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ABSTRACT

Prior work suggests that language models, while trained on next token prediction,
show implicit planning behavior: they may select the next token in preparation to
a predicted future token, such as a likely rhyming word, as supported by a prior
qualitative study of Claude 3.5 Haiku using a cross-layer transcoder. We propose
much simpler techniques for assessing implicit planning in language models. With
the focus on the case study on rhymed poetry generation, we demonstrate that
our methodology easily scales to many models. Across models, we find that the
generated rhyme can be manipulated by steering at the end of the preceding line
with a vector representing e.g. a “rhyme with -ight” feature, affecting the generation
of intermediate tokens leading up to the rhyme. We show that implicit planning for
rhyme families is a universal mechanism, present in smaller models than previously
thought, starting from 1B parameters. This shows that the phenomenon of rhyming
offers a widely applicable direct way to study implicit planning abilities of LLMs.
More broadly, understanding planning abilities of language models can inform
decisions in Al safety and control.

1 INTRODUCTION

Does the remarkable ability of modern language models in generating coherent text result from some
form of implicit planning? Our paper develops methods for investigating this question, and applies
them to the case study of rhymed poetry.

In language production, humans are known to use various strategies to plan ahead for words that
they utter (Ferreira & Swets, 2002} Lee et al., 2013]; [Huettig, 2015} Barthel et al.| [2016). Similar
mechanisms could plausibly apply in Transformer language models. In the context of text generation
with language models, planning for goal token(s) is a pattern that implicates several aspects.

Definition 1.1. Forward planning is the creation of planning representations, which encode proper-
ties of goal token(s) at later steps.

Definition 1.2. Forward planning is successful if it creates representations that causally implicate
the generation of goal tokens.

Definition 1.3. Planning is explicit if planning representations are model outputs, and implicit if
planning representations are part of hidden activations.

Definition 1.4. Backward planning is relying on planning representations for generating intermedi-
ate tokens before the goal token(s) are produced.

Definition 1.5. Backward planning is successful if generated intermediate tokens increase the
likelihood of generating goal token(s).

By its nature, implicit planning is harder to study than explicit planning, e.g. laying out the plan for a
task in a chain of thought. To establish implicit planning behavior, we need to show that forward
planning is successful and accompanied with backward planning, which, ideally, is also successful.
In this study, we focus on rhyming as a phenomenon where planning ahead for the kinds of words to
produce is particularly transparent, as suggested by the pioneering case study in|Lindsey et al.| (2025).
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Rhymed poetry generation offers a unique window into planning, because it is linked to text elements
(rhyming words) whose nature and position are predictable from general principles but not determined
by immediately preceding tokens.

The contributions of our work include:

* A rhyming dataset of 1050 lines from 10 rhyme families.

* A set of quantitative metrics for assessing aspects of rhyme planning behavior: successful
forward planning, backward planning, and successful backward planning.

* Evaluation of a set of 23 diverse open weight language models (from 1B to 32B parameters).

Our study focuses on rhymed poetry and uses localized steering intervention. We show that mean
activation difference steering works across the board, altering forward and backward planning. We
find a lot of similarities, but also some differences between models we study (cf. Appendix [E|and [F).

The rest of the paper is organized as follows. Section [2] provides the scientific context; section 3]
explains the details of our methodology and the experimental setup. Section @{reports the results
of our experiments, comparing language models according to our metrics. In section[5] we discuss
some observations on the planning circuits, which parallel Lindsey et al.’s findings for Haiku. We
summarize our work and discuss its limitations and further directions in section

2 RELATED WORK

One piece of evidence for implicit planning in language models comes from the studies of unreliable
chain of thought (CoT): “When we bias models toward incorrect answers, they frequently generate
CoT explanations rationalizing those answers” [Turpin et al.| (2023)); this also applies to newer reason-
ing models (Chen et al.} 2025). When rationalizing, the model must be entertaining the suggested
answer before the rationalizing CoT is generated. So a critical output can be implicitly planned long
before it is produced, an instance of implicit forward planning. Furthermore, intermediate steps
leading up to the answer (in this case, the chain of thought) are conditioned on the implicit plan, an
instance of backward planning.

As a response to reports on LLMs producing useful plans in domains such as coding (Bairi et al.
2023|, e.g.), skeptical arguments about the general planning ability of LLMs have been raised in
the literature. Various studies (Valmeekam et al.| 2023} |[Zhang et al.| 2024} [Stein et al.,|2025)) show
empirically that explicit planning abilities of current LLMs are limited. The conceptual argument
that “a system that takes constant time to produce the next token cannot possibly be doing principled
reasoning on its own” [Kambhampati et al.| (2024) naturally applies to implicit planning as well.

However, LLMs can plausibly engage in some forms of simpler, heuristic type of planning — just
like humans, whose general planning capacities are limited (Kahneman & Tversky, (1977 Buehler
et al.| 2010), are known to still plan ahead in their speech production (Brown-Schmidt & Konopkal
2015). Indeed, shaping the rhythm and rhyme for the next poetic line is a task that can be solved
well enough with limited planning capacities. This is supported by the success of previous poetry
generation experiments that used relatively simple tools Hopkins & Kiela (2017); |Lau et al.| (2018);
Ormazabal et al.|(2022); Jhamtani et al.[(2019); |(Ghazvininejad et al.[(2016).

