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ABSTRACT

Understanding which parts of the retrieved context contribute to a large language
model’s generated answer is essential for building interpretable and trustworthy
generative QA systems. We propose a novel framework that formulates context
attribution as a combinatorial multi-armed bandit (CMAB) problem. Each context
segment is treated as a bandit arm, and we employ Combinatorial Thompson Sam-
pling (CTS) to efficiently explore the exponentially large space of context subsets
under a limited query budget. Our method defines a reward function based on
normalized token likelihoods, capturing how well a subset of segments supports
the original model response. Unlike traditional perturbation-based attribution meth-
ods (e.g., SHAP), which sample subsets uniformly and incur high computational
costs, our approach adaptively balances exploration and exploitation by leveraging
posterior estimates of segment relevance. This leads to substantially improved
query efficiency while maintaining high attribution fidelity. Extensive experiments
on diverse datasets and LLMs demonstrate that our method achieves competitive
attribution quality with fewer model queries.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) has emerged as the de facto method for knowledge-intensive
question answering tasks, augmenting Large Language Models (LLMs) with external context to
improve factual accuracy and credibility Gao et al. (2023b). Despite its effectiveness, ensuring
that generated answers are genuinely grounded in the provided context remains challenging. LLMs
frequently produce hallucinations or incorporate ungrounded information, making it essential to
verify and attribute precisely which context segments are responsible for their responses Gao et al.
(2023a).

Existing approaches to enhancing attribution primarily follow two paradigms. The first involves
training models to explicitly cite context segments during generation Nakano et al. (2021); Menick et
al. (2022); Zhang et al. (2024); Huang et al. (2024). While such techniques improve self-attribution,
their reliability is contingent on the model’s internal mechanisms. The second paradigm focuses
on post-hoc methods, such as ContextCite Cohen-Wang et al. (2024), which systematically perturb
or mask context segments and evaluate their impact on the output. Although these methods offer
greater fidelity by probing the actual input-output behavior of models, they often incur prohibitive
computational costs as they incorporate subroutines like LIME Ribeiro et al. (2016) and SHAP
Lundberg and Lee (2017), which rely on extensive sampling and surrogate modeling, can become
impractical for real-world, long-context scenarios due to their high query overhead.

Motivated by the need for a more efficient yet faithful attribution method, we propose framing
context attribution as a Combinatorial Multi-Armed Bandit (CMAB) problem. This perspective treats
each context segment as a "bandit arm" whose inclusion or exclusion in the context constitutes a
combinatorial action, aiming to identify the subset that best supports the generated answer within
a limited query budget. Specifically, we define a reward function based on token-level likelihoods,
measuring how closely a given subset of context preserves the model’s original output distribution.
The problem thus becomes selecting the context subset that maximizes this reward with minimal
exploration.

To efficiently navigate this combinatorial space, we introduce Combinatorial Thompson Sampling
(CTS), a Bayesian bandit method renowned for balancing exploration and exploitation Wang and Chen
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(2018). CTS maintains and updates posterior beliefs about each segment’s utility, adaptively guiding
queries toward subsets most likely to yield informative outcomes. Unlike exhaustive or uniformly
random perturbation strategies, CTS significantly reduces the number of model evaluations required,
making it especially suited for long-context applications and scenarios demanding interpretability
alongside computational efficiency.

Our key contributions are summarized as follows:

• New Problem Formulation: We introduce a novel formulation of segment-level context
attribution as a combinatorial multi-armed bandit (CMAB) problem.

• Combinatorial Thompson Sampling for Attribution: We propose a Combinatorial
Thompson Sampling (CTS) algorithm specifically designed for efficient context attribu-
tion. By maintaining posterior estimates over segment importance, CTS adaptively selects
informative context subsets under tight query budgets.

• Extensive Empirical Validation: We conduct comprehensive experiments on three diverse
datasets—SST2 Socher et al. (2013), HotpotQA Yang et al. (2018) and CNN/Dailimail See
et al. (2017)—using three open-source LLMs, LLaMA3-8B Grattafiori et al. (2024) Qwen3-
8B Yang et al. (2025) and SmolLM-1.7B Allal et al. (2024). Results show that CAMAB
consistently delivers competitive or superior attribution performance while requiring fewer
model queries than existing baselines.

