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ABSTRACT

Non-ideal measurement computed tomography (NICT) reduces the need for ex-
tensive data sampling, accelerating scanning and mitigating radiation exposure
risks, but these benefits are accompanied by artifacts and noise. While enor-
mous deep learning (DL) methods have been developed to improve image quality,
they typically require paired data, which is challenging to obtain owing to physi-
ological motion. Unsupervised reconstruction methods offer a potential solution,
but they typically assume homogeneous noise distributions and overlook varia-
tions from different sampling strategies, which may cause model collapse. We
observe that NICT images form discrete sub-manifolds in feature space due to
varying physical scanning processes, which contradicts the assumption of unsu-
pervised methods and limits their effectiveness. To address this, we propose an
Uncertainty-Guided Manifold Smoothing (UMS) framework to bridge the gaps
between sub-manifolds. In UMS, a classifier is first trained to identify the sub-
manifold associated with each feature representation. The predicted uncertainty
scores are then used to guide the generation of diverse samples across the en-
tire manifold. By leveraging the classifier’s capability, UMS effectively fills the
gaps between discrete sub-manifolds, and promotes a more continuous and dense
feature space. Given the complexity of the global manifold, it is hard to di-
rectly model the manifold. Therefore, we propose to dynamically incorporate the
global- and sub-manifold-specific features. Specifically, we design a global- and
sub-manifold-driven architecture guided by the classifier, which enables dynamic
adaptation to sub-manifold variations. This dynamic mechanism improves the net-
work’s capacity to capture both shared and domain-specific features, thereby im-
proving reconstruction performance. Extensive experiments on the public datasets
are conducted to validate the effectiveness and generalizability of our method.

1 INTRODUCTION

Computed tomography (CT) is a non-invasive imaging technique that has been widely used in clin-
ical practice to provide detailed information about internal anatomical structures. However, CT
scanning carries the risk of radiation exposure. To alleviate this concern, various sampling strategies
have been developed to reduce radiation dose under hardware and scanning constraints, including
low-dose CT (LDCT), sparse-view CT (SVCT), and limited-angle CT (LACT). These approaches
reduce radiation exposure while also accelerating the scanning process. However, the measured
data acquired using these methods are considered non-ideal measurement CT (NICT), and the re-
constructed images are often degraded by artifacts and noise, which significantly compromise their
clinical applicability.

To improve image quality and ensure clinical utility, numerous methods have been proposed. Among
them, deep learning (DL)-based approaches have shown remarkable performance (Chen et al., 2017;
Wang et al., 2024). However, most of these methods rely on the availability of paired datasets con-
sisting of NICT and ideal measurement CT (ICT) images for training (Yang et al., 2018; Xia et al.,
2023). This assumption is difficult to meet due to the dynamic nature of physiological processes,
such as respiration and cardiac motion, which cause organ displacement and make it nearly impos-
sible to acquire paired data.
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To address this limitation, unsupervised denoising methods have been developed to eliminate the
need for paired data. However, these methods are typically restricted to a single task, such as
LDCT (Kwon & Ye, 2021; Kim et al., 2024b), leading to limited generalization and increased
deployment overhead. To achieve unified denoising under an unsupervised paradigm, low-quality
images from different tasks as a source domain and applying domain mapping. GAN- and diffusion-
based approaches are the two mainstream domain mapping methods. CycleGAN (Zhu et al., 2017)
is a classic GAN-based method that accomplishes domain mapping through cycle-consistency con-
straints. GcGAN (Fu et al., 2019) uses a geometry-consistency constraint by inputting an image
and its transformed counterpart to reduce the solution space while preserving valid mappings. CUT
(Park et al., 2020) improves performance with a patch-based contrastive learning framework that
maximizes mutual information between input and output patches. AttentionGAN (Tang et al., 2021)
attempts to enhance the generation quality by incorporating an attention mechanism. More recently,
UNSB (Kim et al., 2024a) addresses the limitations of diffusion models in unpaired domain map-
ping by reformulating the Schrödinger Bridge problem as a sequence of adversarial learning tasks.
However, most existing methods assume that the data in source domain follows a homogeneous
distribution, an assumption that does not hold in the context of NICT reconstruction.

Figure 1: Visualization of reconstruction
results under different sampling strategies.

