BD-VQA (Raja et al., 2023) are two datasets within the financial domain, the former con-
sisting of comprehensive financial reports and the latter containing specific financial spreadsheets.
VisualMRC (Tanaka et al., 2021) and DuReadervis (Qi et al., 2022) are different English and Chi-
nese datasets for the DocVQA task, mainly containing screenshots of web pages. The collection
of SlideVQA (Tanaka et al., 2023) all from slide decks. A more recent addition is the multi-page,
multi-domain dataset DUDE (Van Landeghem et al., 2023), proposed and used as a competition
dataset for ICDAR-2023 (International Conference on Document Analysis and Recognition). For
Chinese datasets, DocVQA-ZH1 is a competition dataset that contains various types of scanned doc-
uments related to insurance scenarios such as medical bills or cases. However, the download for this
dataset is currently unavailable due to the conclusion of the competition. Notably, the question types
in this dataset are exclusively in extractive form. A comprehensive comparison of these datasets can
be found in the table 1.

2.2 METHODS OF DOCVQA

Given the denser text information in DocVQA, models need to have enhanced text understanding
capabilities. As a result, proposed solutions are predominantly implemented within the language
model paradigm. Besides the direct adoption of language models and treating the problem as a
QA task (e.g., BERT (Devlin et al., 2019) or BigBird (Zaheer et al., 2020) in Tito et al. (2022)),
the dominant approaches in the past few years involve the use of a multimodal pre-trained model.
These approaches typically incorporate features from three modalities (visual, layout, semantic) into
a transformer-based encoder. Representative works include the LayoutLM family (Xu et al., 2020;
2021a; Huang et al., 2022; Xu et al., 2021b), DocFormer (Appalaraju et al., 2021; 2023), StrucText
(Li et al., 2021; Yu et al., 2023b), ERNIE-Layout (Peng et al., 2022),etc. Despite the use of off-the-
shell OCR results, there have also been some recent works like Donut (Kim et al., 2022), Dessurt
(Davis et al., 2022) and Pix2Struct (Lee et al., 2023) aiming to build more end-to-end OCR-free
solutions. These systems usually integrate the ability of OCR in the pre-training stage, but the
current public models mainly have the ability of English scenes only.

Recently, there has been a surge in the development of general paradigms based on LLMs and
LVLMs. These models aim to support different tasks, and some works such as GPT-4 (Yang et al.,

1http://ailab.aiwin.org.cn/competitions/49
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Dataset Source Scene Original Task #Original Images #Selected Images

EPHOIE (Wang et al., 2021a) Public Examination paper KIE 1,494 181
EATEN-BC (Guo et al., 2019) Public Business card KIE 200k 45
SCID (Qiao et al., 2023) Public Financial invoice KIE 40,716 509
CER-VIR-ZH 2 Competition Shopping receipt KIE 1,405 381
ComFinTab-ZH (Li et al., 2022) Public Financial table Table Understanding 6,000 291
CDLA 3 Public Academic literature Layout Analysis 6,000 318
DI dataset (Li et al., 2020) Public E-commerce picture Reading Order Detection 7,475 515
XFUNSD-ZH (Xu et al., 2021b) public Various forms KIE& Entity Linking 199 196
HUST-CELL (Yu et al., 2023a) Competition Multi-scenario Entity Linking 2,000 1,601
Baidu-FEST (Yu et al., 2023a) Competition Multi-scenario KIE 1,807 377
Newspaper Self-collect News Pieces from Newspaper - - 422
Medical instruction Self-collect Drug instruction& box - - 235

Total 5,071

Table 2: Composition of MDCD-VQA dataset. “#” means “the number of”.

2023a), Gemini (Anil et al., 2023), PALI-X (Chen et al., 2023), Qwen-VL (Bai et al., 2023b) demon-
strate their robust generalization ability on DocVQA tasks. Some works (Wei et al., 2023; Ye et al.,
2023; Lu et al., 2024; Liu et al., 2024; Fujitake, 2024; Dong et al., 2024b; Chen et al., 2024) have
also been devoted to designing LVLMs specifically for document understanding tasks, such as high-
resolution requirements, to address the characteristics of document data. However, all of these
works were primarily trained and evaluated on English datasets. A recent study (Shi et al., 2023b)
also highlights the challenges faced by GPT-4V in languages other than English. Therefore, the
establishment of a robust Chinese benchmark would contribute significantly to the advancement of
research on current LLMs/LVLMs.

3 MDCD-VQA

In this section, we elaborate on the data construction process and provide statistics and analysis for
the proposed MDCD-VQA dataset. More details can be found in the supplementary material.

3.1 DATA CONSTRUCTION

Images: To build a comprehensive multi-domain dataset, we systematically explored and collected
Chinese document data from various sources. In this context, “documents” include traditional office
documents, tickets, cards, web pages, and other text-intensive image scenes. Our data collection
encompasses three main sources with open copyright: (1) public academic datasets, (2) datasets
released alongside public competitions, and (3) private datasets collected by our team. All exter-
nal data from these sources are publicly available. For each dataset, we selected a varying number
of images based on the diversity of data formats. Specifically, we computed the distribution and
similarity of the image features in each data source and sampled them diversely within the feature
space to ensure the final dataset includes as many different styles as possible. For samples with
very similar layouts, the number of samples was relatively small. In total, we collected 5,071 doc-
ument images from 12 data sources, as shown in Table 2. Each image in the dataset is tagged with
a document category label to facilitate problem analysis and indexing of different data types. Some
category information is taken directly from the dataset itself, while for others, such as HUST-CELL,
we manually assigned labels to categorize the data into predefined document categories. Overall, we
defined 39 document types across 7 domains (business, culture, education, finance, lifestyle, medi-
cal, and transportation) within the dataset. MDCD-VQA is the first multi-domain DocVQA dataset
to provide detailed categorization of document types, thereby significantly facilitating research on
system adaptation. The specific distribution can be found in the supplementary material.

Questions and Answers: When constructing Q&A pairs, we aim to increase question diversity
while maintaining alignment with real-world applications. It is important to note that the public
datasets used in our dataset originate from sub-domain document understanding tasks, such as KIE
and entity linking. These tasks provide high-quality task labels that match the primary application

2https://developer.huaweicloud.com/develop/aigallery/dataset/detail?id=b81f24ad-aad6-4a3a-b168-
bd92c107a3ea

3https://github.com/buptlihang/CDLA
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requirements in these scenarios. Consequently, we use a combination of semi-automated generation
(generation followed by verification) and manual annotation to construct Q&A pairs.

Specifically, we first create more than 100 templates for different task types and field categories,
allowing us to generate a wide range of questions. For example, if we have a KIE annotation that
labels “[total value: 6.00]” for an invoice sample, we can create an extractive question such as “What
is the {total value}?”. In addition to the provided information, we generate questions based on other
automatically obtained details such as type, size, and position. To improve the diversity of questions,
we also use natural language processing (NLP) augmentation techniques, such as inter-translation
and synonym replacement, to further augment the questions. We randomly select 2-8 questions for
each image based on the amount of label information originally provided.

