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Abstract

Learning reward functions remains the bottleneck
to equip a robot with a broad repertoire of skills.
Large Language Models (LLM) contain valuable
task-related knowledge that can potentially aid in
the learning of reward functions. However, the
proposed reward function can be imprecise, thus
ineffective which requires to be further grounded
with environment information. We proposed a
method to learn rewards more efficiently in the
absence of humans. Our approach consists of
two components: We first use the LLM to pro-
pose features and parameterization of the reward,
then update the parameters through an iterative
self-alignment process. In particular, the process
minimizes the ranking inconsistency between the
LLM and the learnt reward functions based on the
execution feedback. The method was validated
on 9 tasks across 2 simulation environments. It
demonstrates a consistent improvement over train-
ing efficacy and efficiency, meanwhile consuming
significantly fewer GPT tokens compared to the al-
ternative mutation-based method. Project website:
https://sites.google.com/view/rewardselfalign.

1. Introduction

Reinforcement learning has demonstrated the effectiveness
in acquiring complex skills from walking over uneven ter-
rain (Valsecchi et al., 2020; Manchester et al., 2011) to
dexterous manipulation(Akkaya et al., 2019; Chen et al.,
2023). However, such effectiveness largely depends on a
well-designed reward function that relies on expert knowl-
edge of tasks, followed by non-trivial tuning often to both
optimize the efficacy and prevent the policy from exploiting
flaws that can be easily introduced during reward shaping.
Inverse reinforcement learning (IRL) (Abbeel & Ng, 2004;
Ho & Ermon, 2016) seeks to resolve this issue by auto-
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matically learning the reward function from expert demon-
strations. Still the process can be exceedingly costly for
expert demonstration gathering to cover the vast variety and
complexity of the state space and yield a robust control.

Recently, Large Languaged Models (LLMs), trained using
extensive human data, have demonstrated to be embedded
with richly useful task-related knowledge. Several existing
studies have used LLM to directly propose action (Liang
et al., 2023) or reward values (Kwon et al., 2023; Adeniji
et al., 2023). However, using LLM to learn reward func-
tions still presents a challenge due to the task sensitivity
to the exact numerical values while LLM shows limited
capacity. In addition, such value setting in general requires
to be grounded to the specific setup. For example, In (Yu
et al., 2023) LLM set the target torso height for a quadruped
to 0.3m for moon walk instruction. With further inquiring
about rationale behind the number, LLM explains “the spe-
cific value here is arbitrary and should be adjusted based
on the robot’s design and requirements”. Previous works
address such limitation with human feedback or in-context
example (Yu et al., 2023; Xie et al., 2023; Wang et al., 2023),
or evolutionary method (Ma et al., 2023) with success rate
feedback to LLM, both are still in a form of trial and error
from LLM update, that might end up with fluctuated instead
of improving performance.

In this work, we aim to answer the question: is there a way
we can learn the reward more efficiently in the absence of
humans? It is observed that LLMs have shown promising
ability in summarizing and classifying text, which allows
them to effectively distinguish different observations in tex-
tual form. We propose to utilize such ability to extract
ranking signals from LLM, which could be more robust to
guide reward learning than direct value prediction of the
parameters. We first utilize LLM to break down a task into
steps with Dos and Don’ts through Chain of Thought (CoT)
(Wei et al., 2022) and propose the initial reward parame-
terization, particularly the feature selection and template
structure. Next, we iteratively update the parameters of the
proposed reward function in a self-alignment process which
operates on a double-loop structure. The inner loop induces
the optimal policy from the current reward function, sam-
ples trajectories using this policy and generates execution
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Figure 1. The overview of our method. We learn the reward function using LLM with a bi-level optimization structure. We first use the
LLM to propose features and parameterization of the reward function. Next, we update the parameters of this proposed reward function
through an iterative self-alignment process. In particular, this process minimizes the ranking inconsistency between the LLM and our

learned reward functions based on the new observations.

descriptions with the proposed reward features. The outer
loop updates the reward parameters by aligning the rank-
ing between LLM proposed with the execution description
feedback, and the ranking from the current reward function.
When no discrepancy exists yet no effective policy is devel-
oped, we also actively adjust reward parametrization in the
direction LLM reflection hints (Liu et al., 2023), and numer-
ically optimize it to keep the same ranking self-consistency.
This process is similar to IRL’s bi-level optimization struc-
ture, with one key difference in the outer loop: instead of
minimizing differences between expert demonstrations (Ke
et al., 2021), our method employs ranking from LLM. Since
all supervision signals come from LLM, we describe this as
the self-alignment reward update.

To summarize, out contribution includes:

* We proposed a framework to learn the reward functions
with LLM through an interative self-alignment process,
which periodically updates the reward function to min-
imize the ranking inconsistency of execution generated
from LLM and the current reward function.

* Leveraged upon the self-alignment process, we in-
cluded active parameter adjustment with LLM heuristic
to improve reward saliency, while preventing it from
unintentional flaw through enforcing the consistency.

* We validated the framework on 9 tasks on 2 simulation
environments. It demonstrates a consistent improve-
ment over training efficacy and efficiency while being
token efficient compared to alternative method.

2. Related Work

Inverse Reinforcement Learning from Human Prefer-
ence Inverse reinforcement learning (IRL) studies how
to autonomously learn a reward function from expert data.
Traditional IRL methods utilise the optimal expert demon-
strations as supervision signals, aiming to learn a reward
function that can encode an objective consistent with the
expert demonstrations(Ng et al., 2000; Abbeel & Ng, 2004;
Ho & Ermon, 2016; Hadfield-Menell et al., 2017). The
bottleneck of IRL is the quantity and quality of the expert
demonstrations. Some other works explore other forms of
expert supervision, such as trajectory preference/ranking
(Sadigh et al., 2017; Palan et al., 2019; Lee et al., 2021;
Biyik et al., 2022a; Mehta & Losey, 2022). Learning from
preference ranking offers some benefits over standard IRL,
which relies on almost perfect expert demonstrations for
imitation. Essentially, it learns from ranked sub-optimal
demonstrations, potentially surpassing the original demon-
strator’s performance. This makes it less demanding for
experts to create only optimal behaviours and also encodes
further contrasting information about preferable and unde-
sirable behaviours. A major downside, however, remains the
need to amass this information. We investigate the potential
to extract task-related data from a pre-trained large language
model, effectively bypassing this data collection challenge.

LLM for robotics reward learning Large Language
Models (LLMs) have shown great potential as cost-effective
tools for extracting task objectives as they embed substan-
tial human knowledge (Huang et al., 2022; Brohan et al.,
2023). A few works proposed to generate code with large
language models such as ProgPrompt (Singh et al., 2023),
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Policy-as-Code (Liang et al., 2023). Based on this, several
prior studies have further utilized LLMs to predict reward
functions. (Kwon et al., 2023) learns to translate nature
language instructions to reward values, (Yu et al., 2023; Xie
et al., 2023; Wang et al., 2023) proposed robot skill synthe-
sis or task learning with LLM-generated reward function
and further refine with human feedback or in-context ex-
ample. The work either uses LLMs in a zero-shot manner
implying their reward function can’t utilize environmental
feedback, or the update relies on human intervention which
can be laborious. (Ma et al., 2023) proposed to automat-
ically generate and select the reward function through an
evolutionary manner which achieved human-level reward
design. Our research focuses on learning reward functions
that are sensitive to the numerical values setting. Instead
of depending on human feedback or LLM mutation, we
suggest an iterative self-alignment that uses LLMs to offer
alternative signals that supervise reward learning.