In summary, our approach offers a scalable, principled, and computationally efficient method for
context attribution in generative QA systems. Through extensive empirical evaluations, we demon-
strate that our CMAB-based framework achieves attribution fidelity comparable to or exceeding
state-of-the-art methods, all while drastically reducing the computational demands inherent in tradi-
tional perturbation-based techniques. We believe our work represents a significant step towards more
interpretable and trustworthy AI assistants, particularly crucial as applications scale to increasingly
complex contexts and high-stakes environments.

2 RELATED WORK

2.1 PERTURBATION-BASED ATTRIBUTION METHODS

A large number of works on model interpretability uses input perturbations to infer feature importance.
Techniques like LIME Ribeiro et al. (2016) and SHAP Lundberg and Lee (2017) interpret model
predictions by evaluating the model on perturbations of an input and observing how the output
changes. LIME fits a local surrogate model (e.g. a linear model) around the neighborhood of the
input to estimate each feature’s influence. SHAP uses a game-theoretic approach to approximate
Shapley values, which quantify each feature’s contribution to the prediction in a way that satisfies
fairness axioms. These methods are model-agnostic and fairly faithful in a local sense, but they are
notoriously expensive: they require sampling a large number of perturbations for each instance to
obtain stable estimates. This cost grows with input dimensionality, making them difficult to apply to
settings like long text sequences without sparing accuracy.

2.2 ATTRIBUTION METHODS IN LLM SETTINGS

In the context of large language models (LLMs), token-level attribution faces significant challenges
due to (1) the combinatorially large perturbation space induced by extensive input contexts, and
(2) substantial computational costs associated with individual model queries. Therefore, effective
attribution methods must carefully balance explanation fidelity against computational efficiency.
Broadly, three strategies have emerged to tackle these challenges:

(i) Reducing Perturbation Space: Methods in this category aggregate tokens into higher-level
semantic units, such as phrases, sentences, or paragraphs, effectively decreasing the perturbation
space. Different granularity levels inherently capture varying degrees of semantic meaning, naturally
supporting hierarchical attribution structures. For example, Chen et al. (2020) propose a divide-and-
conquer strategy that progressively attributes importance from sentence-level down to token-level in
text classification. Similarly, MExGen Paes et al. (2024) systematically extends perturbation-based
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methods like LIME and SHAP to generative LLMs, efficiently identifying influential text spans in
a hierarchical manner. ContextCite Cohen-Wang et al. (2024) specifically targets segment-level
attribution in generative QA scenarios by using SHAP-based perturbation techniques.

(ii) Pretrained Global Explainers: Another strategy involves training a global surrogate model as a
pretrained explainer, trading upfront training costs for reduced inference latency during explanations.
Examples include FEX Pan et al. (2025), which employs policy gradient methods to optimize a
Bernoulli surrogate explainer, and FastSHAP Jethani et al. (2021), which fits a neural network using
pseudo-labels derived from SHAP values. Despite their inference efficiency, these methods demand
substantial pretraining resources and extensive datasets, and like typical machine learning models,
they often encounter generalization challenges when confronted with out-of-distribution samples.

(iii) Optimizing Perturbation Strategies: A relatively nascent direction focuses on explicitly opti-
mizing perturbation strategies to reduce the number of required model queries. Sudhakar et al. (2021)
leverage heuristics derived from input-to-output gradients to selectively perturb features, whereas Pan
et al. (2021) propose subsequent perturbations aligned with adversarial attack directions. However,
such methods typically require internal model knowledge, including gradients or manifold structures,
limiting their applicability to models treated as black boxes. Motivated by this gap, our work intro-
duces a novel perturbation sampling method inspired by multi-armed bandit algorithms, enabling
dynamic adjustment of perturbations based solely on observed responses, without necessitating
internal model information.

2.3 BANDIT AND REINFORCEMENT LEARNING APPROACHES

Feature attribution can be viewed as a task of selecting the most informative subsets of features.
The multi-armed bandit and reinforcement learning can be utilized to progressively optimize and
sequentially search the subsets with a limited budget of actions. Feature selection via multi-armed
bandits has been explored in prior research as a way to dynamically identify important features
without evaluating all subsets. For example, Nagaraju (2025) propose a feature selection method
that uses an Upper Confidence Bound (UCB) bandit algorithm. This allows the algorithm to rapidly
converge to a near-optimal feature set, yielding good predictors with fewer feature evaluations. In
NLP tasks, BanditSum Dong et al. (2018) treated extractive summarization as a contextual bandit
problem: given a document (context), their model learned via policy gradient to pick a sequence
of sentences (the “action”) that maximizes the summary quality reward (ROUGE score) This is an
example of using reinforcement learning to select informative subsets of text. Although BanditSum
was focused on training a summarization model, the idea of using reward feedback to guide text
segment selection is closely related to our approach for attribution.

