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Abstract

In this work, we bound a machine’s ability to learn based on computational limi-
tations implied by physicality. We start by considering the information processing
capacity (IPC), a normalized measure of the expected squared error of a collection
of signals to a complete basis of functions. We use the IPC to measure the degra-
dation under noise of the performance of reservoir computers, a particular kind of
recurrent network, when constrained by physical considerations. First, we show
that the IPC is at most a polynomial in the system size n, even when considering
the collection of 2n possible pointwise products of the n output signals. Next, we
argue that this degradation implies that the family of functions represented by the
reservoir requires an exponential number of samples to learn in the presence of
the reservoir’s noise. Finally, we conclude with a discussion of the performance
of the same collection of 2n functions without noise when being used for binary
classification.

1 Introduction

Reservoir computers(Frate et al. (2021); Mujal et al. (2023); Nakajima & Fischer (2021); Gan-
guly et al. (2017); Gonon & Ortega (2020); Duport et al. (2016); Martı́nez-Peña & Ortega (2023);
Martı́nez-Peña & Ortega (2022); Verstraeten et al. (2007); Martı́nez-Peña & Ortega (2022)) are a
particular kind of recurrent neural network where the only trained parameters are outgoing weights
forming a linear layer between the internal parameters of the network, called the reservoir, and
the readouts. This architecture drastically simplifies the process of training the network while
maintaining high computational power. A defining aspect of a reservoir computer is its ability
to perform inherently temporal tasks, such as time-series prediction or pattern recognition within
sequences(Dominey (1995)). In this framework, the reservoir serves as a temporal kernel(Dong
et al. (2020)), transforming the input sequence into a high-dimensional state represented in the
hidden state of the reservoir. These hidden states are then linearly combined by trainable output
nodes. The high-dimensional, temporal representation of data in the reservoir gives the output nodes
enough flexibility to extract complex, non-linear features while avoiding the common issue of van-
ishing/exploding gradients or overfitting. Notably, due to the simple linear nature of the learned
part of the network, the behavior and outcomes of reservoir computers are defined primarily by the
reservoir. This interpretability sets reservoir computers apart from other deep learning approaches,
making it valuable for applications requiring transparency or insight into the learning process. A
crucial advantage is that the nonlinearities needed for learning are encapsulated within the physical
dynamics of the reservoir, suggesting that we can leverage physical understanding to glean insights
into the learning.

In this work, we prove several results about stochastic reservoir computers that are subject to physi-
cally motivated constraints. We find that stochasticity substantially impairs the learning capabilities
of a physical reservoir computer. Specifically, what we find is that when considering the 2n real-
valued functions formed by the pointwise products of the n real-valued functions forming the output
signals of the reservoir, a particular measure of computational power called the information process-
ing capacity (IPC)(Dambre et al. (2012); Hu et al. (2022); Polloreno et al. (2023); Polloreno (2023))
for any stochastic reservoir is at most polynomial in n when the reservoir dynamics are constrained
to certain physicality requirements. This is to be contrasted with the deterministic case, where the
space of 2n output functions generally trivially gives an exponential amount of IPC, even constrained
by these requirements.
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2 Overview

Often, when we consider a physical system, for instance thermodynamically or mechanically, we
imagine that there is a prescribed algorithmic method for enlarging or extending the system. That is,
when we say a reservoir, what we actually have in mind is a family of reservoirs, e.g. an interacting
gas or a network of coupled oscillators. In this work, we will be interested in understanding how
the performance of a computer built from one of these reservoirs changes with system size. In
particular, because the number of degrees of freedom is increasing, we expect the system to be
capable of increasingly better, or at least more interesting, computation. We will, however, establish
a series of technical results that restrict the utility of reservoir computers constrained by physical
assumptions.

In particular, we will consider stochastic reservoirs, which arise from, e.g., dissipation, incomplete
information or measurement shot noise. In addition, we will assume the length of time the reservoir
is run and the amount of energy the reservoir consumes are both polynomial in the system size n.
This constrains the kinds of allowed operations - for instance, it is not possible to perform n-body
operations (arbitrary long range interactions) in a single time step, since these require an exponen-
tial number of k-body (k < n) operations. Our first result, Theorem 2, will demonstrate that the
dimension of the space we can perform regression onto can be meaningfully identified as polyno-
mial, despite the exponential number of functions being considered. In particular, we will show that
a large fraction of the signals produced by a reservoir are strongly dominated by noise, and that it
requires a lot of waiting to distinguish one such signal from another. Our second result, Theorem 4
will give a characterization of the class of functions represented by the reservoir. Namely, due to a
theorem of Bartlett et al.(Bartlett et al. (1994)), we will see that is possible to relate a certain kind of
learnability of this class to its fat-shattering dimension (Bartlett et al. (1994)).