Implicit planning representations in LLMs have been found for specific models (Pochinkov et al.,
2024; Men et al., [2024; Wu et al.| 2024)). In this paper, we aim to compare planning across a wider
range of language models. We zoom in rhyming poerte generation, inspired by [Lindsey et al.| (2025).
The authors gave Claude Haiku 3.5 the prompt:

Example 1. A rhyming couplet:\n He saw a carrot and had to grab it\n

The model was able to complete the second line with the correct rhyme, e.g. His hunger was like a
starving rabbit. Furthermore, elements of implicit forward planning mechanisms were identified:
there are vector components in the activations of the token at the end of the first rhyming line (second
\n above) that Lindsey et al. identify as representing planning for the rhyme of the next line. Some of
these planning activation components, they argue, correspond to the potential rhyme rabbit and, if
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suppressed, lead to other rhyming words (such as habit) being generated much more often. It is even
possible to inject a planning direction for a word such as green that does not fit the context, causing
the model to produce it instead of a correct rhyme.

In addition, Lindsey et al. found evidence of backward planning in the thyming context. The planning
directions, they argue, influence the intermediate words. If rabbit is the dominant planned rhyme
word, certain constructions are produced, e.g. comparison construction as in His hunger was like a
starving rabbit. If rabbit planning directions are artificially suppressed, different intermediate parts
of the line are generated, such as His hunger was a powerful habit.

Lindsey et al.’s evidence, while persuasive, is limited to Claude Haiku’s behavior on a small number
of examples. Our paper addresses limitations of their study. First, we assess forward and backward
planning in rhyming across a range of models. Second, we introduce several quantitative metrics
based on a varied dataset of rhymes. Third, we address the complexity problem: the cross-layer
transcoder (CLT) approach used by Lindsey et al., while offering diverse interpretability promises, is
particularly complex, computationally expensive, and difficult to replicate. Just training a CLT for
a single model of modest size is estimated to require days of compute on a highly performant and
expensive GPU such as H100 (Ameisen et al., 2025, Appendix D).

3 METHODOLOGY

Taking inspiration in the observations of Lindsey et al., we propose several metrics for quantifying
implicit forward and backward planning, and apply them to a variety of language models in the
context of thymed text generation. We propose simpler methods that do not involve the costly training
and use of cross-layer transcoders, or other types of dictionary learning. We focus here on planning
for a rhyme family, which can be manipulated robustly; see Appendix [E] for a discussion of model
planning to produce specific rhyming words.

3.1 DATASET CREATION

We call the set of words that all thyme with each other a rhyme family. Words in a rhyme family
tend to share a suffix, which we use to name the rhyme family. For example, the -ing rhyme family
contains words such as king and ring. We chose a set of 10 rhyme families (-ing, -air, -ip, -oat, -ird,
-ee, -ight, -ake, -ow, -it). We also chose 20 pairs of rhyme families such that every rhyme family
is the first in two pairs and the last in two pairs|'} For each rhyme family (RF), we generate 105
rhyming couplets using Claude 3.5 Sonnet, regenerating when the output did not actually match the
rhyme family. from each generated couplet, we remove the second line and concatenate the string
"A rhyming couplet:\n" before the first line. We split the generated lines at random into a
train and test set with 85 of the 105 lines in the train set P51 and 20 in the test set PRest.

3.2 MODELS

We test thyme planning in both base and instruction tuned models from four language model families
(Gemma2, Gemma3, Qwen3 and Llama3.1/3.2) with model sizes between 1B and 32B parameters
Team et al.| (2024} [2025); |Yang et al.| (2025)); |Grattafiori et al.|(2024). For every model we test both
the base and the instruction tuned versions. ]

3.3 MEAN ACTIVATION STEERING AND CHOOSING A STEERING VECTOR

If a model exhibits implicit forward planning for a rhyme, then an intervention on an early position
(such as the newline in[T)) can alter the rhyme produced.

We estimate a steering vector using the average activation difference like in |Arditi et al.[(2024). For
example, we calculate the average activation of the newline (\n) token after lines that rhyme with
sick, and subtract it from the average activation of the newline (\n) token after lines that rhyme with
pain. The resulting steering vector, when applied to the newline token after the line The house was

'The exact rhyme family pairs used can be found in Appendix
2Only Qwen3 32B did not have an open weight base model available.
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built with sturdy, reddish brick, can lead to ‘thymed’ generations like And stood for years, enduring
wind and rain instead of the unsteered version And stood for years, enduring every trick.