3. Background

Problem Definition Consider a finite-horizon Markov
Decision Process (MDP) parameterized by (S, A, 7, R,T)
where S, A are the state and action spaces, 7 : S x A — S
is the transition function, R : S — R is the reward func-
tion, and 7" is the horizon. A policy 7 is a mapping from
states to probabilities over actions, 7(a|s). Given a policy
and an MDP, the expected return of the policy is given by
J(m;R) = B[, R(s:)|x]. The expert policy should

be one that optimizes this return, 7 := arg max J(m; R)
w.r.t. the ground-truth reward R. In our setting, we are
given a partial MDP without i) the reward function R nor
ii) any forms of expert demonstrations. Instead, we have
access to an LLM that can rank a sequence of M trajectories
7, with decreasing preference for £k = 1,...,m based on
the last state s%. The LLM is assumed to have an internal
goal or intrinsic understanding of tasks, therefore its rank-
ing is consistent with a human demonstrator optimizing the
ground-truth reward function R. We aim to find a parame-
terized reward function Ry such that the ranking of these M
trajectories based on it is consistent with the ranking given
by the LLM.

Boltzmann Rationality Similar to modelling noisy opti-
mal human behaviour, we model LLLM’s preference with a
Boltzmann rationality model (Luce, 1959), which assumes
it will act to prefer a trajectory with probability proportional
to the exponential trajectory return, where 8 € [0, c0) is the
rationality coefficient controls the level of rationality. Ac-
tion becomes fully rational and deterministic when 8 — oo
and uniformly random when 5 — 0.

P(r) x exp{8> Ro(st,a¢)}

Such noisy optimality is critical here as it aligns with our
motivation that LLM can be numerically imprecise or un-
stable. It does not require perfect ranking feedback but only

the majority of them. It also aligns with our observation
on LLM act rationally but also imperfectly. For instance,
it constantly mis-rank in the presence of subtle numerical
differences.

Reward Learning from Pairwise Preference In reward
learning, denoting D is the dataset with N pairwise prefer-
ences (7;,7;) where 7; > T;, we seek to estimate the true
reward parameter § that maximizes the posterior:
N
P(O|D) o< [T,=, P(]* = 77|0) P(0)

Prior is system-dependent and a common choice without
special assumption is a uniform prior within the domain
U[Omin, Omaz]. Pairwise preference likelihood P(r; >
7;10) is modeled with the Bradley-Terry model (Bradley
& Terry, 1952) with Boltzmann-rational model being the
score function p:

P(ri = 73l6) = p(i[6) )

(7i|0) + p(7;16)
exp 3 Ry(si, al)

" expBY. Ro(si,ai) + exp BY. Ro(si, ai)
2)

The reward function generated by LLM may be in arbitrary
form with complex parameter distribution, sampling-based
methods such as the Metropolis-Hastings algorithm (Sadigh
etal., 2017; Hoegerman & Losey, 2023) or Gaussian process
(Biyik et al., 2023) can be deployed to model the posterior
flexibly:

N
Or1ap(D) = argmax, [ [ P(}" = 7}'(0)P(9) (3)

n=1

N
= argmax, Z <ﬂR9(Ti”) — log Z exp BR9(7)>
n=1

T€D,
+ log P(Q) “4)

4. Main Method

We propose a framework to learn the reward functions from
Large Language Models (LLMs). We observe that LLM not
only encodes useful task information, it can also serve as a
discriminator to evaluate the performance given the obser-
vation signals. Based on these, our reward learning method
consists of two parts: first we extract the skill-specific re-
ward function parameterization, Ry(.), from LLM using a
sequence of guiding prompts, then we design an iterative
self-alignment procedure to fit the reward function Ry(.)
using ranking-based preference learning.

4.1. Reward Parameterization Proposal

We connects LLM to the environment via a dictionary of ob-
servations that the environment provides and actions that the
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agent applies as required by reward calculation. Ideally, a
versatile robotics system connects to tasks via modularised
interfaces such as a robot interface which define the ca-
pabilities of the system. For example inverse kinematics,
retrieving object pose, collision detection. They can later
utilized to compose tasks and their evaluation. When such
structured functions exist, we also feed LLM with an ab-
straction containing only function define line, type hints
with function description, and (input, output) description.
In doing so, LLM is expected to leverage upon the existing
functions the system is equipped with for reward genera-
tion, meanwhile avoiding diluting useful information with a
large trunk of function content text or being exposed to any
privileged information they may contain.

To generate the initial reward parametrization proposal, we
propose to apply the Chain-of-Thought (CoT) to guide the
Large Language Model (LLM) in the generation. The details
of the prompts we used are included in the appendix. Our
process involves a 4-step procedure,

First, we feed the environment information to LLM with
available observations and action descriptions. When in-
terfaces are well defined, we feed the abstract of system
interfaces to LLM and ask it to summarize the available
functions into a dictionary with the key being the function
name, the value being a dictionary summarizing “brief de-

99 99

scription”, “input”, and “output”.

Next, the task is given as a phrase or short sentence. For
example: “touching”, or “open the scissor lay flat on the
surface with two hands”. We prompt the LLM to describe
the target skill in natural language.

In the third step, LLM is prompted to break the task into
steps if it is a multi-step task. For each step, generate a list of
“Dos” and “Don’ts” and identify the relevant observations
associated with it.

Finally, we prompt the LLM to develop the Python function
based on analysis from the previous step using observations
and functions summarized from the first step. LLM is in-
structed to put all numerical values into input arguments,
and always assign the reward or penalty associated features
into a variable before reward calculation. Later the features
will be automatically parsed during reward calculation for
execution description generation and feedback to LLM.

4.2. Updating Reward via Self-Alignment

The reward is learnt by iteratively optimizing a policy given
a reward function in the inner loop, and a reward function
in the outer loop with feedback on the policy behaviour.
The process iterates and terminates at a satisfactory success
rate or total updating steps whichever it reaches earlier. For
feedback, ranking is opted instead of the absolute scores or
exact numerical adjustments from LLM to suit the restricted

Algorithm 1 Self-Alignment Reward Update
Require: Learned Reward Ry, replay buffer Drp = O,
initial policy g
1: fort=0,1,...do
fork=0,1,...do
Update 7y using RL with Ry
end for
Sample M trajs {7;};=1,... amusing 7,
[optional] Sample N trajs {7;},=1,.. n evenly from
Drp based on reward histogram
Calculate Rankp, by ranking {7;} using Ry
Calculate Rankr,rps by ranking {7;} using LLM
Diey < discrepancy(Rankg,, Rankrrar)
10:  Dpos < |Dpegl pairs sampled from agreed(Rankg,,
Rankr )
11: D<= Dypeg + Dpos
12:  Bayesian update on 6 according to Eq (4)
13: end for

SANEARE I

0 ® 3

numerical reasoning capacity of LLM. For policy learning,
model-free Reinforcement Learning (RL) is used due to
its flexibility and demonstrated capability for intricate skill
learning.

