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We introduce Contrastive Intrinsic Control (CIC) - an algorithm for unsupervised
skill discovery that maximizes the mutual information between skills and state
transitions. In contrast to most prior approaches, CIC uses a decomposition of the
mutual information that explicitly incentivizes diverse behaviors by maximizing
state entropy. We derive a novel lower bound estimate for the mutual information
which combines a particle estimator for state entropy to generate diverse behaviors
and contrastive learning to distill these behaviors into distinct skills. We evaluate
our algorithm on the Unsupervised Reinforcement Learning Benchmark, which
consists of a long reward-free pre-training phase followed by a short adaptation
phase to downstream tasks with extrinsic rewards. We find that CIC improves on
prior unsupervised skill discovery methods by 91% and the next-leading overall
exploration algorithm by 26% in terms of downstream task performance.

1 INTRODUCTION

Deep Reinforcement Learning (RL) is a powerful ap-
proach toward solving complex control tasks in the pres-
ence of extrinsic rewards. Successful applications include
playing video games from pixels (Mnih et al., 2015),
mastering the game of Go (Silver et al., 2017; 2018),
robotic locomotion (Schulman et al., 2016; 2017; Peng
et al,, 2018) and dexterous manipulation (Rajeswaran
et al., 2018; OpenAl, 2018; 2019) policies. While ef-
fective, the above advances produced agents that are un-
able to generalize to new downstream tasks beyond the
one they were trained to solve. Humans and animals on
the other hand are able to acquire skills without supervi-
sion and apply them efficiently to a variety of downstream
tasks. In this work, we seek to train agents that acquire
skills without supervision with generalization capabilities
by efficiently adapting these skills to downstream tasks.

Over the last few years, unsupervised RL has emerged as
a promising framework for developing RL agents that can
generalize to new tasks. In the unsupervised RL setting,
agents are first pre-trained with self-supervised intrinsic

I(7;2) = H(r) — H(7]2)

Figure 1: This work deals with unsuper-
vised skill discovery through mutual infor-
mation maximization. We introduce Con-
trastive Intrinsic Control (CIC) — a new un-
supervised RL algorithm that explores and
adapts more efficiently than prior methods.

rewards and then finetuned to downstream tasks with extrinsic rewards. Unsupervised RL algorithms
broadly fall into three categories - knowledge-based, data-based, and competence-based methods'.
Knowledge-based methods maximize the error or uncertainty of a predictive model (Pathak et al.,

!"These categories for exploration algorithms were introduced by Srinivas & Abbeel (2021) and inspired

by Oudeyer et al. (2007).
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Figure 2: Qualitative visualizations of unsupervised skills discovered in Walker, Quadruped, and Jaco arm
environments. The Walker learns to balance and move, the Quadruped learns to flip upright and walk, and the 6
DOF robotic arm learns how to move without locking. Unlike prior competence-based methods for continuous
control which evaluate on OpenAl Gym (e.g. Eysenbach et al. (2019)), which reset the environment when the
agent loses balance, CIC is able to learn skills in fixed episode length environments which are much harder to
explore (see Appendix K).

2017; 2019; Burda et al., 2019b). Data-based methods maximize the entropy of the agent’s vis-
itation (Liu & Abbeel, 2021a; Yarats et al., 2021b). Competence-based methods learn skills that
generate diverse behaviors (Eysenbach et al., 2019; Gregor et al., 2017). This work falls into the
latter category of competence-based methods.

Unlike knowledge-based and data-based algorithms, competence-based algorithms simultaneously
address both the exploration challenge as well as distilling the generated experience in the form of
reusable skills. This makes them particularly appealing, since the resulting skill-based policies (or
skills themselves) can be finetuned to efficiently solve downstream tasks. While there are many
self-supervised objectives that can be utilized, our work falls into a family of methods that learns
skills by maximizing the mutual information between visited states and latent skill vectors. Many
earlier works have investigated optimizing such objectives (Eysenbach et al., 2019; Gregor et al.,
2017; Kwon, 2021; Sharma et al., 2020). However, competence-based methods have been empiri-
cally challenging to train and have under-performed when compared to knowledge and data-based
methods (Laskin et al., 2021).

In this work, we take a closer look at the challenges of pre-training agents with competence-based
algorithms. We introduce Contrastive Intrinsic Control (CIC) — an exploration algorithm that uses
a new estimator for the mutual information objective. CIC combines particle estimation for state
entropy (Singh et al., 2003; Liu & Abbeel, 2021a) and noise contrastive estimation (Gutmann &
Hyvirinen, 2010) for the conditional entropy which enables it to both generate diverse behaviors
(exploration) and discriminate high-dimensional continuous skills (exploitation). To the best of our
knowledge, CIC is the first exploration algorithm to utilize noise contrastive estimation to discrim-
inate between latent skill vectors. Empirically, we show that CIC adapts to downstream tasks more
efficiently than prior exploration approaches on the Unsupervised Reinforcement Learning Bench-
mark (URLB). CIC achieves 91% higher returns on downstream tasks than prior competence-based
algorithms and 26% higher returns than the next-best exploration algorithm overall.

2 BACKGROUND AND NOTATION

Markov Decision Process: We operate under the assumption that our system is described by
a Markov Decision Process (MDP) (Sutton & Barto, 2018). An MDP consiss of the tuple
(S, A, P,r,~v) which has states s € S, actions a € A, transition dynamics p(s'|s,a) ~ P, a
reward function r, and a discount factor . In an MDP, at each timestep ¢, an agent observes the
current state s, selects an action from a policy a ~ m(-|s), and then observes the reward and next
state once it acts in the environment: 7, s’ ~ env.step(a). Note that usually r refers to an extrinsic
reward. However, in this work we will first be pre-training an agent with intrinsic rewards ™™ and
finetuning on extrinsic rewards 7',

For convenience we also introduce the variable 7(s) which refers to any function of the states s. For
instance 7 can be a single state, a pair of states, or a sequence depending on the algorithm. Our
method uses 7 = (s, s’) to encourage diverse state transitions while other methods have different
specifications for 7. Importantly, 7 does not denote a state-action trajectory, but is rather shorthand
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for any function of the states encountered by the agent. In addition to the standard MDP notation,
we will also be learning skills z € Z and our policy will be skill-conditioned a ~ 7 (+|s, 2).

Unsupervised Skill Discovery through Mutual Information Maximization: Most competence-
based approaches to exploration maximize the mutual information between states and skills. Our
work and a large body of prior research (Eysenbach et al., 2019; Sharma et al., 2020; Gregor et al.,
2017; Achiam et al., 2018; Lee et al., 2019; Liu & Abbeel, 2021b) aims to maximize a mutual
information objective with the following general form:

I(7;2) = H(z) = H(z|7) = H(T) — H(7|2) (D

Competence-based algorithms use different choices for 7 and can condition on additional informa-
tion such as actions or starting states. For a full summary of competence-based algorithms and their
objectives see Table 1 in Appendix D.

