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Abstract

Large Language Models (LLMs) for Bangla
text summarization condense texts while pre-
serving key information by leveraging ad-
vanced Natural Language Processing (NLP)
techniques. In this study, we used two popular
Bangla news summarization datasets through
the evaluation of 5 LLMs as well as human
evaluation. we made two key observations.
First, we found that GPT-4 with zero-shot
model settings performs well in Bangla news
summarization. Secondly, previous research
has been constrained by low-quality references,
resulting in an underestimation of human per-
formance and diminished few-shot capabilities.
To more accurately evaluate LLMs, we per-
formed human assessments using high-quality
summaries created by student writers. De-
spite notable stylistic differences, including the
extent of paraphrasing, LLM-generated sum-
maries were found to be comparable to those
written by humans. Our model was assessed
both qualitatively and quantitatively, and com-
parisons with other published results showed
significant improvements in human evaluation
scores due to the LLM techniques.

1 Introduction

Text summarization seeks to condense lengthy doc-
uments into concise, coherent, and easily read-
able formats while retaining the essential informa-
tion from the original content(Fabbri et al., 2021a).
This process, known as automatic text summariza-
tion, seeks to extract the most relevant information
from a large text document. An effective sum-
mary should be coherent(Islam et al., 2024a), non-
redundant(Islam et al., 2024b), grammatically cor-
rect, and retain the most important contents of the
original document(Chowdhury et al., 2021).

To benchmark, we evaluated the BANS datasets
(Bhattacharjee et al., 2021) and BNLPC (Haque
et al., 2015) datasets, but found existing summaries

had many issues. To address these quality con-
cerns and better compare LLMs to human sum-
mary writers, we recruited Master’s students from
our lab to re-annotate 50 articles from the BANS
and BNLPC test datasets. Comparing the top-
performing LLM, GPT-4, with lab students’ sum-
maries, we observed that GPT-4 summaries are
also effective. Again, manually annotating used in
these summaries (Bhattacharjee et al., 2021) and
(Haque et al., 2015), we found that GPT-4 para-
phrases less frequently but can coherently combine
copied segments.

We recruited annotators to compare the GPT-4
summaries with those of the lab’s student writ-
ers. Overall, GPT-4 was rated as equal to the lab
students, as shown in Figure 1. Examination of in-
dividual rater annotations revealed that each rater
had a consistent preference for either GPT-4 or the
lab students.

1.1 Main Contributions

We achieved a significant improvement in both
LLM and human assessments compared to other
existing Bengali news summarization techniques.
Our main contributions are the following:

1. We conducted a systematic evaluation of five
different LLMs on the Bangla news summa-
rization datasets, comparing their outputs to
human writers. The results show that LLM
outputs are comparable to those produced by
human writers.

2. Our evaluation reveals that GPT-4 is crucial
for achieving zero-shot summarization capa-
bility in Bangla news summarization.

3. Finally, we evaluate our research both quali-
tatively and quantitatively, and the presented
approach outperforms Bengali state-of-the-art
approaches.



The organization of this paper is as follows: Sec-
tion 2 reviews the relevant literature. Section 3
introduces the LLM methodology for Bangla text
summarization. Section 4 evaluates the results of
different LLM techniques. Finally, Section 5 sum-
marizes our research findings.

2 Related Work

Prior studies on the research framework for Bangla
text summarization can generally be divided into
three main categories: evaluation metrics, datasets,
and models. This study(Chowdhury et al., 2021)
presents BenSumm, an unsupervised abstractive
summarization system for Bengali texts. It uses a
Part-Of-Speech tagger and a pre-trained language
model to generate summaries without parallel data.
They also created a new human-annotated dataset
to evaluate the model, which outperforms exist-
ing unsupervised extractive methods. The model
clusters sentences and constructs word graphs to
achieve sentence fusion, providing an effective so-
lution for Bengali text summarization.

This research(Bhattacharjee et al., 2021)
presents Bengali Abstractive News Summarization
(BANS), a neural attention-based model using a
sequence-to-sequence Long Short-Term Memory
(LSTM) network for summarizing Bengali news ar-
ticles. It leverages a pre-trained Bengali language
model to generate human-like summaries with core
information. The researchers prepared a dataset
of over 19,000 articles from different Bangla news
sources and made the dataset publically available
on Kaggle. The model, which employs attention
mechanisms in both encoder and decoder, signif-
icantly outperforms existing methods in terms of
human evaluation scores, ROUGE, and BLEU met-
rics.