The iterative reward update with self-alignment is presented
in Algorithm 1. Within each iteration, the policy is first up-
dated using RL with the current reward function (line 2-4).
Next, we draw M samples from the updated policy by rolling
it out such that the collected trajectories reflect the current
policy behaviour (line 5). When a replay buffer is available
such as an off-policy RL is used, the reward histogram of
the replay buffer will be parsed and additional N samples are
drawn uniformly from the bins (line 6). This is to enable the
feedback to be more inclusive so the potential misspecifica-
tion can be better detected. We then aggregate the samples
and retrieve the two ranking sets from the current reward
function Ry and the LLM through the textual feedback (line
7-8). The textual feedback is automatically constructed by
concatenating the identified reward feature names and their
values from the reward function with Python local variable
parsing. More details on this can be found in Appendix A.2.

To generate the dataset of pairwise comparison D =
{(7i,75)° (7i,75)", ...} where 7 > 77, we first parse
all inconsistent pairs by comparing the two ranking sets.
To resolve the reward inconsistency but also maintain the
achieved consistency, we additionally sample an equal
amount of consistent pairs from the comparison (line 9 -
10). The ranking from LLM serves as the ground truth and
determines 7;" - 7;" in D. D is further shuffled and updates
the reward model using Bayesian inference. We follow pre-
vious works and use Metropolis-Hastings algorithm. The
parameters are updated to maximize the posterior of the
preference modelling based on the learned reward function
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with Eq (4). The updated parameter will be accepted if and
only if such inconsistency reduces and converges.

When there is no discrepancy, yet no effective policy is
trained after an iteration with a success rate lower than a
threshold, the relevant reward or penalty term is assumed
to be not salient, LLM is prompted to reflect on the execu-
tion and identify the relevant reward or penalty term(s) with
corresponding parameter(s). LLM is instructed to suggest a
new parameter value where only the value changing direc-
tion as + / - is parsed. Such change temporally overwrites
the parameter domain from [Oyin, Omax] 10 (Bcurrent, Omax] OF
[Omins Ocurrent) and conduct new parameter search with self-
alignment. Similarly, the updated parameter will be ac-
cepted with maximumly reduced and no new inconsistency
generated. In doing so, we combine heuristics as active
reward adjustment while maintaining the reward logic by
preserving the reward rank to avoid unintentional flaws be-
ing introduced with the new parameterization.

5. Experiments

5.1. Evaluation Objectives

To evaluate the proposed framework, we design our experi-
ments to answer the following three questions:

‘H1 - Can this pipeline generate effective reward functions
to induce optimal policies on varied skills learning?

‘H2 - Can the periodic update through self-alignment im-
prove the numerical impreciseness and instability, thus the
efficacy of reward functions?

‘H3 - How does this method perform compared to the al-
ternative unsupervised update method, i.e. through LLM
reflected mutation and rejection?

5.2. Evaluation Tasks

Figure 2. Six evaluation tasks from ManiSkill2: PickCube, PickS-
ingleYCB, PeglnsertionSide, OpenCabinetDoor, OpenCabinet-
Drawer, PushChair.

Figure 3. Three Isaac Gym evaluation tasks: Franka Cabinet,
Shadow Hand Open Door Outwards, Shadow Hand Open Scissor

Following the objective, we evaluated our framework on
6 manipulation tasks in ManiSkill2 (Gu et al., 2023) as
illustrated in Fig 2. The tasks includes rigid and articulated
object manipulation with fixed-based manipulator, single-
arm and dual-arm mobile manipulator.

5.3. Baselines

We compare our learnt reward function with two other re-
ward functions. One trains policy with expert-designed
oracle rewards from the original environment implementa-
tions, through which we examine the efficacy of our learnt
reward function for /1. Another trains policy with the in-
tially proposed reward function from LLM analysed with
CoT, but the parameterization stays fixed throughout the
training. Through this comparison we aim to examine the
efficacy of self-alignment update for H2.

We also compare our method with two baseline approaches
of reward generation with LLM: Text2Reward (Xie et al.,
2023) on four overlapping ManiSkill2 tasks and Eureka (Ma
et al., 2023) on three tasks implemented with Isaac Gym
(Makoviychuk et al., 2021).

o Text2Reward generates dense reward generation with
LLM by similarly providing the Pythonic environment
abstraction and task description to LLM. The reward
function can be further updated iteratively with LLM
by taking human-feedback.

» Eureka generates high-performance reward function
in an evolutionary manner. It feeds the environment
script to LLM and generates multiple reward functions
per time for policies training in-parallel. The batch suc-
cess rates are fed back to LLM for reward functions’
reflection and mutation then trains the next batch poli-
cies. Such loop is iterated until meets the termination
condition.

We performed the self-alignment update on reward func-
tions generated without human feedback in Text2Reward to
examine if the improvement of such self-alignment update
for 72 holds, does it still hold for reward functions gen-
erated externally. We also compare the training and token
efficiency with alternative unsupervised method proposed
in Eureka for H3 on 3 tasks shown in Fig 3.
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5.4. Training Setup

For policy training, we adopted the same RL implementation
and hyper-parameter setting that the baseline methods used,
correspondingly are SAC (Haarnoja et al., 2018) from stable-
baselines3 (Raffin et al., 2021) and PPO (Schulman et al.,
2017) from rl_games (Makoviichuk & Makoviychuk, 2021).
The success rate threshold to query parameter adjustment is
50% for SAC and 10% for PPO. For GPT, we used GPT-4
with API model name gpt-4-0613. As gpt-4-0314 used in
Eureka is deprecated, we validated over 10 iterations that
the new model is able to generate 11.00 £ 1.34 out of 16
successfully executed reward functions compared to 9/16
from the author thus should not degenerate its performance.

For reward update, we set the rationality coefficient 5 = 0.9,
feedback at every 10000 training steps for ManiSkill2, 100
epochs for Isaac Gym with M=5 roll-out samples from
the latest policy and N=5 for sampling from the reward
histogram. The training step equals the exploration step
in our setup. For reward update with Metropolis-Hastings
algorithm, our customized implementation is built upon
APReL (Biyik et al., 2022b). The burn-in period is 200
iterations and the number of samples is 100. The proposal
distribution follows Gaussian distribution as A/(6,0.2) on
normalized parameters then is clipped to [0, 1].