Lower Bound Estimates of Mutual Information: The mutual information I(s; z) is intractable to
compute directly. Since we wish to maximize I(s; z), we can approximate this objective by instead
maximizing a lower bound estimate. Most known mutual information maximization algorithms use
the variational lower bound introduced in Barber & Agakov (2003):

I(7;2) = H(z) — H(z|r) = H(z) + E[log q(z|7)] 2)

Note that the variational lower bound can be applied to both decompositions of the mutual infor-
mation. The design decisions of a competence-based algorithm therefore come down to (i) which
decomposition of I(7; z) to use, (ii) whether to use discrete or continuous skills, (iii) how to estimate
H(z) or H(7), and finally (iv) how to estimate H (z|7) or H(7|z).

3 MOTIVATION

The results from the recent Unsupervised Reinforcement Learning Benchmark (URLB) introduced
in Laskin et al. (2021), suggest that pre-training with competence-based approaches underperforms
relative to knowledge-based and data-based baselines on DeepMind Control (DMC). We argue that
the underlying issue with current competence-based algorithms when deployed on harder explo-
ration environments like DMC has to do with the currently used estimators for I(7; z) rather than
the objective itself. To produce structured skills that lead to diverse behaviors, I(7; z) estimators
must (i) explicitly encourage diverse behaviors and (ii) have the capacity to discriminate between
high-dimensional continuous skills. Current approaches do not satisfy both criteria.

Competence-base algorithms do not ensure diverse behaviors: Most of the best known competence-
based approaches (Eysenbach et al., 2019; Gregor et al., 2017; Achiam et al., 2018; Lee et al., 2019),
optimize the first decomposition of the mutual information H(z) — H(z|7). The issue with this
decomposition is that while it ensures diversity of skill vectors it does not ensure diverse behavior
from the policy, meaning max H(z) does not imply max H(7). Of course, if H(z) — H(z|7) is
maximized and the skill dimension is sufficiently large, then #(7) will also be maximized implicitly.
Yet in practice, to learn an accurate discriminator ¢(z|7), the above methods assume skill spaces
that are much smaller than the state space (see Table 1), and thus behavioral diversity may not be
guaranteed. In contrast, the decomposition I(7;z) = H(r) — H(7|z) ensures diverse behaviors
through the entropy term H (7). Methods that utilize this decomposition include Liu & Abbeel
(2021b); Sharma et al. (2020).

Why it is important to utilize high-dimensional skills: Once a policy is capable of generating di-
verse behaviors, it is important that the discriminator can distill these behaviors into distinct skills.
If the set of behaviors outnumbers the set of skills, this will result in degenerate skills — when one
skill maps to multiple different behaviors. It is therefore important that the discriminator can ac-
commodate continuous skills of sufficiently high dimension. Empirically, the discriminators used in
prior work utilize only low-dimensional continuous skill vectors. DIAYN (Eysenbach et al., 2019)
utilized 16 dimensional skills, DADS (Sharma et al., 2020) utilizes continuous skills of dimension
2 — 5, while APS (Liu & Abbeel, 2021b), an algorithm that utilizes successor features (Barreto
et al., 2016; Hansen et al., 2020) for the discriminator, is only capable of learning continuous skills
with dimension 10. We show how small skill spaces can lead to ineffective exploration in a simple
gridworld setting in Appendix I and evidence that skill dimension affects performance in Fig. 6.
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Figure 3: Architecture illustrating the practical implementation of CIC . During a gradient update step, random
T = (s, ") tuples are sampled from the replay buffer, then a particle estimator is used to compute the entropy
and a noise contrastive loss to compute the conditional entropy. The contrastive loss is backpropagated through
the entire architecture. The entropy and contrastive terms are then scaled and added to form the intrinsic reward.
The RL agent is optimized with a DDPG Lillicrap et al. (2016).

On the importance of benchmarks for evaluation: While prior competence-based approaches such
as DIAYN (Eysenbach et al., 2019) were evaluated on OpenAl Gym (Brockman et al., 2016), Gym
environment episodes terminate when the agent loses balance thereby leaking some aspects of ex-
trinsic signal to the exploration agent. On the other hand, DMC episodes have fixed length. We show
in Appendix K that this small difference in environments results in large performance differences.
In Fig. 11 we show that DIAYN is able to learn diverse skills in Gym but not in DMC, which is con-
sistent with both observations from DIAYN and URLB papers. Due to fixed episode lengths, DMC
tasks are harder for reward-free exploration since agents must learn to balance without supervision.

4 METHOD

4.1 THE CIC ESTIMATOR

From Section 3 we are motivated to find an estimator for I(7;z) that explicitly maximizes the
entropy H(s) through the second decomposition I(7;z) = H(r) — H(7|z). We also desire that
our method’s discriminator is capable of supporting high-dimensional continuous skills to ensure
maximal behavioral diversity.” Note that 7 is not a trajectory but some function of states.

In this work, we propose a new estimator for I (7; z) which combines the use of a particle estimator
for the entropy (Liu & Abbeel, 2021a) and noise contrastive estimation (Gutmann & Hyvirinen,
2010) for the conditional entropy. Our proposed sample-based estimator is:

Feic (Ti; Zl) = Hparlicle(Ti) +E f(Tu L) log — N Z eXp T]) Zz)) €))
Jj=1

where N is the number of samples, 7 = (s, s"), and Hparicie(7) is a particle estimator (Singh et al.,
2003; Beirlant, 1997; Liu & Abbeel, 2021a) which estimates entropy by computing the distance
between each particle h; and its k-th nearest neighbor 2} such that Hparicle (7) o< D1, log ||h; —
h¥||. The CIC estimator should achieve the best of both worlds — encouraging exploration through
max H (7) and distilling behaviors into skills through contrastive representation learning. We first
show that Eq. 3 is a valid lower bound for I(7; 2).

Theorem 1. Let Fyc (7, 2) be defined as in Eq. 3, we have that Feyc (T, 2) is a lower bound of the
mutual information: I(t,z) > Feye (7, 2), where f(1,2) is any real function of T and z.

Proof. First we find a variational lower bound for I(7; z) where the inequality is due to Barber &
Agakov (2003).

I(7;2) = H(r) — H(r|2) = H(r) + Eflog ¢(7|2)], @)

’In high-dimensional state-action spaces the number of distinct behaviors can be quite large.
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From Contrastive Predictive Coding (CPC) (Oord et al., 2018) we can also have a sample based
lower bound for I(7; z).

