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ABSTRACT

Offline reinforcement learning (RL) has gained traction as a powerful paradigm
for learning control policies from pre-collected data, eliminating the need for
costly or risky online interactions. While many open-source libraries offer ro-
bust implementations of offline RL algorithms, they all rely on datasets composed
of experience tuples consisting of state, action, next state, and reward. Manag-
ing, curating, and distributing such datasets requires suitable infrastructure. Al-
though static datasets exist for established benchmark problems, no standardized
or scalable solution supports developing and sharing datasets for novel or user-
defined benchmarks. To address this gap, we introduce PyTupli, a Python-based
tool to streamline the creation, storage, and dissemination of benchmark envi-
ronments and their corresponding tuple datasets. PyTupli includes a lightweight
client library with defined interfaces for uploading and retrieving benchmarks and
data. It supports fine-grained filtering at both the episode and tuple level, allowing
researchers to curate high-quality, task-specific datasets. A containerized server
component enables production-ready deployment with authentication, access con-
trol, and automated certificate provisioning for secure use. By addressing key bar-
riers in dataset infrastructure, PyTupli facilitates more collaborative, reproducible,
and scalable offline RL research.

1 INTRODUCTION

Reinforcement learning (RL) algorithms provide effective solution approaches for decision-making
under uncertainty, but require interaction with the real system or a simulation model that can be
costly. As the success of machine learning commonly relies on the availability of large amounts
of data, offline RL has emerged as a paradigm that decouples RL from the necessity of online
interactions (Lange et al.,[2012). An offline RL agent is trained on a dataset of tuples (state, action,
next state, reward) that can, for example, be obtained from historical data. Consequently, publicly
available tuple datasets for benchmark problems such as D4RL (Fu et al., [2020) or Minari (Younis
et al., 2024)) are indispensable in the process of developing more powerful offline RL algorithms
(Kumar et al.| |2020; Kostrikov et al., [2021)). These static dataset collections span several domains
such as robotics and games (Fu et al., 2020; [Younis et al., [2024} [Formanek et al., 2023} |Gulcehre
et al., [2020), power system control (Qin et al., |2022), and autonomous driving (Liu et al.l 2023;
Lee et al., 2024)), and are often handcrafted to address specific challenges following the question:
”How can we improve existing offline RL algorithms?”. However, a question that is often much
more relevant for RL practitioners is: ”"Which offline RL algorithm is the best one for solving my
problem?”.

Any researcher wanting to answer this question has to create a tuple dataset in a format accepted
by one of the standard offline RL libraries such as d3rlpy (Seno & Imai, 2022)) or CORL (Tarasov
et al.| 2022). Furthermore, if they want to train on different devices or share the dataset, for ex-
ample, in the context of an industry project, they have to set up some infrastructure for this. If the
offline RL controllers should be tested or finetuned with online interactions, this includes sharing
the benchmark problem itself to provide access to the simulation model. Streamlining this process
would greatly facilitate collaboration in both research and industry contexts.
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To address this gap, we present PyTupli, a Python tool for creating and sharing tuple datasets for
custom environments that follow the gymnasium framework (Towers et al., |2024). Through con-
tainerization, PyTupli enables users to host their own database with a concise API for uploading,
downloading, and sharing benchmarks and the corresponding tuple datasets. Benchmarks are stored
as JSON serialized objects with the possibility of storing related artifacts, such as time series data, al-
gorithm hyperparameter configurations, or trained policies, as separate objects that multiple bench-
marks can reference. As it is aimed at scalable collaboration, PyTupli also features user access
management. Since the success of offline RL often depends on the quality of the dataset, we of-
fer extensive filtering capabilities. While established datasets only allow filtering episodes (Younis
et al.,[2024;|Liu et al.| 2023)), we also enable filtering for tuples, which can, for example, help balance
a dataset with sparse rewards.

In summary, our contributions are

* a wrapper for custom gymnasium environments that enables recording tuples,

* anovel approach for serializing such custom gymnasium environments, including the pos-
sibility to store related artifacts,

* a production-ready container stack with an API server for uploading, downloading, and
sharing serialized benchmark problems and associated tuple datasets, and

* advanced filtering capabilities for curating custom datasets for offline RL from existing
tuples.