In practice, as the reward parameters may be multi-modal
(Buyik et al., 2023) thus multiple sets of values may fulfil the
same level of ranking discrepancy reduction. To minimize
the reward fluctuation over iterations, we model the posterior
and update the reward by sampling in the feasible region
within the distances to the current value of [1.0, 3.0, 5.0,
10.0] in parallel. This setting works for parameter value
ranges from +e~2 — e! scale proposed by LLM in our
experiments thus no additional tuning was implemented
and may be further explored. The new parameters with a
maximum discrepancy reduction will be accepted. If the
same level of discrepancy reduction is achieved, we select
the set of values that are the nearest to the current one.

5.5. Results

For evaluation, we report the success rates over five dif-
ferent seeds against the exploration steps on 6 ManiSkill2
manipulation tasks. The results are plotted Fig 5. We also
conducted similar reward learning on reward functions that
are generated from Text2Reward zero-shot cases with LLM.
The comparison on policy trained with fixed-parameterized
reward function and updated with self-alignment are plotted
in Fig 6.

5.5.1. THE LEARNT REWARD IS ABLE TO INDUCE
OPTIMAL POLICY

We first analyse through objective H1. Compared to the
oracle reward, we observed that our method is able to con-

sistently develop a policy close to policy trained with expert-
designed oracle reward across all 6 ManiSkill2 tasks. In
the case with a better reward design proposed by LLM in
PushChair task, we are able to further push the performance
from 60.59% to 83.65% with oracle reward gives at the
peak 35.34%.

5.5.2. SELF-ALIGNMENT UPDATE CONSISTENTLY
IMPROVES TRAINING EFFICACY AND EFFICIENCY

From Fig 5, it can be observed that LLM generated reward
function can often lack of adequate numerical optimality to
develop the optimal policy as indicated in our motivation
and H2. This can be demonstrated by the nearly zero suc-
cess rate of policies trained with fixed-parameterized reward
proposed by LLM for tasks Pick-Cube and Peg-Insertion.
There are the same patterns for Pick-Cube and Push-Chair
tasks on functions from Text2Reward in Fig 6 which is con-
sistent with the original paper.

For all cases, the self-alignment update scheme effectively
improves the performance reflected as (1) faster conver-
gence; (2) higher success rate at convergence in general. We
think the such effectiveness or improvement are mainly due
to two reasons:

(1) LLM brings meaningful inductive bias to steer policy
towards global-goal especially in multi-objective setting:

pick cube

Figure 4. (a) parameter update over iteration for pick cube task; To
better visualize the early shift the update is truncated to 50 itera-
tions. (b) success rate of policy trained with the actively adjusted
reward function and with the adjusted final reward function. The
policy may not achieve the same performance trained with the final
reward function learnt only.

Following the prompt, LLM decomposes task objectives as
Do’s and Don’t step by step into dense reward and penalty
terms. Such multi-objective learning especially for multi-
step tasks can be challenging to learn altogether. By feed-
back on recent exploratory behaviors from the replay and
exploitative behavior from current policy to LLM, LLM
identifies the most and least optimal behaviors under the
local context and steers it towards the global goal.

Such behavior is similar to introducing a curriculum for
learning with periodic feedback and can be observed from
the weight parameter change. For instance, for PickCube or
Peglnsertion, reward update were emphasized on encourag-
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Figure 5. Success rates vs exploration steps on 6 ManiSkill Tasks with SAC. The updated reward is able to produce policy with similar
performance to that is trained with oracle reward on 5 tasks. Compared to using fixed reward function genreated by LLM, our approach
consistently improves the training with faster convergence rate and/or higher convergence performance
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Figure 6. Success rate vs exploration steps with Text2reward zero-shot reward functions with SAC. Similarly, the periodically update
reward function through self-alignment consistently improves the final performance achieved.

ing to approach first, later when contact starts with policy
improving with grasped=True from the feedback sam-
ples start to appear, the weights further shift to increase
grasping weights to encourage stable grasping. It is fol-
lowed to increase transporting to goal pose weight with
varied distance_to_goal in feedback samples. The pat-
tern can be observed in Fig 4 and Fig 11 in Appendix. By
iteratively doing so, the final policy was effectively guided
toward the final target. We think this might be the main
reason for this method to yield a faster convergence rate.

(2) Execution feedback and self-alignment prevents sub-
optimal behavior due to parameter mis-specification:

As indicated in numerous existing literature, reward shaping
is nontrivial as inappropriate shaping will introduce uninten-
tional rewards or penalties that further leads to sub-optimal
policy by exploiting such flaw. Meanwhile as we observed,
the way LLLM generates the reward code with parameteri-
zation directly as text generation task is not the best way

as reward shaping requires. Through a closed-loop reward
update via self-alignment, the shaping logic is enforced
through the ranking further as pairwise preference. Such
numerical errors or flaws can be reflected through execution
feedback and ranking discrepancy that are later corrected
via posterior maximization.

For example, in the Open-Cabinet-Drawer/Door task, when
given a high reach reward and relatively lower pull reward,
the policy converges to stay in touch with the handle, as
the poor pulling action easily loses contact with the handle
and yields a lower reward. However, LLM ranks with a
preference for a larger pulling distance for later-stage ac-
tion. The reward is updated to increase the pulling weight
iteratively to correct such sub-optimality and move towards
more pushing actions.

It is also a common pattern across tasks that LLM will
recommend to reduce weight for a behaviour that is well-
established for better exploration to develop the next step
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Figure 7. Success rate with PPO policy on 3 IsaacGyms tasks: (a) Franka Cabinet; (b) Push Door Outwards; (c) Open Scissor.

behaviour. One example taken from the Peg Insertion task
is shown in Fig 8.

<CoT Skipped>
{

# decrease to encourage moving towards the hole
‘distance_to_peg_weight': 70.1895

# decrease as the robot has already grasped the peg
‘alignment_ee_to_peg_weight': 130.5820,

# keep the same as the robot is consistently grasping the peg
‘grasp_reward_value': 101.8941,

# 1lncrease to encourage moving towards the hole
'distance_to_hole_weight': 183.3966,

# 1lncrease to encourage alignment with the hole

‘alignment_peg_to_hole_weight': 170.8059

Figure 8. Parameter adjustment for Peg-Insertion task from LLM
with execution feedback. LLM proposed to reduce approach
weight to better encourage the final goal reaching of the peg.

5.5.3. SIGNIFICANT LOWER TOKEN CONSUMPTION
COMPARED TO MUTATION-BASED METHOD

Lastly, we report the comparison between our method with
Eureka. The success rates for training with fixed and up-
dated reward functions are plotted in Fig 7. We also com-
pare the n_tokens as the total input and output tokens
consumed (Hu et al., 2023) at termination in table 1, which
is either the training reaches the 1.0 success rate or 50 feed-
back iterations to prevent uncapped high cost for querying
GPT-4.

n_tokens., Cabinet Door Scissor
Eureka 64,698 1,284,924 1,338,778
3) ) )
Ours 15,633 (7) 17,543 (7)  130,969(-)

Table 1. Total number of tokens consumed throughout training.
(n) indicates the number of iterations where success rate = 1.0 is
achieved. (-) means termination at max iteration 50.

max sr T Cabinet Door Scissor
Eureka 100.00% 0.00% 0.24%
Ours 100.00% 100.00% 94.54%

Table 2. Maximum success rate achieved throughout training.