N
1
I(r52) 2 Fepe(7i, 21) = E | f(7i, 21) — log > exp(f(75,2)) | - ®)
j=1

As shown in Oord et al. (2018), this bound is upper bound by log N which means the bound
will be loose when I(7;z) > logN. To overcome this limitation, we note that we can
also parameterize the variational density in Eq. 4 with a noise contrastive estimator ¢(7;|z;) =

exp (f(73,2)) / (% >V, exp(f(fj,zi))). We therefore have I(7;;2;) > H(ri) + Fope(7i, 2)

which completes the proof. O

A favorable property of the CIC estimator is that it provides a tighter lower bound than CPC for
mutual information I(7;z) > Feie (1,2) > Fepe(T, 2). In contrast to the CPC estimator, CIC is
more suitable for exploration due to the explicit presence of H(7), which helps learning meaningful
representations and behaviors as evident in recent work (Campos et al., 2020; Mutti et al., 2021;
Liu & Abbeel, 2021a; Campos et al., 2021a; Yarats et al., 2021b) whereas Eq. 5 does not explicitly
encourage exploration. On the other hand, contrastive learning has been demonstrated as a powerful
approach for representation learning in vision and reinforcement learning (Chen et al., 2020; Oord
et al., 2018; Laskin et al., 2020b). It is therefore interesting to combine these two objectives into a
single intrinsic reward.

4.2 INTRINSIC REWARD AND INTERPRETATION OF CIC ESTIMATION

Intrinsic Reward: We parameterize f(7,2) = gy, (7) " gy, () where 7 = (s, s') is a transition tuple
and g, are neural encoders. This inner product is similar to the one used in the SimCLR (Chen
et al., 2020) representation learning loss. We then use a particle estimator (Singh et al., 2003;
Beirlant, 1997) as in Liu & Abbeel (2021a) for the entropy term. Similar to Liu & Abbeel (2021a);
Yarats et al. (2021b) rather than using the exact form of the particle estimator we estimate the entropy
up to entropy up to a proportionality constant, and therefore introduce a hyperparameter o to weigh
the entropy and CPC terms. With this parametrization the intrinsic reward for the unsupervised RL
agent takes on the following form:

Ny N
4 1 X 1
(i, 2;) = alog N, Z lhi =R | + (1 — ) | f(1i,2:) — log N Zexp(f(rj, 2i)))
hY €Ny Jj=1

(6)

where h; is an embedding of 7; shown in Fig. 3, h} is a kNN embedding, IV, is the number of kNN,
and N — 1 is the number of negatives. The total number of elements in the summation is N because
it includes one positive.

Explore and Exploit: We can interpret the two terms of Eq. 6 as contributing two different behaviors
to the exploration algorithm. The entropy term #(7) encourages exploration by maximizing state
diversity. The variational density ¢(7|z) encourages exploitation by ensuring that skills z lead to
predictable states 7. Together the two terms form an intrinsic reward that incentivizes diverse yet
predictable behavior from the RL agent.

Asymptotic Behavior of the Intrinsic Reward: When maximum entropy is reached the H(7) term
in Eq. 6 will vanish since there are no new states to discover. Therefore asymptotically exploration
will stop. However, the variational density ¢(7|z) parameterized by CPC will continue distilling all
states in the environment into skills z until they are maximally distinct such that H(7|z) = ¢ < 1.
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Figure 4: We report the aggregate statistics using stratified bootstrap intervals (Agarwal et al., 2021) for 12
downstream tasks on URLB with 10 seeds, so each statistic for each algorithm has 120 seeds in total. We find
that overall, CIC achieves leading performance on URLB in terms of the IQM, mean, and OG statistics. As
recommended by Agarwal et al. (2021), we use the IQM as our primary performance measure. In terms of
IQM, CIC improves upon the next best skill discovery algorithm (APS) by 91% and the next best algorithm
overall (ProtoRL) by 26%.

5 PRACTICAL IMPLEMENTATION

Our practical implementation consists of two main components: the RL optimization algorithm and
the architecture for specifying the intrinsic reward. For fairness and clarity of comparison, we use the
same RL optimization algorithm for our method and all baselines in this work. Since the baselines
implemented in URLB (Laskin et al., 2021) use a DDPG? (Lillicrap et al., 2016) as their backbone,
we opt for the same DDPG architecture to optimize our method as well (see Appendix B). For the
full algorithm

Architecture for intrinsic rewards: We use a particle estimator as in Liu & Abbeel (2021a) to es-
timate 7(s). To compute the variational density ¢(7|z), we first sample skills from uniform noise
z ~ p(z) where p(z) is the uniform distribution over the [0, 1] interval. We then use two MLP
encoders to embed gy, (7) and gy, (z), and optimize the parameters 11, ¢, with the CPC loss sim-
ilar to SimCLR (Chen et al., 2020) since f(7,2) = gy, (7)T gy, (). We fix the hyperparameters
across all domains and downstream tasks. We refer the reader to the Appendices E and F for the full
algorithm and a full list of hyperparameters.

Adapting to downstream tasks: To adapt to downstream tasks we follow the same procedure for
competence-based method adaptation as in URLB (Laskin et al., 2021). During the first 4k environ-
ment interactions we populate the DDPG replay buffer with samples and use the extrinsic rewards
collected during this period to finetune the skill vector z. While it’s common to finetune skills with
Cross Entropy Adaptation (CMA), given our limited budget of 4k samples (only 4 episodes) we
find that a simple grid sweep of skills over the interval [0, 1] produces the best results (see Fig. 6).
After this, we fix the skill z and finetune the DDPG actor-critic parameters against the extrinsic
reward for the remaining 96k steps. Note that competence-based methods in URLB also finetune
their skills during the first 4k finetuning steps ensuring a fair comparison between the methods. The
full adaptation procedure is detailed in Appendix E.

31t was recently was shown that a DDPG achieves state-of-the-art performance (Yarats et al., 2021a) on
DeepMind Control (Tassa et al., 2018) and is more stable than SAC (Haarnoja et al., 2018) on this benchmark.
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Figure 5: We visualize the contributions to the CIC intrinsic reward from the entropy and disciminator terms
across the three URLB domains. Since H(7) and 7(7|z) terms are on different scales we set the hyperpa-
rameter = 0.9 to weight the two terms equally for the Walker and Quadruped tasks. For Jaco, we find that
discriminator-only CIC (¢ = 0.0) is sufficient because random exploration results in meaningful behaviors
since the arm is fixed to the table and therefore can’t fall. While the CPC intrinsic reward increases throughout
training, the entropy reward decreases and settles at a non-zero value. Without explicit entropy maximization,
the entropy of CIC approaches zero. Compared to APT, CIC achieves smaller entropy as expected since the
discriminator counteracts the entropy term. Compared to DIAYN, CIC achieves substantially higher entropy.

6 EXPERIMENTAL SETUP

Environments We evaluate our approach on tasks from URLB, which consists of twelve down-
stream tasks across three challenging continuous control domains for exploration algorithms —
walker, quadruped, and Jaco arm. Walker requires a biped constrained to a 2D vertical plane to per-
form locomotion tasks while balancing. Quadruped is more challenging due to a higher-dimensional
state-action space and requires a quadruped to in a 3D environment to learn locomotion skills. Jaco
arm is a 6-DOF robotic arm with a three-finger gripper to move and manipulate objects without
locking. All three environments are challenging in the absence of an extrinsic reward.