Different non-ideal sampling strategies correspond to
different physical imaging processes, leading to vari-
ations in imaging pipelines and their associated noise
distributions (Yang et al., 2025). For instance, LDCT
reduces radiation dose by lowering X-ray intensity,
while preserving sufficient angular sampling to main-
tain diagnostic image quality. In contrast, both sparse
and limited-angle sampling achieve dose reduction by
decreasing the number of projections, but their ac-
quisition patterns differ: sparse sampling preserves
full angular coverage with reduced projection density,
whereas limited-angle sampling confines acquisition
to a limited angular range. These differences lead to
different noise characteristics. To facilitate a clearer
understanding, we illustrate the scanning procedures and their corresponding images in Fig. 1, which
reveal substantially different noise distributions.

Motivated by these observations, we model the feature representations of images acquired via differ-
ent non-ideal sampling strategies as points distributed on a complex manifold. Due to fundamentally
different physical scanning processes, these points naturally cluster into discrete sub-manifolds cor-
responding to each scanning strategy. Formally, the manifold of a non-ideal data domain can be
modeled as a union of these sub-manifolds. However, these sub-manifolds are often disconnected
and discrete, which leads to discontinuities across the global feature space. Such discontinuities pose
challenges for learning models, as features from different sub-manifolds exhibit abrupt transitions
without smooth and continuous trajectories connecting them.

To address this issue, we propose an Uncertainty-Guided Manifold Smoothing (UMS) framework
based on diffusion model for NICT reconstruction. Specifically, a classifier is first trained to identify
the sub-manifold associated with each feature representation, and its predictions are used to guide
the diffusion process for generating diverse samples across the entire manifold. By incorporating the
classifier’s uncertainty estimates, particularly near sub-manifold boundaries, the framework effec-
tively bridges the gaps between discrete sub-manifolds. This approach promotes a more continuous
and dense feature space, which facilitates smoother transitions across sub-manifold boundaries.

Although the completed data form a global manifold, relying solely on a global representation risks
overlooking important sub-manifold-specific characteristics, which compromise the accuracy and
robustness of reconstruction. To address this challenge, we design a global- and sub-manifold-
driven architecture. This architecture is guided by the same classifier employed during the manifold
smoothing stage, which controls the generation process using the confidence scores derived from
the classifier. Instead, it leverages the classifier’s predictions in the image domain to infer latent
relationships among sub-manifolds. Such guidance enables the model to dynamically adapt to sub-
manifold-specific features while maintaining consistency with the global manifold, thus benefiting
from shared global- and sub-manifold knowledge. The main contributions of this paper can be
summarized as follows:
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Figure 2: The framework of the proposed method.

• We revisit the unsupervised learning paradigm for NICT reconstruction and propose a novel
uncertainty-guided manifold smoothing framework that bridges the gaps between discrete
sub-manifolds in the NICT feature space guided by the uncertainty.

• We design a confidence-guided global- and sub-manifold-driven architecture that jointly
models and balances the latent relationships between global- and sub-manifold feature rep-
resentations.

• Extensive experiments on public datasets validate the effectiveness of the proposed method,
and the results demonstrate its compatibility with various approaches to further enhance
reconstruction performance.

2 METHODOLOGY

2.1 OVERVIEW

An overview of our method is presented in Fig. 2. The proposed method consists of two stages.
The first stage trains a classifier using data from different sub-manifolds. The uncertainty scores
produced by this classifier guide the generation of new samples to bridge the gaps between sub-
manifolds. Although the completed data form a global manifold, modeling it globally tends to
overlook local features. To address this, we propose a confidence-guided global- and sub-manifold
architecture in the second stage. This structure leverages the classifier’s predictions to infer implicit
relationships between sub-manifolds, which enable the network to dynamically adapt to subdomain-
specific features. Additionally, a global-local attention module is designed to integrate global- and
sub-manifold information effectively.

2.2 UNCERTAINTY-GUIDED MANIFOLD SMOOTHING

As mentioned earlier, the proposed smoothing step aims to mitigate the domain gap and enhance the
smoothness of sub-manifolds. This module operates in two stages: training and sampling. We now
elaborate on its implementation in each stage.

