Quantization-Enhanced HNSW for Scalable
Approximate Vector Search

Dinesh Koilada
dineshkoilada @ gmail.com

Abstract—This paper presents a novel optimization strategy for
high-performance approximate nearest neighbor (ANN) search, a
critical requirement in modern vector search applications driven
by large language models and retrieval-augmented generation.
Addressing the inherent memory and latency challenges of the
popular Hierarchical Navigable Small World (HNSW) algorithm,
we introduce HNSW-LVQ (Locally Adaptive Vector Quantization
for HNSW). Our methodology incorporates a per-dimension
quantization scheme that efficiently compresses floating-point
vectors into integer representations, thereby significantly reduc-
ing memory overhead and accelerating distance computations.
Empirical validation on the SIFT 10K dataset demonstrates
that HNSW-LVQ achieves a remarkable 85% reduction in
query latency and substantial memory enhancement with only
a marginal 2% decrease in recall. This research validates the
efficacy of integrating quantization techniques into graph-based
indexing, offering a pragmatic optimization pathway for the
development of industrial-grade vector databases.

Index Terms—Approximate Nearest Neighbor (ANN), Hier-
archical Navigable Small World (HNSW), Vector Quantization,
Locally Adaptive Quantization (LVQ), Vector Search, Large Lan-
guage Models (LLMs), Retrieval-Augmented Generation (RAG),
Scalable Indexing

I. INTRODUCTION

The rapid growth of high-dimensional data across applica-
tions such as large language models (LLMs), recommendation
systems, and bioinformatics has made vector search a critical
technology in modern information retrieval. At the heart of
many retrieval systems lies the Approximate Nearest Neighbor
(ANN) search, which enables fast similarity searches in large-
scale vector spaces [[1]. Unlike traditional exact methods, ANN
provides significant speedups by tolerating slight reductions in
recall, making it indispensable in production environments.

In particular, the emergence of Retrieval-Augmented Gen-
eration (RAG) frameworks has highlighted the necessity for
scalable and low-latency vector search. RAG enables LLMs to
dynamically pull contextually relevant information from large
external databases, bridging static model knowledge with real-
time user queries [2]. Systems like ChatGPT and enterprise
search solutions increasingly rely on these mechanisms to
ensure contextual fidelity and accuracy in responses.

One of the most widely adopted ANN techniques is the Hi-
erarchical Navigable Small World (HNSW) graph algorithm.
HNSW structures data as a multi-layered graph that supports
logarithmic-time search via hierarchical traversal, making it a
state-of-the-art solution for ANN [3]]. Each layer in the graph
facilitates coarse-to-fine navigation by connecting a query
vector to approximate nearest neighbors. HNSW’s strong

performance is evident in benchmarks like BigANN, where
it achieves recall rates exceeding 95% at sub-millisecond
latencies [4].

However, HNSW is not without its limitations. One major
drawback is its high memory footprint, which scales linearly
with dataset size. For billion-scale datasets, the memory
consumption can exceed 1 TB, which presents deployment
challenges in cloud and edge environments [5]]. Another chal-
lenge is the computational cost of distance calculations. In
CPU-bound systems, computing Euclidean distances between
high-dimensional vectors becomes a bottleneck, consuming a
significant portion of query latency.

To mitigate these issues, quantization techniques have been
explored as a means to compress vector representations and re-
duce computational overhead. Product Quantization (PQ), for
instance, partitions vectors into subspaces and uses codebooks
to approximate distances during search [6]. PQ has proven
effective in memory-constrained scenarios, especially when
paired with inverted indexing schemes like IVE. However,
PQ’s global nature can lead to accuracy degradation when data
distributions vary significantly across dimensions.

This paper proposes a novel enhancement to
HNSW—Locally Adaptive Vector Quantization (LVQ)—that
integrates dimension-wise quantization into the HNSW
pipeline. Unlike PQ, which applies uniform compression
across subspaces, LVQ customizes quantization for each
dimension based on local statistics such as min-max scaling.
This approach preserves local data distributions, minimizes
precision loss, and facilitates efficient integer-based distance
computations.

The motivation behind LVQ stems from the observation that
quantization errors in global schemes often lead to “quantiza-
tion cliffs,” especially in cases where data values are skewed or
non-uniform [7]]. By tailoring the quantization bounds for each
dimension, LVQ achieves finer granularity and better recall
performance, particularly in heterogeneous datasets. Moreover,
replacing floating-point operations with integer arithmetic im-
proves cache efficiency and reduces latency.

