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ABSTRACT

Knowledge distillation (KD) is a widely used approach for compressing large neu-
ral networks into compact student models by combining supervised learning with
teacher-guided alignment. While recent studies have attempted to improve KD
through adaptive weighting between the supervised and distillation objectives,
most existing methods determine weights solely from gradients computed on a
single mini-batch. This batch-local perspective neglects the crucial requirement
that student updates should generalize across unseen data, often resulting in gra-
dient conflicts, unstable training dynamics, and suboptimal performance. In this
work, we introduce a cross-batch dynamic weighting framework for KD that ex-
plicitly incorporates generalization signals beyond the current batch. At each it-
eration, we leverage an auxiliary batch as a proxy for unseen data, compute its
supervised gradient as a reference, and solve a lightweight quadratic program to
adaptively select weights that align the combined update direction with this refer-
ence. To further stabilize optimization, we normalize task gradients and introduce
a scaling mechanism that balances their magnitudes while maintaining compu-
tational efficiency. Extensive experiments on standard benchmarks demonstrate
that our approach consistently outperforms fixed-weight and batch-local adaptive
baselines, leading to more stable optimization and superior student performance.
These results highlight the importance of cross-batch consistency in KD and estab-
lish our method as a principled and effective strategy for dynamic loss balancing.

1 INTRODUCTION

Knowledge distillation (KD) [15] has emerged as a powerful paradigm for compressing large teacher
neural networks into lightweight student models while retaining competitive performance. In an era
dominated by ever-growing large-scale models like large language models and vision transformers,
KD remains a crucial and widely adopted technique for deploying these complex models in resource-
constrained environments. By leveraging both the ground-truth labels and the guidance of a teacher
model, KD provides a flexible mechanism for improving generalization and efficiency in student
training.

KD typically trains a student model by jointly optimizing two objectives: the supervised cross-
entropy (CE) loss and the Kullback–Leibler (KL) divergence loss. As there are two loss terms,
setting appropriate loss weights is crucial for KD and conventional methods usually search static
loss weights to combine two terms. However, recent studies [50, 46, 30, 12, 44, 26] have shown that
using fixed loss weights fails to account for the varying importance of the tasks across training iter-
ations, leading to either under- or over-emphasis of the distillation signal relative to the supervised
signal, and thus is often suboptimal. To this end, recently, researchers have shifted their attention to
designing dynamic weighting strategies. In [50], Yu et al. introduced instance-wise weighting based
on the discrepancy between the teacher’s predicted probability and the ground-truth label, while [46]
leveraged adaptive weighting by focusing on the teacher’s key predictive regions in object detection.
[30] developed an adaptive loss weighting strategy for semantic segmentation by gradually reducing
the teacher’s influence, and [12] dynamically adjusts the KD loss weight by assigning a per-instance
weight based on a sample’s difficulty, which prioritizes distilling knowledge from easier samples
with a lower loss weight, while increasing the weight for harder samples as training progresses.
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More recently, [44] estimate the influence of a sample on unseen data by by multiplying the inverse
Hessian of the training loss with the sample’s loss gradient for dynamic loss weighting. [47] priori-
tizes the separation of positive and negative documents by down-weighting the loss for well-ranked
positives and poorly-ranked negatives, while emphasizing the alignment with the teacher for docu-
ments that the student model struggles with. [26] adjusts KL loss weights based on the discrepancy
between the student and teacher’s probability distributions, shifting the focus towards hard-label
supervision when the student’s output differs significantly from the teacher’s.

While prior dynamic weighting methods have shown improvements by adjusting loss weights at the
instance or mini-batch level, they generally rely only on signals from the current batch. Such batch-
local strategies implicitly assume that optimizing the weighted loss within one batch automatically
leads to better generalization, but this assumption is not guaranteed. In fact, the two objectives in
KD—the CE loss tied to supervised accuracy and the KL loss serving as auxiliary teacher align-
ment—often produce gradients that are not aligned, causing destructive interference and unstable
updates [28, 49]. Importantly, what ultimately matters is not just minimizing the weighted loss on
current samples, but improving the primary CE objective on unseen data. Existing methods, how-
ever, lack an explicit mechanism to ensure that their weighting improves CE generalization, and
thus risk either over-emphasizing or under-utilizing the teacher signal in ways that do not benefit the
student’s predictive accuracy.