3 Reservoir Computers

A reservoir computer is a dynamical system, generally described by a system of differential equa-
tions, driven by an input U(t) ∈ Rm and described by time varying degrees of freedom X(t) ∈ Rn

which represent its state. In this paper, we will consider systems consisting of n degrees of freedom,
which we will assume are bits. We note that this assumption is not particularly restrictive, and is in
fact commonplace - any kind of physical dynamics can be encoded with vanishing error into a dis-
cretized signal. Because these degrees of freedom can be multiplied together to form new outputs,
Y(t) ∈ Rd, in general the output dimension is d ≥ n and in this work we will consider d = 2n corre-
sponding to all possible products of the n signals. In the case of a stochastic reservoir computer, the
state of the computer is in general a vector in the 2n dimensional space of probability distributions
over bitstrings of length n, i.e. Y(t) = (p0...0(t), ..., p1...1(t)). While it may be compelling to assume
that the n single-bit marginal distributions will contain the most computational utility, we note that
arbitrary reservoirs can be used to construct complex and potentially highly correlated probability
distributions. Thus, any argument that suggests there is a preferred collection of bitstrings among
the 2n possible ones is making further assumptions about the structure of the reservoir.

Typically, in a reservoir computing setting, one considers a dynamical system observed at discrete
time-steps t = 0, 1, 2, . . ., and the outputs are used to approximate a target function. Due to the
general presence of memory in dynamical systems, we additionally define the concatenated h-step
sequence of recent inputs U−h(t) = [U(t−h+1),U(t−h+2), . . . ,U(t)]. While we may use the reservoir
to learn a function of time, the reservoir’s degrees of freedom themselves can be approximated by
maps xh

k : U−h(t) 7→ R. In particular, this is because we require that the reservoir satisfies the
fading memory property. A dynamical system has fading memory if, for all ϵ > 0, there exists a
positive integer h0 ∈ N, such that for all h > h0, for all initial conditions, and for all sufficiently long
initialization times T ′ > h, the xk(t) at any time t ≥ 0 are well-approximated by functions xh

k :

E((xk(t) − xh
k[U−h(t)])2) < ϵ (1)

where the expectation is taken over the t + T ′ previous inputs(Polloreno (2023); Polloreno et al.
(2023)). Due to two different sources of randomness in this paper, we next give definitions and nota-
tion for the different averages we compute, before we define the capacity of reservoir to reconstruct
a signal.
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Definition 1. The input signal to a reservoir computer corresponds to a stochastic random variable
and thus has an associated probability measure µ, and we write f to denote averages of a quantity
f with respect to this measure, i.e.

f =
∫

dµ f . (2)

A stochastic reservoir computer further has probabilistic dynamics, coming from, e.g., noise. Thus
the outputs have an additional associated probability measure ν, and we write ⟨ f ⟩ to denote the
average of a quantity f over this measure, i.e.

⟨ f ⟩ =
∫

dν f . (3)

Definition 2. The capacity of a reservoir to reconstruct a signal y(t) is given as

CT [y] = 1 −minω

∑T
t=1(ŷω(t) − y(t))2∑T

t=1 y2(t)
, (4)

where ŷω is the estimate of y produced from the reservoir.

Typically ŷω is produced via a linear weighting of the output signals, i.e. ŷ(t) = ωT Y(t) for a weight
vector ω. Then, we can define the IPC as
Definition 3. For a complete and countably infinite set of basis functions {y1, y2, . . .}, the IPC of a
dynamical system can be defined as

IPC = lim
D→∞

lim
T→∞

D∑
ℓ

CT [yℓ] ≤ n. (5)

(Hu et al. (2022) and Polloreno et al. (2023)) derive a closed form expression for the IPC of a
stochastic reservoir, which we state here without derivation as Theorem 1. We can perform a spec-
tral decomposition ⟨X⟩⟨X⟩T = V DVT with positive definite, diagonal matrix D and an orthogonal
matrix V to define the generalized noise-to-signal matrix Q̃ξ as

I + Q̃ξ B D−
1
2 VT ⟨XXT ⟩V D−

1
2 , (6)

where I is the identity matrix, so that Q̃ξ describes the deviation of the reservoir from an ideal
noiseless reservoir that produces orthogonal outputs.
Definition 4. (Hu et al. (2022)) The right eigenvectors of Q̃ξ are called the eigentasks of the reser-
voir.