The remainder of this work is structured as follows. In Sec. [2] we provide a motivating example
along with the functional requirements for our tool. Sec. [3]then introduces the client and server side
of the framework. After detailing how the motivating example could be realized with PyTupli in
Sec. @] we shortly discuss the limitations and conclude in Sec. [3]

2 PROBLEM STATEMENT

2.1 A MOTIVATING EXAMPLE

We use a motivating example to illustrate the gap in existing infrastructure before formulating re-
quirements for a potential solution. Let us consider a research collaboration between University
A and Company B. Company B sells energy management systems (EMS) using rule-based algo-
rithms. Many of their customers are private households with a similar system setup: a photovoltaic
generator, a battery energy storage system, and an air-to-air heat pump. With the advent of dynamic
electricity tariffs for private households, B wants to investigate the potential of offline RL-based
controllers for their EMS and, therefore, starts a joint research project with the RL expert team at
University A. The idea is to use historical data provided by B to train a baseline agent with of-
fline RL, which can then be finetuned for each individual household using a small number of online
interactions.

The project partners A and B need some infrastructure for exchanging the definition of the con-
trol task (the gymnasium environment), related time series data (e.g., load and generation profiles),
existing (state, action, next state, reward) tuples from historic data, and newly generated interac-
tions from the continuous operation of the EMS. Multiple similar benchmark problems have to be
generated for the individual households, and the relations between tuples and benchmarks must be
preserved. While version control tools such as GitHub provide some of the desired functionalities,
they are not designed for large datasets and do not offer support for tracking complex relationships
within datasets nor for efficient querying and filtering. Databases are a better fit, but require some
experience for designing efficient workflows.

One can imagine several similar use cases where an offline-RL-centered collaboration would benefit
from a tool that automates the process of setting up the required infrastructure for creating, sharing
and curating datasets. Furthermore, even individual projects would benefit from the data manage-
ment functionalities of the described infrastructure. Next, we provide a more generalized version of
the requirements for such a tool.
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Figure 1: Overview of the core functionalities of PyTupli.

2.2 FUNCTIONAL REQUIREMENTS

R1 Benchmark and Artifact Management Users need to be able to store any control task rep-
resentation that is given in the form of a gymnasium environment. An environment may have cus-
tomizable parameters that lead to small variations in the task definition. We refer to a fully specified
environment as a benchmark problem that is unique and can be used to compare the performance
of controllers. Benchmark problems may rely on additional data, for example, exogenous inputs
used for simulation or pre-trained models. We define such units of data with unknown structure as
artifacts which may be referenced by multiple benchmarks. To avoid duplicates, artifacts should be
stored separately and only the link to them should be stored in the benchmark problem.

R2 Data Management The tool must support ingesting, storing, and querying structured datasets
(RL tuples), including their relation to existing benchmark problems and any relevant metadata.

R3 Multi-User Collaboration and Access Control Collaboration among multiple users or or-
ganizations has to be supported. Based on their role, users can store, retrieve, delete, and publish
objects.

R4 Integration with Existing Offline RL Infrastructure An interface to the gymnasium frame-
work should enable users to record interactions with gymnasium environments as RL tuples. Fur-
thermore, retrieved tuple datasets have to be made available in a form that can easily be converted
into the dataset formats used by existing offline RL libraries such as d3rlpy (Seno & Imail, [2022).

3 FRAMEWORK

PyTupli consists of a client-side library that simplifies the workflow in collaborative offline RL
projects and a server component that realizes the required infrastructure. Fig. [I] illustrates the
core capabilities. After defining a control task using a gymnasium environment, users can invoke
PyTupli to convert this task into a unique benchmark problem that can be stored as a serialized
object. To store a dataset of RL tuples associated with this benchmark, the user has two options: He
can upload a static dataset or record interactions with the environment itself. The benchmark and
corresponding dataset can be shared with groups of users or made public, in which case they can
be accessed without authentication. Users with appropriate rights can then download and filter this
data and use it as the input for an offline RL algorithm. In the following, we provide a more detailed
overview of how these functionalities are realized in PyTupli.