2.2.1 TRAINING STAGE.

The diffusion model is trained by adding Gaussian noise ϵ to the data x in a forward process, fol-
lowed by learning to reverse this corruption using a time-conditioned U-Net architecture, which
serves as the noise predictor conditioned on label information y, with its output denoted as ϵθ.
Given a variance schedule βt, we can sample the noisy image xt at any timestep t using the repa-
rameterization trick, where xt ∼ N (xt;

√
αtx0, (1−αt)I), with αt = 1−βt and αt =

∏t
i=1 αi. By

incorporating label information during training, the model learns to generate class-related samples
(Ho & Salimans, 2022).
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The diffusion training loss function is as follows:

Ldiffusion =
∑
t

Ex0,ϵ[W ||ϵ− ϵθ(xt, y, t)||2] + 0.001Lvlb, (1)

where W is a time-step-dependent weight that facilitates the learning of visual information, and
Lvlb introduces a learnable variance into the variational lower bound (VLB) loss to enhance the
generative performance of the trained model (Nichol & Dhariwal, 2021).

In addition, implementing guidance sampling requires pre-training a classifier pϕ(y|xt, t), which
incorporates time information t as input to represent the degree of noise corruption in the noisy
image. The classifier is based on the encoder part of a U-Net architecture, which incorporates
attention blocks and timestep embeddings. The corresponding training loss function associated with
this process is given by:

Lpre-classifier =
∑
t

Ex0,ϵ[||y − pϕ(xt, t)||c], (2)

where ||.||c represents the cross-entropy loss function.

2.2.2 CLASSIFIER-GUIDED SAMPLING AND DDIM INVERSION.

To ensure the generated images belong to the specified category, the pretrained classifier guides
the generation of high-confidence, class-consistent samples (Dhariwal & Nichol, 2021), after which
reverse Denoising Diffusion Implicit Model (DDIM) is applied to derive the corresponding noise
data. The noise prediction process is formulated as follows:

ϵ̂ = ϵθ(xt, y, t)−
√
1− ᾱt · ∇xt log pϕ(xt, t). (3)

Based on the gradient-guided noise prediction, a new sampling process is derived as:

xt−1 =
√
ᾱt−1(

xt −
√
1− ᾱtϵ̂√
ᾱt

) +
√
1− ᾱt−1ϵ̂. (4)

To proceed to the next stage of generation, we generate new noisy data by reversing the deterministic
generative process of DDIM:

xt+1 =
√
ᾱt+1

(
xt −

√
1− ᾱtϵθ(xt, y, t)√

ᾱt

)
+
√

1− ᾱt+1ϵθ(xt, y, t). (5)

2.2.3 UNCERTAINTY-GUIDED SAMPLING.

To improve the diversity of generated samples and promote their distribution near sub-manifold
boundaries to ensure a smooth transition across sub-manifolds. Building upon the classifier guid-
ance, we extend it to develop an uncertainty-guided sampling strategy.

From the perspective of stochastic differential equation (SDE), the classifier is more intuitive and
naturally supports extending classifier guidance. When the sampling variance is zero, the SDE
reduces to ordinary differential equation (ODE), resulting in the following DDIM sampling process

dx =

(
ft(xt)−

1

2
g2t∇xt log pθ(xt)

)
dt, (6)

where ∇xt
log pθ(xt) is score function, ft(·) is the drift coefficient of xt, gt is the diffusion coef-

ficient of xt. The conditional information U(·), derived from the pre-trained classifier pϕ(y|xt, t),
represents entropy used for uncertainty-guided and is defined as follows:

U(xt) = −
∑
i

pϕ(yi|xt, t) log pϕ(yi|xt, t). (7)

Then, the conditional ODE of uncertainty guidance in DDIM is

dx =

(
ft(xt)−

1

2
g2t∇xt

log pθ(xt|U)
)
dt, (8)
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wherein, exploiting the Bayesian formula in the score function and selecting terms about xt, we
obtain:

∇xt
log pθ(xt | U) = ∇xt

log

(
pθ(xt)p(U | xt)

p(U)

)
= ∇xt

log pθ(xt) +∇xt
log p(U | xt). (9)

Next, we leverage the connection between diffusion models and score matching, and the score func-
tion can be expressed as:

∇xt
log pθ(xt) = − 1√

1− ᾱt
ϵθ(xt, y, t). (10)

Moreover, to obtain sampling results x0 with higher value U(x0), we adopt the method from (Luo
et al., 2024) and set p(U|xt) ∝ eγ·U(xt), where γ is a hyperparameter that controls the strength of
uncertainty guidance. This leads to pθ(xt|U) ∝ eγ·U(xt)pθ(xt). Furthermore,