To overcome these limitations, we propose a new dynamic weighting framework that explicitly opti-
mizes for generalization of the CE task on unseen samples, rather than only reconciling CE and KL
within a single batch. Our key idea is to leverage an auxiliary batch as a proxy for unseen data and
select weights such that the weighted update direction from the current batch is consistent with the
CE gradient on the auxiliary batch. This design ensures that the estimated loss weights directly pro-
mote improvement of the primary supervised task, while still incorporating the auxiliary distillation
signal. Unlike multi-task learning (MTL) methods [19, 11], which aim to balance multiple tasks
of equal importance, our formulation explicitly prioritizes the CE objective and treats KL as a sec-
ondary regularizer, reflecting the asymmetric roles of the two losses in KD. Furthermore, since CE
and KL gradients often differ in scale due to their heterogeneous objectives, we integrate gradient
normalization and a scaling mechanism [28, 11] to prevent one task from dominating merely because
of magnitude imbalance. This ensures that the dynamic weighting reflects genuine trade-offs rather
than artifacts of gradient norms. Together, these components yield a principled and stable optimiza-
tion scheme, enabling more consistent knowledge transfer and improved generalization performance
of the student model.

The main contributions of this work are summarized as follows:

• We identify the overlooked limitation of existing KD approaches that rely on batch-local
weighting, which often leads to unstable optimization due to gradient conflicts. To address
this issue, we propose a novel cross-batch dynamic weighting framework that leverages aux-
iliary gradients from an additional batch to adaptively guide the selection of task weights at
every iteration.

• We develop an efficient optimization procedure with gradient normalization and scaling, ensur-
ing stable updates while incurring negligible computational overhead. This design maintains
task balance and effectively integrates CE and KL objectives.

• Extensive experiments demonstrate that our method consistently improves student model per-
formance over fixed-weight and batch-local adaptive baselines, validating the effectiveness of
our cross-batch perspective.

2 METHODOLOGY

2.1 KNOWLEDGE DISTILLATION WITH DYNAMIC WEIGHTING

In a typical knowledge distillation (KD) framework, the training of the student model S involves
two complementary objectives. The first is the cross-entropy (CE) loss, which enforces prediction
accuracy with respect to the ground-truth labels. Given a batch B = (xi, yi)

m
i=1 of inputs xi and
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labels yi, the CE objective is

Lce(B;S) = − 1

m

m∑
i=1

C∑
c=1

1[yi = c] log pS(c|xi), (1)

where pS(c | x) denotes the predictive distribution of S over the C classes. The second component
is the distillation loss, which typically aligns the student with the teacher T at a distributional or
representational level. We denote this generically as a Kullback–Leibler divergence,

Lkl(B;S, T ) =
1

m

m∑
i=1

DKL(qT (z|xi)∥qS(z|xi)), (2)

where qT (· | x) and qS(· | x) represent teacher and student distributions over some latent variable
z. The choice of z is flexible: it may correspond to softened class probabilities, intermediate hidden
features, or attention maps, depending on the particular KD variant employed. Combining the two
terms, the overall training objective in conventional KD is

L(B;S) = wceLce(B;S) + wklLkl(B;S, T ), (3)

with nonnegative coefficients wce, wkl that are typically fixed beforehand and remain constant across
all training iterations.

However, such a fixed weighting scheme lacks adaptivity and may lead to suboptimal updates. Since
gce, gkd (the gradients of Lce and Lkl) are computed from stochastic mini-batches, their directions
often exhibit variability and even conflict across iterations. A constant convex combination wcegce +
wklgkl cannot flexibly adapt to these fluctuations, which in turn deteriorates optimization dynamics
and slows down convergence. In particular, a weight setting that is beneficial on one batch can bias
the training signal on another batch where the relative gradient scales and directions differ.

To address this issue, we propose to dynamically determine the task weights at every training step.
Specifically, in addition to the current batch B1 used to compute gradients for both Lce and Lkl,
we draw an auxiliary batch B2 from the same dataset (with independent shuffling). The core idea
is to evaluate how well a candidate update on B1 generalizes to B2 under the CE objective, and
to adaptively select weights w = [wce, wkl] that minimize the inconsistency between the combined
update direction and the CE gradient on B2. This construction provides a mechanism for aligning
the weighted task gradient with the direction that is most consistent across different samples, thereby
mitigating gradient conflicts and enabling more effective student optimization.