Next, we hired 10 Master’s level native Chinese annotators and developed a web-based annotation
platform. Their tasks included reviewing and modifying the previously automatically generated
Q&A pairs and providing additional annotations for each image. During this phase, annotators were
encouraged to submit more complex questions, including those that require judgment, reasoning,
summarization, or calculation. They were also encouraged to submit questions that cannot be an-
swered from the image. Each Q&A pair was double-checked by at least one other annotator. The
final MDCD-VQA dataset consists of 34,170 Q&A pairs. Approximately 50% of the dataset was
created through semi-automated generation, and the rest was created entirely by hand.

3.2 STATISTICS AND ANALYSIS

Here we show some statistics and analysis of the MDCD-VQA dataset. More information can be
found in the Appendix.

Dataset Document Tokens Questions Tokens Answers Tokens

DocVQA 183.0± 150.0 8.3± 3.0 2.1± 1.7
VisualMRC 154.2± 79.3 9.4± 4.0 8.4± 6.4
InfographicsVQA 288.0± 214.6 11.6± 3.7 1.7± 1.4
DuReadervis 1, 986.2± 1, 211.1 10.4± 3.2 180.5± 309.2

MDCD-VQA 415.2± 444.3 11.1± 6.2 8.7± 15.1

Table 3: Token length (Avg ± std) comparisons with some single-page-based datasets.

Tokens length: Table 3 shows the token lengths of the document text, questions, and answers in
the dataset, along with a comparison to some previous datasets. The MDCD-VQA dataset features
a rich distribution of text, question, and answer lengths. The DuReadervis dataset contains very
long document text and answer lengths, primarily because it consists of high-resolution screenshots
of web pages, with question-answer pairs derived from extensive segments searched by Internet
engines. Our dataset includes both text-intensive documents (e.g., newspapers, academic papers)
and less text-intensive documents (e.g., invoices, business cards), reflecting a variety of scenarios.
This diversity supports a more comprehensive evaluation of different methods in current research.

entity
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(a) Extractive Q&As
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comparision

entity

count

date&time

money

not answerable

reason

other

(b) Abstractive Q&As

Figure 2: The distribution of the frequent Q&As in MDCD-VQA.

Q&A types: Like most previous works, we classify Q&A pairs into two types: extractive and
abstractive. In the MDCD-VQA dataset, approximately 68% of the questions are extractive, while
32% are abstractive. A question is considered extractive if the answer consists of text present in the
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Question:  “What is the invoice code?”

E
m

b
ed

d
in

g

Visual Encoder

Training Samples

Database

Top-k Samples Retrieval Prompt template:

What you need to do is a document question-answer 

task, please answer the corresponding question based 

on the textual content in the sample. The following are 

{k} examples:

Example 1:  There is a {document type}, with textual 

context:{OCR context}; Based on the context, the 

question is {question}, the answer is {answer}; 

Example 2: …

Now, let’s start. Please answer the following question 

based on the given textual context:

The textual context is {OCR context}; Based on the 

context, the question is {question}, the answer is 

L
arg

e L
an

g
u

ag
e M

o
d

el

Figure 3: The overall framework of the proposed method. The model first retrieves the top-k nearest samples
from training databases and from visual, text and question perspectives. Then, the model uses their OCR context
and result to construct the few-shot prompt. The prompt is translated into English for better understanding.

image. In addition to basic information extraction, there are also many complex extractive questions,
including those involving comparisons or lists. Figure 2 shows the approximate distribution of Q&A
attributes in the MDCD-VQA dataset. Apart from the other type, the most common extractive
questions are entity-related (e.g., names, locations, companies), while the most common abstractive
questions are in a yes/no format.

4 PROPOSED MODEL

In this section, we present a baseline method based on a simple yet powerful ICL framework
(Dong et al., 2023) that leverages the robust capabilities of LLMs to achieve high-quality few-shot
DocVQA tasks. The overall framework, illustrated in Figure 3, can be broken down into two key
steps: Nearest Sample Retrieval (NSR) and Prompt Construction.

Nearest Sample Retrieval: In context learning with LLMs, training samples typically aren’t used
directly to update model parameters. Instead, they serve as context input to the LLM, activating
its potential capabilities. Different examples presented to the model will elicit different responses
from the LLM. Inspired by the idea of Retrieval-augmented Generation (RAG)(Lewis et al., 2020),
a straightforward approach is to assign each image the most similar example from the training sam-
ples. To measure the similarity between samples, we consider three different feature dimensions: the
visual feature, the text within the image, and the question itself. Specifically, for an inference sam-
ple, we first use a vision transformer (Dosovitskiy et al., 2021) to extract its visual feature, denoted
as V , which is then flattened into a one-dimensional feature vector. For the text in the image, we use
an offline OCR engine to extract all text instances along with their positions. All texts are concate-
nated into a sequence according to their bounding boxes using a heuristic method from Qiao et al.
(2023). Both the serialized text sequence and the question are then encoded using the BGE-large
embedding (Xiao et al., 2023) to obtain the sentence embedding, yielding the text feature vector
T and the question feature vector Q, respectively. For samples in the training set, all features are
precomputed offline and stored in a vector database. Consequently, computing the similarity metric
between a given sample and any sample ([V ′, T ′, Q′]) in the database becomes straightforward:

D = dis(λ1V + λ2T + λ3Q,λ1V
′ + λ2T

′ + λ3Q
′) (1)

where λ1, λ2, λ3 are parameters used to balance the importance of the features, and we use cosine
similarity to compute the feature distances (dis()). Finally, we select the k closest examples in the
training set. It is worth noting that the samples are stored in the database at the granularity of the
question. Once a sample (a question and its corresponding image) is retrieved, all other samples
belonging to the same image are skipped to ensure the retrieval of new images.

Prompt Construction: Different prompts may influence the output of the LLM to varying degrees.
In this baseline model, we use a simple and straightforward prompt design: “Declare the task, give
examples, and ask the question,” as illustrated in Figure 3. Specifically, the prompt comprises three
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key components that need to be filled in the prompt template: 1) Document Type: For the retrieved
samples added to the prompt, we include a document-type cue to help the model correlate underlying
knowledge with the textual context. For inference, the category is not added here as it is unknown.
2) OCR Context: The OCR result is concatenated into a long sequence using the same ordering
strategy and separated by whitespace to distinguish different text instances. 3) Q&A Pairs: Only the
retrieved Q&A pairs are concatenated into the prompt, providing format information for the LLM
to reference. All the prompts are in Chinese.