3.1 CLIENT

The client side of PyTupli has three core classes: TupliStorage, TupliEnvWrapper, and
TupliDataset. Fig. []illustrates the relations between them. The TupliEnvWrapper en-
ables users to create benchmarks from custom gymnasium environments and is described in more
detail in Sec. How to create, retrieve, and curate datasets is explained in Sec. For
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Figure 2: Simplified UML class diagram of the client-side architecture. Some relations are omitted
for clarity but can be derived from the given types.

both the TupliEnviWrapper and the TupliDataset, the TupliStorage realizes the inter-
face to the backend. We differentiate between two subclasses of the TupliStorage that corre-
spond to two different storage types: The FileStorage, which stores objects locally, and the
TupliAPIClient, which uses MongoDB (MongoDB Inc.,[2009) as the storage backend. Both
options provide functionalities for storing, retrieving, publishing, listing, and deleting benchmarks
and artifacts. For episodes, retrieval is handled via the TupliDataset. The TupliAPIClient
additionally specifies methods for user management, which can also be accessed using a command-
line interface (CLI) as described in Sec.[3.1.4] When using the API, users are required to provide
authentication for most endpoints, as further explained in Sec. The TupliAPIClient ab-
stracts the required credential management and stores obtained tokens after login securely on the
client machine.

3.1.1 BENCHMARK CREATION AND STORAGE

PyTupli stores benchmarks as JSON serialized objects with a unique identifier and associated meta-
data including the benchmark name and a description. The TupliEnvWrapper, which inherits
from the Wrapper class provided by the gymnasium package, serves as a customizable user inter-
face that realizes these functionalities. The store () function first serializes the environment, then
computes an SHA-256 hash based on the resulting string, and sends a BenchmarkQuery con-
taining the hash, the serialized environment, and user-defined metadata to the storage backend. Any
change in the gymnasium environment will result in a different hash and thus a new benchmark. The
serialize () function invokes the jsonpickle package to encode the environment. This may
not work for all custom environments, but users can overwrite this method to implement their own
encoding. As part of the serialization, artifacts such as time series data or pre-trained models can be
stored as byte data. The conversion has to be implemented by the user within the _serialize ()
method. It has to invoke the storage backend to store the serialized artifact and its metadata. The
backend returns a hash representing the artifact, which is then embedded in the environment in place
of the original artifact to enable retrieval during deserialization.
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When uploading a benchmark, the backend returns the benchmark id, which is stored internally
and can be used to publish () or delete () the benchmark. Loading the benchmark is a class
method of TupliEnviWrapper that retrieves the serialized benchmark from the storage using its
id and then deserializes it. For any user-defined custom serialization, the corresponding decoding
steps have to be specified by overwriting the deserialize () or .deserialize () methods.

3.1.2 DATASET CREATION AND RETRIEVAL

A core objective of PyTupli is storing RL tuples in a structured way and retrieving them as datasets
used for offline RL training based on user-defined criteria. To this end, we define two data
types, RLTuple and Episode. An RLTuple represents an interaction of a control policy with
the environment and is composed of state, action, reward, info, terminated,
and timeout. Multiple sequential interactions form an episode, which is ended if either the
terminated or timeout variable is true. An instance of the Episode class always has a
benchmark_id and tuples, and can contain additional metadata, e.g., whether the episode
was generated by an expert policy. Metadata has to be defined by the user and can be used for
filtering as described below.

PyTupli supports continuous, incremental data collection for existing benchmarks through two com-
plementary approaches. Static data, e.g., from historical measurements, can be uploaded at any time
by using the record () functionality of the chosen TupliStorage. This requires the user to
provide the data in the pre-defined types for RLTuple and Episode. Users can repeatedly call
this functionality to incrementally expand datasets as new data becomes available. As a second op-
tion, the TupliEnvWrapper enables ongoing data collection by recording all interactions with a
gymnasium environment as tuples associated with the respective benchmark. Within the step ()
functionality of the TupliEnvWrapper, each interaction is saved in a buffer. When an episode
ends, it is sent to the storage automatically, and the buffer is cleared. This allows for seamless ac-
cumulation of data over multiple training sessions or experimental runs. Recording episodes can be
switched on and off for user convenience.

