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1 INTRODUCTION

Identifying cancer driver genes, whose mutations confer a selective growth advantage to tumor cells,
is critical for understanding tumorigenesis and targeted treatments. However, this task remains chal-
lenging due to tumor heterogeneity, context-specific effects, and the limited availability of labeled
data (Martı́nez-Jiménez et al., 2020). Traditional computational methods often rely on handcrafted
features, which may not fully capture the complexity of genomic sequences (Malebary & Khan,
2021). Recent advances in genomic language models (gLMs) offer a promising alternative (Bene-
gas et al., 2025) by learning directly from raw DNA sequences, potentially uncovering latent features
associated with driver genes.

In this paper, we utilize Caduceus (Schiff et al., 2024), a state-of-the-art gLM, to predict cancer
driver genes from DNA sequences. Caduceus is uniquely suited for this task due to its linear scaling,
bidirectional context modeling, and support for reverse complementarity (see Appendix for details).
We fine-tuned Caduceus on a curated dataset of driver and passenger genes and analyzed the learned
representations using post-hoc explainability methods. We aim to test the hypothesis that gLM
embeddings capture sequence features that distinguish driver genes from passenger genes. This work
could pave the way toward more generalizable and interpretable cancer gene prediction methods
applicable to sequencing data from individual patients.

2 METHODS

We fine-tuned Caduceus on a curated dataset of 888 driver genes and 1,528 passenger genes (see
Appendix for details). To address class imbalance and sequence length variability, we also extracted
all the unique transcript (cDNA) sequences for each gene, resulting in a dataset that include 13,687
driver transcripts and 15,816 passenger transcripts. The dataset was split into 90% training and 10%
testing datasets, with five random splits to ensure robust evaluation. We applied majority voting to
combine predictions from transcript sequences of the same gene.

To mitigate overfitting, we utilized regularization strategies such as early stopping, L2 regulariza-
tion, and dropout. We applied principal component analysis (PCA) to visualize learned embeddings
and assess context learning. We used SHAP (SHapley Additive exPlanations) to identify sequence
features contributing to predictions (Lundberg & Lee, 2017). To further evaluate biological rele-
vance of the identified sequence features, we examined the contributions of somatic point mutations
in driver genes to predictions (Tate et al., 2018).

3 RESULTS

The fine-tuned Caduceus model on gene DNA sequences achieved an accuracy of 0.693± 0.18 and
an F1-score of 0.683 ± 0.02 on the test dataset across five runs. The model showed poorer per-
formance and more overfitting on transcript sequences. While the performance is promising given
the complexity of the task, it highlights the need for further optimization to improve its applicabil-
ity. The PCA plot of learned embeddings reveals partial separation between driver and passenger
genes, indicating that the model captures representative sequence features to some extent (Figure
1). However, the overlap between classes suggests that the model could benefit from incorporating
additional features or architectural refinements to improve its discrimination power.
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Figure 1: PCA visualization of learned embeddings for driver (orange) and passenger(blue) gene
DNA sequences on the test dataset with highest accuracy.

Figure 2: SHAP force plot for the prediction of cancer driver gene SOX2. The highlighted regions
indicate subsequences that the model deems important for its predictions. Red regions contribute
positively to the prediction, whereas blue regions contribute negatively. The direction plot at the top
indicates the overall influence of each region on the prediction, though its interpretability is limited
for large sequences. Color intensity reflects the strength of the contribution, with darker shades
indicating greater influence.

The SHAP force plots allow the identification and analysis of specific regions in driver genes that
are critical for model predictions (Figure 2). For SOX2, a well-established cancer driver gene across
multiple cancer types and a promising drug target, approximately 76% of its somatic point mutations
were positively associated with the model’s prediction of it as a driver gene. For 50 short driver
genes ranging from 1,576 to 5,539 base pairs, including SOX2, the mean positive contribution ratio
was 0.61 (standard deviation 0.13), indicating a general tendency of more somatic point mutations
contributing to the prediction of driver genes (see Appendix for details).