5 EVALUATION

5.1 COMPARED METHODS

As is widely recognized, new large models are being continuously developed and rapidly improving
performance metrics. In this study, we have gathered as many advanced models as possible that
support Chinese document understanding and utilized their latest versions. Specifically, we com-
pare four types of methods: 1) Language-Model-based: BERT (Devlin et al., 2019) and ERNIE3.0
(Liu et al., 2023a); 2) Multimodal-Pretrained-Model-based: LayoutXLM (Xu et al., 2021b), Lay-
outLMv3 (Huang et al., 2022), ERNIE-Layout (Peng et al., 2022); 3) LLM-based: InterLM2.5-7B
(Zhang et al., 2024), Qwen-14B (Bai et al., 2023a), Qwen2-72B (Yang et al., 2024), ChatGPT
(gpt-3.5-turbo) (Ouyang et al., 2022), GPT-4o (OpenAI, 2024) (with Pure Text input, gpt-4o-2024-
05-13, ); 4) LVLM-based: Qwen-VL-7B (Bai et al., 2023b), InternLM-XComposer-2.5 (Dong et al.,
2024a), MiniCPN-V2.6 (Yao et al., 2024), CogVLM2 (Hong et al., 2024), InternVL2 (Chen et al.,
2024), Qwen-VL-Max (Bai et al., 2023b), Claude 3 Opus (claude-3-opus-20240229) (Anthropic,
2024), Gemini 1.5 Pro (Reid et al., 2024), GPT-4 (Yang et al., 2023a) (gpt-4-turbo) and GPT-4o
(with Multi-Modal input, gpt-4o-2024-05-13).

For the previous two types of methods, we uniformly adopted the base-scale Chinese version. Fol-
lowing standard practice, we trained the models using the full training set until convergence. For
closed-source methods, such as Qwen-VL-MAX, ChatGPT, GPT-4, GPT-4o, Claude-3 Opus, and
Gemini 1.5 Pro, we evaluated them through their official APIs. In the few-shot testing, we compared
our NSR method with the Random-Sample-Retrieval (RSR) method (Liu et al., 2023b). The pro-
posed few-shot approach can theoretically be applied to both LLM and LVLM models. In this paper,
we report only the few-shot testing performance of LVLM-based methods on certain open-source
models, as we found similar limitations in most LVLM models’ ability to comprehend the examples,
including several tests with GPT-4o.

5.2 IMPLEMENTATION DETAILS

The MDCD-VQA dataset has been randomly divided into 3,557/ 761/ 753 for training/ validation/
testing, respectively. They separately contain 24,044/ 4,967/ 5,159 Q&A pairs.

Except for the LVLM-based method, the off-the-shell OCR results are obtained using the DavarOCR
(Qiao et al., 2022) engine. For the LLMs/LVLMs-based methods, we only evaluate these methods
in a zero/few-shot setting, where the training data are used as queryable examples, since tuning a
large model is beyond the scope of this work. The weight balance parameters in our NSR method
are set as λ1 = λ2 = λ3 = 1. All experiments are performed on 8 Tesla A100-80G GPUS.

We adopt the widely used Average Normalized Levenshtein Similarity (ANLS) (Biten et al., 2019)
as the primary evaluation metric, which allows partial credit for answers that are close, though not
exact matches. Additionally, we follow the approach in Mathew et al. (2021) to report accuracy
(Acc), which accounts for exact matches. In Chinese, however, different expression habits may
result in answers having the same meaning but entirely different text (e.g., “BúShı̀” and “MéiYǒu”
both convey the meaning of “No”). To address this, we perform simple post-processing to align the
model output during evaluation. It is important to note that large models may produce semantically
similar responses that are incorrectly judged due to differences in expression. While some methods
use large models like GPT for semantic evaluation, they still face significant challenges in achieving
accurate assessments. Considering both the evaluation of previous datasets and the need for a stable
metric in real-world applications, we continue to use the traditional evaluation method. More details
can be found in the Appendix.
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Setting Types Models Params ANLS ANLSex ANLSabs Acc Accex Accabs

Full-
training

Language-
Model-based

BERT 110M 15.40 21.13 2.91 7.37 10.34 0.86
ERNIE3.0 118M 18.91 24.26 7.24 10.93 14.47 3.21

Multimodal-
Pretrained-
Model-based

LayoutXLM 352M 57.61 81.01 6.54 53.54 76.99 2.34
LayoutLMv3 266M 57.19 78.76 10.12 51.85 73.97 3.58
ERNIE-Layout 277M 62.92 85.82 14.32 56.76 80.89 5.57

0-shot

LLM-based

InternLM2.5-7B 7B 67.30 75.21 50.03 60.65 69.28 41.83
Qwen-14B 14B 70.34 78.71 52.08 62.88 72.39 42.13
Qwen2-72B 72B 75.18 80.78 63.69 70.65 76.91 57.82
ChatGPT unk. 71.71 81.10 51.22 65.65 76.68 41.58
GPT-4o (PT) unk. 79.11 88.43 58.92 72.77 82.98 50.66

LVLM-based

Qwen-VL 7B 34.73 33.87 36.61 23.65 19.79 32.08
InternLM-XComposer2.5 7B 64.91 73.57 45.98 53.86 61.20 37.82
MiniCPM-V2.6 8B 66.35 72.30 53.38 58.46 64.08 46.21
CogVLM2 19B 67.96 76.65 48.98 56.21 63.62 40.04
InternVL2-26B 26B 71.51 79.63 53.80 60.67 67.95 44.79
Qwen-VL-MAX unk. 69.27 75.03 56.70 57.07 61.31 47.81
Claude 3 Opus unk. 46.63 50.68 37.86 35.34 38.91 27.63
Gemini 1.5 Pro unk. 58.11 61.42 50.94 43.87 44.68 42.11
GPT-4 unk. 42.55 41.64 44.51 32.64 30.09 38.16
GPT-4o (MM) unk. 70.88 78.89 53.55 58.21 64.44 44.74

5-shot

LLM-based

RSR + Qwen-14B 14B 67.85 76.09 49.88 60.57 69.39 41.33
RSR + Qwen2-72B 72B 79.21 86.65 63.94 75.00 83.37 57.82
RSR + ChatGPT unk. 73.22 81.49 55.42 66.10 75.72 45.38
RSR + GPT-4o (PT) unk. 75.50 83.54 58.11 70.89 80.24 50.66

NSR + Qwen-14B 14B 74.98 81.80 60.08 67.90 75.95 50.34
NSR + Qwen2-72B 72B 82.35 88.68 69.77 75.99 81.13 63.29
NSR + ChatGPT unk. 79.04 86.42 62.94 72.42 81.74 52.07
NSR + GPT-4o (PT) unk. 84.09 89.69 71.98 77.96 84.80 63.16

LVLM-based

RSR+Qwen-VL 7B 30.77 28.49 35.75 19.89 14.67 31.28
RSR+InternLM-XComposer2.5 7B 52.27 58.90 37.78 41.04 46.01 30.17
RSR+MiniCPM-V2.6 8B 65.97 74.22 47.96 55.30 62.44 39.73
RSR+InternVL2-26B 26B 64.69 73.70 45.03 53.50 61.84 35.29

NSR+Qwen-VL 7B 32.69 29.54 39.55 22.35 17.07 33.87
NSR+InternLM-XComposer2.5 7B 54.46 59.12 44.51 43.76 47.36 36.07
NSR+MiniCPM-V2.6 8B 73.95 80.07 60.59 63.99 69.84 51.20
NSR+InternVL2-26B 26B 65.60 71.52 52.66 55.15 60.43 43.62

Table 4: Summary of performance on the test set of MDCD-VQA dataset. The results with subscripts ex and
abs represent the performance on extractive and abstractive questions, respectively. The methods highlighted
with shading indicate the best performance in each category.