3 PROPOSED METHOD

In this section, we present CAMAB (Context Attribution with Multi-Armed Bandit), our proposed
framework for segment-level context attribution in generative QA settings. We begin by formally
defining the context attribution problem and introducing the notation used for the QA task. We then
formulate the problem as a combinatorial multi-armed bandit (CMAB) optimization and describe our
solution based on Combinatorial Thompson Sampling (CTS). Finally, we discuss the probabilistic
assumptions behind CAMAB and explain how it addresses the exploration vs. exploitation trade-off
inherent to the combinatorial action space of context segment subsets.

3.1 PROBLEM FORMULATION

Context-Supported Generative QA We consider a scenario where an LLM is tasked with answer-
ing a question Q using a provided context C. The context C consists of N discrete segments (e.g.
passages, sentences, or paragraphs), C = {s1, s2, . . . , sN}. These could be retrieved documents
or knowledge snippets relevant to Q. The LLM (denoted by M ) produces a response R which is
a sequence of tokens R = (r1, r2, . . . , rT ), generated autoregressively based on the input (Q,C)
with proper prompts. We assume R is the response by M when given the full context C. Ideally,
every factual claim or detail in R should be grounded in some segment of C (if C indeed contained
sufficient information to answer Q). Our goal is to attribute the content of R back to segments in C.
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Formally, we define an attribution vector a that assigns each segment sj a score aj reflecting how
important sj was for generating R. A higher aj means segment sj is more responsible for (or
contributed more to) the answer.

Attribution via Context Subsets The central insight we leverage is that we can gauge a segment’s
importance by observing the model’s output quality when that segment is absent. If removing a
segment (or group) degrades the model’s answer, it indicates those segments are crucial; if the output
remains unchanged, they likely were not used. This intuition is formalized via a reward function over
context subsets.

Let S ⊆ C denote any subset of the full context segments. We define the supportiveness reward V (S)
to measure how well the model’s answer R = (r1, . . . , rT ) is supported when the model has access
only to segments in S.

Let Lt(S) = PM (rt | Q,S, r1, . . . , rt−1) be the log-likelihood of token rt under subset S, and
define the reward:

V (S) = exp

(
1

T

T∑
t=1

(Lt(S)− Lt(C))

)
(1)

where Lt(C) denote the log-likelihood of token rt under full contexts.

The above result is then clipped to [0, 1] for stability:
V (S) = min (max (V (S), 0) , 1) . (2)

This definition ensures that V (S) = 1 when S matches the full context in terms of supportiveness,
and V (S) ≈ 0 when S offers no support.

3.2 BANDIT FORMULATION WITH THOMPSON SAMPLING

We cast the context attribution problem as a Combinatorial Multi-Armed Bandit (CMAB), where
each context segment j ∈ {1, . . . , N} is treated as a bandit arm. Unlike classical bandits that pull
one arm at a time, our setting allows selecting multiple arms, i.e., context segments, in a single round.
Each action corresponds to a subset S ⊆ {1, . . . , N}, and yields a reward V (S) reflecting how well
the selected context supports the original model response.

We assume a stochastic bandit setting, where each segment j is associated with an unknown latent
importance parameter θj ∈ R, indicating its relevance to the generation task. The goal is to efficiently
estimate the θj values and use them to select high-quality subsets under a limited query budget.

To balance exploration and exploitation, we adopt Combinatorial Thompson Sampling (CTS) Wang
and Chen (2018). CTS maintains a posterior distribution over the importance parameters θ = {θj}Nj=1

and, at each round t, samples a plausible realization θ̃(t) from the current posterior. Based on the
sampled values, it selects the top-k segments with the highest θ̃j to form the action subset St. This
sampling introduces randomness that promotes exploration, while still guiding selection toward
promising segments.

We model each θj as a Gaussian random variable, θj ∼ N (µj , σ
2
j ), where the mean µj reflects the

estimated importance of segment j and the variance σ2
j quantifies uncertainty. We initialize with an

uninformative prior:

θj ∼ N
(

1

|C|
, 1

)
,

assuming equal expected contribution from all segments at the start. After each query, the posterior is
updated using standard Bayesian inference under a Gaussian–Gaussian conjugate prior, based on the
observed reward V (St) and the segments included in St.