In this work, (Hasan et al., 2023) implements a
Bangla extractive update summarization task using
the BNLPC dataset, which includes over 1,000
Bangla news articles. It evaluates a TF-IDF-based
model and a pre-trained SentenceRank model, with
the TF-IDF model performing better. The research
aims to provide concise, non-redundant summaries
to facilitate access to updated Bangla information
and set a foundation for future advancements in
Bangla summarization.

3 Methodology

In this study, we investigate the performance of
LLMs for Bangla news summarization and iden-
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Figure 1: Annotators rated coherence Likert scale.

tify key factors contributing to their success. We
conduct a human evaluation of 5 LLMs with dif-
ferent pretraining methods, prompts, and model
scales and find that instruction tuning, rather than
model size, significantly enhances zero-shot sum-
marization capabilities. Again, we also highlight
issues with existing low-quality reference sum-
maries, proposing the collection of higher-quality
summaries from persons to improve evaluation ac-
curacy and better understand LLM performance
relative to our lab students’ summaries.

3.1 Dataset

We conducted our human evaluation on the BANS
dataset (Bhattacharjee et al., 2021) and the BNLPC
dataset (Haque et al., 2015), sampling 50 examples
from each validation set. For limited context, we
selected 5 articles between 50 and 100 tokens in
length with GPT-3.5 tokenizer. For BANS, uniform
sampling sometimes resulted in unreadable articles
due to data preprocessing, so we manually selected
articles from the training set. Table 1 compares the
BNLPC dataset with the BANS dataset.

3.2 Model Details

We evaluated five LLMs, each with different pre-
training strategies and model scales. We conduct
zero-shot, five-shot, twenty-shot, and fifty-shot for
all model settings.
GPT-3.5: GPT-3.5, by OpenAI, is an efficient
LLM based on transformer model (Vaswani et al.,
2017) with 175 billion parameters. We use the
gpt3.5-turbo 0613 version of this model via Ope-
nAI
GPT-4: GPT-4(Achiam et al., 2023), is another
powerful language model in OpenAI’s GPT series,
is known for its enhanced reliability, creativity, and
ability to process more nuanced instructions com-
pared to GPT-3.5. However, it is about 25 times



more expensive and considerably slower than GPT-
3.5. The gpt4-0613 version of this model is used
via OpenAI.
OPT: The OPT (Open Pre-trained Transformer)
model by Meta is a transformer-based language
model designed for efficient natural language pro-
cessing. It offers robust language understanding
and generation capabilities, balancing performance
and efficiency(Zhang et al., 2022).
LLaMA2: LLaMA2, developed by Meta, is an
advanced language model for natural language
processing. It offers improved performance and
efficiency, making it ideal for applications like
chatbots (Islam et al., 2023) and text genera-
tion(Touvron et al., 2023).
PaLM-2: PaLM-2 is a transformer-based language
model developed by Google, known for its ad-
vanced reasoning abilities(Sajol and Hasan, 2024)
and improved computational efficiency(Anil et al.,
2023). The text-bison@001 version of this model
is utilized via Google’s Vertex API.

3.3 Evaluation Toolkit and metrics
he evaluation toolkit contains 3 human evaluation
metrics and 5 conventional evaluation methods de-
scribed as follows;

• Faithfulness: Faithfulness in text summariza-
tion refers to the accuracy and precision with
which the summary represents the original
text, ensuring it is truthful and not misleading.
(Delpisheh and Chali, 2024).

• Consistency: Consistency pertains to the fac-
tual accuracy between the summary and the
source text(Abu Tareq Rony et al., 2024). A
factually consistent summary contains only
statements directly supported by the informa-
tion in the source document (Fabbri et al.,
2021a).

• Relevance: The selection of important con-
tent from the source document is crucial for
effective summarization. Summaries should
include only the essential information, and
annotators were instructed to penalize those
that contained redundancies or excess infor-
mation(Fabbri et al., 2021a).