5.3 RESULTS

Table 4 presents the overall evaluation results on the MDCD-VQA dataset.

In the full-training setting, ERNIE-Layout demonstrates the highest performance among tradi-
tional methods, highlighting its effectiveness in multimodal modeling. However, its proficiency
varies across question types, with strong results for extractive questions but weaker performance for
abstractive questions, due to the limitations of the task paradigm. It is worth noting that in addition
to the indexing modeling paradigm, some generative-based pre-training models also exist, such as
UDOP (Tang et al., 2023) and GenDoc (Feng et al., 2023). However, to our knowledge, none of
these models provide Chinese pre-training models.

In the 0-shot setting, the evaluated models are all effective in understanding Chinese commands.
As can be seen from the results, GPT-4o(PT) and Intern-VL-26B have achieved the best results in
the LLM-Based and LVLM-based methods, respectively. For the open source models shown so far,
their performance is almost positively correlated with the number of parameters. Comparing the
two type of schemes, LVLM-based models still lag behind LLM-based methods in performance, as
compared between GPT-4o(PT) and GPT-4o(MM).This disparity is primarily due to the fact that
LLM-based methods integrate the expertise of OCR specialists, resulting in more accurate text
recognition. However, they have an intrinsic flaw: they lose part of the visual information in the
processing pipeline, which hampers their ability to handle questions involving visual intricacies.

In the 5-shot setting, incorporating examples extracted using our NSR method significantly en-
hanced the performance of zero-shot LLM-based approaches, improving overall results by 5%-7%
and by 8%-13% for abstractive questions. One of the obvious features is that ICL has helped to
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constrain the model in the format of the output, thus improving the match with the ground truth.
This is actually of great importance for industrial production as well. Among LLM-based meth-
ods, NSR+GPT-4o achieved the highest performance across all compared methods. We found that
integrating NSR partially mitigates the issue of missing layout information by enabling the model
to discern similar patterns from examples. In contrast, the strategy of randomly selecting examples
(RSR) provided limited benefit and, in some cases, even underperformed compared to the zero-shot
approach. For LVLM models, most NSR/RSR methods showed limited effectiveness, with the ex-
ception of MiniCPM-V2.6, particularly for extractive questions. In some cases, these methods led
to a significant decrease in performance, with a common error pattern being the models directly
replicating answers from retrieved examples instead of using them as references—indicating de-
ficiencies in contextual comprehension (an example is provided in Appendix). This highlights a
potential training data gap in the ICL capabilities of other LVLM models.

5.4 ABLATION STUDY

In the following experiments, we use the NSR + Qwen-14B (5-shot) setting as a baseline.

Number of Examples: First, we experiment with the number of examples concatenated into the
prompt. Figure 4 shows the performance when changing the number of examples from 0 to 5 in our
framework. There is a clear improvement in the model’s performance when we increase the number
of examples from 0 to 1 or 2, while after 3 examples, the performance tends to stabilize. This is
mainly because the examples are given in order of relevance, and the first example already provides
the most similar answer and activates the model’s capability accordingly. The more complex the
problem, the more examples the model may need to refer to. However, incorporating more examples
requires correspondingly larger resource consumption. Therefore, in practical deployment, we need
to balance the complexity of the task and the cost of reasoning.
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Figure 4: Ablation on the retrieved samples number.

Features ANLS ANLSex ANLSabs

Image Text Question

67.85 76.09 49.88
✓ 70.30 78.76 51.85

✓ 70.15 78.55 51.80
✓ 72.89 79.01 59.52

✓ ✓ 70.24 78.56 52.07
✓ ✓ 74.84 81.30 60.76

✓ ✓ 74.23 81.06 59.31
✓ ✓ ✓ 74.98 81.80 60.08

Table 5: Ablation on features used in sample retrieval.

Features Used in Sample Retrieval. The proposed method retrieves samples based on three types
of features. Table 5 presents the experimental results of ablation studies on the different features
utilized. If the model does not employ any of the three features, it defaults to the RSR setting.
The results indicate that using even a single feature can enhance the model’s performance to some
extent. Among the three features, similar question features are the most beneficial, especially for
abstractive questions. This is because, for abstractive questions, the answers are not constrained by
the text in the image, allowing the model to generate a variety of answer styles. Providing examples
of the most similar questions and answers helps the model constrain the style of its answers. When
all three features are combined, the model can identify the most similar examples from multiple
dimensions, resulting in the highest performance.

6 CONCLUSION

This paper introduces a new multi-domain Chinese DocVQA dataset, comprising 39 types of doc-
uments from 7 different domains. The dataset includes a diverse set of Q&A pairs, encompassing
both extractive and abstractive questions. We conduct a comprehensive comparison of several meth-
ods on the Chinese DocVQA task and propose a novel approach based on the in-context learning
framework. This approach utilizes image features, text features, and question features to retrieve
similar examples from the database, thereby activating the latent capabilities of LLMs/LVLMs. Ex-
perimental results demonstrate that our methods establish a new advanced baseline and highlight the
strong generalization and few-shot capabilities of the proposed framework.
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Florêncio, Cha Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou. Layoutlmv2: Multi-modal
pre-training for visually-rich document understanding. In ACL/IJCNLP, pp. 2579–2591, 2021a.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-
training of text and layout for document image understanding. In KDD, pp. 1192–1200, 2020.

Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florêncio, Cha Zhang, and Furu
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A APPENDIX

A.1 ADDITIONAL DATASET STATISTICS

A.1.1 DOCUMENT CATEGORY

Figure 5 shows the detailed category distribution of the MDCD-VQA dataset. We have divided the
documents into 7 domains and 39 categories based on their application scenarios. Note that for many
documents that are similar in shape (such as forms), we still categorize them differently according
to their usage scenarios.

For some data categories, the amount of data included in the MDCD-VQA is not large enough to
fully assess the model’s applicability to those domains. However, MDCD-VQA contains several do-
mains (e.g., e-commerce, newspaper, shopping tickets) where the amount of image data is sufficient
(comparable to the amount of data in VQA-CD (Mahamoud et al., 2022)) to support domain-specific
applicability studies. Unlike most previous datasets, MDCD-VQA focuses more on the general abil-
ity and cross-domain generalization of the model, rather than the large size of data in each category.