2.2 WEIGHT SEARCHING FOR IMPROVEMENTS ON UNSEEN DATA

We begin by introducing the weighted gradient of the student model as

gw = wcegce + wklgkl, (4)

where gce and gkl denote the task-specific gradients of the CE loss and the KL-based distillation loss,
respectively. The coefficients wce and wkl regulate the relative contribution of each task which are
adaptively optimized at every iteration. The central question is how to select w = (wce, wkl) such
that the resulting update direction is both effective on the current batch and consistent with unseen
data.

To address this, we introduce an auxiliary signal from an unseen batch. Specifically, we freeze the
student parameters and compute a reference gradient from the CE loss on a different batch, denoted
by Gce. This auxiliary gradient serves as a proxy for the generalization behavior of the model, since
it reflects how the student would respond to samples not directly involved in the current update. Our
objective is to prevent the weighted update from overly aligning with this auxiliary signal, thereby
reducing gradient conflicts between batches. Formally, we minimize:

min
w∈W

(g⊤wGce)
2, W = {wce, wkl ≥ 0, wce + wkl ≤ 1}. (5)

This problem can be compactly written as a quadratic program of the form

min
w∈W

(u⊤w)2, u = [g⊤ceGce, g
⊤
klGce]

⊤. (6)
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Figure 1: Overall methodology of the proposed dynamic weighting framework.Two batches B1 and
B2 are sampled to compute task gradients (gce, gkl) and the auxiliary CE gradient Gce. We adaptively
search weights (wce, wkl) to minimize cross-batch inconsistency, followed by gradient normalization
and a scaling factor λ to stabilize the final update.

The matrix uu⊤ is positive semidefinite with rank one, making the optimization convex and compu-
tationally lightweight.

In our design, gradients from other mini-batches only involve the CE loss. This choice is motivated
by the role of CE and KL in distillation: CE constitutes the primary objective directly tied to task
performance, while KL merely serves as an auxiliary alignment signal. Incorporating KL across
batches would risk over-emphasizing the auxiliary task and weakening the focus on the supervised
objective. By restricting cross-batch aggregation to CE, we ensure that the optimization remains
centered on the main learning target, with KL acting only as a within-batch regularizer.

By construction, this formulation adaptively selects task weights that minimize destructive inter-
ference between CE and KL updates, ensuring that the student’s gradient direction remains stable
across batches. In contrast to fixed weighting schemes, our approach dynamically reconciles the two
tasks in a data-dependent manner, yielding more consistent and generalizable knowledge transfer.

2.3 GRADIENTS BALANCE AND STABILIZATION

Once the optimal coefficients w = (wce, wkl) are obtained from the quadratic program in Eq. equa-
tion 6, we construct the weighted task gradients as

g′ce = wcegce, g′kl = wklgkl, (7)

Gradient Balancing. Due to the inherent imbalance in task gradient magnitudes, a direct combi-
nation often leads to instability where one task dominates the update solely because of its scale. This
effect is particularly evident in KD, as CE and KL losses are defined on heterogeneous objectives
and thus yield gradients with substantially different magnitudes [19, 11, 28]. Without correction, the
task with the larger gradient norm would overshadow the other, biasing the optimization regardless
of the adaptive weight search. To address this, we normalize the task contributions by rescaling the
weights as

w̃ce = wce ·
∥g′ce∥2 + ∥g′kl∥2
∥g′ce∥2

, w̃kl = wkl ·
∥g′ce∥2 + ∥g′kl∥2
∥g′kl∥2

. (8)

This rescales wce and wkl proportionally to the relative task gradient magnitudes, so that the effective
contributions g′ce and g′kl are comparable in norm. This step prevents raw scale discrepancies from
dictating the update direction and ensures that the adaptive weighting reflects genuine task trade-
offs rather than artifacts of heterogeneous loss formulations. Such normalization has been shown to
mitigate gradient dominance and improve stability across objectives [19, 11, 28].
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We then scale the loss weights by the weight of CE such that the CE weight is 1 and KL weight will
adjust the contribution of the KL loss:

wfinal
ce = 1, wfinal

kl =
w̃kl

w̃ce
. (9)

We observed that CE constitutes the primary supervised objective directly governing the student’s
predictive accuracy, while KL serves as an auxiliary alignment signal guiding the student to mimic
the teacher, as confirmed by experiments in Section 3.4. By fixing wce = 1, we guarantee that
the main learning signal remains dominant, while the proportional scaling preserves the relative
contribution of the auxiliary KL task identified by dynamic weighting. This strategy aligns with
common practices in multi-task learning, where primary task gradients are maintained at a stable
magnitude while secondary tasks are adaptively scaled [11, 19, 28]. Empirically, this adjustment
improves convergence stability and ensures that the student benefits from the teacher’s guidance
without compromising task performance.