The primary interface for retrieving tuples is the TupliDataset class. When creat-
ing an instance of this class, filters can be applied at three different levels using the
with benchmark filter (), with episode_filter (), or with tuple_filter()
functionalities. A user could, for example, filter for benchmarks with the same task definition but
with varying difficulty by passing the respective benchmark filter. An example for an episode filter
is the level of expertise of the behavior policy, which can be specified in the episode metadata. The
possibility of filtering tuples could be used to increase the percentage of tuples with high rewards.

When calling the 1oad () function of a dataset, the filters are applied in the order benchmark —
episodes — tuples. If the dataset is accessed via the API, benchmark and episode filters are executed
on the server, while tuple filters are applied locally on the client, using a user-defined callable for
maximum flexibility. Sec. details how to construct complex filters from pre-defined types.
The TupliDataset additionally provides the option to filter a fixed number of episodes using
sample_episodes ().

After curating the dataset, it has to be converted into a format supported by the respective offline
RL algorithm. Since this varies depending on the library, the TupliDataset offers conversions
to Numpy arrays and PyTorch and TensorFlow tensors. Furthermore, we provide a converter to the
format of the DARL (Fu et al.| [2020) dataset, which is used in many popular libraries such as CORL
(Tarasov et al.l [2022)) or OfflineRL-Kit (Sunl 2023)).

3.1.3 FILTERING

To define complex dataset queries, PyTupli offers a set of filters implemented as subclasses of
BaseFilter. Each filter has a type, key, and value field. Atomic filters, suchas FilterEQ
(equals) or FilterGT (greater than) apply a simple condition to a key in either the benchmark
or episode metadata. These can be composed into logical expressions using FilterAND and
FilterOR, which take a list of filters as input. For convenience, PyTupli overloads the & and |
operators to support the intuitive construction of nested filters using standard Python syntax.
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Figure 3: Role-based access management in PyTupli enables fine-grained control for complex col-
laborative scenarios.

3.1.4 COMMAND LINE INTERFACE

To enhance user experience and simplify interaction with stored data, PyTupli includes a lightweight
CLI built with the Fire library (David Bieber and Google Inc., 2017). The CLI allows users to di-
rectly interact with the backend, such as listing benchmarks, episodes, or artifacts, without writing
Python code. It wraps the TupliAPIClient, exposing its functionality through intuitive shell
commands. Results are displayed in neatly formatted tables, with support for structured output from
both Pydantic models and plain dictionaries. This makes the CLI especially convenient for user ad-
ministration, quick inspection of stored objects, and rapid iteration in development or collaborative
settings.

3.2 SERVER

The PyTupli server exposes a REST API that allows clients to interact with stored data through a
number of endpoints. The endpoints are grouped around the types of objects they manipulate, i.e.,
benchmarks, artifacts, and episodes. Furthermore, there are endpoints for access and user manage-
ment. The complete list of endpoints is provided in the Appendix (Tab. [2). The server is imple-
mented using FastAPI (Sebastian Ramirez, 2018), and we use MongoDB (MongoDB Inc.,[2009) as
a database, as it provides the flexibility to store all considered objects using a single infrastructure
component. Most objects are stored directly in a JSON representation, while the GridFS extension
(MongoDB Inc., 2009) facilitates file storage for artifacts.

When using endpoints for object creation, the server executes a range of checks to avoid duplication
or invalid references. Specifically, for benchmarks, we evaluate if an object with an identical hash
already exists that is either owned by the current user or is public. In that case, the operation is
rejected. For artifacts, we compute the hash of the content of the artifact concatenated with the id
of the current user. If an artifact with this hash already exists, we do not create a new artifact, but
no error is thrown. For episodes, we make sure that the referenced benchmark id exists and is either
owned by the current user or in a group to which the current user has access.

3.2.1 ACCESS & SECURITY

The PyTupli server implements role-based access management. Users can be assigned membership
to groups, granting them a set of roles within the group. A role represents a collection of granular
rights on a resource, such as create or read. Several common roles, such as contributor or group
admin, are predefined. Additionally, entirely custom roles can be created via the server API. A
conceptual visualization can be found in Fig. [3| with a full list of predefined roles provided in the
Appendix (Tab. [I).