Baselines: We compare CIC to baselines across all three exploration categories. Knowledge-based
basedlines include ICM (Pathak et al., 2017), Disagreement (Pathak et al., 2019), and RND (Burda
et al., 2019b). Data-based baselines incude APT (Liu & Abbeel, 2021a) and ProtoRL (Yarats et al.,
2021b). Competence-based baselines include DIAYN Eysenbach et al. (2019), SMM Lee et al.
(2019), and APS (Liu & Abbeel, 2021b). The closest baselines to CIC are APT, which is similar
to CIC with o = 1.0 (no discriminator), and APS which uses the same decomposition of mutual
information as CIC and also uses a particle entropy estimate for (7). The main difference between
APS and CIC is that APS uses successor features while CIC uses a contrastive estimator for the
discriminator. For further details regarding baselines we refer the reader to Appendix C.

Evaluation: We follow an identical evaluation to the 2M pre-training setup in URLB. First, we pre-
train each RL agent with the intrinsic rewards for 2M steps. Then, we finetune tune each agent to the
downstream task with extrinsic rewards in the data-efficient regime of 100k steps. We use 10 seeds
across each downstream task for our method and all the baseline algorithms. For baselines, we
benchmark against leading knowledge-based, data-based, and competence-based approaches that
have been implemented in URLB. All baselines use the same DDPG optimization algorithm to
eliminate confounding factors when comparing algorithms.

To ensure that our evaluation statistics are unbiased we use stratified bootstrap confidence intervals
to report aggregate statistics across M runs with N seeds as described in Rliable (Agarwal et al.,
2021) to report statistics for our main results in Fig. 4. Our primary success metric is the interquartile
mean (IQM) and the Optimality Gap (OG). IQM discards the top and bottom 25% of runs and then
computes the mean. It is less susceptible to outliers than the mean and was shown to be the most
reliable statistic for reporting results for RL experiments in Agarwal et al. (2021). OG measures
how far a policy is from optimal (expert) performance. To define expert performance we use the
convention in URLB, which is the score achieved by a randomly initialized DDPG after 2M steps
of finetuning (20x more steps than our finetuning budget).
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Figure 6: Design choices for pre-training and adapting with skills have significant impact on performance.
In (a) and (b) the agent’s zero-shot performance is evaluated while sampling skills randomly while in (c) and
(d) the agent’s performance is evaluated after finetuning the skills vector. (a) we show empirically that the
projecting skill vectors after sampling them from noise significantly improves the agent’s performance. (b)
The skill dimension is a crucial hyperparameter and, unlike prior methods, CIC scales to large skill vectors
achieving optimal performance at 64 dimensional skills. (c) We test several adapation strategies and find that a
simple grid search performs best given the small 4k step adaptation budget, (d) Choosing the right skill vector
has substantial impact on performance and grid sweeping allows the agent to select the appropriate skill.

7 RESULTS

In this section we investigate empirical answers to the following research questions: (Q1) How does
CIC adaptation efficiency compare to prior competence-based algorithms and exploration algorithms
more broadly? (Q2) Qualitatively, does CIC discover structured skills and particularly is it able to
do so in environments with high-dimensional state-action spaces? (Q3) Quantitatively, how does
CIC behavior compare to prior methods? (Q4) Is skill selection important for efficient adaptation to
downstream tasks? (Q5) How does the skill dimension affect the quality of the pre-trained policy?

Adaptation efficiency of CIC and exploration baslines: Expert normalized scores of CIC and
exploration algorithms from URLB are shown in Fig. 3. We find that CIC substantially outperforms
prior competence-based algorithms (DIAYN, SMM, APS) achieving a 91% higher IQM than the
next best competence-based method (APS) and, more broadly, achieving a 26% higher IQM than
the next best overall baseline (ProtoRL). In further ablations, we find that the contributing factors to
CIC’s performance are its ability to accommodate substantially larger continuous skill spaces than
prior competence-based methods.

Quantitative analysis of CIC behaviors: Quantitatively, intrinsic reward profiles during pre-
training and behavior entropies are shown in Fig 5. Since the CPC and etnropy terms are on different
scale, we pick a default hyparameter of o = 0.9 that puts them on equal footing. We find that the
CPC intrinsic reward increases through training while the entropy term decreases to a non-zero
value. This is what we would expect to see as the discriminator distills behaviors into a set of skills
with lower than pure entropy maximization without skill learning. Using a particle estimator for
entropy, we find that CIC behavioral entropy is less than APT and greater than DIAYN or CIC with-
out the entropy term. This suggests that the CIC agent has learned non-static skills while DIAYN
skills are mostly static. Finally, we find that CIC with a = 0.0 (no entropy) on Jaco is optimal for
downstream task performance. This is most likely because, unlike Walker and Quadruped, which
require locomotion, Jaco tasks require reaching a certain position, so low-entropy skills that take the
end effector to a certain end position are favorable to skills that result in periodic motion.

For a qualitative analysis, we refer the reader to Fig. 2 and Appendix J.

Skill architecture and adaptation ablations: We find that projecting the skill to a latent space be-
fore inputting it as the key for the contrastive loss is an important design decision (see Fig. 6a), most
likely because this reduces the diversity of the skill vector making the discriminator task simpler.

We also find empirically that the skill dimension is an important hyperparameter and that larger
skills results in better zero-shot performance (see Fig. 6b), which empirically supports the hypoth-
esis posed in Section 3 and Appendix I that larger skill spaces are important for internalizing di-
verse behaviors. Interestingly, CIC zero-shot performance is poor in lower skill dimensions (e.g.
dim(z) < 10), suggesting that when dim(z) is small CIC likely performs no better than prior
competence-based methods such as DIAYN, and that scaling to larger skill dimensions enables CIC
to pre-train effectively.

To measure the effect of skill finetuning described in Section 5, we sweep mean skill values along
the interval of the uniform prior [0, 1] with a budget of 4k total environment interactions and read out
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the performance on the downstream task. By sweeping, we mean simply iterating over the interval
[0, 1] with fixed step size (e.g. v = 0,0.1,...,0.9,1) and setting z; = v for all . This is not an
optimal skill sampling strategy but works well due to the extremely limited number of samples for
skill selection.

We evaluate this ablation on the Quadruped Stand and Run downstream tasks. The results shown
in Fig. 6 indicate that skill selection affects downstream task performance. The most optimal skill
results in 8 better performance than the least optimal skill on Quadruped stand. Ablating the skill
dimension, we evaluate the zero-shot performance of the agent in Walker Walk with a fixed skill
of 0 * and find that the zero-shot performance monotonically increases from skill dimension 4 until
reaching dimension 64 and starts decreasing for even higher skill dimensions.