This formulation allows us to efficiently navigate the combinatorial action space without exhaustively
evaluating all 2N subsets. The CTS algorithm is summarized below.

1. Sample Reward Estimates: For each segment j ∈ {1, . . . , N}, draw

θ̃
(t)
j ∼ N

(
µ
(t−1)
j , σ

2(t−1)
j

)
, (3)
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where µ
(t−1)
j and σ

2(t−1)
j are the posterior mean and variance at round t−1.

2. Action Selection: Form subset St by taking the top-p proportion of segments with the
largest θ̃(t)j .

3. Observe Reward: Query M with CSt
and compute vt = V (St), where V (·) is the reward

in Eq. 1.
4. Posterior Update: Assume

vt =
∑
j∈St

θj + ϵ, ϵ ∼ N (0, σ2). (4)

For j ∈ St, update

σ
2(t)
j =

(
1

σ
2(t−1)
j

+ 1
σ2

)−1

, µ
(t)
j = σ

2(t)
j

(
µ
(t−1)
j

σ
2(t−1)
j

+ vt
σ2

)
. (5)

and keep µ
(t)
j = µ

(t−1)
j , σ

2(t)
j = σ

2(t−1)
j for j /∈ St.

5. Repeat: Iterate for t = 1, . . . , Tmax, where Tmax is the query budget.

The process continues until the query budget Tmax is exhausted. At the end of this iterative procedure,
we obtain a posterior distribution over each segment’s latent importance parameter θj . The posterior
mean µ

(Tmax)
j serves as a natural estimate of segment j’s attribution score, denoted by aj . We rank

segments according to these scores to produce the final attribution ranking.

Comparison to Traditional Methods When applying traditional perturbation-based attribution
methods such as LIME and SHAP in the context attribution setting, we typically rely on uniformly
sampled subsets of context segments to estimate their importance. This uniform sampling is agnostic
to previously observed outcomes, which can lead to inefficient use of queries, particularly when
some segments are already likely to be irrelevant. In contrast, CAMAB addresses this limitation by
maintaining and updating posterior beliefs over segment importance throughout the process. These
posteriors guide the sampling of segment subsets in a principled manner via Combinatorial Thompson
Sampling. As a result, CAMAB allocates queries toward the most informative segments, enabling
more efficient and accurate attribution under tight query budgets.

4 EXPERIMENTS

In this section, we demonstrate our CAMAB method via experiments on diverse datasets and large
language models, the results are evaluated with two distinct metrics. All experiments are conducted
on a computing server with 8 CPU cores and one NVIDIA A100 GPU (80GB).

4.1 DATASETS

We evaluate our framework on three representative language generation benchmarks that cover
distinct task types and context structures. SST-2 focuses on short, token-level attribution for senti-
ment classification; HotpotQA targets sentence-level attribution in multi-hop question answering;
and CNN/DailyMail emphasizes sentence-level attribution for long-document summarization. For
computational feasibility, we randomly sample 500 validation instances from each dataset, balancing
coverage with the high cost of attribution methods such as SHAP and ContextCite, which require
numerous forward passes and combinatorial ablations.

SST-2 (Stanford Sentiment Treebank) Socher et al. (2013) SST-2 is a sentence-level sentiment
classification benchmark where the task is to determine whether a sentence expresses positive or
negative sentiment. We treat individual tokens as the segments of interest.

HotpotQA Yang et al. (2018) HotpotQA is a multi-hop question answering benchmark requiring
reasoning over multiple supporting documents to answer factoid questions. Each instance includes
long passages, and the responses are more elaborate than in SST-2. We use sentences as the segments
of interest.
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CNN/DailyMail See et al. (2017) CNN/DailyMail is a large-scale abstractive summarization
dataset where the task is to generate concise summaries of news articles. Contexts consist of long
documents containing narrative and factual information, and the outputs are multi-sentence summaries.
We select sentences as the segments of interest.

4.2 MODELS

To evaluate the generality and robustness of our context attribution framework, we conduct experi-
ments with three recent open-source large language models that differ in size, training corpus, and
design philosophy. This diversity enables us to test the effectiveness of our method across a range of
LLM architectures.