Although MDCD-VQA covers many scenarios, there are still many categories not represented. In
the future, we plan to further expand the coverage of this dataset.
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Figure 5: The detailed distribution of the document categories in MDCD-VQA dataset.

A.1.2 DATASET DIVERSITY

VQA-CD
DocVQA
DocVQA-zh
InfographicsVQA
Dureader
TAT-DQA
Ours

(a) inner image similarity (t-SNE over ResNet50 fea-
tures of 1k images).

TAT-DQA
Dureader
DocVQA-zh
InfographicsVQA
VQA-CD
DocVQA
Ours

(b) inner text similarity (t-SNE over TF-IDF features
of 1k images)

Figure 6: Visualization of inner similarity for different datasets.

There is a rich diversity of images in the MDCD-VQA dataset. Figure 6 illustrates the distribution
of visual embeddings (represented by the ResNet50 (He et al., 2016) feature) and textual content
embeddings (represented by the BGE embedding (Xiao et al., 2023) feature) of images across dif-
ferent datasets (each dataset randomly selects 1,000 images). This reflects the visual and textual
similarities between the samples within a given dataset. From the visual feature distribution, we
observe that most previous datasets were concentrated in one or a few clusters, whereas our dataset
is distributed across many different clusters. The conclusion for the textual embedding distribution
is similar. From the second figure, we can also see that Chinese and English datasets have different
distributions, and our data exhibits a relatively scattered distribution within the Chinese domain.

Figure 7 shows the word clouds for text content, questions, and answers according to word frequency
in the MDCD-VQA dataset, where only words longer than one character are counted. These word
clouds reveal the word frequency distribution in various Chinese documents and Chinese Q&A
sentences.

A.1.3 ANSWER EVIDENCE

Based on the evidence leading to the answers, we categorize the evidence types of question-answer
pairs into six categories:
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(a) text in image (b) questions (c) answers

Figure 7: Word clouds of words in the (a) text in images (b) questions and (c) answers of the MDCD-VQA.
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Figure 8: The evidence distribution for 100 samples in test set of MDCD-VQA dataset.

• Visual-related: questions about color, shape, size, stamp, etc.
• Layout-related: questions about position, order, single/double columns, etc.
• Semantic-related: questions about semantic entities, types, etc.
• Logic-related: questions about comparison, calculation, summation, etc.
• Table-related: questions based on tables.
• List-related: questions based on lists.

Note that some questions may belong to more than one type. We randomly selected 100 samples for
the test dataset and manually categorized the evidence types. Figure 8 provides a detailed description
of the evidence distribution, demonstrating the dataset’s diversity and complexity. The results show
that the most common evidence type is semantics-related, which is also the most frequent question
type in KIE-like tasks.

A.2 ADDITION IMPLEMENTATION DETAILS

A.2.1 PROMPT CONSTRUCTION

Here, we provide some extra details for constructing the prompts for LLMs/LVLMs.

Prompt construction for few-shot LLM. Note that some documents have very long OCR contexts,
and LLM/LVLM prompt tokens usually have a length limit (e.g., 8K for Qwen-14B). Thus, in prac-
tical implementation, for samples where the support context length is insufficient for full example
splicing, a k-shot prompt construction is actually a max-k-shot. This means that a maximum number
of examples, but no more than k, will be added to the prompt. Algorithm 1 presents a simple method
to adaptively select the maximum-top-k examples based on the input. In practice, only about 1.6%
of test samples cannot be filled with 5 examples due to their context limit.

In the algorithm, we consider that there may be some samples in the queue that cannot be added
to the prompt due to the long context or share the same image, so we will continue to traverse the
following adjacent samples, and add them to the prompt if there are any tokens left. Here we selected
k + 5 samples as candidates at once.
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Algorithm 1 maximum-to-k examples selection in prompt constructing for LLM

Input: The queried sample OCR context T , Base prompt B, Question Q, base examples set E,
current examples set S, maximum k samples to retrieve, total token constraint L.

Output: final example sample S.
Initialize current length l = length(T +B +Q).
p = 0
retrieve nearest (k + 5) examples from database
for i = 1 to k + 5 do

if p < k and Ei’s image not in S and length(Ei) + l < L then
pop Ei from E and push into S
p = p+ 1
l = l + length(Ei)

end if
end for
return S

LVLM  Prompt  template:

Your task is to answer the question based on the given document. If the 

answer is not available from the image, please output “None”. The 

following are {} examples:

Example 1: There is a {document type}, <img>{image path}</img>, 

the question is {question}, the answer is {answer};

Example 2: …

Now, please answer the following question based on the given 

document:

There is a {document type}, <img>{image path}</img>, the question 

is {question}, the answer is

Figure 9: An example of a prompt template for LVLM. Texts are translated into English.

Prompt construction for few-shot LVLM. Because LVLM input does not contain OCR text con-
tent, there is no concern about exceeding the input token limit. An example of an LVLM prompt
template is shown in Figure 9.

It is worth noting that different prompts may affect the performance of the model to some extent
due to the different training data used between the models and their own ability to follow Chinese
prompts. The main goal of this paper is not to study how to design a better prompt, so a relatively
simple prompt template is adopted to be as fair as possible to the models under evaluation.

A.2.2 POST-PROCESSING FOR EVALUATION

For the outputs of LLM/LVLMs, extraneous text content or shifts in output style can make it difficult
to assess accuracy precisely. One approach is to send the output results and ground truth values to
another LLM (e.g., ChatGPT) for matching judgment, but this method also struggles to guarantee
complete accuracy. Here, to prove the efficiency and consistency of the evaluation, we summarize
the output styles of various scenarios according to Chinese language expression habits, unify them
through simple post-processing, and calculate quantitative indexes through scripts.

Specifically, in the evaluation process, we design post-processing rules to align answers with the
same meaning but different formats:

• Fixed sentence pattern extraction: For answers in the format “key is value” or “key : value”,
we keep the answer after the element “is” or “:”. For example, for the question “Who is the
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passenger of this train ticket?”, the prediction “The passenger is Zhangsan” is considered
correct if the ground truth is “Zhangsan”.

• Numeric formatting: For answers in numeric format, such as total money, we remove other
characters and compare only the numeric values. For example, for the question “What is
the price of this ticket?”, the prediction “22 yuan” is considered correct if the ground truth
is “22”.

• Yes/No formatting: For yes/no type answers, we convert all similar expressions to a fixed
format. For example, “Shı̀De” → “Shı̀”, “MéiYǒu”, “Búshı̀”→ “Fǒu”.

• Unanswerable questions: For unanswerable questions, if the model’s prediction indicates
it cannot provide an answer, we marked it as “None” and consider it correct.