8 RELATED WORK

Supervised Reinforcement Learning: To date, most of RL research has focused on supervised
RL where training is supervised with an extrinsic reward function. Supervised RL has seen many
breakthroughs over the last five years (Mnih et al., 2015; Silver et al., 2017; Vinyals et al., 2019;
Silver et al., 2018; Berner et al., 2019; Andrychowicz et al., 2020; Schulman et al., 2016; 2017).
The field has also produced several stable RL optimization algorithms that have helped accelerated
research Haarnoja et al. (2018); Hessel et al. (2018); Lillicrap et al. (2016); Schulman et al. (2017).

Unsupervised Reinforcement Learning: The sub-field of unsupervised RL consists of two primary
research areas - unsupervised behavioral learning and unsupervised representation learning (Srini-
vas & Abbeel, 2021). Unsupervised behavioral learning consists of learning behaviors and exploring
the environment without extrinsic rewards. Unsupervised representation learning consists of learn-
ing representations without supervision from high-dimensional data such as pixel observations. We
evaluate our method on the recently introduced Unsupervised RL Benchmark (URLB) (Laskin et al.,
2021), and focus solely on the behavioral aspect of unsupervised RL in order to isolate the core issue
preventing prior unsupervised skill discovery methods from exploring effectively on URLB.

Unsupervised Behavioral Learning: The aim of unsupervised behavioral learning is to produce
diverse behaviors that explore the environment without interacting with an extrinsic reward. Often
referred to as intrinsic motivation (Oudeyer et al., 2007), this is typically achieved by defining an
intrinsic reward through a self-supervised task. Most behavioral learning algorithms fall into three
categories — knowledge-based (Pathak et al., 2017; 2019; Burda et al., 2019b;a) where the agent
maximizes the error or uncertainty of some predictive model, data-based (Campos et al., 2021b;
Liu & Abbeel, 2021a;b; Mutti et al., 2021; Seo et al., 2021; Yarats et al., 2021b) where the agent
maximizes data diversity, and competence-based Eysenbach et al. (2019); Hansen et al. (2020); Liu
& Abbeel (2021b); Sharma et al. (2020) where the agent maximizes the mutual information between
observable variables and a latent skill vector. We discuss the differences between CIC and the most
closely related competence-based exploration algorithms in Appendix D.

Unsupervised Representation Learning: Much progress in unsupervised representation learning
for RL has been spurred by unsupervised learning in computer vision (Chen et al., 2020; He et al.,
2020; Hénaff et al., 2020; Kingma & Welling, 2013) and language (Brown et al., 2020; Devlin et al.,
2019; Radford et al., 2019). In RL, the most common approach for representation learning has
been by adding it as an auxiliary loss in the supervised RL setting (Jaderberg et al., 2017). More
recently, a number of works have investiagted representaton learning with autoencoders (Yarats
et al., 2019; Hafner et al., 2019; 2020), siamese networks (Schwarzer et al., 2021a;b; Laskin et al.,
2020b; Stooke et al., 2021; Yarats et al., 2021b), and data augmentation (Laskin et al., 2020a; Yarats
et al., 2021a;c).

9 CONCLUSION

We have introduced a new competence-based algorithm — Contrastive Intrinsic Control (CIC) —
which enables more effective exploration than prior unsupervised skill discovery algorithms by ex-
plicitly encouraging diverse behavior while distilling predictable behaviors into skills with a con-
trastive discriminator. We showed that CIC is the first competence-based approach to achieve leading

“The performance will, of course, be much better if we finetune the skill, but we cannot do so for zero-shot
evaluation.
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performance on URLB. We hope that this encourages further research in unsupervised skill discov-
ery toward building more powerful exploration agents.
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A COMPETENCE-BASED EXPLORATION ALGORITHMS

The competence-based algorithms considered in this work aim to maximize I(7; s). The algorithms
differ by ho they decompose mutual information, whether they explicitly maximize behavioral en-
tropy, their skill space (discrete or continuous) and their intrinsic reward structure. We provide a list
of common competence-based algorithms in Table 1.

Table 1: Competence-based Unsupervised Skill Discovery Algorithms

Algorithm Intrinsic Reward Decomposition  Explicit max H(7)  Skill Dim.  Skill Space
SSN4HRL (Florensa et al., 2018)  log gy (z|s¢) H(z)— H(z|7) No 6 discrete
VIC (Gregor et al., 2017) log gy (z|sm)) H(z)— H(z|T) No 60 discrete
VALOR (Achiam et al., 2018) log gy (2|s1:1) H(z) — H(z|r) No 64 discrete
DIAYN (Eysenbach et al., 2019)  log gy (2|s¢) H(z)— H(z|T) No 128 discrete
DADS (Sharma et al., 2020) qy(s'|z,8) — > logq(s'|zi,s)  H(t)— H(7|2) Yes 5 continuous
VISR (Hansen et al., 2020) log gy (z|st) H(z)— H(z|T) No 10 continuous
APS (Liu & Abbeel, 2021b) Fsuccessor (512) + Hparticte () H(T) — H(T|2) Yes 10 continuous
CIC (Ours) Fepc (s, 8'|2) + Mparticie (5, 87) H(T) — H(T|2) Yes 64 continuous

Table 2: A list of competence-based algorithms. We describe the intrinsic reward optimized by each method
and the decomposition of the mutual information utilized by the method. We also note whether the method
explicitly maximizes state transition entropy. Finally, we note the maximal dimension used in each work and
whether the skills are discrete or continuous. All methods prior to CIC only support small skill spaces, either
because they are discrete or continuous but low-dimensional.

B DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

A DDPG is an actor-critic RL algorithm that performs off-policy gradient updates and learns a Q
function Q4 (s, a) and an actor mg(als). The critic is trained by satisfying the Bellman equation.

2
LG(9,D) = E(s,,a0r4,5051)~D {(stt’ ag) — e — 7Q$(St+1>7r9(5t+1)> ] . (N

Here, ¢ is the Polyak average of the parameters ¢. As the critic minimizes the Bellman error, the
actor maximizes the action-value function.

L:(0,D) = Es,~p [Qo(5t, mo(51))] - ®)

C BASELINES

For baselines, we choose the existing set of benchmarked unsupervised RL algorithms on URLB.
We provide a quick summary of each method. For more detailed descriptions of each baseline we
refer the reader to URLB (Laskin et al., 2021)

Competence-based Baselines: CIC is a competence-based exploration algorithm. For baselines, we
compare it to DIAYN (Eysenbach et al., 2019), SMM (Lee et al., 2019), and APS (Liu & Abbeel,
2021b). Each of these algorithms is described in Table 1. Notably, APS is a recent state-of-the-art
competence-based method that is the most closely related algorithm to the CIC algorithm. CIC and
APS differ in their discriminator.

Knowledge-based Baselines: For knowledge-based baselines, we compare to ICM Pathak et al.
(2017), Disagreement Pathak et al. (2019), and RND Burda et al. (2019b). ICM and RND train a
dynamics model and random network prediction model and define the intrinsic reward to be propor-
tional to the prediction error. Disagreement trains an ensemble of dynamics models and defines the
intrinsic reward to be proportional to the uncertainty of an ensemble.

