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Fig. 1: Top-left to bottom-right: A plate insertion episode. The robot is controlled by our plate insertion policy trained
entirely in simulation. The policy successfully deals with multiple collisions caused by noise in the target slot location, and
an unseen object (a cup) blocking it, and inserts the plate into the neighbouring free slot. Zoom in to see collision details.

Abstract— Robotics simulators have opened up the possibility
for contact-rich manipulation policies to be trained entirely
or mostly in simulation. Training in simulation can be safer,
cheaper, and faster than training with real robots. However,
policies for contact-intensive tasks often suffer a large perfor-
mance drop when transferred to a real robot. In this work,
we examine this problem through the task of inserting a
plate into a narrow slot. We train a policy with reinforce-
ment learning, propose various steps to make the simulation
training more realistic, and report their impact on real robot
performance. Our policy not only outperforms baselines and
transfers with a negligible sim-to-real performance drop, it
also generalizes with a minor modification to inserting a
cup and plates of different sizes and weights. Demo videos
are available at https://youtube.com/playlist?list=
PLdMOXIlbRGoVL0XezrRgk4-LsqXqtICmi.

I. INTRODUCTION AND RELATED WORK

Common household tasks like loading a dishwasher, stock-
ing a bookshelf, or inserting a pot into a coffee maker are
contact-intensive. As robots increasingly collaborate with
humans in dynamic, unseen, and un-instrumented environ-
ments, they will need to perform similar contact-intensive
object placement tasks. Simulators [1], [2] are an attractive
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option for training robot policies for such tasks because they
provide safety and scalability. However, simulation-trained
policies for contact-rich tasks often show a significant drop
in performance when executed on a real robot, primarily
because of inaccuracies in geometry and contact modeling.

In this paper, we focus on inserting plates in a holder with
narrow slots (see Figure 1). Previous works mostly address
this from the planning perspective [3], [4], while this paper
is about “last centimeter” contact-rich insertion. Peg-in-hole
insertion, a similar task, has been an active research topic
since decades. However, to the best of our knowledge, ours
is the first non-hardcoded insertion policy trained completely
in simulation i.e. without pre-training, training, or finetuning
with real-world data or demonstrations. Please see Table I
for a detailed comparison to previous insertion works.

II. METHOD

We assume that the object has already been grasped before
the policy execution begins. In the first stage, an open-
loop planner [16], [17] is used to move the end-effector
to the vicinity of its approximate target pose. The policy
then switches to the second stage i.e. a learnt controller that
handles the contact-rich segment of the task. This is the main
contribution of this paper. We describe its details below.
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[5], [6] [7] [8] [9] [10], [11] [12] [13] [14] [15] ours

Insertion task peg peg, USB peg, clip plug, USB plug, gear pins peg boxes pegs plates
Learnable policy ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Generalizes to different geometries ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Avoids need for unoccluded vision ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓* ✗ ✓
Avoids need for expert demonstrations ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓
Avoids need for real world pre-training ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
Avoids need for real world training / finetuning ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

TABLE I: Comparison of insertion tasks, policy formulations, and training requirements of the proposed algorithm with
related work. *: [22] requires a GelSlim planar tactile sensor.
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Fig. 3: Policy execution architecture.

A. RL Problem Formulation

We model the task as a Markov Decision Process (MDP)
with a state space S, continuous action space A, transition
dynamics T : S × A → S, discount factor γ ∈ [0, 1), and
reward function R(st,at,at−1). Given a horizon T , we aim
to learn a policy π : S → P(A) mapping observations to
action probabilities P ∈ P that maximize the discounted
return J(π) = Eπ

[∑T
t=0 γ

tR (st,at,at−1)
]
. P is the family

of unimodal Gaussian PDFs. π is parameterized by a 2-layer
(256, 256) MLP and learnt using the Soft Actor-Critic RL
algorithm [18] containing a 2-layer (256, 256) MLP critic.

Observation: The policy observation contains (1) ẽTe, the
current 6-DoF pose of the end-effector (e) w.r.t. its ideal
target pose when the plate is successfully inserted (ẽ), and
(2) the wrench W exerted by the end-effector, expressed in
the base frame. Using the end-effector instead of the object
pose avoids the need for object tracking during execution.
The ideal target end-effector pose is known accurately in
simulation but not in reality, so we add random noise to it
as detailed in Section II-B. Gravity, coriolis, and acceleration
components are removed from W , enabling it to exclusively
capture only the object weight and contact forces.

Action: The policy outputs an action vector at ∈ [−1, 1]6.
The first 3 elements are scaled by 45 cm to get a translation
vector, while the last 3 elements are scaled by 45° to get an
axis-angle rotation vector. The resulting 6-DoF pose is the
residual motion target for the end-effector w.r.t. its current
pose. Like [19], it is composed with a similarly scaled base
motion target that moves the end-effector straight to its target
pose bTẽ (b is the robot base coordinate frame).