A.3 ADDITIONAL EXPERIMENTAL RESULTS & ANALYSIS

A.3.1 PERFORMANCE DISTRIBUTION ANALYSIS

Here, we selected some of the representative methods from each category to provide an in-depth
analysis of their performance distribution across different domains and question types: 1) tra-
ditional methods: ERNIE-Layout, 2) 0-shot LLM-based methods: Qwen2-72B, GPT-4o(PT), 3)
0-shot LVLM-based methods: InternVL2-26B, GPT-4o(MM), 4) few-shot LLM-based methods:
NSR+Qwen2-72B, NSR+GPT-4o(PT), 5) few-shot LVLM-based methods: MiniCPM-V2.6.
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Figure 10: The detailed performance(ANLS) distribution on various document domains.
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Figure 11: The detailed performance(ANLS) distribution on different question types.
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Performance on different domains: Figure 10 shows the performance distribution of selected
models across seven domains. From the results, we can summarize some characteristics of the
different data domains in the MDCD-VQA dataset. For example, in the Business and Transporta-
tion domains, where most data consists of office documents or tickets, the percentage of extractive
questions is higher. Therefore, ERNIE-Layout achieves relatively high performance. However, this
method is limited by its need for substantial training data, making it more suitable for closed-set
scenarios. In the Culture domain, the data mainly comprises free-form documents such as newspa-
pers, containing many challenging abstractive questions that require semantic understanding. As a
result, the performance of various methods in this domain is relatively low. Additionally, comparing
the performance between GPT-4o(PT) and GPT-4o(MM), provides insights into the OCR perception
difficulty in this domain. In the financial domain, much of the data is converted from Born Digital
sources, allowing the LVLM-based methods to achieve performance close to that of LLM-based
methods. In contrast, the Education and Medical domains present more OCR challenges, such as
handwriting and text perspective issues, leading to a performance gap between the two types of
methods.

Performance on different question types: Figure 11 shows the distribution of evaluation metrics
across different question categories. Several interesting conclusions can be drawn from the results
presented. First, for more conventional extractive problems such as entity, date&time, and money,
the compared methods perform well. However, performance differences are more significant for
other problem types. For example, for position-related questions, the LLM/LVLM-based models
fail to perform well, likely because the definition of location is relatively subjective and occurs in-
frequently in the current corpora of LLMs/LVLMs. In contrast, ERNIE-Layout can fit such distribu-
tions through full training. Additionally, ERNIE-Layout is much less effective on some abstractive
questions such as yes/no, comparison, and type. For color-related questions, the LVLM-based mod-
els outperform the LLM-based methods. This is because LLM-based models essentially lose visual
information during the inference process. However, with the addition of NSR, samples with similar
problems and layouts allow the model to reasonably infer visual information that would otherwise
be unavailable, leading to some performance improvement.

A.3.2 INFERENCE SPEED OF NSR

The evaluation of time consumption is crucial for real-world deployment scenarios, as it provides
a more comprehensive understanding of performance. In Table 6, we compare the inference speed
of the Qwen-14B and InternVL2-26B models. The increase in time consumption for NSR results
primarily stems from two factors: the sample retrieval process and the longer context length. The
difference in time consumption between RSR (where retrieval time is negligible) and NSR can
be used to estimate the retrieval time. For LVLM-based methods, more input examples lead to
additional image I/O operations, further increasing time consumption.

Setting Types Models FPS( avg ± std)

0-shot LMM-based Qwen-14B 1.27± 0.72
LVLM-based InternVL-26B 0.88± 0.85

5-shot-RSR LMM-based RSR+Qwen-14B 0.85± 0.69
LVLM-based RSR-InternVL2-26B 0.19± 0.91

5-shot-NSR LMM-based NSR+Qwen-14B 0.47± 0.89
LVLM-based NSR+InternVL2-26B 0.17± 0.67

Table 6: The inference speed comparison of Qwen-14B and InternVL2-26B.

A.3.3 VISUALIZATION ANALYSIS

We illustrate some visualization results for different methods in Figures 12, 13 and 14. These exam-
ples highlight the distinct output characteristics of various models.

Figure 12 compares model responses to extractive questions. While the majority of methods produce
similar answers, differences arise in the format of the responses. For example, some models may
predict additional irrelevant text, which can be attributed either to errors in model recall or to the
model’s output style. Although this issue does not indicate a flaw in the models themselves, in
practical deployment, we prefer models to produce output in a predefined and fixed format rather
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Question:购买的第二组号码是什么？(What is the second  purchased set of numbers?)

GT: 03 13 15 10 20 27-14

Full-

training

LayoutLMv3 1993/7/1 ERNIE-

Layout

74437056

0-shot

LLM

Qwen-14B 03 13 15 1920 

27-14

Qwen2-72B 03 13 15 19 20 

27-14

ChatGPT 03 13 15 19 20 

27

GPT-4o(PT) 03 13 15 19 20 

27-14 

0-shot

LVLM

InternVL2-

26B

B.03 13 15 19 20 

27-14 (1)

Qwen-VL-

Max

03 13 15 19 20 

27-14 

GPT-4V 购买的第二组号
码是：03 13 15 

19 20 27-14 (1)

GPT-4o(MM) 购买的第二组号
码是：03 13 15 

19 20 27-14 (1)

Gemini-1.5-

Pro

03 10 14 19 24 

33-13 

Claude-3-

opus

03 13 15 19 20 

27-14 (1)

5-shot 

LLM

NSR+Qwen-

14B

03 13 15 19 20 

27-14

NSR+Qwen2-

72B

03 13 15 19 20 

27-14

NSR+ChatGP

T

03 13 15 19 20 

27-14 

NSR+GPT-

4o(PT)

03 13 15 19 20 

27-14

Question: 具体买了哪些东西? (What specifically did the shopper buy?) 

GT: 晶心低钠盐400g, 水溶c100

Full-

training

LayoutLMv3 晶心低钠盐400g

水溶c100

ERNIE-

Layout

晶心低钠盐400g

0-shot

LLM

Qwen-14B 晶心低钠盐400g、
水溶c100

Qwen2-72B 买了晶心低钠盐
400g 2个，水溶
c100 1个。

ChatGPT 晶心低钠盐400g, 

水溶c100

GPT-4o(PT) 晶心低钠盐400g, 

水溶c100

0-shot

LVLM

InternVL2-

26B

晶心低钠盐400g

和水溶c100

Qwen-VL-

Max

None

GPT-4V 买了哪些东西：
1. 钙心便携瓶装
400g 2. 水蓝
C100

GPT-4o(MM) 韧心低钠盐400g

两包，水溶
C100一瓶。

Gemini-1.5-

Pro

买了2包晶心低
钠盐400g和1瓶
水溶。

Claude-3-

opus

酪心低钠盐400g,

水溶c100。

5-shot 

LLM

NSR+Qwen-

14B

晶心低钠盐400g、
水溶c100

NSR+Qwen2-

72B

晶心低钠盐400g, 

水溶c100

NSR+ChatGP

T

晶心低钠盐400g、
水溶c100

NSR+GPT-

4o(PT)

晶心低钠盐400g、
水溶c100

Question: 红色文字是什么？ (What is the content of the red text?)