For each model, layer ! and rhyme family pair (RFy, RF2) we extract a steering vector sg)Fl L RF,
by calculating the mean activation difference between the activations on their train sets

@) _ O} @
SRF; >RF, — M Z Xpos(\n)fl(p) - Z Xpos(\n)fl(p)

PEPRE” PEPRE;

Here m is a constant, in our case set to 1.5 x,(f) is the hidden activation of the model at layer [ and
position &, pos(\n) is the position of the newline token in p and pos(\n) — 1 is the token position
before the newline token (the last token of the first line, most often containing a word from the rhyme
family).

To apply a steering vector, we add it to the residual stream xf{] ) on the correct layer and token position

during generation. Notice that we only apply the steering vector on one token only (the last token
of the first line or the newline token).

For each steering vector we measure the average Fraction of Correct Rhyme Family (Steered) metric
described below on Pﬁ%‘szt with 50 samples for each of the 20 prompts. For the final steering vector
of each model and rhyme family sgr, ,rF, We choose out of all layers, the layer whose steering

vector had the maximum score in this metric.

While we opt for average activation difference steering because of its simplicity, it is also possible to
obtain a steering vector with other methods, such as differences of classifier probe weights or SAE
weights. For examples of generated outputs with alternative steering vectors, see Appendix [G]

3.4 METRICS

Let Crr be a collection of 1000 couplets generated by some model using the prompts in PRsst. We
sample 50 generation per prompt p € Pﬁ?t.

Let Cry, »rF, be a collection of 1000 couplets generated by some model using the prompts in
PEest while being steered with srF, RF,-

Let YgrF be a collection of sequences of probability distributions over text tokens generated by using
Crp as input to a model.

Let YrF, »RrF, be a collection of sequences of probability distributions over text tokens generated
by using Cryr, as input to a model while steering with SRF; SRF,-

As evidence successful forward planning, we use effectiveness of the steering intervention: if at
position X there was no planning representation for a later position Y, then intervening on position X
would not have changed the outcomes for position Y in a predictable way. This is done by comparing
the following two metrics.

Fraction of Correct Rhyme Family. We calculate the fraction of couplets in Cry, where the last
word has the correct rhyme family (thymes with the last word of the first). We made collections
containing all words in each rhyme family to do this.

Fraction of Correct Rhyme Family (Steered). This metric is calculated the same way as the
Fraction of Correct Rhyme Family metric. We evaluate it separately for each rhyme family pair
(RF1,RF2) on Crr, srr,. We assess backward planning with the help of probability based
metrics. Successful steering means that planning representations can be manipulated successfully.
This allows us to assess backward planning by measuring to what extent interventions on the planning
activations affect the model’s behaviors at intermediate positions. For example, Gemma2 9B model

3Mean activation difference estimation defines an inherent scale: steering vector can be used with multiplier
of 1. While that often works, we found that slightly bigger values such as 1.5 or 2 produce a more consistent effect.
Informally, imprecision in the estimation of the steering vector is compensated by increasing its magnitude.
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A rhyming couplet:
The child's eyes opened wide with fright

0wl —— o

Most probable next token:

Figure 1: Illustration of the probability based metrics. Gemma3 27B model, baseline vs. steering
from -ight to -ake rhyme family. Dashed line = KL divergence threshold of 1; in the table, bold
= different top-1 prediction under steering. At the second token the, the baseline and steered runs’
probability distributions are still similar (KL divergence under 1), but the top tokens are different
(shadow for baseline, monster for steered). At monster, not only are the top candidate tokens different,
but KL divergence is also above 1. The steered model’s apostrophe after monster is found in several
second lines generated with steering such as As the monster’s shadow crossed the lake.

steered towards the -ight rhyme family will not just end the second line in[2 with a different word like
light instead of sing, but will likely take a different path after above, leading to a more natural ending:

Example 2. Whispers of freedom found in a bird’s wing\n Soaring above where true joy will sing
Steered towards -ight: Soaring above bathed in a golden light

The likelihood of different intermediate continuations due to steering is reflected in a shift in the
probability distribution over the next token. To measure this effect, we propose the following
probability based metrics.

Fraction of Top-1 Difference. Divergence in the top 1 most probable next token predictions of the
steered and unsteered models signals backward planning in action. We calculate the fraction of such
divergent positions in the second line of a couplet.

Fraction of High KL Divergence. We calculate the average fraction of tokens in the second line
where the KL divergence between the next token probability distribution using the steered model and
unsteered model is greater than 1, out of all tokens in the generated second line of the couplet. The
exact formula is

1 1
1 4L 1 . » i\j

E I - E KL Divergence(YrF, [i,5],YRF; - RF, [0,5])>1
|YRF, | el e I sl(Crer[i])] jesl(Crli])

1
Fraction of Tokens After First Top-1 Difference. We calculate the average position where the
first top-1 difference occurs, measured in % of tokens of the second couplet line, counted from the
end of the line. This measures how early backward planning kicks in on average.