• ROUGE: ROUGE (Recall-Oriented Under-
study for Gisting Evaluation) assesses the
number of overlapping textual units between
the generated summary and a set of reference
summaries(Lin, 2004).

• METEOR: METEOR calculates alignment
between the candidate and reference sen-
tences by matching unigrams from the gener-
ated summary to those in the reference, taking
into account stemming, synonyms, and para-
phrases(Banerjee and Lavie, 2019).

• BertScore: BertScore calculates similarity
scores by aligning the generated and reference
summaries at the token level(Zhang et al.,
2019).

• BARTScore: BARTScore is based on the
BART model and evaluates the quality of gen-
erated text by assessing its fluency, coherence,
and relevance(Yuan et al., 2021).

• BLEURT: BLEURT is an evaluation met-
ric by Google Research that uses pre-trained
transformers to assess machine-generated text
quality(Sellam et al., 2020).

3.4 Human Evaluation

We recruited a total of 5 annotators from our
summaries presented in random order and
evaluated independently by annotators, who
assess each summary based on three crite-
ria: faithfulness, coherence, and relevance.
These criteria are defined, and data is col-
lected according to the guidelines in (Fabbri
et al., 2021a). Coherence and relevance rat-
ings are gathered using a 1 to 5 Likert scale,
while faithfulness is rated as a binary value
due to its binary nature. Our results show
that the average pairwise agreement among
annotators was 69% for faithfulness, 78% for
coherence, and 88% for relevance, differing
slightly from (Fabbri et al., 2021a).

3.5 Experimental Setup
All experiments were conducted on a machine
equipped with high-performance hardware, ensur-
ing efficient processing and accurate results with
an Intel Xeon Gold 5218 CPU featuring 64 cores
and 128 threads, coupled with four Nvidia Tesla
V100 GPUs with VRAM memory of 30 GB per
GPU card.

4 Experimental Results and Discussion

Table 2 presents the Performance comparison of
various language models on BANS and BNLPC
datasets based on Faithfulness(F), Coherence(C),



Table 1: Comparison of BANS with BNLPC dataset

Dataset No of articles Summary per article No of summaries
BANS 19096 1 19096
BNLPC 200 3 600
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Figure 2: Human vs. LLM evaluation(GPT-4)

and Relevance(R). Among datasets, we found that
zero-shot GPT-4 models outperformed the models
with five, twenty, and fifty shots. Both datasets
show higher faithfulness and relevance scores
(0.95, 4.83, and 4.79 on BANS(Bhattacharjee et al.,
2021) and 0.88, 4.81, and 4.39 in BNLPC (Haque
et al., 2015).

Table 3 shows Kendall’s tau rank correlations
between human evaluation metrics and traditional
evaluation methods. We observed significantly
different trends in each dataset, warranting sep-
arate discussions. Within each model group, R-L
and human evaluations showed higher correlations.
Overall, reference-based metrics generally aligned
better with human judgment scores across both
datasets. While reference-free metrics are less af-
fected by low-quality references, they primarily
focus on measuring faithfulness.

Table 4 shows results for human-evaluated sum-
maries on the BANS and BNLPC datasets. The
zero-shot performance with GPT-4 and reference
summaries are obtained from Table 2. Additionally,
we observe that the difference between the student
writer and GPT-4 in this evaluation is minimal.

Figure 2 displays the distribution of cut-and-
paste operations, illustrating the fraction of sen-
tences that contain each type of operation. We
observed that student summaries performed well
in sentence reduction, combination, lexical para-
phrasing, and generalized or specification, and then
the GPT-4 generated summaries. Again, we find
that syntactic transformation is equally strong by
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Figure 3: Human and LLM evaluation distribution

both the writers evaluation and LLM. Finally, we
find that the writers never directly copy an entire
sentence from the article, whereas GPT-4 tends to
do this more often.

Figure 3 presents the results of the paired com-
parison. A closer observation reveals significant
variability in individual annotators’ preferences, re-
flected in the low inter-annotator agreement (Krip-
pendorff’s alpha is 0.07). This indicates that the
quality of generated summaries is approaching that
of the student-written summaries, with compar-
isons largely influenced by each annotator’s stylis-
tic preferences.