LVQ also contributes to substantial memory savings. By
converting 32-bit floating point vectors to 8-bit integers, LVQ
reduces the memory footprint by 75% per vector. When
integrated into HNSW, the resulting framework—referred to as
HNSW-LVQ—retains HNSW’s hierarchical search efficiency
while achieving lower memory usage and faster distance
computation. These improvements are critical for deploying
vector databases in real-time systems and embedded devices.

Experimental evaluation using the SIFT 10K dataset demon-
strates that HNSW-LVQ delivers an 85% reduction in query
latency, with only a 2% decrease in recall. This highlights
the practical feasibility of integrating quantization into graph-
based ANN search without significantly compromising accu-
racy. The proposed framework thus provides a scalable and
efficient solution for billion-scale vector search challenges.

The rest of this paper is organized as follows: Section 2
provides an overview of related work and foundational ANN
techniques. Section 3 details the HNSW-LVQ design and
implementation. Section 4 presents empirical results. Section
5 discusses limitations and future directions, while Section 6
concludes the paper.

A. Author Contributions

The main contributions of this work are summarized as
follows:

¢ We introduce Locally Adaptive Vector Quantization
(LVQ) within the HNSW framework, enabling per-
dimension quantization for improved efficiency.

e« We develop and implement the complete HNSW-LVQ
architecture in C++, demonstrating compatibility with
existing HNSW libraries.

e We provide an extensive empirical evaluation showing
85% query latency reduction and 75% memory savings,
with only a marginal 2% recall loss.

o We discuss limitations and propose clear future directions
to guide further research.

II. RELATED WORK

Approximate Nearest Neighbor (ANN) search has become
a cornerstone of scalable information retrieval, particularly in
applications involving high-dimensional data such as recom-
mendation engines, semantic search, and retrieval-augmented
generation. A variety of indexing techniques have emerged,
each offering different trade-offs among recall, latency, and
memory footprint. This section reviews several important
approaches that form the backdrop for our work on HNSW-
LVQ.

One of the earliest and still widely used methods in ANN is
the Inverted File (IVF) index, which originated from classical
text retrieval systems. IVF clusters the dataset using algorithms
such as K-Means and stores each cluster in an inverted list.
At query time, only a small number of clusters are probed
(via nearest centroids), significantly reducing the search space
[1]]. Despite its efficiency, IVF’s recall is highly sensitive to
the clustering quality and suffers when query vectors lie near
cluster boundaries.

Product Quantization (PQ) further compresses high-
dimensional vectors by splitting them into subvectors and
quantizing each subspace independently using learned code-
books. PQ dramatically reduces memory usage by representing
vectors as compact codeword indices, and it allows for fast
distance computation through precomputed lookup tables [6].
However, due to its global quantization design, PQ often
ignores local distribution patterns in the data, which can result

in noticeable loss in accuracy, especially when dealing with
heterogeneous datasets.

Combining IVF with PQ—commonly implemented as IVF-
PQ—yields a hybrid solution that leverages the fast filtering
of IVF and the compression benefits of PQ. This method,
adopted by libraries like Faiss, can support billion-scale ANN
on GPUs with acceptable recall [If]. Yet, the quantization
errors introduced by PQ still limit its applicability in use cases
requiring high accuracy, such as semantic document retrieval
or facial recognition.

In contrast, graph-based methods like HNSW (Hierarchical
Navigable Small World) aim to maintain high recall while
offering logarithmic search complexity. HNSW constructs a
multi-layer graph where each level forms a “small world”
network. Search starts at the highest layer and greedily de-
scends to lower layers, refining candidate vectors at each level
[3]. This architecture enables HNSW to achieve near-exact
recall at sublinear time, outperforming IVF-PQ in accuracy
benchmarks.

However, the strengths of HNSW come at a cost. Since
the raw vectors and adjacency lists for the graph must re-
side in memory, HNSW’s memory usage scales poorly with
dataset size. On billion-scale datasets, HNSW indices can
occupy terabytes of RAM, presenting deployment challenges
for cost-sensitive environments or edge devices [5]]. Addition-
ally, distance computation in floating-point arithmetic forms a
significant portion of the query time, especially in CPU-bound
systems.

Efforts to improve memory efficiency have led to innova-
tions such as DiskANN, which offloads graph data to disk
while maintaining frequently accessed components in RAM.
Although this reduces memory usage, it often leads to in-
creased latency, limiting applicability in real-time systems [4].
Neural Product Quantization (NPQ) and other learning-based
quantization schemes have also been proposed to adaptively
learn codebooks that better preserve semantic structure [5],
though they often require offline training and are difficult to
integrate into online graph construction pipelines.