Low-level controller: As shown in Figure 3, the composite
motion target is passed to a low-level operational space
controller [20] running at 1 kHz. A new state vector is
captured from the robot after every 50 low-level control

steps. The operational space formulation and the end-effector
wrench formulation described above decouple the simulated
robot dynamics from the real robot dynamics. Because robot
manufacturers often have closed-source dynamics APIs and
simulators only approximate the dynamics parameters, this
is important to reduce the simulation-reality gap.

Reward: The reward function R (st, at,at−1) sums
the following components: per-step time penalty
Rtime = −1/T , object drop penalty (also ends the
episode) Rdrop = −1.1, success reward (also ends the
episode) Rsuccess = +0.5, distance to true target penalty
Rdist = −∑

m∈{trans,rot} K
(m)
distmin

(
λ
(m)
dist, ∥ẽT

(m)
e ∥

)
,

and action change penalty for smoothness R∆a =

−∑
m∈{trans,rot} K

(m)
∆a min

(
λ
(m)
∆a , ∥at−1T

(m)
at ∥

)
. K

(m)
dist

and K
(m)
∆a are scale factors, while λ

(m)
dist and λ

(m)
∆a are cutoff

values. In contrast to some other works like [9], [15], we
do not need a staged reward function for different phases.

B. Encouraging sim-to-real transfer

ẽTe noise: In initial experiments without noise added to
ẽTe in the observation, the policy overfits by remembering
the obstacle geometry and learning a trajectory that avoids
all collisions. However, it fails on the real robot because
simulated object and slot geometries are just approximations
of the real geometries, and target slot pose is also not known
perfectly in the real world. This makes unexpected collisions
inevitable. Adding 6-DOF noise U [−ϵ, ϵ] forces collisions,
because the true target pose is no longer observable during
training. This allows us to learn collision-friendly policies
and generalize to different geometries. We increase the noise
magnitude ϵ in a piecewise linear curriculum.

Partial insertion initialization: But this also significantly
reduces the probability of the object reaching its intended
target pose with purely random exploration. Hence, inspired
from [21], we initialize the robot in 50% of the episodes in
poses such that the object is already partially inserted.

Policy inference delay: In a simulator, time stops during
policy inference and round-trip communication of state and
action from the environment to the policy. This is not true for
the real world, in which the low-level controller continues
moving the robot and changing its state. Adding a delay
randomly sampled in the range of [7, 13] low-level control
steps between capturing the observation and executing the



action computed from it, was significant for sim-to-real
transfer (see Table II).
Observation history: Several relevant quantities like end-
effector velocity, contact history, current contact duration etc.
require memory. Hence, we stack the observation for H = 8
steps in the policy observation to increase observability of
the true state [22]. We evaluate other memory representations
like recurrent policies [23] in Section III.
Wrench observation scaling: To resolve contact force
spikes arising from simulation inaccuracy, we scaled the
end-effector wrench observation in simulation such that the
maximum force is 20 N.

C. Implementation details
We learn the policy with the Soft Actor Critic (SAC) [18]

algorithm, seeding the replay buffer with 500 episodes of
transitions collected with a random policy to encourage ex-
ploration. We use the simulation environment and operational
space controller implementations in Robosuite [24], which
uses the MuJoCo physics engine [1]. Training is performed
using tf-agents [25] and Reverb [26]. Training one policy
took 14 hours. While the Franka Emika Panda robot [27]
is used for both simulation and real-world experiments, the
former use the Panda rigid gripper and the latter use a Soft
Robotics Inc. mGrip gripper [28] (see Fig. 4).

III. EXPERIMENTS

Real robot experiment protocol: The episode starts with
the end-effector at a random pose above the plate holder,
aligned perpendicular to the table plane. The operator holds
an ArUco [29], [30] marker above the target slot, estimating
the end effector location for the plate to be fully inserted. The
marker pose detected by a shoulder-level camera is used to
calculate the noisy target end effector pose for observations
(see Section II). The policy trained in simulation is deployed
directly on the real robot without adaptation. As seen in
Figure 4, the plate holder has 6 slots. We perform 4 trials for
each slot and compute the success rate separately across slots
for the first, second, third, and fourth trial to get 4 success
rate values. We report the mean and standard deviation of
these for each method.

Fig. 4: (a): Real robot policy execution setup. (b): Detailed
view of the main plate, plate holder slots, and the unseen
blocking objects - cup and charger.