4.1 Discussion

GPT-4 plays crucial role in enhancing the Bangla
text summarization capabilities of LLM. These
findings suggest that further research is necessary
to deepen our understanding of how these factors
influence the efficacy of GPT-4.

Evaluating high-performance LLMs is challeng-
ing as human assessments require more samples
and precise measurements. (Fabbri et al., 2021b)
noted difficulties in Bangla text summarization
evaluation, suggesting fine-grained semantic units
for better reference matching. However, our study
finds existing reference summaries unreliable, and
student writers’ summaries often do not outper-
form LLMs. Thus, relying on reference summaries
as ground truth is overly restrictive.

Despite potential quality issues, current bench-
marks remain useful if applied correctly. As LLMs



Table 2: Comparison of LLMS on BANS and BNLPC based on Faithfulness(F) Coherence(C) Relevance(R).

Setting Models BANS Data BNLPC Data
F C R F C R

Zero-shot

GPT-3.5 0.78 4.33 4.39 0.19 4.55 3.81
GPT-4 0.95 4.83 4.79 0.81 4.81 4.39
OPT 0.66 2.54 3.41 0.48 2.67 3.62
Llama2 0.73 4.02 4.26 0.71 3.69 3.79
PaLM-2 0.78 4.54 3.90 0.86 4.65 3.91

Five-shot

GPT-3.5 0.91 4.15 4.66 0.81 4.68 3.99
GPT-4 0.91 4.71 4.67 0.71 4.96 3.81
OPT 0.87 3.45 4.13 0.81 4.65 3.12
Llama2 0.86 3.64 4.33 0.77 4.80 4.01
PaLM-2 0.86 3.86 3.15 0.85 0.85 0.85

Twenty-shot

GPT-3.5 0.88 4.52 4.34 0.76 4.03 2.70
GPT-4 0.89 4.77 4.23 0.77 4.16 3.81
OPT 0.76 2.65 3.50 0.55 2.61 3.42
Llama2 0.80 4.02 4.26 0.81 3.90 3.87
PaLM-2 0.80 4.24 4.90 0.76 4.27 3.34

Fifty-shot

GPT-3.5 0.84 3.88 4.33 0.70 4.88 3.88
GPT-4 0.88 3.69 4.58 0.88 4.79 4.00
OPT 0.94 3.69 4.24 0.74 4.72 3.88
Llama2 0.86 3.69 4.33 0.88 4.80 3.01
PaLM-2 0.89 3.69 4.34 0.69 4.69 3.03

Table 3: Kendall’s tau correlation with human metrics
Vs. automated summarization metrics

Metrics BANS BNLPC
F C R F C R

Rouge-L 0.71 0.58 0.79 0.31 0.69 0.39
METEOR 0.48 0.55 0.66 0.32 0.69 0.31
BertScore 0.54 0.57 0.55 0.32 0.69 0.37
BARTScore 0.56 0.34 0.55 0.22 0.67 0.28
BLEURT 0.55 0.57 0.69 0.18 0.57 0.29

Table 4: Human Vs GPT-4(Zero-shot) Vs Existing sum-
maries

Methods BANS BNLPC
F C R F C R

Human 0.93 4.53 4.75 0.93 4.69 4.39
GPT-4 0.95 4.83 4.79 0.88 4.81 4.39
Existing 0.74 3.88 3.33 0.60 3.67 3.49

improve, grounding evaluations with clear user
values in real-world applications will enhance ac-
curacy and reduce assessment subjectivity.

5 Conclusions

In this study, we comprehensively evaluated five
LLMs and human performance across two Bangla
news summarization benchmarks. Our experi-
ments demonstrated that state-of-the-art LLMs,
particularly GPT-4, produce summaries compara-
ble to student writers. These results highlight the
critical importance of high-quality reference sum-

maries for developing and evaluating summariza-
tion models. We discuss the issue of reference qual-
ity, comparing zero-shot, five-shot, twenty-shot,
and fifty-shot performance. Finally, we showed
the human evaluation, which is crucial, even when
tackling the quality issue.

Limitations

Our work has several limitations, including a
smaller sample size than other text summarization
datasets. The availability of credible sources for
Bangla news summaries was quite limited. Addi-
tionally, the news data was collected in only one
language, and the dataset does not facilitate cre-
ative language interpretation for low-resource lan-
guages.
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