Another body of work explores residual quantization tech-
niques. These methods iteratively quantize the residuals left
after the initial approximation, thereby reducing quantization
error. While more accurate, residual quantization increases
memory and computational overhead, often negating the ben-
efits in constrained systems [7].

Given these limitations, recent research has explored more
localized quantization schemes that adapt per-dimension rather
than per-subspace. The idea is to apply min-max normalization
individually across each dimension and convert values to
discrete integers. This method has shown promise in reduc-
ing memory usage while maintaining recall, especially when
integrated with graph-based ANN structures.

Our proposed HNSW-LVQ framework builds upon these
developments by incorporating locally adaptive quantization
into the HNSW search pipeline. Unlike IVF-PQ, which relies
on global compression, or PQ-only strategies that disrupt
neighborhood relationships, LVQ maintains structural integrity

of the graph and accelerates computation through integer arith-
metic. The remainder of this paper will detail this integration
and provide empirical validation of its advantages.

III. METHODOLOGY: HNSW-LVQ ARCHITECTURE

A. Overview

The Hierarchical Navigable Small World (HNSW) algo-
rithm is a graph-based method that achieves high recall and
sublinear search time by organizing data into a multi-layered
network. Each layer allows efficient long-range and short-
range navigation to approximate nearest neighbors [3]. How-
ever, its reliance on floating-point vector storage and distance
computation creates challenges in terms of memory and speed.

To address these issues, we propose HNSW-LVQ: a hybrid
architecture that integrates Locally Adaptive Vector Quantiza-
tion (LVQ) into the HNSW pipeline. This design compresses
vector dimensions using per-dimension min-max scaling and
integer mapping, significantly reducing storage requirements
and enabling efficient integer-based distance calculations.

B. Traditional HNSW Graph

HNSW organizes data into a set of hierarchical layers,
where each data point is probabilistically assigned to one or
more layers. The higher the layer, the fewer nodes it contains,
acting as entry points for coarse search. At query time, the
algorithm starts from the topmost layer and uses a greedy
algorithm to traverse toward the closest match.

’

.

R

——r
e

Fig. 1. Traditional HNSW: Multi-layer skip-list structure with probabilistic
connectivity.

This hierarchy enables fast approximate search, but the
dense vector representation (typically float32) leads to memory
bloat and computational overhead.

C. Locally Adaptive Vector Quantization (LVQ)

LVQ performs quantization at the dimension level. For each
dimension ¢, the algorithm computes the minimum and maxi-
mum values (MIN;, MAX;) over the dataset and partitions the
range into 255 buckets. A float value x is quantized as:

| —MIN, MAX; — MIN;
%= A, - 255

This results in an 8-bit integer representation, reducing storage
and enabling fast ALU-based operations.

+ O.SJ s A

D. Enhanced HNSW-LVQ Flow

HNSW-LVQ modifies the graph insertion and search to
operate on compressed integer vectors. The original float
vectors are only used to derive quantization parameters and
are discarded afterward. Distance calculations use precom-
puted A; and MIN; values to decompress during querying
if necessary.

Raw Vectors |~ Per-Dim Quantization (LVQ) J Int8 Vectors

Query Vector

—— HNSW Index Insertion — Integer Distance Search

Fig. 2. HNSW-LVQ Architecture: Incorporating per-dimension quantization
into HNSW.

This hybrid pipeline preserves the navigability of HNSW
while reducing its reliance on floating-point operations. The
result is a scalable and memory-efficient ANN framework
suitable for large-scale vector databases and real-time systems.

E. Advantages and Design Rationale

Quantizing individual dimensions rather than entire sub-
spaces reduces quantization artifacts and better retains vector
geometry. Integer-based operations reduce CPU load by up to
50% in vector distance calculations, and memory usage drops
by 75%, enabling deployment in edge environments [7], [8].

Additionally, HNSW-LVQ is compatible with existing
HNSW construction parameters (e.g., M, efConstruction)
and can be implemented without major architectural overhaul.
Our C++ implementation builds on open-source HNSW Ili-
braries and demonstrates compatibility with standard bench-
marking datasets.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

To evaluate the performance of the proposed HNSW-LVQ
framework, we conducted experiments using the SIFT10K
dataset, a standard benchmark in ANN evaluation. The dataset
consists of 10,000 base vectors and 100 query vectors, each
with 128 dimensions. We compare the proposed method with
the baseline HNSW implementation using float32 vectors. The
primary metrics include recall@1 (top-1 accuracy) and average
query latency.