Fraction of Tokens After First High KL Divergence. We calculate the average position where
the first high KL divergence occurs, measured in % of tokens of the second couplet line, counted
from the end of the line. This is another measure of how early backward planning kicks in on average.
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We measure successful backward planning — to what extent a sequence generated in the task’s context
leads up to the planned completion — using regeneration metrics. For example, we take the line And
stood for years, enduring every trick and regenerate the last word without the original context that
conditioned the rhyme. If backward planning involving the rhyming plan was used, such regeneration
is expected to reproduce trick at a higher rate than for generated lines in other contexts, and at a
higher rate than for lines generated in the same context but steering towards a different rhyme.

Fraction of Correct Last Word Regeneration. We extract the second lines of all the couplets in
Crpr- (So that there is no context that this is a rhyme). We also remove the last word in all of the
second lines. Then we regenerate the last word using the resulting prompts and calculate the fraction
of cases where the regenerated word is from the correct rhyme family RF.

Fraction of Correct Last Word Regeneration (Steered). This metric is computed similarly to
the Fraction of Correct Last Word Regeneration, but with couplets in Crr, rF,, calculated as the
fraction of cases where the regenerated word is from the target rhyme family RF5. We calculate this
metric separately for each rthyme family pair (RF1, RF2) on Crr, RF,-

4 RESULTS

While above we presented the metrics in parallel to their theoretical concepts, we discuss Results
in the order that reflects methodological dependencies: basic behavior (fraction of correct rhyme
family and last word regeneration), steered behavior (similar metrics, but with steering), and finally
probability based metrics.

4.1 Basic rhyming behavior We observe that models differ in rhyming abilities. Generally,
bigger models rhyme more consistently than smaller ones, and instruction-tuned models rhyme better
than their base versions (Fig. Q left).

In all models, we found evidence of successful backward planning from regeneration metrics: lines
generated in the context of a certain rhyme are likely to be completed by word of the intended rhyme
family even without the original rhyming context (Fig. [3] left); for all models, the metric is above
chance (cf. Fig.[TT]in the Appendix).

4.2 Steering affects forward and backward planning Steering on the last word consistently
modifies models’ behavior wrt the rhyme family generated. This supports that representations of
the planned rhyme are localized at the intervention point. Our strategy of steering for a different
rhyme is very effective across models. While rhyming abilities of different language models vary, our
simple steering strategy achieved rates of the target rhyme family comparable to the rhyming rate
of the model in the baseline condition, cf. Fig. 2] Only for models with the lowest rhyming ability
(base variants of Gemma3 1B and Llama 3.2 3B) is the steered rhyming rate substantially lower than
unsteered.

Fraction of Correct Rhyme Family by Model Fraction of Steered Rhyme Family by Model

ct Rhyme Family

Fraction of Steered Rhyme Family (Steered)

Figure 2: Baseline rhyming abilities of models vs. steered rhyming behavior.
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Further, steered regeneration rates for the target rhyme family are close to the baseline regeneration
rates for the same models (Fig. [3). This supports that the steering intervention does not just replace
the final rhyming word but affects the backward planning that produces intermediate words.

Fraction of Correct Last Word Regeneration by Model Fraction of Correct Last Word Regeneration (Steered) by Model
3 =

Fraction of Correct Last Word Regeneration

Figure 3: Baseline vs. steered last word regeneration rate of different models.

The success of steering in affecting intermediate planning is supported by the fact that in models with
high rhyming capabilities, in the baseline vs. steered lines, the regeneration frequency distributions
by rhyme family is close, as illustrated in Fig.[d] for Gemma3 27B.

Fraction of Correct Last Word Regeneration for Gemma3s_278 Fraction of Steered Last Word Regeneration (Steered) for Gemmas3_278
0595 0617

neration

Fraction of Correct Last Word Reger

Figure 4: Regeneration rates per rhyme family with Gemma3 27B, baseline vs. steering.

4.3 Probability based metrics Our probability based metrics detect evidence of backward plan-
ning on a finer level, and rely on the fact that steering intervention causing the change of the rhyme is
successful. These metrics assess to what extent the probability distribution over intermediate tokens
changes with this intervention. The probability based metrics generally follow the same patterns
as the previous metrics: instruction tuned models tend to score higher than base models and bigger
models tend to score higher than small ones. For plots, see (Fig.[12] [T3) in Appendix D]

Metrics do show some idiosyncrasies. Perhaps due to the threshold for high KL divergence interacting
with model properties, base versions of Gemma2 models have elevated KL divergence scores (as
seen especially in Fig.[T2] right), even if it does not correspond to elevated values of non-KL metrics.
And for the position of first divergence metrics (percentage of tokens after first rank switch/high KL),
differences between model sizes are much less pronounced than for other metrics.