∇xt
log pθ(xt | U) = − 1√

1− ᾱt
ϵθ(xt, y, t) +∇xt

γ · U(xt)

= − 1√
1− ᾱt

(
ϵθ(xt, y, t)−

√
1− ᾱt · ∇xtγ · U(xt)

)
. (11)

Analogous to classifier guidance, we introduce uncertainty-guided sampling by replacing ϵθ(xt, y, t)
in each sampling step with

ϵ̂θ(xt, y, t) = ϵθ(xt, y, t)−
√
1− αt · ∇xt

γ · U(xt). (12)

Consequently, the new sampling process tends to generate xt with higher U(xt) values, yielding an
x0 with a higher U(x0), thereby introducing greater uncertainty to enhance sample diversity.

2.3 NETWORK ARCHITECTURE

Although the manifold has been smoothed by the first step, modeling it globally tends to overlook
local features. To address this issue, we propose a confidence-guided denoising architecture that
leverages both global and sub-manifold information. Our framework consists of two generators
and two discriminators. The generator mapping from high- to low-quality domain and the two
discriminators follow prior designs. The generator mapping from low- to high-quality domain adopts
a novel architecture that models both global- and sub-manifolds. In other words, our method can be
seamlessly integrated into existing unsupervised frameworks by simply modifying the generator.

Existing generators for low- to high-quality mapping typically rely on feature processing based on
a single, simple manifold, which limits their capacity to capture complex manifolds, such as the
smoothed one in our study. To better balance local and global features, we rethink the mapping pro-
cess from the low-quality to the high-quality domain. These differences of local features primarily
arise from noise introduced by different physical scanning procedures. To address this, we model
the image in the feature domain as a superposition of multiple sub-manifolds and employ a classifier
to obtain confidence scores that implicitly capture their interrelationships. Furthermore, we design
multiple decoders, each tailored to the feature processing of different sub-manifolds, and use the
confidence scores to guide this process, enabling adaptive feature representation and processing.

Specifically, the generator consists of an encoder and multiple decoders. The encoder extracts fea-
tures from the input image. To reduce training cost, we reuse the classifier trained within the UMS
framework. The classifier assigns a soft label to each image, and the resulting confidence scores are
concatenated with the image features as input to the decoder module. The input to each decoder,
denoted as Id, is defined as:

Id = Concat(f, cd), (13)
where f denotes the image feature extracted by the encoder, and cd represents the confidence score
for a sub-manifold, reshaped to match the dimensions of f . The multiple decoders produce outputs
o1, o2, o3 corresponding to different sub-manifolds. Finally, the outputs are fused to generate the
final high-quality image O as follows:

O = Conv(Avg(o1, o2, o3)). (14)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To enable more effective feature aggregation across multiple decoder outputs, we introduce a global-
local attention module, which allows the sub-manifold-driven decoders to incorporate global feature
information during processing. This helps mitigate excessive bias and promotes more reliable ag-
gregation in subsequent stages.

The global-local attention module comprises two parts: global feature representation and efficient
global-local attention (EGLA). The global feature representation processes the feature maps from the
first transposed convolution layer of all decoders through a convolutional layer to generate a global-
manifold representation J ∈ RB×C×H×W . Each decoder integrates an EGLA module between two
transposed convolution layers. The EGLA module receives the global feature J and the intermediate
feature map S ∈ RB×C×2H×2W , obtained after the first transposed convolution layer.

The structure of the EGLA module is illustrated in Fig. 2. The core attention mechanism within
EGLA takes three inputs: query q ∈ RB×N×dk , key k ∈ RB×N×dk , and value v ∈ RB×N×dv .
Here, B represents the batch size, and N = H × W is the total number of spatial locations. The
attention is calculated as follows:

Attention(q, k, v) = softmax(
qkT√
dk

)v. (15)

However, a single attention mechanism captures relationships within one pattern, limiting its ability
to model diverse associations. Multi-head attention addresses this by employing multiple parallel
heads to capture interactions across different subspaces, thereby enhancing representation capability.
We thus adopt the multi-head attention mechanism for feature fusion. The multi-head attention
module receives three inputs: query Q ∈ RB×N×E , key K ∈ RB×N×E , and value V ∈ RB×N×E ,
where E denotes the embedding dimension.