LLaMA-3-8B. We use the 8B version of LLaMA 3 Grattafiori et al. (2024), a state-of-the-art
decoder-only transformer released by Meta AI. Pretrained on a large and diverse corpus with a
next-token prediction objective, LLaMA-3 excels at long-context reasoning and produces fluent,
high-quality responses, making it a strong high-capacity baseline.

Qwen3-8B. We include Qwen3-8B Yang et al. (2025), a decoder-only transformer developed
by Alibaba. Trained on large-scale multilingual and multimodal corpora, Qwen3 demonstrates
strong cross-lingual generalization and complements LLaMA-3 by representing a distinct pretraining
paradigm.

SmolLM 1.7B. We further evaluate SmolLM-1.7B Allal et al. (2024), a compact decoder-only
model released by Hugging Face. Its limited capacity makes it more prone to hallucinations and
less consistent on long-context or complex reasoning tasks. Including SmolLM allows us to assess
attribution robustness under constrained model capacity, a setting relevant for cost-sensitive or edge
deployments.

Overall, these three models provide complementary testbeds: LLaMA-3-8B and Qwen3-8B serve
as strong high-capacity models, while SmolLM-1.7B highlights the challenges of attribution in
low-capacity environments.

4.3 SETTINGS AND BASELINES

We compare CAMAB against three representative post-hoc attribution baselines, each reflecting a
different strategy for identifying influential context segments in generative language model outputs.
All methods are evaluated under constrained query budgets, and we control for total LLM calls across
methods to ensure fair comparison.

CAMAB (Ours) We set the subset ratio (i.e., portion of selected segments per query) to top-p = 0.5
and run the algorithm for T = 60 rounds. The observation noise variance is fixed at σ2 = 1.

SHAP SHAP Lundberg and Lee (2017) is a widely adopted model-agnostic explainer grounded in
Shapley values from cooperative game theory. In our implementation, we adopt the KernelSHAP
variant at the segment level. To reduce computational cost, we use a single fully masked context as
the reference baseline and limit the number of perturbed samples to 60. The reward signal is selected
as the average log-likelihood of the response tokens.

ContextCite ContextCite Cohen-Wang et al. (2024) performs context attribution by measuring
the average log-odds change in the original response when subsets of context segments are ablated.
To identify relevant segments, it employs LASSO regression Tibshirani (1996), which encourages
sparsity and effectively filters out non-informative context. To control query cost, we limit the number
of ablated subsets to 60.

Leave-One-Out The Leave-One-Out method attributes importance by removing one segment at a
time and measuring the effect on the model’s output likelihood. We ablate each of the N segments
individually and compute the drop in average log-probability in response tokens. This method

6
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Table 1: Evaluation results on LLaMA-3-8B. Top-k means the specific evaluation is done with top k
attributed segments removed.

Dataset Metrics Top-k CAMAB ContextCite SHAP Leave-One-Out

SST2

Log-Prob Drop ↑
k = 1 0.589 0.448 0.552 0.530
k = 3 0.786 0.692 0.789 0.703
k = 5 0.990 0.866 0.963 0.824

BERTScore ↓
k = 1 0.693 0.729 0.707 0.720
k = 3 0.635 0.682 0.662 0.697
k = 5 0.593 0.636 0.604 0.664

HotpotQA

Log-Prob Drop ↑
k = 1 0.544 0.584 0.494 0.570
k = 3 0.666 0.736 0.640 0.639
k = 5 0.692 0.774 0.683 0.670

BERTScore ↓
k = 1 0.575 0.609 0.627 0.615
k = 3 0.499 0.575 0.588 0.542
k = 5 0.502 0.529 0.575 0.540

CNN/DailyMail

Log-Prob Drop ↑
k = 1 0.383 0.341 0.348 0.414
k = 3 0.865 0.792 0.851 0.868
k = 5 1.100 1.093 1.204 1.150

BERTScore ↓
k = 1 0.622 0.662 0.623 0.622
k = 3 0.541 0.530 0.506 0.531
k = 5 0.451 0.465 0.460 0.466

requires exactly N queries per instance, hence will incur more model queries in long-context cases
such as in CNN/DailyMail Dataset.

4.4 EVALUATION METRICS

To assess the effectiveness of our context attribution method, we adopt two evaluation metrics: Top-k
Log-Probability Drop and BERTScore Consistency.