On the three tasks, Fureka on average consumes tokens
about 10 times of our method used per iteration. However,

the total tokens consumed throughout training thus the cost
can reach up to 100 times. We believe the evolutionary
method in Eureka is a nice way to address the error-prone
nature of code generated from LLM. However, it may not
be efficient for parameterization setting. In addition, Eureka
iterates in a relatively aggressive way which may also be
related to the sample efficiency. The policies are trained
for 5 epochs before the success rate feedback and retrain-
ing, where we observe hundreds to thousands of epochs are
often required for visible progress on success rate across
three tasks. This might be more pronounced with sparser-
reward tasks. Lastly, though LLM mutates through heuristic
reflection, it does not ensure such mutated reward will per-
form better rather than fluctuate which was observed for
open door and scissor tasks as shown in table 2. Through
self-alignment, such objective is quantified in the ranking
discrepancy that aligns with the objective of reward design,
and optimized towards a reduction in such measure.

5.6. Ablation Study

To better understand how individual components, i.e. self-
alignment (SA) and active adjustment (AA) of parameters
contribute to the final performance, we conducted the abla-
tion study that updates the reward parametrization by:

1. enforcing the ranking self-consistency only.

2. actively adjusting through LLM reflection only.
The reward functions are updated iteratively at the same
frequency. We analyse the effects on three tasks: Pick-Cube
(16M steps), Open-Cabinet-Door (8M steps) and Push-Chair

(8M steps) and report the final policy success rate averaged
over 5 seeds in table 3 below:

srt Fixed SA Only AAOnly SA+ AA
Cube 0.014+0.02 0.30+0.15 0.474+0.49 0.73+0.16
Cabinet | 0.974£0.05 0.97+0.03 0.99+0.02 0.99-+0.02
Chair | 0.69£0.16 0.74+0.14 0.76+0.14 0.84+0.10

Table 3. Success rate for the final policies trained with (1) fixed
LLM reward; (2) updated reward with self-alignment only; (3)
updated reward with active parameter adjustment only; (4) updated
reward that uses both strategies as proposed in this paper.
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It is observed that both schemes improved the performance
compared to using a fixed LLM reward across the three tasks,
while combining the two strategies consistently yields the
highest improvement. Actively adjusting the parameters in
general leads to better policies compared to only enforcing
the reward ranking self-consistency. This is aligned with
the underlying mechanisms of the two strategies that the
self-alignment aims to prevent error from potential reward
misspecification, while active parameter adjustment aims
to directly improve the reward saliency. However, with the
task being more challenging or longer horizon which takes
longer to establish the target behaviour, the active param-
eter adjustment was observed to produce drastic changes
and value differences among parameters with performances
stopped improving over iterations.

5.7. Limitations and Future Works

In this section, we analyse a few limitations in this method
and potential future works. First, to summarize the execu-
tion, the current method reports using the reward features
from the last step, as concatenation over steps will be lengthy
for 2/500-step tasks and dilute the useful information. Thus
it works for tasks where execution can be evaluated based
on the final configuration, but not where trajectory matters
such as walking in an S shape. With the development of a
more powerful VLM, we hope the feedback will be more
informative to remove such limitations. Another limitation
lies in the preference ranking. Currently, we assume all rank-
ings are equally better or worse, However, for sparse-reward
tasks such as peg insertion, some successful experiences
are significantly better and integrating it will enable more
efficient training, which we hope to address in future work.

6. Conclusion

In this work we designed a framework to utilize LLM to
propose the features and parameterization of reward func-
tion, and iteratively update the parameters through a self-
alignment process in the absence of human intervention.
More specifically, we periodically feedback policy to LLM
for ranking. The ranking is later served as pairwise pref-
erence to align and update the reward function. When the
ranking is fully aligned yet no effective policy is developed,
we also query LLM for active reward parameter adjustment
under the same framework of self-alignment. We validated
the framework in 6 ManiSkill2 tasks and 3 IsaacGym tasks
and shows the framework is able to induce optimal policy
effectively and efficiently, where it can often fail without
such self-alignment update. The method is also proven
to be significantly token efficient comparing to alternative
mutation-based method.

Impact Statement

This paper contributes to the field of robotics and machine
learning by introducing a method that enhances the learning
of reward functions in robots automatically, utilizing Large
Language Models (LLMs). While our research primarily
focuses on technical advancements, we acknowledge its
broader societal implications. The refinement of reward
functions in autonomous systems has the potential to bene-
fit sectors like healthcare, manufacturing, and services by
improving efficiency and reliability.

We recognize the ethical importance of ensuring that au-
tonomous systems operate in alignment with societal norms
and values. Our work aims to improve the precision of re-
ward functions and better alignment of social preference that
could potentially regulate behaviors including unethical or
socially biased behaviors. It can produce a more predictable
and trustworthy robotic behavior. We emphasize the need
for ongoing interdisciplinary dialogue to address the ethical
challenges and ensure that advancements in robotics and
machine learning are developed and applied responsibly,
aligning with broader societal interests.
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A. Appendix
A.1. Prompt Details
A.1.1. BACKGROUND PROMPT

First, we list the prompt on the task training background using reinforcement learning and available observations as the

fixed observation dictionary that LLM can access. An additional wrapper was added for ManiSkill2 tasks to create such a

fixed observation dictionary as such information is scattered in the original environment script. By doing this, LLM can be

isolated from the environment source code and communicate with it through only observation and action. This is to mimic a

fixed robotic system equipped with adequate sensory information that is expected to be versatile and acquire different skills

when given the right rewards:

Our goal is to learn a set of sensory-motor skills from language concepts with multi-modal

sensory observations with robots interacting with the environment and learn through

trial and error in a reinforcement learning manner. In the environment, we have:

(1) a robot (access by env.robot) which we can communicate and control using the robot
interface as showed previously;

(2) a target object (env.target_object) to be manipulated. None if the task does not
involve target object.

The available observations from the environment are stored in a dictionary obs which
includes:

obs [’ joint_positions’]: robot joint positions;

obs [’ joint_velocities’]: robot joint velocities;

obs[’ee_pose’]: end effector pose;

obs[’ee_contact_force’]: the external contact force at the robot end effector;

obs[’goal_pose’]: the goal pose for the target object to reach

obs[’distance_to_target’]: the distance between the end effector and the target object.

obs[’distance_to_goal’]: the distance between the target object and the goal pose

. Obs[’in_contact’]: a boolean value if the robot is in contact with a target object if
there is

10. obs[’in_collision’]: a boolean value if the robot is in collision with the environment

11. obs[’action]: the actions robot applied in the last step

(
[
(
obs[’target_object_pose’]: the pose of the target object
[
[
[

O 00 Jo Ul W

Note, you can check

(1) binary grasped status between the gripper and the target object with grasped = env.
robot.is_graspping(env.target_object)

(2) binary collision status between the robot and the environment with collision_detected
= env.detect_collision{()

We plan to learn different manipulation skills in this environment.