Users can either sign up themselves (OPEN_SIGNUP_MODE = True) or require admins to do so.
Each user has a personal group to which their assets are initially associated. Only global admins and
the users themselves have access to this private area. Users can then choose to publish an asset in
one or several groups. This includes a public group, to which unauthenticated users have read access
if the server was configured accordingly (OPEN_ACCESS_MODE = True). To publish in a group, the
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Figure 4: UML component diagram of the production deployment.

user must be a group member with content creation rights, e.g., via the predefined contributor role.
Asset owners can, at any time, choose to unpublish their asset again. All users can create groups
to which they are automatically assigned admin rights. They can then add and remove members.
Other group members can be authorized to manage members via appropriate group update rights.
However, they can only ever assign roles the rights of which are a subset of their own rights in the
group.

The passwords of users are securely stored using state-of-the-art salted hashing implemented via the
berypt library (The Python Cryptographic Authority}, 2013). Authentication is based on an access
token (JSON Web Token) that the client obtains when logging in. For increased security, this access
token expires after 60 minutes, after which a refresh token is used to fetch a new access token
without the need to provide login credentials again. The refresh token expires after 30 days.

3.2.2 DEPLOYMENT

We provide a Docker Compose (Docker, Inc., 2014) setup for production-ready deployment, as
visualized in Fig. E} Here, the API server is hidden behind an Nginx web server (NGINX, Inc.}
2004) acting as a reverse proxy for increased scalability. Further, the reverse proxy takes care of
encrypting the communication to the client. Certificate management is automated by running the
Let’s Encrypt Certbot (Electronic Frontier Foundation, 2015)) in a dedicated container. The provided
SSL certificates are accepted by all standard browsers and refreshed automatically. By default, a
container running a MongoDB database is spawned in the deployment stack. However, users can
provide credentials to external infrastructure and exclude the MongoDB container from the stack
via a simple flag. For local use, a simplified Docker Compose setup is provided that only includes
the API server container and, if enabled, the database container.

4 USAGE

We use the motivating example introduced in Sec. 2-T]to demonstrate the usage of PyTupli. Let us
first consider the workflow of Company B, who has decided to use the TupliAPIClient with
MongoDB as a backend to realize the infrastructure for this project. After cloning the PyTupli
repository, Company B can run the provided docker container stack with default settings using

docker compose up —--build

to start the application, for example, on one of its servers. The subsequent steps are given as a
simplified code example in Fig. [5] First, Company B creates the required user accounts, one for
its employee Bob and one for the researcher Alice from University A. Then, Bob has to model an
exemplary household as a gymnasium environment, which we will not specify here. This system
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class CustomTupliWrapper(TupliEnvWrapper)
def _serialize(self, env) -> Env:
related_data_sources = []
for ds in env.unwrapped.data_sources:
metadata = ArtifactMetadata(name=ds.info)
content = ds.data.to_csv(encoding="utf-8")
content = content.encode(encoding="utf-8")
ds_metadata = self.storage.store_artifact(
artifact=content,
metadata=metadata
)
related_data_sources.append(
ds_metadata.id
)
ds.data = ds_metadata.id
return env, related_data_sources

@classmethod
def _deserialize(
cls, env: Env, storage: TupliStorage
) -> Env:
for ds in env.unwrapped.data_sources:
ds = storage.load_artifact(ds.data)
ds = ds.decode('utf-8")
d = io.StringIO(ds)
df = pd.read_csv(d)
ds.data = df
return env

# Instantiate API storage object
tupli_storage = TupliAPIClient()

# Create two users, one for Company B and one for University A
tupli_storage.signup(username="bob_B", password="abc123")
tupli_storage.signup(username="alice_A", password="xyz789")
# Login
tupli_storage.login(username="bob_B", password="abs123")
# Instantiate gymnasium environment
data_paths = [
"load_data.csv","pv_data.csv","temperature_data.csv"
]
custom_env = PowerSystemEnv(data=data_paths)
# Wrap environment using customized benchmark wrapper
tupli_benchmark = CustomTupliWrapper(
env=custom_env, storage=tupli_storage
)
# Store and publish the benchmark
tupli_benchmark.store(
name="'EMS_benchmark",
description="Energy management system control task"
)
tupli_benchmark.publish()
# Load the historical data
historic_episodes = load_historic_data()
# Record and publish the episodes
for eps in historic_episodes:
eps_item = Episode(
benchmark_id=tupli_benchmark.id,
metadata=eps.metadata,
tuples=eps.tuples
)
eps_header = tupli_storage.record(eps_item)
tupli_storage.publish(eps_header.id)

tupli_storage.set_url(
"https://company-b-server.com/api"