Gradient Stabilization. Beyond this final weighting, we further stabilize the optimization by in-
troducing a scaling factor λ inspired by CAGrad [28]. Let g0 = 1

2 (gce + gkl) denote the unbiased
mean gradient across tasks, and let gw = wfinal

ce gce + wfinal
kl gkl denote the dynamically weighted gra-

dient. We define

λ =
α∥g0∥2
∥gw∥2

, (10)

where α is a hyperparameter controlling the relative strength of correction. This formulation ensures
that the additional signal from gw is scaled in proportion to the reference magnitude of g0, preventing
excessively large or small updates due to fluctuating weight solutions. The final update rule becomes

gfinal = g0 + λgw, S ← S − ηgfinal, (11)

with η the learning rate. Intuitively, Eq. (11) interpolates between the unbiased mean gradient g0 and
the adaptively weighted correction gw: when λ is small, the update is close to g0, while larger values
emphasize the task-adaptive direction. This balancing mechanism ensures that dynamic weighting
improves optimization without destabilizing it, yielding updates that are both data-dependent and
scale-consistent.

In practice, each iteration requires two forward–backward passes: one on B2 with frozen student
parameters to obtain Gce, and one on B1 with trainable parameters to compute gce and gkl. The ad-
ditional quadratic program and rescaling operations incur negligible computational overhead, while
the incorporation of λ provides consistent training stability across tasks.

3 EXPERIMENTS

Datasets. We conduct experiments on CIFAR-100 [20]. CIFAR-100 is a widely used image clas-
sification dataset consisting of 100 classes, with each image sized 32×32 pixels. It contains 50,000
training images and 10,000 test images.

Baselines. We evaluate the effect on our improved CAGrad method for conventional knowledge
distillation approaches, including KD [15], RKD [35], AT [51], KDSVD [22], PKT [36]. These
methods are implemented using the mdistiller [54, 55] repository. For each experimental setting, we
run the repository’s distillation training code with adjusted parameters to obtain a trained student
model, whose classification accuracy serves as the baselines.

Implementation Details. All experiments were conducted on a single NVIDIA GeForce RTX
3090 GPU. We strictly follow the training and testing protocol, and hyperparameters in the prior
work [18, 10]. To ensure a fair comparison, we kept all shared training parameters identical between
the baseline and our proposed method. Specifically, for all distillation methods, we used a batch
size of 64, trained for 240 epochs, initialized the learning rate at 0.05, applied learning rate decay at
epochs 150, 180, and 210 with a decay factor of 0.1, and used SGD as the optimizer. All results are
reported by taking average over 5 trials.
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Table 1: Comparisons of student model performance between conventional KD methods and our
proposed approach.

Teacher resnet101 resnet56 vgg13 resnet101 resnet110 resnet110 wrn-40-2 Avg %Student resnet50 resnet20 vgg8 resnet34 resnet32x4 resnet56 wrn-40-1

KD 80.21 70.62 72.90 80.57 78.86 75.14 73.65 75.99
KD + ours 80.51 71.59 73.46 81.22 79.31 75.72 74.83 76.66

RKD 80.18 70.12 71.45 79.56 79.36 74.38 72.02 75.30
RKD + ours 80.83 70.93 72.09 80.40 80.05 75.09 72.76 76.02

AT 79.93 69.70 71.54 79.85 79.18 73.92 73.02 75.31
AT + ours 80.23 70.74 72.64 80.61 79.53 74.62 74.01 76.05
KDSVD 78.73 70.11 70.53 79.42 79.62 73.06 71.83 74.76

KDSVD + ours 79.70 71.07 71.39 80.13 80.26 73.52 72.58 75.52
PKT 80.32 70.43 73.19 80.22 80.15 74.70 73.73 76.11

PKT + ours 80.95 71.20 73.77 80.94 80.80 75.39 74.09 76.73

3.1 RESULTS OF OUR PROPOSED APPROACH

We first evaluate our proposed dynamic weighting strategy by integrating it into five representative
knowledge distillation approaches: KD [15], RKD [35], AT [51], KDSVD [22], PKT [36]. To ensure
generality, experiments are conducted on seven widely adopted teacher–student pairs, including
resnet, vgg, and wrn families, ranging from large-capacity teachers such as resnet101 and resnet110
to compact students such as resnet20 and wrn-40-1.