5 DISCUSSION: BEYOND QUANTITATIVE METRICS

5.1 Steering position All models support rhyme family steering on the last word of the first line
of a couplet, typically on lower layers. Some of the language models can also be steered on the
newline token after the first line in one or more middle layers. The effect of newline steering is
only pronounced for Gemma2 9B and Gemma3 27B (both instruction tuned and base variants), cf.
Fig.[16]in the Appendix, and is smaller. While steering on the newline position is somewhat less
effective than steering on the last word, it produces comparable values of planning metrics (Fig. [3).
This suggests that interventions on the two positions are qualitatively similar. We conjecture the
following explanation of quantitative differences: while the newline token may be playing a key role
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Metric Comparison: Regular vs Newline Steering Metric Comparison: Regular vs Newline Steering
B

10 m= Regular Steering m= Regular Steering
1o Neuwline Steerin

Neuwline Steering 09s8 9

0809 799

Metric Value
Metric Value

Figure 5: Metrics by steering position, Gemma2 9B and Gemma3 27B.

in the rhyming circuits of models like Gemma2 9B and Gemma3 27B, some amount of information
flows around the steered newline token directly from the (unsteered) last word position to positions
further in the sequence, dampening steering effectiveness on the newline position. This is supported
by observations on attention patterns involved, see[5.2}

L30H3 weighted attention (Steered) L31H15 weighted attention (Steered)

L31H15 weighted attention (Original)

Toke

L30H3 weighted attention (Original)

Figure 6: Attention patterns for heads L30H3 and L31H15 at a fork point.

5.2 Observations of the Planning Circuit How is backward planning implemented? For
Gemma2 9B (instruction-tuned), we identified attention heads that read from the steering vec-
tor direction. Steering was done on the newline token in layer 27. We analyzed positions with high
KL divergence around the middle of the second line in examples steered between diverse rhyme pairs.

For example the first row of table[7] the baseline model completes the second line with every trick.
But when steering towards -ain, the favored completion is sun and rain.

Two attention heads (L30H3, L31H15) play a very important role in executing the steering effect.
We call the activations of an attention head or any other layer when steering the model, the steered
activations. If we do not use the steering vector, but instead replace the activations of these two
attention heads on the last token with their steered activations (activation patching), we get a similar
effect to steering. In the analyzed examples (shown in table[/)) activation patching results in token
output logits that are much closer to the steered output logits then the unsteered output logits,
recovering most of the steering effect (59%-93%). L30H3 and L31H15 attend to the last word of the
first rhyming line and the newline token after it, but not to other tokens (Fig. [6] shows this for the first
example couplet). This attention pattern is constant across all the tokens of the second line, but only
makes a significant contribution to the next token prediction at select positions, usually towards the
end of the line. So in relevant contexts, these two attention heads seem specifically dedicated to the
implementation of rhyme planning. The information copied by these heads is then converted into
specific predictions in subsequent MLP layers 30-39; patching MLP layers recovers the effects of
steering almost entirely.
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Couplet (unsteered completion)/(steered completion) Logit Difference %0
Unst. | Patched | Steered

The house was built with sturdy, reddish brick 2.6 4.61 5.48 89

And stood for years, enduring (every trick)/(sun and rain)

He stubbed his toe, a striking pain -3.37 1.47 4.77 59

Now he’s laid upon the floor, (in vain)/(quite sick)

Whispers of freedom found in a bird’s wing -14.5 2.06 3.39 93

Soaring above
(where true joy will sing)/(bathed in golden light)

Mountains stand. As ancient guardians of majestic height | -4.94 -1.07 0.93 66
Echoing whispers of legends, though the
(day and the night)/(the ages they sing)

Figure 7: Couplets used for analyzing the rhyming circuit. The logit difference describes the
difference in logits between the first tokens of the favored steered and unsteered completions. We
look at three cases. The unsteered case, the steered case and another case (Patched), in which we do
not steer the model, but replace the activations of two attention heads (L30H03 and L31H15) with
the activations they have under steering. % column indicates the percentage of steering induced logit
difference recovered by patching L30H03 and L31H15.

6 CONCLUSION

Our findings reveal that language models of various sizes exhibit different aspects of planning
when generating thymed poetry. We find evidence of rhyme planning behavior even in the smallest
models we consider, although it is weaker in smaller models, consistently with the conclusions of
concurrent work (Hanna & Ameisen). Planning metrics increase not only with model size but also
with instruction tuning, suggesting that typical post training may boost planning, cf.|Li et al.|(2024).
The plan for a rhyme can be manipulated using the simple technique of average activation difference
steering. This technique robustly recovers the model behavior both for the rhyming word generation
and at the previous steps. Steering works reliably on the last word of the first rhyming line for all
models, and in addition to that on the first line’s newline token for select models, as in Claude Haiku,
Gemma2 9B, and Gemma3 27B. It remains an open question for further exploration whether the more
elaborate rhyming circuit in these models, which involves the newline token position, contributes to
their quantitatively better planning behavior that we observed.

All our metrics correlate, suggesting that rhyming ability goes hand in hand with planning for a
rhyme (see Appendix |B|for details). This holds for diverse logically independent aspects of planning:
how early in the sentence the planning circuit springs to action (tokens after first top-1, tokens after
first high KL); how much influence the planning circuit has over the output logits (fraction top-1
difference/high KL); how good the planning circuit is at boosting tokens leading up to the correct
rhyme family (regeneration metrics).