Data-based Baselines: For data-based baselines we compare to APT (Liu & Abbeel, 2021a) and
ProtoRL (Yarats et al., 2021b). Both methods use a particle estimator to estimate the state visitation
entropy. ProtoRL also performs discrete contrastive clustering as in Caron et al. (2020) as an aux-
iliary task and uses the resulting clusters to compute the particle entropy. While ProtoRL is more
effective than APT when learning from pixels, on state-based URLB APT is competitive with Pro-
toRL. Our method CIC is effectively a skill-conditioned APT agent with a contrastive discriminator.
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D RELATION TO PRIOR SKILL DISCOVERY METHODS

The most closely relatd prior algorithm to CIC is APS Liu & Abbeel (2021b). Both CIC and APS
use the H(7) — H(7|z) decomposition of the mutual information and both used a particle estima-
tor (Singh et al., 2003) to compute the state entropy as in Liu & Abbeel (2021a). The main difference
between CIC and APS is the discriminator. APS uses successor features as in Hansen et al. (2020)
for its discriminator while CIC uses a noise contrastive estimator. Unlike successor features, which
empirically only accommodate low-dimensional continuous skill spaces (see Table 1), the noise
contrastive discriminator is able to leverage higher continuous dimensional skill vectors.

The CIC discriminator is similar to the one used in DISCERN (Warde-Farley et al., 2018), a goal-
condition unsupervised RL algorithm. Both methods use a contrastive discriminator by sampling
negatives and computing an inner product between queries and keys. The main differences are (i)
that DISCERN maximizes I(7; g) where g are image goal embeddings while CIC maximizes I (7; z)
where z are abstract skill vectors; (ii) DISCERN uses the DIAYN-style decomposition I(7;g) =
H(g) — H(g|r) while CIC decomposes through H(7) — H(7|z), and (iii) DISCERN discards the
H(g) term by sampling goals uniformly while CIC explicitly maximizes H (7). While DISCERN
and CIC share similarities, DISCERN operates over image goals while CIC operates over abstrac
skill vectors so the two methods are not directly comparable.

Finally, another similar algorithm to CIC is DADS (Sharma et al., 2020) which also decomposes
through H(7)— H(7|z). While CIC uses a contrastive density estimate for the discriminator, DADS
uses a maximum likelihood estimator similar to DIAYN. DADS maximizes I(s’|s, z) and estimates
entropy 7(s|s) by marginalizing over z such that 7(s'|s) = —log ). ¢(s'|s, z;) while CIC uses
a particle estimator. Interestingly, the DADS intrinsic reward r; o< log (q(s'|s,2)/ >, a(s'|s, 2:))
looks similar to the CIC objective with zero entropy, since marginalizing over z to compute entropy
is similar to sampling negatives for a contrastive discriminator.
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E FuLL CIC ALGORITHM

The full CIC algorithm with both pre-training and fine-tuning phases is shown in Algorithm 1. We
pre-train CIC for 2M steps, and finetune it on each task for 100k steps.

Algorithm 1 Contrastive Intrinsic Control

Require: Initialize all networks: encoders g, and gy, actor g, critic (4, replay buffer D.

Require: Environment (env), M downstream tasks T,k € [1,..., M].
Require: pre-train Npt = 2M and fine-tune Npr = 100K steps.
1: fort = 1..Npt do > Part 1: Unsupervised Pre-training
2: Sample and encode skill z ~ p(z) and z < gy, (2)
3: Encode state s; < gy, (5¢) and sample action a; < g (s, 2) + ¢ where ¢ ~ N(0, 02)
4: Observe next state s¢+1 ~ P(|st, a¢)
5: Add transition to replay buffer D < D U (s¢, at, St+1)
6: Sample a minibatch from D, compute contrastive loss in Eq.3 and update encoders gy, , gy, , compute
CIC intrinsic reward with Eq. 6 and update actor 7y and critic Q4
7: end for
8: for T} € [T1,...,Tu] do > Part 2: Supervised Fine-tuning
9: Initialize all networks with weights from pre-training phase and an empty replay buffer D.

10: fort =1...4,000do

11: Take random action a; ~ N(0, 1)

12: Select skill with grid sweep over unit interval [0, 1] every 100 steps
13: Sample minibatch from D and update actor 7y and critic Q4

14: end for

15: Fix skill z that achieved highest extrinsic reward during grid sweep.
16: fort =4,000... Npr do

17: Encode state s; < gy, (s¢) and sample action a; < ma(st, z) + € where € ~ N (0, 02)
18: Observe next state and reward s;1, 78" ~ P(:|s¢, at)

19: Add transition to replay buffer D < D U (s¢, at, 7§, s¢4+1)

20: Sample minibatch from D and update actor 7g and critic Q.

21: end for

22: Evaluate performance of RL agent on task 7}

23: end for

17



Deep Reinforcement Learning Workshop, NeurIPS 2021

F HYPER-PARAMETERS

Baseline hyperparameters are taken from URLB Laskin et al. (2021), which were selected by per-
forming a grid sweep over tasks and picking the best performing set of hyperparameters. Similarly,
we also performed a grid sweep for CIC to pick the best performing set of hyperparameters. All
hyperparameters are the same across all domains except for o which is set to a = 0.9 for Walker
and Quadruped domains. Note that o = 0.9 results in equal weighing of the CPC and particle en-
tropy terms since their absolute values are on different scales. For Jaco, we found v = 0.0 to work
best, which means that only the discriminator contributes to the intrinsic reward. We hypothesize
that particle entropy maximization is not important for Jaco arm because it is fixed and has no way
of falling over like Walker and Quadruped, such that meaningful behaviors can be learned with the
discriminator alone.

Table 3: Hyper-parameters used for CIC .

DDPG hyper-parameter Value
Replay buffer capacity 108
Action repeat 1 states-based and 2 for pixels-based
Seed frames 4000
n-step returns 3
Mini-batch size 1024 states-based and 256 for pixels-based
Seed frames 4000
Discount () 0.99
Optimizer Adam
Learning rate 1074
Agent update frequency 2
Critic target EMA rate (1) 0.01
Features dim. 1024 states-based and 50 for pixels-based
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
Number pre-training frames up to 2 x 108
Number fine-turning frames 1 x10°
CIC hyper-parameter Value
Skill dim 64 continuous
Prior Uniform [0,1]
« 0.9 Walker, Quadruped, 0.0 Jaco

Skill sampling frequency (steps)

State net arch. gy, (s)
Skill net arch. gy, (2)
Prediction net arch.

50
dim(0) — 1024 — 1024 — 64 ReLU MLP
64 — 1024 — 1024 — 64 ReLU MLP
64 — 1024 — 1024 — 64 ReLU MLP
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G RAW NUMERICAL RESULTS

We provide a list of raw numerical results for finetuning CIC and baselines in Table 4.