)

Figure 5: Usage example: Workflow for Company B.

has several parameters that vary depending on the household, most importantly, the load, gener-
ation, and outdoor temperature profiles, which are given as CSV files. To create the benchmark
that will be used to test the offline RL baseline, Bob chooses data from one of the households that
have agreed to the usage. After the gymnasium environment is fully specified, it has to be serial-
ized for storage. Bob has written a subclass of the TupliEnvWrapper that adjusts the methods
_serialize () and _deserialize () such that CSV files are stored separately and their ref-
erence replaces the data in the benchmark. These functions will be called in the store () func-
tionality of the TupliEnvWrapper. Now, Bob can instantiate and upload a benchmark. He then
publishes it to grant access to Alice. To create the dataset for the offline RL training, Bob uses
data spanning several households and years. One episode therein corresponds to one day. Bob adds
metadata for each episode, such as a household identifier or the month of the year. Each episode is
then uploaded with the id of the previously created benchmark.

The second workpackage is completed by University A. As shown in Fig. [6] Alice must first cre-
ate her own instance of the TupliAPIClient and log in to acquire the necessary rights. Then,
she can download the benchmark with the id Bob has given her. She can now download all exist-
ing episodes for this benchmark. However, she has the idea of training a seasonal baseline con-
troller and thus adds a filter to retrieve only episodes from the summer months. Alice uses the
conservative Q-learning (CQL) implementation from d3rlpy to train the baseline. She converts
the downloaded TupliDataset into the MDPDataset format defined by d3rlpy. Finally, she
tests the trained controller by running a few episodes on the simulated benchmark. She uses the
TupliEnvWrapper to record these test interactions, automatically adding episodes generated by
her trained controller to the shared benchmark. This incremental expansion of the dataset with syn-
thetic episodes allows Alice to contribute her policy’s behavior back to the collaborative repository,
enriching the available data for future research iterations.

For brevity, we only describe potential further steps without providing a code example. Alice could
request that Bob continuously add new episodes from the original household as additional data
becomes available over time. Then, Alice could retrain her model to assess the effects of increas-
ing datasets and mixing synthetic and real-world data. Furthermore, Bob could create additional
benchmarks, one for each household with the corresponding time series data. Alice could use these
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# Instantiate API storage object
tupli_storage = TupliAPIClient()
tupli_storage.set_url(
"https://company-b-server.com/api"
)
# Login
tupli_storage.login(
username="alice A", password="xyz789"
)
# We assume that this is the id of the
# previously stored benchmark
stored_id = "d1345kn456mlk1230"
# Download benchmark
loaded_tupli_env = CustomTupliWrapper.load(
storage=tupli_storage,
benchmark_id=stored_id
)
# Create dataset containing all episodes
# recorded during the summer months
mon = ["June", "July", "August"]
filter_summer = FilterOR(
filters=[
FiltereQ(key="month", value=m) for m in mon
]
)
filter_benchmark = FilterEQ(
key='id", value=stored_id
)
dataset_summer = TupliDataset(
storage=tupli_storage
).with_benchmark_filter(
filter_benchmark
).with_episode_filter(filter_summer)
dataset_summer.load()

from d3rlpy.algos import CQLConfig
from d3rlpy.dataset import MDPDataset
# Convert to d3rlpy dataset
obs, act, rew, term, trunc = dataset_summer.convert_to_numpy()
d3rlpy_dataset = MDPDataset(
observations=obs, actions=act,
rewards=rew, terminals=term, timeouts=trunc
)
# algorithm for offline training: CQL from d3rlpy
algo = CQLConfig().create(device="cpu')
# train
algo.fit(
dataset=d3rlpy_dataset, n_steps=10000, n_steps_per_epoch=100
)
# Test trained baseline
# activate recording of episodes
loaded_tupli_env.activate_recording()
# run the environment
obs, info = loaded_tupli_env.reset(seed=42)
for step in range(1000):
action = np.int64(
algo.predict(np.expand_dims(obs, axis=0))[0]
)
obs, reward, done, truncated, info = loaded_tupli_env.step(
action
)
if done or truncated:
obs, info = loaded_tupli_env.reset()