GT: Y040761

Full-

training

LayoutLMv3 Y040761 ERNIE-

Layout

Y040761

0-shot

LLM

Qwen-14B B9 Qwen2-72B 在给出的文字
内容中并没有
提到任何红色
文字，因此无
法从给定信息
中得出答案

ChatGPT 南宁东站 GPT-4o(PT) 南宁东站

0-shot

LVLM

InternVL-2-

26B

Y040761 Qwen-VL-

Max

Y040761

GPT-4V 红色文字是
"Y040761"。

GPT-4o(MM) Y040761

Gemini-1.5-

Pro

None Claude-3-opus 发货报销使用

5-shot 

LLM

NSR+Qwen-

14B

Y040761 NSR+Qwen2-

72B

Y040761

NSR+ChatGP

T

Y040761 NSR+GPT-

4o(PT)

Y040761

Figure 12: Some visualization results for different methods.
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Question: 这份文档是单栏吗？(Is this document a single-column document?)

GT: 是 (yes)

Full-training LayoutLMv3 规模 ERNIE-Layout 抓

0-shot LLM Qwen-14B None Qwen1.5-72B None

ChatGPT 是的。 GPT-4o(PT) None

0-shot

LVLM

InternVL-2-26B Qwen-VL-Max 是

GPT-4V 是 GPT-4o(MM) 是的，这份文档是
单栏的。

Gemini-1.5-Pro 是。 Claude-3-opus 根据图片显示，这
份文档的版式采用
的是双栏排版，而
不是单栏。因此问
题“这份文档是单
栏的吗？”的答案
是：No

5-shot LLM NSR+Qwen-14B 是 NSR+Qwen2-72B 是

NSR+ChatGPT 是 NSR+GPT-4o(PT) 是

Question: 左下方的文字内容是什么? （What is the text in bottom-left? ）

GT: [不良反应]尚不明确

Full-training LayoutLMv3 [不良反应]尚不明
确

ERNIE-

Layout

[不良反应]尚不明确

0-shot LLM Qwen-14B 本品为深褐色的水
丸；气芳香，味微
苦。

Qwen2-72B 左下方的文字内容是药品说明书的信息，包括药品名称、警示语、成份、性状、功能主治、规
格、用法用量和不良反应等。但是，具体到“左下方”这个描述在给出的文字中并不适用，因为这
里并没有分区域描述。所以，更准确的回答应该是这段文字整体的内容描述，而不宜仅指“左下
方”。如果必须回答，可以考虑回答为：“脑立清丸说明书的部分内容”，但这并不是一个非常精
确的答案。因此，我的回答是 \"None\"，因为原问题中的“左下方”在给定文本中没有具体对应。

ChatGPT None GPT-4o(PT) OTC请仔细阅读说明书并按说明使用或在医师指导下购买和使用。警示语：孕妇及体弱虚寒者
忌服；本品含清半夏

0-shot LVLM InternVL2-26B None Qwen-VL-

Max

葵花脑立清丸说明书 OTC

GPT-4V 左下方的文字内容
是：“不良反应”、
“可不明确”

GPT-4o(MM) 规格：每10丸重1克。

Gemini-1.5-Pro 尚不明确。 Claude-3-

opus

尚不明确。

5-shot LLM NSR+Qwen-

14B

孕妇及体弱虚寒者
忌服

NSR+Qwen2

-72B

由于提供的样本描述中并没有提及左下方的具体文字内容，我们只能依据给定的信息来回答问
题。在描述中，最后提到的是药品的用法用量：“口服。一次10丸,一日2次。”因此，如果假设问
题中的“左下方的文字内容”指的是样本描述的最后一部分信息，那么答案应该是关于药品用法用
量的部分。但是，严格来说，问题要求的是左下方的文字内容，而描述中并未具体指出这部分
内容，所以无法直接从给定信息中准确回答这个问题。\n\n然而，为了遵循问题的回答格式，我
们可以推测性地给出一个答案，即药品的用法用量，但这并不是基于明确指示的左下方内容。
因此，答案是：“口服。一次10丸,一日2次。”但请注意，这仅是一种基于常见药品说明书布局的
推测，并非直接来源于问题描述中的明确信息。

NSR+ChatGPT {不良反应}尚不明
确

NSR+GPT-

4o(PT)

左下方的文字内容是：“孕妇及体弱虚寒者忌服；本品含清半夏”

Question: 文字“22,182,851.07”的框是跨列框吗？(Is the text “22,182,851.07” in a spanning cell?)

GT: 不是(no)

Full-training LayoutLMv3 所得税费用 ERNIE-Layout 22

0-shot LLM Qwen-14B 是 Qwen2-72B None

ChatGPT 是 GPT-4o(PT) None

0-shot

LVLM

InternVL-2-26B 是 Qwen-VL-Max 是

GPT-4V 不是 GPT-4o(MM) 是

Gemini-1.5-Pro 是 Claude-3-opus 是

5-shot LLM NSR+Qwen-14B 不是 NSR+Qwen2-72B 不是

NSR+ChatGPT 不是 NSR+GPT-4o(PT) 不是

Figure 13: Some visualization results for different methods.
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Question: 最晚什么时间到达登机口？(What is the latest time to arrive at the gate?)

GT: 10:15

Full-training LayoutLMv3 1025 ERNIE-Layout 10

0-shot LLM Qwen-14B 登机口于起飞前10分钟关闭。 Qwen2-72B 1015

ChatGPT 最晚在起飞前10分钟到达登机口。 GPT-4o(PT) 起飞前10分钟

0-shot LVLM InternVL2-26B 10:25 Qwen-VL-Max 10分钟前

GPT-4V 登机口在起飞前10分钟关闭。 GPT-4o(MM) 最晚10点15分到达登机口。

Gemini-1.5-Pro 起飞前10分钟 Claude-3-opus 1025

5-shot LLM NSR+Qwen-14B 10:10 NSR+Qwen2-72B 10:15

NSR+ChatGPT 10:15 NSR+GPT-4o(PT) 10:15

Question: 保险费占总票价的百分之几（结果保留两位小数）? （What percent of the total fare is the insurance premium (retain two decimal places for results)? ）

GT: 1.69%

Full-training LayoutLMv3 19.9 ERNIE-Layout 19

0-shot LLM Qwen-14B 保险费占总票价的百分之几（结果保
留两位小数）？

Qwen2-72B 虽然可以从文本中找到保险费（￥19.90）和总价
（￥1180.00），但是计算百分比需要进行数学运算，
这超出了仅从文本中提取信息的要求。因此，根据指
示，当对答案没把握时，应回答None

ChatGPT 0.72% GPT-4o(PT) 1.69

0-shot LVLM InternVL2-26B 1.70 Qwen-VL-Max 0.01

GPT-4V 保险费为19.90元，总票价为1180.00

元。保险费占总票价的百分比为：
\[ \left( \frac{19.90}{1180.00} \right) 