Table 1 reports the top-1 accuracy of student models under conventional distillation and under our
method. For each baseline, the best result between the vanilla and “+ ours” variant is highlighted in
bold. The last column summarizes the average improvement across all pairs. Overall, our method
consistently improves student performance across different distillation techniques and architectures.
A closer inspection reveals that the gains are particularly pronounced on challenging small-student
settings (e.g., ResNet-56→ResNet-20 and WRN-40-2→WRN-40-1), where fixed weighting often
struggles to balance CE and KL objectives. By contrast, our method dynamically adapts the task
contributions at each iteration, leading to more effective knowledge transfer. These results verify
that the proposed dynamic weighting not only generalizes well to diverse distillation paradigms
but also provides consistent benefits regardless of the teacher–student gap, thereby highlighting its
practical value for real-world deployment.

To further verify the robustness of our method, we additionally conduct experiments on the Tiny-
ImageNet dataset, which is more challenging due to its larger scale and higher variability. We eval-
uate several teacher–student pairs using the same experimental setup. As shown in ??, our approach
again achieves consistent improvements over standard KD across all pairs. These results confirm
that our dynamic weighting strategy is not limited to CIFAR benchmarks but also generalizes well
to larger and more complex datasets.

3.2 KNOWLEDGE DISTILLATION METHODS ARE SENSITIVE TO LOSS WEIGHTS

Knowledge distillation optimizes the model for minimizing the weighted average losses of the pri-
mary task and distillation. Here, we conduct experiments by using the standard KD method over
various teacher-student pairs: wrn-40-2 and wrn-40-1, resnet101 and resnet50, vgg13 and vgg8.
This aims to comprehensively investigate the effect of loss weights on KD with various model sizes
and architectures. In additional to this, to ensure generality and eliminate the influence of any spe-
cific distillation method, we further experiment with RKD, KDSVD, and PKT using the vgg13–vgg8
teacher-student pair. For all experiments, we train each model with various loss weights by varying
αCE from 0.1 to 0.9 in equal increments, with αKL = 1− αCE.

The results are shown in Fig. 2. To present the results more intuitively, we adopt different visu-
alization strategies for the two figures. In the left figure, due to the large variation in distillation
performance across settings, we present the accuracy difference value (positive value means higher
accuracy) between the model with a loss weight and the one with uniform loss weight ratio (CE
vs KL : 0.5 vs 0.5). In the right figure, since different distillation methods use different initial loss
weight ratio (e.g., CE vs KL: 1 vs 30000 for PKT and 1 vs 1 for RKD and KDSVD), we use scaling

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.1
:0.

9
0.2

:0.
8

0.3
:0.

7
0.4

:0.
6

0.5
:0.

5
0.6

:0.
4

0.7
:0.

3
0.8

:0.
2

0.9
:0.

1

Task Weight (CE:KL)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Re
la

tiv
e 

Ac
cu

ra
cy

 %
 (w

.r.
t. 

0.
5:

0.
5)

 

resnet32x4(T) - resnet8x4(S)
resnet101(T) - resnet50(S)
vgg13(T) - vgg8(S)

(a) Results of various Teacher-Student Model Pairs.

0.1
:0.

9
0.2

:0.
8

0.3
:0.

7
0.4

:0.
6

0.5
:0.

5
0.6

:0.
4

0.7
:0.

3
0.8

:0.
2

0.9
:0.

1

Task Weight (CE:KL)

4

3

2

1

0

Re
la

tiv
e 

Ac
cu

ra
cy

 %
 (w

.r.
t. 

0.
5:

0.
5)

 

RKD
KDSVD
PKT

(b) Results of various KD Methods.