The robot is supposed to learn a sensorimotor policy with a neural network using
reinforcement learning. When given observation as input the policy outputs the end
effector pose action. The goal of the policy is to learn optimal action decision-making
for a given skill.

A.1.2. REWARD PROMPT WITH TASK DESCRIPTION

We parse all input arguments except observation and action as the parameters to update automatically. The reward features
are automatically parsed inside the get_reward() function as scalar local variables. As the reward signal is a scalar value, the
features that are most relevant for such reward calculation should be a scalar as well. For replay buffer storage, instead of
storing the raw reward value, we store the reward features. For reward relabeling, we calculate the new reward with the
saved reward features using updated parameters.

To start, please analyze for task <task description>.

Please organize your answer into three parts:

1) describe the skill. Break down the task into substeps of actions as dos that the robot
needs to achieve step by step, then turn them into reward terms step by step. During
this sequence of actions, what are positive actions that will prompt more effective
explorations? Include them in reward terms, Meanwhile, what should be avoided? Design
them into penalty terms.
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2) The total reward should be a weighted sum of all reward and penalty terms. For each
term, analyze what observations mentioned above are related to this term.

3) Based on the analysis from 2), translate the reward design into Python function
get_reward() .

Please only use features that are semantically directly related to this task and minimize
additional considerations such as regularization.

Note:

- Please only use observations that are available in obs_vars and put all hyper-parameters

in the input argument with the recommended value as default input.

- Do not assume and use functions that are not provided.

— Do include any magic number in the reward function.

- All reward or penalty terms in the get_reward function should end with "_reward" or "
_penalty".

- In designing the get_reward() function, make sure you process the most related feature
first and assign it to a variable with an intuitive name before calculating the reward.
Otherwise, avoid naming the variables.

— If there are any hyper-parameters, put them as the input argument of the function with a

recommended default value. Do not use any magic numbers in the function.

A.2. Feedback and Ranking Prompt

The reward function you provided is:
<get_reward() >

Given execution observation for

- data sample 0: <feature_name> = <feature_value>,
— data sample 1: <feature_name> = <feature_value>,
- data sample 2: <feature_name> = <feature_value>,
— data sample 3: <feature_name> = <feature_value>,
- data sample 4: <feature_name> = <feature_value>,

First, summarize how many steps are there in the task.

Then go through the data samples one by one and identify which stage the execution is at.
Put objects at the same step into one cluster and list all the clusters. Note one sample
should only belong to one cluster. Then rank samples from better to worse within a

cluster for all clusters. Lastly, concatenate the ranking in a list by always putting the
cluster at a later step in front.

Make sure the last line of the reply contains and only contains the final list.

Example of opening drawer task:

- data 1, 4 are in the reaching stage, where 1 is closer than 4. The ranking for this
cluster is [1, 4].

- data 2, 5 are in the pulling stage, where 5 are pulled more than 2. The ranking for
this cluster is [5, 2]

Pulling is at a later stage than reaching. The final result is:

[5, 2, 1, 4]

A.3. Parameter Reflection Prompt

Given the reward function for <task_description> is:
<get_reward() >

<repeat execution observation>

Go through each data sample and check if it succeeds in executing <skill description>.
What action will encourage the current behaviour to be more likely to successfully
execute open cabinet drawer? or if this is a multi-step task, which stages the current
behaviour is at? what reward or penalty will prompt the current behaviour to produce
meaningful exploration that contains the action of the next stage?

After going through all samples, count the times that each relevant reward or penalty term
is mentioned. Provide your chain of thought in plain text.
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Lastly, output the identified hyper-parameter that is likely to prompt success or to the
next stage behaviour as a dictionary. The key is the hyper-parameter name and the value
is the recommended new value. Comment behind each to indicate if the value is suggested
to increase or decrease. Do not output anything after this.

For example:
Result:
{"param_a’: 1.0, ’'param_b’: 1.0}

A 4. Prompt to Generate Observation Dictionary Automatically for Isaac Gym Tasks

As the original observations available are nicely structured and named in compute_observation () in Isaac Gym tasks,
we leverage LLM itself to automatically generate the observation dictionary within this function that later will be used for
reward proposing and calculation.

You are an expert in robot manipulation. Now the task is to <task description>. Provided
this is the compute_observations function which are the observations you can get:

<compute_observation ()>
Please append a snippet of code which is supposed to be put at the last step of the
compute_observation () function that aggregates all observations into a dictionary with

the variable name "obs_vars", where the key is the observation name and value is the
corresponding value.

A.5. Task Description

The task description used in the prompt template for the 9 evaluation tasks are listed below in table 4:

Task Task Description

Pick Cube pick cube object and transport to the target position

Pick Ycb pick ycb object and transport to the target position

Peg Insertion insert peg into the side hole

Open Cabinet Drawer open cabinet drawer as much as possible

Open Cabinet Door open cabinet door as much as possible

Push Chair push a swivel chair to a target 2D location on the
ground

Franka Cabinet open cabinet drawer as much as possible

Shadow Hand Open Door Outward push the door as much as possible with left and right
panels outwards with two hands

Shadow Hand Scissor open the scissor as much as possible with two hands

Table 4. Task descriptions for 9 tasks evaluated in the paper.

A.6. Example Reward Functions
A.6.1. OPEN DRAWER
def get_reward(obs, alignment_weight=1.0, approach_weight=1.0, grasp_weight=1.0,
pull_weight=1.0, collision_penalty_weight=1.0, non_progress_penalty_weight=1.0,
distance_penalty_weight=0.1) :
# Extract relevant features from observations
distance_to_handle = np.linalg.norm(obs[’distance_to_target’])

distance_to_goal = obs[’distance_to_goal’][0]

# Check for contact and collision
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contacted = env.robot.gripper_in_contact (env.target_object)
collision_detected = env.detect_collision ()

alignment_reward = - alignment_weight x distance_to_handle
# Approach reward: Encouraging the EE to get closer to the handle
# Higher when the distance is smaller, so we take the negative distance

approach_reward = - approach_weight * distance_to_handle

# Grasp reward: Binary reward for making contact with the handle
grasp_reward = grasp_weight x 1.0 if contacted else 0.0

# Pull reward: Encouraging the EE to get the handle closer to the goal position
# Higher when the distance is smaller, so we take the negative distance

pull_reward = -pull_weight % distance_to_goal

# Collision penalty: Penalizing any collision detected during interaction
collision_penalty = -collision_penalty_weight » 1.0 if collision_detected else 0.0