All experiments were conducted on a Linux-based system
running Ubuntu 23.04, equipped with a 3.2 GHz AMD Ryzen

7 5800H CPU and 16 GB RAM. The codebase was im-
plemented in C++ and compiled using Clang 18. No GPU
acceleration was used to simulate edge-compatible CPU-only
deployment.

B. Quantization and Search Performance

Table summarizes the comparison between standard
HNSW and our quantized variant HNSW-LVQ. While HNSW
achieves perfect recall (100%), HNSW-LVQ delivers a com-
parable 98% recall while offering a substantial reduction in
query latency.

TABLE I
PERFORMANCE COMPARISON: HNSW vs. HNSW-LVQ

Method Recall@l Avg. Query Latency (s)
HNSW (Float32) 100% 0.844
HNSW-LVQ (Int8) 98% 0.124

The 85% reduction in latency demonstrates that quantization
of vectors to 8-bit integers can drastically improve inference
time without significantly compromising accuracy. The quan-
tized version also benefits from faster distance computation
using integer arithmetic, which avoids costly floating-point
operations on CPUs.

C. Detailed Latency Evaluation

To ensure consistency, we repeated the experiment four
times with independent queries. The results are shown in
Table [

TABLE 11
DETAILED LATENCY MEASUREMENTS (IN SECONDS)
Test # HNSW | HNSW-LVQ
Test 1 0.846 0.127
Test 2 0.850 0.120
Test 3 0.832 0.121
Test 4 0.848 0.128
Average 0.844 0.124

These consistent latency improvements validate the practi-
cal impact of LVQ-based quantization. Notably, the variance
across test runs remained low, indicating the stability of the
approach in real-world query loads.

D. Impact of Quantization on Recall

Although quantization inherently introduces approximation,
the local adaptation strategy used in LVQ helps preserve
vector semantics. By scaling values per-dimension rather than
uniformly, LVQ avoids the quantization cliffs common in
global techniques like Product Quantization (PQ) [5]. As a
result, the recall degradation remains marginal (2%), which is
acceptable in many production scenarios where latency is a
more critical metric.

E. Discussion

The results suggest that HNSW-LVQ presents a strong
trade-off between accuracy and speed. In latency-sensitive ap-
plications such as search engines, chatbots, and recommender
systems, a reduction in query time from 0.84s to 0.12s can
significantly enhance user experience [|1]. Moreover, the use
of int8 storage enables compression rates of up to 4x compared
to float32, reducing RAM usage for large-scale deployments.

Overall, the experiment validates that integrating quanti-
zation into HNSW is a viable pathway to industrial-scale
optimization. Future sections explore limitations and directions
for further scaling.

F. Key Contributions of Results

The experiments demonstrate that the proposed HNSW-
LVQ framework achieves significant practical benefits com-
pared to baseline HNSW. In particular:

o 85% latency reduction: Query latency decreased from
0.844s to 0.124s, showing real impact in latency-sensitive
applications.

o Substantial memory savings: Conversion of 32-bit float
vectors to 8-bit integer format reduces memory usage by
75%.

o Minimal accuracy loss: Recall decreased by only 2%,
which is acceptable for production-grade search systems.

These results highlight that HNSW-LVQ is not only theoret-
ically sound but also practically impactful for scalable ANN
search.

V. LIMITATIONS AND FUTURE WORK

While the proposed HNSW-LVQ framework demonstrates
promising improvements in efficiency and scalability, it is not
without limitations.

First, our experiments were conducted on the relatively
small SIFT10K dataset. Although this benchmark is widely
used for quick validation, it does not fully represent the
challenges posed by billion-scale vector databases. Larger
datasets such as SIFTIM or DeeplB would provide more
comprehensive insights into scalability, especially with respect
to memory overhead and graph construction time.

Second, our quantization process relies on precomputed
min-max values per dimension. In dynamic or streaming
environments where new data constantly arrives, the quan-
tization bounds may become outdated, potentially degrading
performance over time. This would necessitate re-quantization
or adaptive update mechanisms, which remain unexplored in
the current implementation.

Third, while LVQ reduces floating-point dependency during
query time, it does require occasional decompression steps to
approximate real-value distances. This adds a small but non-
negligible computational overhead, particularly when accurate
rankings are essential in top-K retrieval tasks.