Figure 2: Distillation performance under varying loss weight ratios. (a): Accuracy of student models
trained with the KD method across different teacher–student pairs under varying CE/KL loss weight
ratios. (b): Accuracy trends for the vgg13-to-vgg8 distillation setting using different distillation
methods. Note that the initial loss weight for the RKD and KDSVD methods is 1.0:1.0, while for
the PKT method it is 1.0:30000.0. To unify the representation of the x-axis, we use the proportion
of task importance. For example, when x is set to 0.5:0.5, it corresponds to a weight ratio of 1.0:1.0
for RKD and KDSVD, and 1.0:30000.0 for PKT; when x is set to 0.3:0.7, the corresponding weight
ratios are 0.6:1.4 and 0.6:42000.0, respectively.
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Figure 3: Loss weighting dynamics of different strategies. Our method achieves smoother and more
interpretable adjustments compared to existing baselines.

factors on the x-axis to represent how the original weights are adjusted, rather than displaying the
absolute weight values. These results show that the commonly used 0.5:0.5 loss weight ratios in dis-
tillation is often suboptimal, and alternative ratios can yield better performance. This underscores
the limitation of fixed weighting and reinforces the motivation for our approach, which automati-
cally adjusts the loss weights during training, leading us to introduce multi-task learning methods
into the distillation task.

3.3 COMPARISON WITH DYNAMIC WEIGHTING APPROACHES

To further validate the effectiveness of our method, we draw connections between knowledge dis-
tillation and multi-task learning (MTL), where the CE and KL objectives can be viewed as two
tasks to be dynamically balanced. Accordingly, we compare our approach against several repre-
sentative MTL-based weighting strategies: MGDA [39], which finds Pareto-optimal updates across
tasks, FairGrad [4], which enforces fairness in gradient contributions, and PCGrad [49], which re-
solves gradient conflicts by projection. We also include a simple distillation-decay baseline, which
gradually reduces the KL loss weight α (initialized as 0.9) to 0 and increases the CE loss weight γ
(initialized as 1.0− α = 0.1) to 1.0 after the midpoint of training, while additionally introducing a
KD regularization term with coefficient β in later epochs.
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Table 2: Comparison of student model performance between our dynamic weighting method and
existing task-specific KD dynamic weighting approaches (PGD, AICSD, SnT) on standard image
classification benchmarks. Top-1 accuracy (%) is reported.

Teacher Model Student Model original distill-decay MGDA FairGrad PCGrad ours

resnet101 resnet50 80.21 79.97 79.43 81.47 79.12 80.51
resnet56 resnet20 70.62 71.54 71.77 70.00 71.54 71.59
wrn-40-2 wrn-40-1 73.65 74.02 74.60 73.25 74.10 74.83

resnet32x4 resnet8x4 73.32 73.80 72.77 72.89 75.77 74.67

average 74.45 74.83 74.64 74.40 75.13 75.40

For fair evaluation, all methods are implemented under a unified training framework with identical
teacher–student pairs and datasets. Hyperparameters are tuned following the recommended settings
of each baseline. We report top-1 classification accuracy as the primary evaluation metric. Re-
sults are summarized in Table 2, where our method consistently achieves competitive or superior
performance compared to existing dynamic weighting strategies, highlighting its robustness and
effectiveness in reconciling supervised and distillation objectives. As shown in Figure ??, Distill
Decay relies on a fixed schedule with abrupt shifts, MGDA almost ignores the KL term, and Fair-
Grad suffers from unstable oscillations. In contrast, our method adaptively reduces the KL weight in
a smooth manner while keeping CE dominant, leading to stable and interpretable training dynamics.

3.4 ABLATION STUDIES
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Figure 4: Ablation Study on prefering towards primary tasks or distillation tasks. We consider two
teacher-student model pairs: (a) resnet101 (teacher) and resnet50 (student), and (b) vgg13 (teacher)
and vgg8 (student). It can be seen that, under otherwise identical conditions, setting the primary task
as the preference generally yields better results than setting the distillation task as the preference.

Task preference term in task optimization. In Section 2.3, we introduce a task preference term
that steers the optimization toward gradients more aligned with the primary task. In this section,
we explore the effect of this preference by adjusting it to favor either the primary or the distillation
task, while keeping all other settings unchanged. We conduct comparative experiments using the
KD method across different teacher–student model pairs, as shown in Fig. 4. The results show that
preference toward the distillation task does not outperform prefering toward the primary task. This
is because the distillation objective is intended to indirectly enhance performance of primary tasks
by encouraging the student to mimic the teacher’s intermediate outputs and improve generalization.
However, the teacher is not always reliable and may produce misleading signals that conflict with
the gradient direction of the primary task. As a result, prioritizing the distillation task through the
task preference term can harm the student’s classification accuracy and lead to unstable training.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 RELATED WORKS

4.1 KNOWLEDGE DISTILLATION

Knowledge distillation [15, 17, 27, 14] transfers knowledge from a large teacher model to a com-
pact student model via softened output distributions, using temperature scaling in softmax to pre-
serve nuanced class relationships. This compression technique enables efficient deployment while
maintaining accuracy by mimicking the teacher’s decision boundaries and feature representations.