# Non-progress penalty: If there’s no contact and no reduction in distance to the

handle,
# penalize to encourage the EE to move towards the handle
non_progress_penalty = -non_progress_penalty_weight « 1.0 if not contacted and

distance_to_handle > 0.02 else 0.0 # Threshold of 2cm

# Excessive distance penalty: Discouraging the EE from being too far from the handle
excessive_distance_penalty = - distance_penalty_weight % distance_to_handle if
distance_to_handle > 0.15 else 0.0 # Threshold of 15cm

# Combine rewards and penalties into total reward
total_reward = alignment_reward + approach_reward + grasp_reward + pull_reward +
collision_penalty + non_progress_penalty + excessive_distance_penalty

return total_reward

A.6.2. PUSH CHAIR

def get_reward (obs, approach_weight=1.0, movement_weight=1.0, collision_penalty_weight
=1.0):

# Reward for minimizing the distance between the robot gripper and the chair
gripper_to_chair_dist = np.linalg.norm(obs[’distance_to_target’])
approach_reward = —-gripper_to_chair_dist # Negative value: smaller distance is better

# Reward for moving the chair towards the target position

# Assuming the target position is part of the environment’s state
chair_to_target_dist = np.linalg.norm(obs[’distance_to_goal’][:2])

movement_reward = -chair_to_target_dist # Negative value: smaller distance is better

# Penalty for collisions
collision_detected = env.detect_collision()
collision_penalty = -1.0 if collision_detected else 0.0

# Calculate total reward
total_reward = approach_weight * approach_reward + movement_weight * movement_reward +

collision_penalty_weight x collision_penalty

return total_ reward

A.6.3. SHADOW HAND OPEN SCISSOR

def get_reward(obs, handle_separation_weight=1.0, hand_on_handle_weight=1.0,
stability_weight=0.1):
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# Extract relevant features from obs
scissors_right_handle_pos = obs[’scissors_right_handle_pos’]
scissors_left_handle_pos = obs[’scissors_left_handle_pos’]

left_hand_pos = obs[’left_hand_pos’]
right_hand_pos = obs[’right_hand_pos’]

object_linvel = obs[’object_linvel’]
object_angvel = obs[’object_angvel’]

# Initially, the handles are next to each other, we want to maximize the distance
between the scissor handles

handles_distance = torch.norm(scissors_right_handle_pos - scissors_left_handle_pos, p
=2, dim=1)

# Handle Separation Reward (encourage the hands to move the scissor handles apart)
handle_separation_reward = handle_separation_weight % handles_distance

# Hand on Handle Reward (encourage the hands to maintain contact with the scissor

handles)

left_hand_on_handle_distance = torch.norm(left_hand_pos - scissors_left_handle_pos, p
=2, dim=1)

right_hand_on_handle_distance = torch.norm(right_hand_pos - scissors_right_handle_pos,
p=2, dim=1)

hand_on_handle_reward = - hand_on_handle_weight x (left_hand_on_handle_distance +

right_hand_on_handle_distance)

# Stability Penalty (minimize the linear and angular velocity of the scissors to
ensure smooth opening)

linear_velocity_magnitude = torch.norm(object_linvel, p=2, dim=1)
angular_velocity_magnitude = torch.norm(object_angvel, p=2, dim=1)
stability_penalty = - stability_weight * (linear_velocity_magnitude +

angular_velocity_magnitude)

# Combine rewards and penalties
total_reward = handle_separation_reward + hand_on_handle_reward + stability_penalty

return total_reward

A.7. Example Ranking from LLM

<Feedback>
Given execution observation for

- data sample 0: distance_to_peg = 0.3771, alignment_error_ee_to_peg = 0.3695, grasped =
False, collision_detected = True, peg_to_hole_distance = 0.1237,
alignment_error_peg_to_hole = 0.0197.

- data sample 1: distance_to_peg = 0.2108, alignment_error_ee_to_peg = 0.3156, grasped =
False, collision_detected = False, peg_to_hole_distance = 0.12247,
alignment_error_peg_to_hole = 0.0239.

- data sample 2: distance_to_peg = 0.2523, alignment_error_ee_to_peg = 0.0064, grasped =
False, collision_detected = False, peg_to_hole_distance = None,
alignment_error_peg_to_hole = None.

- data sample 3: distance_to_peg = 0.0914, alignment_error_ee_to_peg = 0.0174, grasped =
True, collision_detected = False, peg_to_hole_distance = 0.3165,
alignment_error_peg_to_hole = 0.0303.

- data sample 4: distance_to_peg = 0.0474, alignment_error_ee_to_peg = 0.0139, grasped =
True, collision_detected = False, peg_to_hole_distance = 0.2201,
alignment_error_peg_to_hole = 0.0135.

— data sample 5: distance_to_peg = 0.0334, alignment_error_ee_to_peg = 0.0106, grasped =
True, collision_detected = False, peg_to_hole_distance = 0.1032,
alignment_error_peg_to_hole = 0.0190.

<ChatGPT>
The task involves the following steps:
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Approaching the Peg: Reduce the distance to the peg and align the end effector with it.
Grasping the Peg: Successfully grasp the peg.

Transporting Peg to Hole: Move the peg towards the hole while maintaining alignment.
Aligning Peg with Hole: Ensure the peg is properly aligned with the hole before insertion.
Now, let’s analyze the data samples and categorize them based on the steps:

Data Sample Analysis

Approaching the Peg Stage

Sample 0: Collision occurred, failed to grasp.

Sample 1: No collision, but failed to grasp. Better alignment than sample 0.
Sample 2: No collision, best alignment, but failed to grasp.

Approaching Cluster Ranking: [2, 1, 0]

Grasping the Peg Stage (None)

Transporting Peg to Hole Stage

Sample 3: Grasped the peg, but the peg is far from the hole and alignment is not perfect.
Sample 4: Grasped, closer to the hole and better alignment than sample 3.

Sample 5: Grasped, closest to the hole and better alignment than sample 4.

Transporting Cluster Ranking: [5, 4, 3]

Aligning Peg with Hole Stage (None)

Final Result
Putting the clusters in order based on the steps in the task, with later stages first:

A.8. Ranking Failure Cases
A.8.1. SMALL NUMERICAL DIFFERENCE

As mentioned in Section 3, LLM can mis-rank especially when there are subtle numerical differences. In the example shown
below, data sample 4 should be the closest reaching but is ranked as 4th while other samples are ranked in the right order:

Given execution observation for

- data sample 0: drawer_joint_value = 0.0000, distance_to_drawer = 0.0589, alignment =
0.9999.
- data sample 1: drawer_joint_value = 0.0000, distance_to_drawer = 0.0527, alignment =
1.0000.
- data sample 2: drawer_joint_value = 0.0000, distance_to_drawer = 0.0205, alignment =
1.0000.
- data sample 3: drawer_joint_value = 0.0000, distance_to_drawer = 0.2089, alignment =
0.9851.
- data sample 4: drawer_joint_value = 0.0000, distance_to_drawer = 0.0168, alignment =
1.0000.

<analysis skipped>

All data samples are in the reaching stage, the ranking for the reaching stage cluster is
[2, 1, 0, 4, 3]

(from best to worst distance_to_drawer).