Top-k Log-Probability Drop. Cohen-Wang et al. (2024) This metric evaluates how much the
average log-likelihood of the original response R = (r1, . . . , rT ) degrades when the top-k most
attributed context segments are removed according to a method τ . Let Stop-k(τ) denote the context
subset that excludes the k segments with the highest attribution scores. The Top-k log-probability
drop is defined as:

Top-k-drop =
1

T

T∑
t=1

logPM (rt | Q,C, r<t)−
1

T

T∑
t=1

logPM (rt | Q,Stop-k(τ), r<t) (6)

Here, PM is the token-level likelihood under the language model M . A larger drop implies that the
removed segments were more supportive of the generation, indicating more accurate attribution.

BERTScore Consistency. This metric evaluates attribution fidelity by measuring the semantic
difference between the original response R = (r1, . . . , rT ), generated using the full context C, and the
response R′, generated using the perturbated context Stop-k(τ). We compute the BERTScore (Zhang
et al., 2019) between the two responses as:

BERTScore = BERTScore (R′, R) (7)

A lower BERTScore indicates a greater semantic shift caused by the ablation, suggesting that the
removed segments were more influential. Thus, lower values reflect more accurate attribution.

4.5 RESULTS

From Table 1, for the LLaMA-3-8B model, CAMAB achieves either the best or second-best results
across nearly all metrics. On HotpotQA and CNN/DailyMail, while CAMAB remains competitive,
it does not consistently surpass other baselines in log-probability drop. We attribute this to the

7
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Table 2: Evaluation results on Qwen3-8B. Top-k means the specific evaluation is done with top k
attributed segments removed.

Dataset Metrics Top-k CAMAB ContextCite SHAP Leave-One-Out

SST2

Log-Prob Drop ↑
k = 1 1.000 0.328 1.010 1.359
k = 3 1.868 0.905 2.107 2.002
k = 5 2.621 1.441 2.713 2.166

BERTScore ↓
k = 1 0.792 0.868 0.816 0.707
k = 3 0.666 0.744 0.689 0.617
k = 5 0.596 0.679 0.626 0.618

HotpotQA

Log-Prob Drop ↑
k = 1 0.780 0.536 0.782 0.830
k = 3 1.126 0.786 1.018 0.973
k = 5 1.179 0.876 1.106 1.060

BERTScore ↓
k = 1 0.631 0.755 0.668 0.642
k = 3 0.591 0.632 0.607 0.589
k = 5 0.526 0.597 0.586 0.564

CNN/DailyMail

Log-Prob Drop ↑
k = 1 0.764 0.552 0.575 0.897
k = 3 1.716 1.194 1.311 1.779
k = 5 2.016 1.562 1.775 2.157

BERTScore ↓
k = 1 0.672 0.659 0.689 0.674
k = 3 0.530 0.571 0.554 0.533
k = 5 0.466 0.520 0.504 0.485

Table 3: Evaluation results on SmolLM-1.7B. Top-k means the specific evaluation is done with top k
attributed segments removed.

Dataset Metrics Top-k CAMAB ContextCite SHAP Leave-One-Out

SST2

Log-Prob Drop ↑
k = 1 0.407 0.381 0.414 0.408
k = 3 0.523 0.498 0.534 0.523
k = 5 0.572 0.554 0.588 0.569

BERTScore ↓
k = 1 0.377 0.432 0.371 0.384
k = 3 0.354 0.404 0.342 0.385
k = 5 0.355 0.328 0.324 0.357

HotpotQA

Log-Prob Drop ↑
k = 1 0.280 0.236 0.246 0.246
k = 3 0.390 0.346 0.366 0.391
k = 5 0.419 0.376 0.417 0.418

BERTScore ↓
k = 1 0.422 0.460 0.427 0.457
k = 3 0.332 0.435 0.386 0.382
k = 5 0.313 0.378 0.341 0.341

CNN/DailyMail

Log-Prob Drop ↑
k = 1 0.549 0.304 0.543 0.562
k = 3 0.868 0.571 0.914 0.903
k = 5 1.091 0.706 1.101 1.061

BERTScore ↓
k = 1 0.215 0.339 0.283 0.169
k = 3 0.057 0.210 0.133 0.133
k = 5 0.026 0.112 0.088 0.103

long-context nature of these datasets, where longer and compositional responses make token-level log-
probability drop less reliable as an attribution signal. In contrast, BERTScore captures semantic shifts
more faithfully, and CAMAB consistently yields the lowest values across almost all k, underscoring
its strength in identifying semantically influential segments.