To reduce computational cost, the feature map S from the transposed convolution is downsampled
via a max pooling layer, followed by a convolutional layer and flattening operation to generate the
query Q. Meanwhile, the global feature J is processed by two convolutions and then flattened to
generate the key K and value V , respectively. Additionally, the attention output is upsampled via
interpolation to match the first transposed convolution feature map, enabling a residual connection.

Our confidence-guided global- and sub- manifold-driven denoising network introduces architectural
innovations that can flexibly integrate with various loss functions. In this study, we use a conven-
tional cycle-consistency-based loss function to facilitate network training, formulated below:

L(G,D) = LGAN(G,D) + λ1Lcyc(G) + λ2Lidentity(G), (16)

where G and D denote the generator and discriminator, respectively. LGAN represents the adversar-
ial loss used to train the generator and discriminator in an adversarial manner. Lcyc denotes the cycle
consistency loss, which enforces cross-domain reconstruction consistency. Lidentity corresponds to
the identity loss, which preserves within-domain reconstruction consistency.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. The publicly available “2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand Challenge”
dataset (McCollough, 2016) is used to evaluate the effectiveness of the proposed method. To reduce
sample redundancy and improve training efficiency, a total of 193 ICT images were selected for
training and 46 for testing, where the 193 images were uniformly sampled from the data of eight
patients and the 46 images were uniformly sampled from another two patients. Ultimately, our
training dataset consists of 579 simulated and UMS-synthesized NICT images as the source domain,
and 193 ICT images as the target domain.

Table 1: Scanning parameters used for
simulated CT image generation

Geometrical Parameters β

Scanning Photon Count α View Number Angle Range

LDCT 1.25e4 512 [0◦, 360◦]
SVCT 1.25e8 60 [0◦, 360◦]
LACT 1.25e8 512 [0◦, 125◦]

Data Simulation. Low-quality CT images are gener-
ated by undersampling the projection data or introduc-
ing noise in the projection domain during simulation.
Different scanning strategies were employed to gen-
erate downsampled sinogram data, and then FBP was
used to reconstruct LDCT, SVCT, and LACT images.
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The detailed parameters for each scanning strategy are summarized in Table 1. The reason for not
smoothing data through simulation is that each scanning parameter represents a distinct continu-
ous function, exhaustive enumeration is nearly impossible, and the relationships between parameter
combinations and the domains they define are difficult to model. Thus, we employ a classifier for
guidance, using confidence scores to guide the model toward higher uncertainty.

Figure 3: Generation examples of the
uncertainty-guided diffusion model.

Data Generation. To smooth the manifold, the gener-
ator and the classifier are trained separately using sim-
ulated low-quality data. Then, classifier guidance with
a guidance scale of 10 is applied, followed by DDIM
inversion to obtain the corresponding noise represen-
tation. Subsequently, uncertainty guidance is applied
to the noise representation, with a guidance scale of 3.
For each sub-manifold, 100 images are generated, and
representative samples are presented in Fig. 3.

Baselines. The proposed method is compared against
several baseline methods, including CycleGAN(Zhu
et al., 2017), GcGAN(Fu et al., 2019), CUT(Park et al.,
2020), AttentionGAN(Tang et al., 2021), Switchable-
CycleGAN(Yang et al., 2021), SRC(Jung et al., 2022), and UNSB(Kim et al., 2024a).

Implementation Details. Following the settings in CycleGAN (Zhu et al., 2017), we set λ1 = 10
and λ2 = 5, and employed the Adam optimizer with β1 = 0.5 and β2 = 0.999 to train the pro-
posed network. For the comparison methods, we used the released source codes with their original
parameter settings for training and testing. The number of training epochs was set to 200.

Evaluation Metrics. Consistent with previous works, Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) are selected to evaluate the performance of different methods. For
both metrics, higher values indicate better perceptual and structural image quality.

Figure 4: Reconstruction results of different algorithms under varying sampling strategies. The
display window for rows 1, 3, and 5 is [-805, 145] HU, while for other rows, it is [-265, 285] HU.

3.2 COMPARISON WITH OTHER METHODS

Fig. 4 illustrates the qualitative comparisons across different methods and sampling conditions.
While other methods achieve satisfactory performance under specific non-ideal sampling strategies,
their generalization to other settings is limited, primarily due to the difficulty of modeling discrete

7
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sub-manifolds within a single unified model. In contrast, the proposed method maintains consis-
tently high performance across all non-ideal sampling strategies.