\times 100 = 1.68644\% \]  结果保留两
位小数，为1.69%。

GPT-4o(MM) 保险费占总票价的百分比为：\n\n(19.90 / 1180.00) * 

100 = 1.69%\n\n答案是：1.69%。

Gemini-1.5-Pro 1.08 Claude-3-opus 8.42

5-shot LLM NSR+Qwen-14B 保险费占总票价的百分之几（结果保
留两位小数）？

NSR+Qwen2-72B 为了计算保险费占总票价的百分比，我们首先需要确
定保险费和总票价的数值。从给定的信息中，我们可
以看到保险费是￥19.90，总票价是￥1180.00。\n\n计
算百分比的公式是：\n\\[ \\text{百分比} = 

\\left( \\frac{\\text{部分数值}}{\\text{整体数值}} \\right) 

\\times 100\\% \\]\n\n将具体数值代入公式中，我们有：
\n\\[ \\text{百分比} = \\left( \\frac{19.90}{1180.00} 

\\right) \\times 100\\% \\]\n\n计算这个表达式的结果：
\n\\[ \\text{百分比} = \\left( \\frac{19.90}{1180.00} 

\\right) \\times 100\\% = 1.6864406779661016\\% \\]\n\n

保留两位小数，结果是：\n\\[ \\text{百分比} = 1.69\\% 

\\]\n\n因此，保险费占总票价的百分比是1.69%。所以，
答案是：1.69%。

NSR+ChatGPT 1.68% NSR+GPT-4o(PT) 1.75%

Figure 14: Some visualization results for different methods.
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than a verbose one, to facilitate easier downstream use. Notably, in the third subfigure, which
presents a question about color, Qwen2-72B correctly indicates that the answer cannot be judged
based on the available information, whereas the NSR+Qwen2-72B scenario uses other examples to
provide an accurate judgment.

Figure 14 shows examples of more complex problems involving layout analysis, where the differ-
ences between models become more pronounced. Since layout information is strongly related to
vision, LLM-based approaches do not perform well on these types of questions. Furthermore, am-
biguity often exists in understanding layouts, so methods like LayoutLMv3 and ERNIE-Layout,
which are fully trained and explicitly model layout modalities, perform better on these tasks.

Figure 15 presents examples that require calculation and reasoning. From the illustration, we ob-
serve the powerful reasoning capabilities of many current LLMs and LVLMs. For instance, Qwen2-
72B tends to explicitly output part of the reasoning process to ensure the accuracy of the entire
computation, although post-processing or special prompt design is still needed for production use.

A.3.4 FAILURE CASES ANALYSIS

n this section, we provide a summary of the typical types of errors encountered in some scenarios
based on large models.

Errors in 0-shot/few-shot LLM-based methods. As mentioned earlier, such methods are based
on a two-stage pipeline, which inevitably leads to some error accumulation throughout the process.
However, the current perceptual results rely on OCR expert realization, making it the solution with
the least loss of accuracy at the perceptual level. In summary, the most significant problems stem
mainly from the following:

• Lack of visual information. Some problems involving color, position, size, and type have
inherent flaws due to the absence of visual information. However, in few-shot settings,
these issues can be somewhat mitigated. For instance, the model can infer hints from
examples containing similar types of problems.

• Wrong semantic order. The current heuristic rule for text concatenation can lead to errors,
especially in complex layouts like multi-column formats. The reading order of the text
may affect the extraction accuracy of the model. This issue could potentially be resolved
by introducing a more generalized reading order prediction module (Wang et al., 2021b).

• Deficiencies in Reasoning Ability: For tasks involving reasoning and computation, the per-
formance of different large language models may vary significantly due to their inherent
capabilities. Some models may even produce many hallucinations in their outputs.

Errors in 0-shot LVLM-based methods. This type of scheme is currently more of a black-box
approach, making it relatively difficult to pinpoint the root cause of its errors. However, certain
types of errors can be identified through more obvious examples. For instance, in the second example
shown in Figure 12, it is evident that some of the LVLMs correctly find the position of the answers,
but the output textual content is incorrect. This type of problem can be attributed to defects in their
perceptual capabilities.

Moreover, while the LVLM-based approach theoretically reduces the accumulation of errors, there
are still issues due to the distribution of the large model training corpus. These issues can lead to
defects in visually related or inference-related abilities.

Errors in few-shot LVLM-based methods. In addition to the previously mentioned issues, we
identified a prevalent flaw in approaches involving LVLMs. Specifically, when these models gener-
ate answers based on provided examples, they often directly output the answers from the examples
rather than performing recognition on the queried images. This observation highlights a signifi-
cant limitation in the contextual capabilities of LVLMs, likely due to the insufficient inclusion of
image-text interleaved data in their training samples.

For instance, consider the NSR+InternVL2-26B model, as shown in Figure 15. When asked, “What
is the mode of transportation?” for the queried image, the correct answer should be “river and sea
transportation.” However, the nearest examples retrieved by NSR all contain the ground truth of
”waterway transport.” After incorporating these examples into the prompt, the model erroneously
extracts the answer ”waterway transport” from the prompt and outputs it directly.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Q：运输方式是什么？（What 

is the mode of transportation？）
GT：江海运输（river and sea 

transportation）

Q：运输方式是什么？（What is 

the mode of transportation？）
A：水路运输（waterborne transport）

Q：运输方式是什么？（What is 

the mode of transportation？）
A：水路运输（waterborne transport）

Top-1 Retrieval Top-2 Retrieval

Pred：水路运输

Figure 15: An example of an error case in the NSR+InternVL2-26B method. The model tends to use the answer
directly in examples rather than obtaining information from the inferred image.

This issue is not unique to NSR+InternVL2-26B; similar problems were observed across various
LVLMs tested. This indicates a broader deficiency in the models’ ability to distinguish between
example-based suggestions and the actual content of the queried images. Among the many models
tested, only MiniCPM-v2.6 was able to use examples to answer some questions correctly, although
this was largely due to formatting constraints on the output. Further reviews are needed to explore
more ICL capabilities in the future.

A.4 LIMITATION

This work still has some limitations:

• The dataset has not yet been evaluated by a third party to assess human performance. In-
corporating third-party evaluations could provide more robust benchmarks and highlight
areas for further improvement in both the dataset and the models tested.

• The size of the dataset can be further improved. The current Chinese dataset is relatively
small within single domains due to the multi-domain nature of the dataset. The data se-
lection strategy restricts the sampling of data with the same format, and many real-world
sample types are not yet covered. We plan to continuously collect and expand the dataset
to ensure wider coverage across various domains.

• The tests for the LLMs and LVLMs are not yet comprehensive. The rapid iteration and
emergence of new large models in the market mean that some test conclusions may change
quickly. Despite this limitation, the proposed dataset can provide a good reference bench-
mark for evaluating the performance of current large models.

By addressing these limitations, we aim to enhance the dataset’s utility and the comprehensiveness
of model evaluations, providing a more robust benchmark for future research and development in
the field.
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