Pre-trainining for 2 x 10° environment steps

Domain Task DDPG CIC ICM Disagreement ~ RND APT ProtoRL | SMM DIAYN APS
Flip 538+£27 | 671 £34 | 417£16 346+13 474+39 | 544+14  456+12 | 450+24 319+£17  465+£20
Walker Run 325425 | 421 +£39 | 247421 208+15 406430 | 392426  306+13 | 426+26  158+8  134+16
Stand 899+23 | 947 £5 | 859423 746434 9115 | 94246 917427 | 924412  695+46  721+44
Walk 748447 | 895 £24 | 627+42 549437 704430 | 773+£70 792441 | 770+44  498+27 527479

Jump 236+48 | 684 £23 | 178+35 389+62 637+12 | 648+18 617444 | 96+7  660+43 463+51
Quadruped Run 157431 | 424 £29 | 110£18 337430 459+6 | 492414 373+33 | 966  433+£29 28117
Stand 392473 | 789 £45 | 312468 512489 766+43 | 872423 716456 | 12311 851443 542453
Walk 229457 | 673 £68 | 126+27 293437 536439 | 770447 412454 | 80+£6 576481  436+79

Reach bottom left | 72422 | 127 £15 | 111+£11 124+7 110£5 | 103+8 12948 45+7 3946 76+8

Jaco Reach bottom right | 117+18 | 172 £9 9749 115£10 117£7 100+6 13248 46+11 3845 88+11

Reach top left 116+22 | 156 £21 | 82+14 10612 99+6 73£12 12349 3643 19+4 68+6

Reach top right 94+18 | 191+£5 | 10311 139+7 100£6 | 90+£10 15947 47+6 28+6 76+10

Table 4: Performance of CIC and baselines on state-based URLB after first pre-training for 2 x 10°
steps and then finetuning with extrinsic rewards for 1 x 10°.

H LEARNING CURVES FOR DOWNSTREAM ADAPTATION PHASE

Finetuning Learning Curves
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Figure 7: Learning curves for finetuning pre-trained agents for 100k steps. Task performance is aggregated for
each domain, such that each curve represents the mean normalized scores over 4 x 10 = 40 seeds. The shaded
regions represent the standard error. CIC surpasses the performance of the prior state-of-the-art on Walker and
Jaco tasks while tying on Quadruped. CIC is the only algorithm that performs consistently well across all three
domains.
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I Toy EXAMPLE TO ILLUSTRATE THE NEED FOR LARGER SKILL SPACES

Map skills to distinct states Map skills to distinct states

I(7;2) = H(2) — H(z|r) I(7;2) = H(7) — H(r|2) [ et
| Q -«
H(T) oo sty 00
How can we get minimal conditional rrar SF

entropy? [

! L

H(z|t) =0 H(T|z)=0 RO

I
I

Figure 8: A gridworld example motivating the need for large skill spaces. In this environment, we place an
agent in a 10 x 10 gridworld and provide the agent access to four discrete skills. We show that the mutual
information objective can be maximized by mapping these four skills to the nearest neighboring states resulting
in low behavioral diversity and exploring only four of the hundred available states.

We illustrate the need for larger skill spaces with a gridworld example. Suppose we have an agent
in a 10 x 10 sized gridworld and that we have four discrete skills at our disposal. Now let 7 = s
and consider how we may achieve maximal I(7;z) in this setting. If we decompose I(7;2) =
H(z) — H(z|7) then we can achieve maximal 7 (z) by sampling the four skills uniformly z ~ p(z).
We can achieve H(z|7) = 0 by mapping each skill to a distinct neighboring state of the agent. Thus,
our mutual information is maximized but as a result the agent only explores four out of the hundrend
available states in the gridworld.

Now suppose we consider the second decomposition I(7;z) = H(7) — H(7|z). Since the agent is
maximizing #H(7) it is likely to visit a diverse set of states at first. However, as soon as it learns an
accurate discriminator we will have H(7|z) and again the skills can be mapped to neighboring states
to achieve minimal conditional entropy. As a result, the skill conditioned policy will only be able to
reach four out of the hundrend possible states in this gridworld. This argument is shown visually in
Fig. 8.

Skill spaces that are too large can also be an issue. Consider if we had 100 skills at our disposal in
the same gridworld. Then the agent could minimize the conditional entropy by mapping each skill
to a unique state which would result in the agent memorizing the environment by finding a one-to-
one mapping between states and skills. While this is a potential issue it has not been encountered
in practice yet since current competence-based methods support small skill spaces relative to the
observation space of the environment.
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J  QUALITATIVE ANALYSIS OF SKILLS

We provide two additional qualitative analyses of behaviors learned with the CIC algorithm. First,
we take a simple pointmass setting and set the skill dimension to 1 in order to ablate the skills learned
by the CIC agent in a simple setting. We sweep over different values of z and plot the behavioral
flow vector field (direction in which point mass moves) in Fig.9. We find that the pointmass learns
skills that produce continuous motion and that the direction of the motion changes as a function of
the skill value. Near the origin the pointmass learns skills that span all directions, while near the
edges the point mass learns to avoid wall collisions. Qualitatively, many behaviors are periodic.

Behavior flow for different skill values

Pointmass with 1 skill

Figure 9: Learning curves for finetuning pre-trained agents for 100k steps. Task performance is aggregated for
each domain, such that each curve represents the mean normalized scores over 4 x 10 = 40 seeds. The shaded
regions represent the standard error. CIC surpasses the performance of the prior state-of-the-art on Walker and
Jaco tasks while tying on Quadruped. CIC is the only algorithm that performs consistently well across all three
domains.

Qualitatively, we find that methods like DIAYN that only support low dimensional skill vectors and
do not explicitly incentivize diverse behaviors in their objective produce policies that map skills to
a small set of static behaviors. These behaviors shown in Fig. 10 are non-trivial but also have low
behavioral diversity and are not particularly useful for solving the downstream task. This observation
is consistent with Zahavy et al. (2021) where the authors found that DIAYN maps to static “yoga”
poses in DeepMind Control. In contrast, behaviors produce by CIC are dynamic resulting flipping,
jumping, and locomotive behaviors that can then be adapted to efficiently solve downstream tasks.
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EE

Figure 10: Qualitative visualization of DIAYN and CIC pre-training on the Walker and Quadruped domains
from URLB. Confirming findings in prior work Zahavy et al. (2021), we also find that DIAYN policies produce
static but non-trivial behaviors mapping to “yoga” poses while CIC produces diverse and dynamic behaviors
such as walking, flipping, and standing. Though it’s hard to see from these images, all the DIAYN skills get
stuck in frozen poses while the CIC skills are producing dynamic behavior with constant motion.