Fourth, the current implementation does not support hybrid
GPU-CPU deployment. Given the growing trend of utilizing
GPUs for vector search acceleration, future work may explore

combining LVQ with GPU-based parallelism to further opti-
mize throughput.

Additionally, our method assumes that vector dimensions
are statistically independent. In real-world data, strong cor-
relations may exist, and more sophisticated techniques such
as PCA or learned transformations could be explored to
decorrelate the space prior to quantization [8].

Future work will focus on:

o Scaling evaluations to billion-scale benchmarks.

o Designing incremental LVQ schemes for real-time and
streaming scenarios.

o Integrating LVQ with residual quantization for higher
precision.

« Investigating adaptive layer assignment in HNSW based
on quantization error.

These directions aim to generalize HNSW-LVQ beyond
static offline systems and bring it closer to dynamic, industrial-
scale deployments.

In summary, the future contribution of this work lies in
extending HNSW-LVQ beyond small benchmark datasets and
demonstrating its applicability at industrial scale. The outlined
directions—billion-scale benchmarks, adaptive quantization
for streaming data, and GPU-accelerated search—are expected
to advance the state of scalable ANN systems significantly.

VI. CONCLUSION

In this paper, we introduced HNSW-LVQ, a novel integra-
tion of locally adaptive vector quantization with the Hierar-
chical Navigable Small World (HNSW) algorithm for scalable
and efficient approximate nearest neighbor search.

Our method quantizes each vector dimension independently
using min-max scaling, transforming 32-bit floating-point data
into 8-bit integer representations. This quantization not only
reduces the memory footprint by 75% but also enables faster
integer-based computations during graph traversal.

Empirical evaluation on the SIFT10K dataset revealed that
HNSW-LVQ achieves a significant 85% reduction in query
latency while maintaining high recall (98%). These results
demonstrate that fine-grained quantization can enhance graph-
based indexing without sacrificing accuracy.

Unlike traditional PQ-based approaches that suffer from
uniform compression errors, LVQ adapts to local distribution
statistics, preserving vector geometry more effectively. Ad-
ditionally, the proposed framework remains compatible with
standard HNSW parameters and does not require architectural
overhaul.

While limitations remain—especially in handling dynamic
data and large-scale graphs—our work lays the groundwork for
future research in hybrid vector search systems. HNSW-LVQ
offers a practical solution for industries seeking fast, memory-
efficient, and accurate vector search capabilities, particularly
in resource-constrained or latency-sensitive environments.

We believe this approach opens new opportunities for bridg-
ing efficient quantization with high-performance graph search,

and we encourage further exploration into combining HNSW-
LVQ with GPU inference, adaptive indexing, and learning-
based quantization strategies.

REFERENCES

[1] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with
gpus,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535-547, 2019.

[2] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktéischel et al., ‘“Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
neural information processing systems, vol. 33, pp. 9459-9474, 2020.

[3] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs,”
IEEE transactions on pattern analysis and machine intelligence, vol. 42,
no. 4, pp. 824-836, 2018.

[4] S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy,
and R. Kadekodi, “Diskann: Fast accurate billion-point nearest neighbor
search on a single node,” Advances in neural information processing
Systems, vol. 32, 2019.

[5] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and S. Kumar,
“Accelerating large-scale inference with anisotropic vector quantization,”
in International Conference on Machine Learning. PMLR, 2020, pp.
3887-3896.

[6] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 1, pp. 117-128, 2011.

[7]1 C. Aguerrebere, 1. Bhati, M. Hildebrand, M. Tepper, and T. Willke,
“Similarity search in the blink of an eye with compressed indices,” arXiv
preprint arXiv:2304.04759, 2023.

[8] S. Yoon, J. Heo, J. Kim, and J. Kim, “Integer quantization for efficient
vector similarity search,” Neurocomputing, vol. 455, pp. 270-279, 2021.

	Introduction
	Author Contributions

	Related Work
	Methodology: HNSW-LVQ Architecture
	Overview
	Traditional HNSW Graph
	Locally Adaptive Vector Quantization (LVQ)
	Enhanced HNSW-LVQ Flow
	Advantages and Design Rationale

	Experimental Results and Analysis
	Experimental Setup
	Quantization and Search Performance
	Detailed Latency Evaluation
	Impact of Quantization on Recall
	Discussion
	Key Contributions of Results

	Limitations and Future Work
	Conclusion
	References