Table 2: Quantitative results of PSNR(dB) and SSIM(%) for
different algorithms under varying sampling strategies

LDCT SVCT LACT Average

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CycleGAN 38.25 94.57 36.01 91.44 31.97 90.93 35.41 92.31
CUT 36.21 90.84 33.37 81.92 29.42 83.48 33.00 85.41
AttentionGAN 39.59 95.83 36.70 90.91 31.01 91.06 35.76 92.60
SwitchableCycleGAN 37.26 92.92 33.38 84.39 27.40 85.45 32.68 87.58
SRC 35.52 88.16 32.07 79.05 29.09 83.92 32.22 83.71
UNSB 36.82 94.81 34.81 90.93 29.29 86.77 33.64 90.83
Ours 39.66 95.18 36.89 92.34 33.79 92.06 36.78 93.19

Quantitative results in Table 2 fur-
ther support the superiority of the
proposed method. Across low-dose,
sparse-view, and limited-angle sce-
narios, the proposed method consis-
tently achieves the best reconstruc-
tion performance. The most signifi-
cant improvement is observed in the
limited-angle scenario, where the proposed method yields PSNR gains exceeding 6 dB compared
to competing approaches. Additionally, it achieves notable improvements in average reconstruction
quality across all three sub-manifolds.

3.3 GENERALIZATION EVALUATION

Table 3: Reconstruction results of different algorithms for domain gen-
eralization

Known Domain Unkown Domain Known Domain Unkown Domain

SVCT LACT LDCT LDCT LACT SVCT

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CycleGAN 35.11 89.10 31.57 90.11 38.65 94.44 36.76 90.93 31.04 89.63 31.71 78.15
CUT 32.25 77.11 28.69 81.03 36.48 91.75 35.92 87.26 28.21 81.61 31.18 73.33
SRC 30.95 65.84 28.60 82.20 34.93 82.65 34.93 82.42 28.59 81.91 30.36 70.77
UNSB 33.11 83.33 28.51 83.38 36.57 94.10 35.64 91.87 27.69 82.40 32.03 84.31
Ours 35.88 91.55 33.46 91.32 39.00 94.79 39.53 95.39 33.15 91.35 33.46 86.06

Domain Generalization
Experiment: Due to the
uncertainty-guided data
generation and the new
architecture, the proposed
method can adapt to a
broader range of data
distributions, thereby en-
hancing its generalization
ability. To evaluate the generalization performance on unknown domains, the model is trained
on known domains and evaluated on both seen and unseen data distributions. The corresponding
NICT image reconstruction results are summarized in Table 3. As shown in Table 3, the proposed
method consistently outperforms competing approaches on both known and unseen domains, which
demonstrates strong generalization capability even when tested on previously unseen data.

Figure 5: Reconstruction results of different algorithms on
natural image dataset.

Natural Image Experiment: More-
over, to demonstrate the broader ap-
plicability of the proposed method
beyond medical imaging, we eval-
uate its image reconstruction ca-
pability on natural image datasets.
Specifically, we consider two natural
image reconstruction tasks, image
dehazing and image deraining tasks.
We construct the low-quality domain
using 1,800 lightly rainy images
from the JRDR dataset on Kaggle
and 500 outdoor hazy images from
the SOTS dataset (Li et al., 2019),
with their corresponding clean coun-

terparts forming the high-quality domain. To balance the data distribution and validate our method,
1,000 additional hazy images are synthesized using UMS and added to the low-quality domain.

Table 4: Quantitative results for different algo-
rithms on natural image dataset

Hazy Rainy Average

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM

CycleGAN 29.18 95.31 25.31 88.97 27.24 92.14
CUT 24.02 87.44 22.99 79.09 23.50 83.26
SRC 22.80 88.07 20.32 73.55 21.56 80.81
UNSB 22.70 83.33 21.31 72.65 22.00 77.99
Ours 29.28 95.85 25.84 90.88 27.56 93.36

Qualitative comparisons are shown in Fig. 5.
In the dehazing task, existing methods often
produce images with excessive brightness after
haze removal. In contrast, our method not only
removes haze effectively but also preserves nat-
ural brightness levels, which yields results that
are closer to the ground truth. In the derain-
ing task, the proposed method successfully re-
moves most of the streak-like rain while pre-
serving more image details. Besides, the quan-
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titative results are summarized in Table 4. As shown in Table 4, the proposed method consistently
outperforms existing approaches in both tasks.