4 CONCLUSION

In this work, we leveraged Caduceus, a cutting-edge gLM, to predict cancer driver genes from DNA
sequences. The model demonstrated moderate accuracy and provided interpretable insights into
sequence features related to gene fitness. However, challenges such as overfitting and partial class
separation indicate room for improvement. Future work will focus on enhancing the generalizability
of the model, further exploring the biological relevance of the learned representations, incorporating
additional biological context for predictions, and extending the approach to patient-specific DNA
sequencing data.
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MEANINGFULNESS STATEMENT

Cancer driver genes are usually detected as positively selected genes with high fitness. We hypoth-
esize that subsequences within these genes carry signals of positive selection that can be learned by
genomic language models (gLMs). In this work, we fine-tuned Caduceus, a high-performing long-
range gLM, to predict cancer driver genes from DNA sequences. Post-hoc interpretations of our
fine-tuned model helped to explain important sequence features associated with gene fitness such
as known somatic mutations in driver genes. Our approach generates meaningful representations of
DNA sequences related to cancer driver genes and provides a framework toward interpretable cancer
driver gene prediction.
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A APPENDIX

The source code and datasets used in this study will be released upon publication.

A.1 MODEL OVERVIEW

Caduceus is a gLM designed for modeling long-range genomic sequences (Schiff et al., 2024). Built
upon the Mamba architecture (Gu & Dao, 2023), Caduceus introduced bi-directionality and reverse-
complement (RC) equivariance, enabling it to capture context from both upstream and downstream
genomic regions while maintaining consistency. This makes Caduceus particularly well-suited for
tasks requiring long-range dependencies, such as predicting the effects of genetic variants and iden-
tifying regulatory elements. The RC-equivariant architecture also eliminates the need for explicit
RC data augmentation during training, further enhancing its robustness and generalizability.
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Caduceus has demonstrated strong performance across a variety of downstream genomic tasks. No-
tably, it outperforms larger transformer-based models on tasks requiring long-range context, such as
predicting the effects of mutations located far from transcription start sites. Its efficiency in handling
sequences of up to 131kb base pairs, without the quadratic scaling issues of attention-based models,
also makes it a practical choice for detecting cancer driver genes, which typically range in size from
a few hundred to hundreds of thousand base pairs.

A.2 DATASET DETAILS

We obtained 888 protein-coding driver genes from IntOGen (version 2024-06-18, 633 genes)
(Martı́nez-Jiménez et al., 2020) and COSMIC Cancer Gene Census (version 101, 255 genes) (Tate
et al., 2018) for training. By excluding newly discovered driver genes, including 78 genes in a recent
study (Kinnersley et al., 2024), we obtained 1,528 passenger genes from 1,743 genes previously em-
ployed to evaluate various machine learning methods for cancer driver gene prediction (Malebary
& Khan, 2021). We extracted DNA sequences of these genes based on their genomic locations on
BSgenome.Hsapiens.UCSC.hg38 and transcript sequences from Ensembl (version 113).

The driver gene sequences range from 490 to 2,473,539 base pairs, whereas the passenger gene
sequences range from 630 to 2,173,324 base pairs. Transcript sequences are much shorter, with
driver gene transcripts ranging from 60 to 46,191 base pairs and passenger gene transcripts ranging
from 19 to 24,020 base pairs.

A.3 MUTATION ANALYSIS

Using SHAP, we analyzed 50 short genes out of 114 driver genes in the test dataset where the
highest prediction accuracy was achieved on gene DNA sequences. We obtained 11,483 somatic
point mutations within these genes from COSMIC Cancer Mutation Census (Tate et al., 2018) and
evaluated whether these mutations contributed positively or negatively to model predictions. We
define the positive contribution ratio for a gene as the percentage of its mutations contributing to the
prediction of it being a cancer driver gene.

The distribution of positive contribution ratios across genes slightly skews toward larger values
(Figure 3), suggesting that a high proportion of driver mutations were captured by the model. Among
these genes, MYD88 exhibited the highest positive contribution ratio, with 96.3% of its mutations
classified as positive. In contrast, TNFRSF17 had the lowest ratio at 15.4%, suggesting that its
mutations were more frequently linked to negative contributions. Further analysis will be needed to
better understand the heterogeneity among these genes.

Figure 3: Distribution of positive contribution ratios across 50 cancer driver genes. The x-axis rep-
resents the positive contribution ratio, indicating the proportion of a gene’s mutations that positively
contributed to the model’s prediction of driver genes. The y-axis represents the frequency of genes.
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