Knowledge distillation methods are categorized into logit-, feature-, and relation-based approaches.
Logit-based methods started with compressing ensembles via “soft targets” [15], later including
teacher-free online methods [8] and multi-step assistants [32], with recent work aligning predictions
at various levels [18, 53]. Feature-based methods transfer internal representations, from layer-wise
matching [48] and mutual-information maximization [2] to cross-stage review [10], lightweight pro-
jectors [9], and attention-map transfer [13]. Relation-based approaches preserve inter-sample or
inter-class relations via distance, correlation, or similarity constraints [35, 37, 41, 16]. Diffusion-
model distillation applies conditional consistency for high-fidelity generation [31].

Existing methods typically set important parameters, such as the distillation loss weight, statically
during training. However, these parameters often have a significant impact on the training process,
and fixing them can hinder the distillation from producing the optimal student model. Our method
improves upon this by dynamically adjusting the distillation loss weight during training. Experi-
ments show that this weight affects the quality of the student model, and dynamic adjustment leads
to better distillation results.

4.2 DYNAMIC WEIGHTING ON KNOWLEDGE DISTILLATION

Dynamic weighting in knowledge distillation (KD) balances cross-entropy (CE) and distillation
losses. Instead of fixed weights, recent methods adapt them to reflect varying signal impor-
tance. Instance-level strategies [50, 12] use teacher–student discrepancy or sample difficulty, while
class- or region-based methods [46, 26] focus on salient regions or distribution similarity. Other
works [30, 21, 47, 5, 3, 40, 44] apply confidence-driven reweighting, teacher influence decay, adap-
tive divergences, or influence-function-based weighting. However, most remain domain-specific and
rely on batch-local heuristics, leaving open whether the learned weights enhance CE generalization.

Multi-task learning (MTL) [7, 38, 43, 29, 6, 42, 23, 45, 56, 52, 25, 34] faces a similar challenge
of balancing multiple objectives, as joint optimization often leads to gradient conflicts and task
interference. Research in this field has followed two major directions: architectural improve-
ments [42, 1, 24], which aim to allocate shared and task-specific capacity more effectively, and
optimization strategies, which dynamically adjust task weights or gradients. Representative exam-
ples include uncertainty-based weighting [19], gradient-norm balancing [11], and multi-objective
optimization formulations such as MGDA [39], along with gradient modification techniques like
PCGrad [49], NashMTL [33], and FairGrad [4]. These methods provide more principled and stable
optimization compared to heuristic reweighting, but they assume tasks are equally important and
aim to improve performance across all tasks, which is misaligned with the asymmetric objectives of
KD.

In summary, KD-oriented methods adapt loss weights but lack guarantees for improving CE gener-
alization, while MTL approaches offer principled optimization but fail to reflect KD’s asymmetric
task roles. Our work addresses this gap by proposing a dynamic weighting framework tailored to
KD, explicitly prioritizing CE as the primary objective while leveraging KL as auxiliary guidance.

5 CONCLUSION

We addressed the long-standing challenge of balancing CE and KL losses in knowledge distillation.
Unlike prior static or batch-local dynamic weighting methods, our framework explicitly optimizes
loss weights to promote CE generalization on unseen data, while treating KL as an auxiliary regu-
larizer. By incorporating gradient alignment and normalization, our method ensures stable updates
and avoids scale-induced bias. Experiments confirm that this principled strategy yields more con-
sistent knowledge transfer and improved student performance. In the future, we plan to extend this
generalization-oriented weighting scheme to broader multi-task and multi-modal learning settings.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The ex-
perimental setup, including training steps, model configurations, and hardware details, is described
in detail in the paper. Additionally, the datasets used in the paper are publicly available, ensur-
ing consistent and reproducible evaluation results. We believe these measures will enable other
researchers to reproduce our work and further advance the field.

8 LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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