Blocking objects: Eventhough the plate and slot width clear-
ance is small (2.5 mm) in the real setup, to rigorously test
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Fig. 5: Characteristics of the simulated plate used for train-
ing, and plates and cup used for real robot experiments,
showing the highly approximate nature of simulation geom-
etry. The ablation study (Figure 8) is done with the “regular”
plate. Note also the gripper differences.

the learnt policies’ collision behaviour we place a blocking
object e.g. a cup or a phone charger in the target slot.
This also better reflects real-world applications like a mobile
manipulator attempting to load a partially loaded dishwasher.

Differences from simulation: Figure 5 shows how the simu-
lated plate and slot geometries are very rough approximations
of their real counterparts. Other approximations include the
in-hand object pose, the soft gripper simulated as a rigid
gripper with spring-loaded joints, and blocking the target
slot with a cup or charger. Our proposed algorithm yields
a high-performance policy despite these differences.

Comparison to baselines: We compare our policy to
the following baselines also implemented at the low-level
through the same operational space controller as ours:
(1) straight-down: The end-effector moves downwards
blindly, (2) random-search [31]: straight-down
from a point randomly sampled from a horizontal 5 cm
square till a 3 N contact force. If the episode does not
succeed in this pose, it moves upwards, samples another
point from the square, and repeats. (3) no vision variant
of the algorithm from [15]. The original architecture has a
large number of learnable parameters and does not perform
well in simulation (17.0 ± 13.1% success rate). Hence we
implement smaller 16-d wrench and proprioception feature
vectors. Table II compares our policy with the three base-
lines. It significantly outperforms them and is able to deal
with multiple collisions and finish the task (see Figures 1, 6).

Generalization: All policies are trained in simulation with a
perfectly cylindrical plate, while the real robot experiments
are done with a cup and three plates of varying sizes,
shapes, and weights, all different from the simulated plate
(see Figure 5). As shown in Figure 7, our policy consis-
tently outperforms baselines across objects. Even though
the size and geometry of the “small” plate and the cup
differs significantly from the training simulated plate, our
policy performs reasonably well after adding a constant
offset to the Z translation component of ẽTe observations
to compensate for the height difference. Figure 6 shows a
multiple object insertion application with our policy, where
the cup is inserted first and the plate, targeted to the slot
covered by the cup, is then inserted in the next free slot.



(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6: Left to right: Sequential video frames showing multiple object insertion and the generalization ability of our policy.
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Fig. 7: Generalization: Real robot performance for different
plates shown in Figure 5 (error bars show 20% std. dev.).
Simulation performance is also shown for reference. Our
algorithm consistently outperforms baselines.
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Fig. 8: Ablation study: Impact of various design choices.
Bar height indicates real robot success rate, while simulation
success rates are mentioned inside the bars (error bars show
20% std. dev.). Our full algorithm, which represents memory
with H = 8 stacked observations, performs best. The
importance of training with SAC, policy inference delay, and
ẽTe noise in observations is also shown.

Method Sim. success rate (%) Real success rate (%)
mean over 4 trials ± std. dev.

straight-down 40.0 ± 15.5 33.3 ± 27.2
[15] no-vision 89.0 ± 13.4 41.7 ± 9.62
random-search 50.0 ± 19.5 45.8 ± 8.33
ours 84.0 ± 15.0 83.3 ± 13.6

TABLE II: Plate insertion performance in simulation and
reality. Our algorithm significantly outperforms others in
real-world performance, and has the smallest sim-to-real gap.

What enables sim-to-real transfer? Figure 8 shows the
simulation and real robot performance of various ablated
versions of our full policies. All policies are evaluated
under the same conditions with the “regular” plate i.e.
full-scale observation noise and non-zero policy inference
delay. History representation: Observation stacking, incor-
porating recurrent units in the policy network, and includ-
ing gripper velocity w.r.t. goal in observations all improve
true state observability compared to no history, because
they result in higher success rate. Observation stacking
performs best. However, the policies with H = 16 and
explicit gripper velocity significantly underperform our main
policy (H = 8), probably because a larger observation
vector linearly increases the number of learnable param-
eters. Adding noise in ẽTe observations, and a non-zero
policy inference delay are also crucial for ensuring the pol-
icy’s transferability to the real robot. The policy had 0 real
robot success rate without wrench observation scaling.

What enables successful training? The policy completely
failed to train without partial insertion initialization and the
residual action formulation.

Limitations: Currently the policy does not perform well
when the base motor is rotated far from its center, even
though it is trained in simulation under these conditions. This
may be caused by imperfectly identified inertial parameters
in the operational space controller.

IV. CONCLUSION

Through the task of inserting plates and cups into narrow
slots, we presented an algorithm for learning contact-rich
manipulation in simulation and transferring it directly to
the real robot. We quantitatively evaluated the impact of
various design choices and found that training a successful
policy requires thinking carefully about observation memory,
proprioception noise, time delays in the system, and contact
force scale mismatch.
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