Figure 6: Usage example: Workflow University A.

benchmarks to finetune her baseline using an online RL algorithm such as SAC. Finally, the trained
controllers could be serialized and uploaded as artifacts such that Bob can deploy them in the real
households.

PyTupli facilitates this collaboration in multiple ways. Most importantly, it significantly reduces the
effort of setting up an infrastructure that enables fast up- and downloads of RL tuples. Furthermore,
it automates the conversion of downloaded tuples into the dataset format required by d3rlpy. The
filtering capabilities allow University A to hone the quality of the dataset, a crucial aspect in offline
RL. Finally, the wrapper for gymnasium environments enables both sides to convert any interac-
tion with the simulation model — for example, during hyperparameter tuning — to be recorded and
uploaded as additional tuples.

5 CONCLUSION

PyTupli addresses a critical infrastructure gap in collaborations that use offline RL to train con-
trollers for custom tasks. It provides a scalable, containerized solution for creating, storing, and
sharing benchmark problems and corresponding tuple datasets. Existing datasets can be filtered at
multiple levels, including specific tuples, and converted to the most common input format for of-
fline RL algorithms. While PyTupli significantly improves dataset management for offline RL, its
scope has certain limitations. The API storage is based on MongoDB, which may pose scalability
constraints for very large deployments. Furthermore, users may need to adjust the output format
of datasets to match the input requirements of specific algorithms. Lastly, fine-grained access for
user groups is not supported. Despite the current limitations, PyTupli represents the first production-
ready collaborative tool in the space of offline RL and, therefore, holds relevance for practitioners
from industry and research alike.
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A PREDEFINED ROLES

Table 1: Predefined roles and their associated rights.
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Table 2: PyTupli API endpoints.

Endpoint

Description

Required Right

Artifact Management

/artifacts/upload
/artifacts/list
/artifacts/download
/artifacts/publish

/artifacts/unpublish

/artifacts/delete

Upload new artifact file
List accessible artifacts
Download artifact file
Publish artifact to group

Remove artifact from group

Delete artifact permanently

artifact_create
artifact_read
artifact_read
ownership and
artifact_create
ownership or
artifact_delete
ownership or
artifact_delete (global)

Benchmark Management

/benchmarks/create
/benchmarks/load
/benchmarks/list
/benchmarks/publish

/benchmarks/unpublish

/benchmarks/delete

Create new benchmark
Load full benchmark data
List accessible benchmarks
Publish benchmark to group

Remove benchmark from group

Delete benchmark permanently

benchmark_create
benchmark_read
benchmark_read
ownership and
benchmark_create
ownership or
benchmark_delete
ownership or
benchmark._delete (global)

Episode Management

/episodes/record
/episodes/list
/episodes/publish
/episodes/unpublish

/episodes/delete

Record new episode

List accessible episodes
Publish episode to group
Remove episode from group

Delete episode permanently

episode_create
episode_read
ownership and
artifact_create
ownership or
artifact_delete
ownership or
episode_delete (global)

User Management

/access/users/create
/access/users/list
/access/users/delete

/access/users/change-password

/access/users/token
/access/users/refresh-token

Create new user
List all users
Delete user

Change user password

Login and get tokens
Refresh access token

user_create
user_read
ownership or
user_delete (global)
ownership or
user_update (global)

Group Management

/access/groups/create
/access/groups/list
/access/groups/read
/access/groups/delete
/access/groups/add-members
/access/groups/remove-members

Create new group

List accessible groups

Get group with members
Delete group

Add members to group
Remove members from group

group-create
group-read
group-read
group-delete
group-update
group-update

Role Management

/access/roles/create
/access/roles/list
/access/roles/delete

Create new role
List all roles
Delete role

role_management (global)
role_management (global)
role management (global)
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