DIAYN skills produce
static “yoga” poses

CIC skills produce
dynamic behaviors

K OPENAI GYM VS. DEEPMIND CONTROL: HOW EARLY TERMINATION
LEAKS EXTRINSIC SIGNAL

Prior work on unsupervised skill discovery for continuous control (Eysenbach et al., 2019; Sharma
et al., 2020) was evaluated on OpenAl Gym (Brockman et al., 2016) and showed diverse exploration
on Gym environments. However, Gym environment episodes terminate early when the agent loses
balance, thereby leaking information about the extrinsic task (e.g. balancing or moving). However,
DeepMind Control (DMC) episodes have a fixed length of 1k steps. In DMC, exploration is therefore
harder since the agent needs to learn to balance without any extrinsic signal.

To evaluate whether the difference in the two environments has impact on competence-based explo-
ration, we run DIAYN on the hopper environments from both Gym and DMC. We compare to ICM,
a popular exploration baseline, and a Fixed baseline where the agent receives an intrinsic reward
of 1 for each timestep and no algorithms receive extrinsic rewards. We then measure the extrinsic
reward, which loosely corresponds to the diversity of behaviors learned. Our results in Fig. 11 show
that indeed DIAYN is able to learn diverse behaviors in Gym but not in DMC while ICM is able to
learn diverse behaviors in both environments. Interestingly, the Fixed baseline achieves the highest
reward on the Gym environment by learning to stand and balance. These results further motivate us
to evaluate on URLB which is built on top of DMC.

OpenAl Gym Hopper DeepMind Control Hopper
0.6
)’
2
W
Resets when agent 00 os 10 s 20 Resets are fixed
loses balance ’ " Environment Steps 1e6 at 1000 steps

Il DIAYN W Fixed | ICMI

Figure 11: To empirically demonstrate issues inherent to competence-based exploration methods, we run
DIAYN (Eysenbach et al., 2019) and compare it to ICM (Pathak et al., 2017) and a Fixed baseline where
the agent receives an intrinsic reward of 1.0 for each timestep and no extrinsic reward on both OpenAl Gym
(episode resets when agent loses balance) and DeepMind Control (DMC) (episode is fixed for 1k steps) Hopper
environments. Since Gym and DMC rewards are on different scales, we normalize rewards based on the
maximum reward achieved by any algorithm ( 1k for Gym, 3 for DMC). While DIAYN is able to achieve
higher extrinsic rewards than ICM on Gym, the Fixed intrinsic reward baseline performs best. However, on
DMC the Fixed and DIAYN agents achieve near-zero reward while ICM does not. This is consistent with
findings of prior work that DIAYN is able to learn diverse behaviors in Gym (Eysenbach et al., 2019) as well
as the observation that DIAYN performs poorly on DMC environments (Laskin et al., 2021)
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L  PSEUDOCODE FOR THE CONTRASTIVE DISCRIMINATOR IN CIC

CIC consists of two terms I(7;z) = H(7) — H(7|z) > H(7) + E[log ¢(7|z)] the entropy H(7) is
estimated with a particle estimator Singh et al. (2003); Liu & Abbeel (2021a) while the discrimina-
tor ¢(7|z) is estimated with a contrastive loss introduced in this work. Note that contrastive learning
in CIC is different than prior vision-based contrastive learning such as CURL Laskin et al. (2020b),
since we are not performing contrastive learning over augmented images but rather over state tran-
sitions and skills. The contrastive objective in CIC is used for unsupervised learning of behaviors

while in CURL it is used for unsupervised learning of visual features.

We provide pseudocode for discriminator below:

W

)

def discriminator_loss (states , next_states , skills , temp):
— states and skills are sampled from replay buffer
— skills were sampled from uniform dist [0,1] during agent rollout
— states / next_states: dim (B, D_state)
— skills: dim (B, D_skill)

999395

transitions = concat(states , next_states , dim=1)

query = skill_net(skills) # (B, D_hidden) —> (B, D_hidden)
key = transition_net(transitions) # (B, 2xD_state) —> (B, D_hidden)

query = normalize (query, dim=1)
key = normalize (key, dim=1)

logits = matmul(query, key.T) / temp # (B, B)

# positives are on diagonal, negatives are off diagonal
# for each skill , negatives are sampled from transitions
# while skills are fixed

loss = cross_entropy (logits)

return loss

Listing 1: CIC discriminator loss

We note that this is substantially different from prior contrastive learning works in RL such as

CURL (Laskin et al., 2020b), which perform contrastive learning over images.

def curl_loss (obs, W, temp):
— observation images are sampled from replay buffer
— obs: dim (B, C, H, W)
— W: projection matrix (D_hidden, D_hidden)

399995

query = aug(obs)
key = aug(obs)

query = cnn-net(query) # (B, D_hidden)
key = cnn_net(key) # (B, D_hidden)

logits = matmul(matmul(query, W), key.T) / temp # (B, B)
# positives are on diagonal
# negatives are off diagonal

loss = cross_entropy (logits)

return loss

Listing 2: CURL contrastive loss
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M  ON TIGHTER ESTIMATES OF MUTUAL INFORMATION

In this work we have presented CIC - a new competence-based algorithm that achieves leading
performance on URLB compared to prior unsupervised RL methods. We’ve shown that CIC results
in a tighter lower bound on mutual information than CPC by including the entropy term.

One might wonder whether estimating the exact mutual information (MI) or maximizing the tightest
lower bound thereof is really the goal for unsupervised RL. In unsupervised representation learn-
ing, state-of-the-art methods like CPC and SimCLR maximize the lower bound of MI based on
Noise Contrastive Estimation (NCE). However, as proven in CPC (Oord et al., 2018) and illustrated
in Poole et al. (2019) NCE is upper bounded by log IV, meaning that the bound is loose when the MI
is larger than log N. Nevertheless, these methods have been repeatedly shown to excel in practice.
In Tschannen et al. (2020) the authors show that the effectiveness of NCE results from the inductive
bias in both the choice of feature extractor architectures and the parameterization of the employed
MI estimators.

We have a similar belief for unsupervised RL - that with the right parameterization and inductive
bias, the MI objective will facilitate behavior learning in unsupervised RL. This is why CIC lower
bounds MI with (i) the particle based entropy estimator to ensure explicit exploration and (ii) a con-
trastive conditional entropy estimator to leverage the power of contrastive learning to discriminate
skills. As demonstrated in our experiments, CIC outperforms prior methods, showing the effective-
ness of optimizing an intrinsic reward with the CIC MI estimator.

N LIMITATIONS

While CIC achieves leading results on URLB, we would also like to address its limitations. First,
in this paper we only consider MDPs (and not partially observed MDPs) where the full state is
observable. We focus on MDPs because generating diverse behaviors in environments with large
state spaces has been the primary bottleneck for competence-based exploration. Combining CIC
with visual representation learning to scale this method to pixel-based inputs is a promising future
direction for research not considered in this work. Another limitation is that our adaptation strategy
to downstream tasks requires finetuning. Since we learn skills, it would be interesting to investigate
alternate ways of adapting that would enable zero-shot generalization such as learning generalized
reward functions during pre-training.
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