From Table 2, for the Qwen3-8B model, CAMAB outperforms both SHAP and ContextCite across
nearly all datasets and metrics. Its performance is broadly comparable to Leave-One-Out, which
benefits from exhaustive single-segment ablations but incurs a substantially higher query cost.

From Table 3, we observe that CAMAB maintains competitive performance on the HotpotQA and
CNN/DailyMail datasets when using the SmolLM-1.7B model. However, it does not consistently
outperform baselines on the SST2 dataset. Notably, the BERTScores across all attribution methods
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are substantially lower compared to those obtained with the LLaMA-3-8B and Qwen3-8B models,
suggesting a general drop in semantic consistency.

We hypothesize that this discrepancy stems from the lower capacity and robustness of the SmolLM-
1.7B model. Due to its reduced parameter count, the model is more sensitive to input perturbations
(even when non-relevant context segments are modified), which can lead to disproportionately large
changes in its responses. As a result, the attribution quality degrades across all methods, including
CAMAB. These findings suggest that reliable attribution is more challenging on less robust models
and highlight the importance of model stability for effective post-hoc explanation.

4.6 ATTRIBUTION WITH LIMITED QUERY BUDGETS

In an ideal setting with unlimited query budgets, exhaustive attribution methods such as SHAP and
ContextCite can explore the full 2N space of context segment subsets. However, in realistic scenarios,
query budgets are often constrained due to the high computational cost of LLM inference. Under such
conditions, it is essential to identify attribution methods that achieve high-quality results with limited
queries. We therefore conduct experiments using LLaMA-3-8B on three datasets under restricted
query budgets, comparing CAMAB against ContextCite and SHAP. Leave-One-Out is excluded since
it requires a fixed number of queries by design. As shown in Table 4, CAMAB not only outperforms
ContextCite and SHAP in most cases, but also shows more pronounced improvements as the query
budget increases from s = 20 to s = 60. These results support our claim that CAMAB is particularly
well suited for low-budget attribution settings, delivering competitive or superior attribution quality
while reducing the number of required model queries.

Table 4: BERTScore performance (lower is better) of CAMAB, ContextCite, and SHAP under
varying query budgets (s = 20, 40, 60) across datasets using the LLaMA3-8B model. Each s denotes
the total number of LLM calls (queries) used for the attribution method. Bold indicates the best
performance for each row.

Dataset Top-k CAMAB ContextCite SHAP
s = 20 s = 40 s = 60 s = 20 s = 40 s = 60 s = 20 s = 40 s = 60

SST2
k = 1 0.743 0.719 0.693 0.757 0.741 0.729 0.705 0.708 0.707
k = 3 0.725 0.663 0.635 0.691 0.689 0.682 0.670 0.647 0.662
k = 5 0.666 0.617 0.593 0.657 0.631 0.636 0.674 0.612 0.604

HotpotQA
k = 1 0.578 0.581 0.575 0.628 0.611 0.609 0.679 0.636 0.627
k = 3 0.518 0.504 0.499 0.563 0.541 0.575 0.640 0.584 0.588
k = 5 0.524 0.509 0.502 0.563 0.536 0.529 0.661 0.576 0.575

CNN/Dailymail
k = 1 0.693 0.634 0.622 0.725 0.663 0.662 0.680 0.642 0.623
k = 3 0.537 0.534 0.541 0.559 0.527 0.530 0.559 0.520 0.506
k = 5 0.504 0.479 0.451 0.479 0.473 0.465 0.512 0.489 0.460

5 CONCLUSION

We introduced CAMAB, a novel context attribution framework that formulates attribution as a
combinatorial multi-armed bandit (CMAB) problem and applies Combinatorial Thompson Sampling
to efficiently explore the exponentially large space of context subsets. Unlike traditional perturbation
methods that rely on random or exhaustive sampling, CAMAB dynamically adapts its exploration
based on evolving segment relevance, enabling high attribution fidelity under tight query budgets.
Empirical results across multiple datasets and models show that CAMAB achieves attribution quality
comparable to or better than existing baselines, while requiring fewer model queries and benefiting
more from additional budget. These findings highlight CAMAB’s potential for real-world, low-
resource interpretability scenarios, making it a practical and scalable solution for faithful context
attribution in generative QA systems.
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