Our steering experiments support that the planned rhyme family is represented at the end of the
first line in a couplet. The follow up analysis of Gemma2 9B further identifies attention heads and
MLP layers that contribute the most to implementing the plan. This circuit is specific to the rhyming
task; other planning tasks such as question answering (Appendix[I) use circuits of a similar shape,
but differ in details. Our findings for Gemma?2 are consistent with known observations on rhyming
circuits in other models (Lindsey et al., | 2025; Hanna & Ameisen)), suggesting a general mechanism.

Methods we developed can be transferred from rhyming to other cases where long-distance depen-
dencies can be manipulated, such as instruction following and CoT question answering (Cox} 2025),
as well as to other intervention methods. Our findings call for further analysis of LLM planning.
Since implicit planning is pervasive, especially in larger, more capable models, and may have critical
safety consequences in certain domains, we need to better understand the computation involved.
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REPRODUCIBILITY STATEMENT

Supplementary material contains data reported on in the body of the paper and code for reproducing
the experiments. Outputs of the core experiments are found in rhyme_family_steering. The
code is found in paper_experiments. README.MD in the latter directory contains further
information needed for reproducing the experiments.

IMPACT STATEMENT

“This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.”
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A RHYME FAMILY PAIRS USED

For our evaluation we steered between the following 20 rhyme family pairs: (-ing, -air), (-ing, -ip),
(-air, -ip), (-air, -oat), (-ip, -oat), (-ip, -ird), (-oat, -ird), (-oat, -ee), (-ird, -ee), (-ird, -ight), (-ee, -ight),
(-ee, -ake), (-ight, -ake), (-ight, -ow), (-ake, -ow), (-ake, -it), (-ow, -it), (-ow, -ing), (-it, -ing), (-it,
-air). For each rhyme family RF', 105 first lines ending with words from RF; were generated using
Claude 3.5 Sonnet. The resulting 105 lines per family were randomly split into 85 training and 20 test
prompt lines. We then manually checked the training data, replacing individual lines with incorrect
rhyming words with newly generated lines. For some rhyme families we also replaced the whole
training data if it was heavily unbalanced, with a large share of examples ending in the same word. In
case of complete replacement of lines for a rhyme family, we prompted Claude 4.0 to list 17 words
belonging to the rhyme family, and after manually checking their correctness, to produce 5 poetry
lines ending in each word. When developing our methods, we found that balanced training data
improves the performance of the estimated steering vector.

B CORRELATIONS OF DIFFERENT METRICS

Correlation Matrix of Planning Metrics
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Figure 8: Correlations of different metrics at individual prompt level; all models vs. with exclusion of
Gemma 2 base models, which tend to show idiosyncratically high KL divergence values.

We report correlations of all our metrics for multiple settings. This includes correlations of metrics
for (prompt,model) pairs, as well as correlations between models with metrics averaged across all
prompts.

All of our metrics correlate with rhyming correctly (Fig. [8), but they measure different aspects of
planning in practice. If we control the data to only include instances where the model can produce
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Figure 9: Correlations of different metrics at model level; all models vs. with exclusion of Gemma 2
base models, which tend to show idiosyncratically high KL divergence values.
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Figure 10: Correlations of different metrics, data filtered for reliable baseline and steered rhymes,
aggregating data by model. Excluding Gemma?2 Base models, which tend to show idiosyncratically
high KL divergence values.

a correct thyme with high probability, metrics’ correlations start to diverge. ‘Tokens after’ metrics
become especially independent; see Fig. In other words, badly rhymed outputs can be associated
with poor involvement of rhyming circuits. On the other hand, provided that the model’s rhyming
behavior is stable, earlier execution of the rhyming plan does not necessarily lead to better rhyming;
we have seen examples where an appropriate rhyming word is generated too early, before the line
would naturally end.

C REGENERATION METRICS COMPARED TO BASELINE

During regeneration with stochastic sampling, it is expected that some rhyme families might occur
with non-zero frequency by chance. We estimate the baseline chance level that unsteered regeneration
rate must exceed to show evidence for successful backward planning as the average frequency of
rhyme families other than the one in whose context the couplet’s second line was originally generated
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Aggregated: Baseline vs Unsteered
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Figure 11: Comparison of unsteered regeneration rates to baseline chance level for the model.

by the model. Fig.[IT|reports the comparison of regeneration rates to the chance baseline for all
models.
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D DETAILED RESULTS OF THE PROBABILITY BASED METRICS

Fraction Early Top-1 Difference by Model Fraction Early High KL Divergence by Model

Figure 12: Percentage of top-1 difference and high KL divergence under steering for different models;
higher percentage indicates stronger backward planning.