3.4 ABLATION EXPERIMENT

Table 5: Effectiveness of the proposed uncertainty-
guided manifold smoothing method

LDCT SVCT LACT Average

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CycleGAN 38.25 94.57 36.01 91.44 31.97 90.93 35.41 92.31
CycleGAN† 39.25 95.30 36.32 91.95 32.84 91.76 36.13 93.00
∆ +1.00 +0.73 +0.31 +0.51 +0.87 +0.83 +0.72 +0.69
Switchable 37.26 92.92 33.38 84.39 27.40 85.45 32.68 87.58
Switchable† 38.60 94.16 34.84 88.64 27.99 86.41 33.81 89.73
∆ +1.34 +1.24 +1.46 +4.25 +0.59 +0.96 +1.13 +2.15
GcGAN 40.33 96.90 36.14 92.24 29.36 89.94 35.27 93.02
GcGAN† 40.13 96.73 36.64 92.43 30.34 90.39 35.70 93.18
∆ -0.20 -0.17 +0.50 +0.19 +0.98 +0.45 +0.43 +0.16
SRC 35.52 88.16 32.07 79.05 29.09 83.92 32.22 83.71
SRC† 35.13 90.34 33.29 85.77 30.32 89.78 32.91 88.63
∆ -0.39 +2.18 +1.22 +6.72 +1.23 +5.86 +0.69 +4.92

The Effectiveness of UMS: The UMS
method is designed to construct a
smooth manifold that effectively bridges
discrete transitions between different
sub-manifolds. To evaluate its effec-
tiveness, the data synthesized through
the UMS framework were incorporated
into the training dataset, and the ex-
perimental results of different methods
are summarized in Table 5. The results
demonstrate that UMS consistently im-
proves the performance of multiple un-
supervised image reconstruction meth-
ods across diverse domains, with only
minor exceptions.

Notably, UMS provides a “free lunch” improvement, which requires neither architectural modi-
fications nor additional training for the base denoising models. This plug-and-play characteristic
makes it a highly versatile and efficient enhancement to existing unsupervised frameworks without
introducing computational overhead or implementation complexity.

Table 6: Ablation study on joint training and con-
tribution parts

LDCT SVCT LACT

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM

CycleGAN(LD) 38.84 94.95 – – – –
CycleGAN(SV) – – 35.35 90.55 – –
CycleGAN(LA) – – – – 31.91 87.92
CycleGAN(All) 38.25 94.57 36.01 91.44 31.97 90.93
CycleGAN⋆ 38.51 94.19 36.22 92.11 32.51 90.36
CycleGAN† 39.25 95.30 36.32 91.95 32.84 91.76
Ours 39.66 95.18 36.89 92.34 33.79 92.06

Multi-domain v.s. Single-domain Train-
ing: To assess the comparative advantages
of multi-domain versus single-domain train-
ing paradigms, a comprehensive experimental
study is conducted. The corresponding results
are reported in Table 6. The results reveal
that joint training consistently improves quan-
titative performance across multiple domains,
with particularly notable gains in the sparse-
view and limited-angle scenarios, referred to as
CycleGAN (All). CycleGAN⋆ refers to a vari-
ant in which the generator is replaced with the
proposed confidence-guided global- and sub-manifold-driven architecture. Meanwhile, CycleGAN†

denotes the application of UMS to smooth the manifold.

Besides, the results demonstrate that both components contribute significantly to performance gains
over the baseline. Notably, CycleGAN† yields more pronounced improvements, which aligns with
the earlier hypothesis. This observation further supports the claim that the primary challenge lies
in modeling discrete manifolds. Once the manifold is smoothed via our proposed approach, recon-
struction performance can be substantially enhanced.

4 CONCLUSION

In this paper, we propose a novel learning paradigm for unsupervised NICT reconstruction methods
that addresses the fundamental challenge of manifold discontinuity across different NICT acquisi-
tion strategies. Firstly, we treat the discrete heterogeneous sub-manifold as components of a com-
plex manifold, and design UMS to smooth the manifold. Besides, we design a novel global- and
sub-manifold-driven architecture to restore higher quality images through modeling the global- and
sub-manifold information simultaneously. Extensive experiments demonstrate our effectiveness.
Besides, the smoothing manifold operation can consistently improve the performance for different
unsupervised methods without requiring architectural modifications. In future work, extending this
methodology to other medical imaging modalities with distinct physical principles represents an
interesting research field.
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