A.8.2. AMBIGUOUS TASK DESCRIPTION

In general, to generate a ranking that is useful to guide the task policy, it is found that LLM requires the task description
to be explicit about the task goal. When given an abstract description of a task such as ”Pull a drawer”, humans naturally
associate with experience unspoken here, as a continuous change in the drawer prismatic joint and the more it is pulled the
better. However, LLM tends to interpret words more literally with less such association. In the example shown below, LLM
interpreted the task with the description “open the cabinet drawer” as a binary status goal. In the ranking of opened drawer
cases, LLM seeks better orientation alignment between the end effector and opened drawer for higher ranking instead of the
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pulled length. Adding a goal such as ”pull the cabinet drawer as much as possible” helps to remove such ambiguity, but in
general, it hints at the requirement to carefully design the task description that no ambiguity presents, which can be less
obvious for humans.

Given execution observation for

- data sample 0: drawer_joint_value = 0.0088, distance_to_drawer = 0.0988, alignment =
0.9998.
- data sample 1: drawer_joint_value = 0.0510, distance_to_drawer = 0.1748, alignment =
0.9866.
- data sample 4: drawer_joint_value = 0.0651, distance_to_drawer = 0.6472, alignment =
0.7687.

<analysis skipped>
Now we can cluster the data samples:
- Pulling stage: [0, 1, 4]

Within each cluster, we rank the samples from better to worse:
— Pulling stage: [0, 1, 4] (0 has the best alignment and smallest distance, 1 has the next
best alignment and distance, 4 has the worst alignment and largest distance)

A.9. Example Parameter Reflection from LLM

Data sample O:

— The robot has successfully grasped the peg and is moving towards the hole. The distance
to the peg and the alignment error between the end effector and the peg are both low,
indicating that the robot is holding the peg correctly. The distance to the hole and the
alignment error between the peg and the hole are relatively high, suggesting that the
robot is in the process of moving the peg towards the hole. No collision is detected. The

robot should be encouraged to continue reducing the distance to the hole and aligning
the peg with the hole.

Data sample 1:

— The robot is still holding the peg and has moved closer to the hole, as indicated by the
reduced distance to the hole. The alignment error between the end effector and the peg

has increased slightly, but the alignment error between the peg and the hole has also
increased. This suggests that while the robot is moving closer to the hole, it may not be
aligning the peg correctly. No collision is detected. The robot should be encouraged to
improve the alignment between the peg and the hole while continuing to reduce the

distance to the hole.

Data sample 2:

— The robot continues to hold the peg and move closer to the hole. Both the distance to
the peg and the alignment error between the end effector and the peg have decreased,
indicating that the robot is holding the peg more correctly. The distance to the hole and

the alignment error between the peg and the hole have also decreased, suggesting that
the robot is aligning the peg with the hole more accurately. No collision is detected.
The robot should be encouraged to continue this behavior.

Data sample 3:

— The robot is still holding the peg, but the distance to the hole has increased,
suggesting that the robot may have moved away from the hole. The alignment error between
the end effector and the peg has slightly increased, but the alignment error between the
peg and the hole has decreased significantly. This suggests that while the robot may have

moved away from the hole, it has improved the alignment of the peg with the hole. No
collision is detected. The robot should be encouraged to move closer to the hole while
maintaining the alignment of the peg with the hole.

Data sample 4:

— The robot continues to hold the peg, but the distance to the hole has significantly
increased, suggesting that the robot has moved further away from the hole. The alignment
error between the end effector and the peg has also increased, indicating that the robot
may not be holding the peg correctly. However, the alignment error between the peg and
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the hole has decreased significantly,

alignment of the peg with the hole.
encouraged to move closer to the hole and improve the way it holds the peg.

suggesting that the robot has improved the

No collision is detected. The robot should be

Count of relevant reward or penalty terms:
5 times

— collision_penalty: 0 times
Result:
{’distance_to_peg_weight’: 60.0, # increase to encourage the

to the peg

approach_reward:

peg_to_hole_alignment_reward:

"alignment_ee_to_peg_weight’:

ee_to_peg_alignment_reward: 5 times
grasp_reward: 5 times
lift_and_move_reward: 5 times

5 times

80.

0,

robot to reduce the distance

# increase to encourage the robot to improve the

alignment between the end effector and the peg
"grasp_reward_value’: 70.0, # decrease as the robot is alre
peg
"distance_to_hole_weight’:
to the hole
"alignment_peg_to_hole_weight’: 75.0, # increase to encoura
alignment between the peg and the hole
"collision_penalty_value’: -20.0} # # no change as no colli

90.0, # increase to encourage th

A.10. Visualization for Alignment over Iterations
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Figure 9. The number of inconsistencies, success rate, self-alignment updated reward and the corresponding oracle reward with training

steps for the pick cube task.

To better understand how the alignment evolves with the learning process, we plot
rate, self-alignment updated reward and the corresponding original oracle reward
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9. It is observed that in the early stage, the inconsistency in general decreases quickly but also spikes with new sub-step
behavior picked up. It gradually decrease to around 0 and maintain here.

A.11. Visualization for Reward Update Triggers

35 —— alignment_weight
—— approach_weight
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Figure 10. Visualization for weight update over iterations (1) Open Drawer, (2) Push Chair; (3) Shadow Hand Open Scissor

Figure 11. Visualization of policy behaviour around iterations where major parameter changes as visualized in Fig 4 (a) were observed.
They are (from top to bottom) at iteration 5, 12, 23, and 35. The weight updated is found to be interpretable and directly correlates to the
policy behaviour.

The weights for runs on tasks Open Drawer, Push Chair, Shadow Hand Open Scissors are plotted as shown in Fig 10. Where
we can observe weights-related parameters, especially for pick cube, open drawer and open scissor, weights tend to change
transiting from approach, then grasp (if involved) then final goal reaching with the policy improving. We can also observe
multiple cases where approaching/grasping weight decreases significantly to allow exploration for goal reaching stage.

In Fig 11. We further visualized the policy rollout at iteration 5, iteration 12, iteration 23 and iteration 35 as shown with
major reward update pattern changes as shown in Fig 4 (a). The weight updated is found to be interpretable and directly
correlates to the policy behaviour:
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Iteration 5: The model gradually starts to reach to object every time from random behavior, where it is observed the
approaching weight starts to stabilize;

Iteration 12: The model starts to grasp the cube and move to random locations. Similarly, a slower increase in grasp
weight is observed and goal-reaching and maintaining weight start to increase more rapidly;

Iteration 23: Goal reaching and maintaining weight slows down, and grasping and approaching weight starts to increase
once again. From the rollout policy, the policy learns to pick up the cube and tries to reach the goal fast while the cube
becomes unstable and slips out of hand where re-grasping happens.

Iteration 35: Goal reaching and maintaining weight keeps increasing while other parameters stay fixed. It is observed
the robot can pick up the cube to go near the goal position although not exactly. The two weight terms stabilize in a few
more iterations.
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