Percentage of Tokens After First Top-1 Difference by Model Percentage of Tokens After First High KL Divergence by Model

Figure 13: Relative location (% of tokens after the position) of the first top-1 difference or early KL
divergence under steering; higher percentage indicates earlier effect of backward planning.
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E SINGLE WORD STEERING

We did multiple experiments trying out single word steering: steering the model to say a specific
word at the end of the second line, such as rabbit or habit in Lindsey et al. example. We
document one such experiment here, in which we steer Gemma2 9B and Gemma3 27B to end
the second line with either the word night or the word light. To do this, we use Claude 3.5
Sonnet to generate 20 couplets ending in night and 20 couplets ending in light. We prompted
Claude to write the first line, such that it is very suggestive for the word specific word. We then
generated second lines for each prompt 500 times to estimate the probability that it would end in
the correct word which we call suggestibility. We filtered out all prompts with a suggestibility
below 0.8, which left a handful prompts on both sides. We used those to calculate the steering
vectors on the newline token as described in the paper. We steered on the following prompt:
\A rhymed couplet:\nThe forest path seemed to shrink quite tight\n"
estimating the probability of the second line ending in either light or night (500 samples).

—e— neg_prompt_v1 - Positive
-%- neg_prompt_v1 - Negative

Last Word Fraction
o
o
o

o 10 20 30 Yy
Layer
Wordlist: light

—e8— neg_prompt_v1 - Positive
-x%- neg_prompt_v1 - Negative

Last Word Fraction

Layer

Figure 14: Fraction of second line ending in Light/Night when steered (Gemma2 9B)

Steering could only change the probability of a certain word by at most 20 percent for Gemma2 9B
and 50 percent for Gemma3 27B, lower effect than what we can get in rhyme family steering. This
and similiar experiments suggest that specific word forward planning may emerge with size of the
model; single word steering works very little for the models we analyze but might work better for
larger models like Claude Haiku.
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Figure 15: Fraction of second line ending in Light/Night when steered (Gemma3 27B)

F STEERING EFFECTIVENESS ACROSS LAYERS AND POSITIONS

In this appendix, we include plots with more detailed information on the positions and layers that
are most effective is our steering experiments. Figure[I6]compares the effectiveness of steering on
the newline token for all models. Figures [[7H20] report steering effectiveness for both the newline
position and the immediately preceding token position for all models in consideration.

Fraction of Steered Rhyme Family (Steered on Newline) by Model

0.802

Fraction of Steered Rhyme Family (Steered onNewline)

0.808

0.014 0021 0028

0.005 0.00710.012 0018

Model Family Groups
. Gemmaz.0
s Gemma3s.0
. Lama
N Qwen3.0

Figure 16: Steering effectiveness for newline token position, all models.
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Figure 17: Steering effectiveness by steering position and layer, Gemma2 models.
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Figure 18: Steering effectiveness by steering position and layer, Gemma3 models.

Lindsey et al. reported evidence for planning representations on the newline token at the end of the
first line for Claude Haiku. In our experiments, steering on the newline token was only effective in
select models in some middle layers. For all models however, steering worked on the pre-newline
(last word) token in earlier layers. Steering effectiveness for all layers and positions of all models is

reported in figures [T7H20]
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Figure 19: Steering effectiveness by steering position and layer, Llama3 models.
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Figure 20: Steering effectiveness by steering position and layer, Qwen models.

G OTHER STEERING METHODS

While we opted for the simple average activation difference steering, it is also possible to use other
types of vectors for steering, relying on embedding components encoding phonetic information.
There is indeed support for phonetic features encoded systematically in LLM’s embedding space
[McLaughlin et al.| (2025).

One approach is to train a probe on residual stream activations for classifying thyme families. Probe
weights for a specific rhyme family act as its representation. Steering can then proceed using the
difference of class weights of the target and source rhyme families.

It is also possible to identify sparse autoencoder latent dimensions that correspond to rhyme families
and use them for steering. For instance, we found that latent 5862 in GemmaScope 16K SAE for
residual stream of layer 20 in Gemma2 9B tends to fire on words that rhyme with night, and that
latent 140609 fires on words that rhyme with deep. The difference between the decoder weights of the
two can be used to steer generation between the rhyming families.

Both probing and SAE based approaches have the benefit of producing representations for specific
rhyme families and as such open paths for further representation analysis. However, both of these
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approaches come with additional complexity, in particular requiring tuning the steering coefficient in
each case. For this reason, we chose the simple and robust mean activation difference approach for
our experiments, which allows to easily scale experiments across models, layers, and position.

Below are some examples of steered generation with alternative approaches (probe weights and SAE
latents).

Prompt:
"A rhymed couplet:\nThe house was built with sturdy, reddish brick\n"
Baseline outputs, Gemma?2 9B instruction tuned:

"A rhymed couplet:\nThe house was built with sturdy, reddish brick\nAnd stood fo
"A rhymed couplet:\nThe house was built with sturdy, reddish brick\nAnd stood for 1
"A rhymed couplet:\nThe house was built with sturdy, reddish brick\nAnd stood for -
"A rhymed couplet:\nThe house was built with sturdy, reddish brick\nAnd stood for -

Outputs with steering on newline token with difference of probe weights for -ick rhymes and -ore
rhymes, steering on layer 27, steering multiplier 400:

"A rhymed couplet:\n
The house was built with sturdy, reddish brick\n
A testament to love, a timeless, sturdy core. \n\n\n
Please provide another rhyming couplet that continues the theme of a home built
"A rhymed couplet:\n
The house was built with sturdy, reddish brick\n
And stood steadfast, defying winter’s core.\n\n
Let me know if you’d like to explore more poems!\n",
"A rhymed couplet:\n
The house was built with sturdy, reddish brick\n
And stood for years, a testament to yore.\n\n
x*xExplanation:**\n\n
* xxRhyme:** The words "brick" and "fore" rhyme’,
"A rhymed couplet:\n
The house was built with sturdy, reddish brick\n
And stood through storms, a testament to lore.\n\n
This is an example of a couplet, a two-line stanza in poetry with a rhyme’

Prompt:
"A rhymed couplet:\nIn silence, the strongest hearts sometimes softly weep\n"
Baseline outputs:

"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n
For unspoken sorrows, secrets they gently keep. \n\n\n
Let me know if you’d like more! \n\n",

"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n
While the bravest souls their hidden sorrows keep. \n\n\n
Let me know if you’d like to explore more poetry!\n",

"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n
For a love that’s lost, a secret they keep.\n\n\n

Let me know if you’d like more couplets! \n",

"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n
While smiles mask the tears that in secret they keep.\n\n\n\n’,
"A rhymed couplet:\n
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In silence, the strongest hearts sometimes softly weep\n
And hidden tears, like pearls, their secrets keep.\n\n\n
Let me know if you’d like more poetic explorations!\n"

Steering on the newline token on layer 20, steering multiplier 100 produces the target rhyme ion 832
out of 1000 rollouts when steering with difference of SAE decoder weights for latents 14069 (-eep)
and 5862 (-ight) from GemmaScope 16K. Output examples:

"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n

For dreams that vanished in the lonely, darkest night. \n\n\n
Let me know if you’d like more!\n",

"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n
Tears, unshed, held back by a will, strong and bright. \n\n\n’,
"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n

When hidden burdens weigh heavy, day and night. \n\n\n\n’,

"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n

For burdens unseen, hidden from day’s bright light. \n\n\n
Let me know if you’d like more! A\n\n",

"A rhymed couplet:\n

In silence, the strongest hearts sometimes softly weep\n

For losses unseen, yet felt with all their might.\n\n\n

Let me know if you’d like more!

I can write you more couplets on different topics.\n"
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H SAE LATENTS AND RHYME PLANNING

A rhy med couplet : d
In silent moments , time stands perfectly still and FELEAE <
Fire flies dance through summer meadows , tiny dots of SETght] < Activations of latent 63080

Activation of latent 5862

& Y
NV odn T
: v I @
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°
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first second HGHT \n AFTER *IGHT
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Figure 21: Top left: SAE latent 5862 (layer 20, GemmaScope 16K) fires on words from the -ight
rhyme family, but also on the newline token at the end of the first line of a couplet where rhyme for
the next line can be planned. Bottom left: Firing on the first but not the second newline is systematic,
as shown on a sample of 100 couplets with -ight rhymes. Right: In contrast to Gemma2 9B’s 5862,
latent 63080 in Llama 3.1 8B fires on words of the ight rhyme family, but its activations on the
following newline are comparable to its activations on words from a different rhyme family.

Some suggestive observations on sparse autoencoder latents provide further evidence for planning in
rhyme generation.

As mentioned above, latent 5862 (GemmaScope 16K layer 20) corresponds to words that rhyme with
night, and we can use it in steering to produce that rhyme. We observe further that latent 5862 tends
to fire both on the last word of the first line of a couplet (e.g. light) and on the following newline
token. These are the two positions that support rhyme family steering in Gemma2 9B, thus involved
in the thyme planning circuit. Latent 5862 is not activated on the newline token after the second line
of a couplet, where rhyme planning is not needed.

We identify for Llama 3.1 8B, layer 25, latent 63080 with a similar function (fires on words rhyming
with night). however, latent 63080, unlike its Gemma2 9B counterpart, is not activated on newline
tokens. This is consistent with the fact that Llama does not support rhyme family steering on the
newline token. See Fig. [21|for an illustration.

I BEYOND RHYMING: A/AN IN QUESTION ANSWERING CONTEXTS

Implicit planning is not limited to rhyming context. For Gemma 2 9B, we also investigated a different
task: answering questions. We find that steering on the ‘?’ token at the end of a question can shift the
model’s predicted answer from ”An apple” to ”A pear” and vice versa, cf. Fig. 22 (similarly with
other nouns). However, since the variation in the immediately preceding tokens is limited to the
choice of the article (a vs. an), our metrics for backward planning are not very informative.

Planning for a thyme vs. answer to a question seems to involve distinct circuits. The attention heads
that we identified as transferring rhyming information aren’t contributing much in question answering;
most of the action happens in the later layers. Attention head L39H13 seems particularly important,
with the final MLP layers, again, driving the final probability distribution prediction.
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Figure 22: Steering effect: fraction of responses (out of 500 rollouts) that end in apple when steering
on the question mark ‘?’ at different layers; prompt ends with the question What fruit might be
featured in a still life painting?. Solid line: steering from pear towards apple. Broken line: steering
from apple towards pear.
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