In (Polloreno et al. (2023)) it is shown that Q̃ξ gives some measure of the reservoir stochasticity
in the basis of the correlations imposed by the input signal and gets its utility from the following
theorem:
Theorem 1. (Hu et al. (2022); Polloreno et al. (2023)) The IPC is of a stochastic reservoir is given
as

IPC = Tr
(
(I + Q̃ξ)

−1
)

=

n∑
k=1

1
1 + σ̃2

k

≤ n, (7)

where σ̃2
k are the eigenvalues of Q̃ξ. These eigenvalues correspond to noise-to-signal ratios, the

inverse of signal-to-noise (SNR) ratios, of the reservoir at performing their respective eigentasks
(see (Polloreno et al. (2023)) for more details). The reader may notice that this takes a similar
form to the least squares solution to the linear regression problem with uncertainties on both the
independent and dependent variables, and can be shown to come from similar considerations(Hu
et al. (2022)). The outputs of the reservoir are, in general, post-processed depending on the learning
task at hand. Because we conventionally optimize over linear weights, we are free to define the
outputs of the reservoir up to a linear transformation without impacting the IPC. In particular, we
will find particularly convenient the probability representation of the reservoir outputs.
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Definition 5. The probability representation of the outputs of a reservoir is given by the bitstring
probabilities pk, i.e. the output signal is given by X(t) = (p0...0(t), . . . , p1...1(t)).

Our results in this paper will be similar in spirit to the results in (Poulin et al. (2011); Shannon
(1949)), which show that the space of states accessible by a physical computer, defined next, are
exponentially vanishing in the total state space. Morally, these results suggest our ultimate result
- how can physical states give rise to signals that have useful support on all 2n basis vectors if the
states themselves are exponentially vanishing?
Definition 6. We define a stochastic reservoir as physical, motivated by (Poulin et al. (2011)), if
its dynamics can be implemented in time polynomial in the system size, n. Furthermore, defining
a k−body circuit element as a circuit element with k inputs, we require that the dynamics of a
physical stochastic reservoir be describable by circuits with k−body circuit elements, for some fixed
k independent of n.

Intuitively, this definition rules out states that are not practically accessible to the reservoir. The
k-body requirement stems from physicality constraints on the density of circuit elements. There are
only so many circuit elements that can fit into a space and increasing this density arbitrarily with
n, i.e. n−bit operations, is physically impossible. For the purposes of this paper we borrow the
definition from (Poulin et al. (2011)) and provide a more detailed justification in Appendix A. In
particular, we additionally prove a lemma that we will make later use of.
Lemma 1. Consider the magnitude of the input to an n−bit reservoir computer, given as u(t) =
||U(t)||2. Then, the changes in probabilities dp(u)

du are no more than polynomial in n.

Proof. In Appendix A we argue from typical physical arguments that the changes in the probabilities
p(u) can only be changed polynomially rapidly in u. Furthermore, we argue in Appendix A that by
construction of our definition of physical, we have only considered systems where u is a polynomial
in the system size n.

4 Stochastic Reservoirs have Subexponential Capacity

Generally speaking, the computational utility of a reservoir computer is fully characterized by the
dimension of its externally observable dynamics. In the case of a deterministic reservoir, the state
space is fully specified by n bits. It is possible to further construct all 2n functions on these bits,
which then give the potential for 2n capacity arising from correlations between the bits. (These new
signals can of course fail to give additional IPC, for example consider a reservoir with outputs f1, f2
and f1 f2, with

∫
dµ(u) f1 f2 = 0, where we have considered the standard L2 inner product.) For

example, the collection of polynomials S , given by S = {x, x2, x4, x8...x2n
}, where all 2n elements of

the powerset 2S = {{}, {x}, {x2}, ..., {x, x2}...}} can be used to construct a collection S ′ of exponentially
many linearly independent polynomials by through multiplication, i.e. S ′ = {x, x2, x3..., x2n

}.

As previously discussed, in the case of a stochastic reservoir, the state space is immediately nat-
urally defined as d = 2n dimensional. However, despite the system requiring 2n real numbers to
be described, a natural question is if it is possible to utilize this 2n dimensional space for useful
computation, and in our case, learning? In particular we are able to construct 2n signals by taking
multiplicative products of the n output signals - does this provide an exponential amount of IPC as
in the deterministic case? We will find the answer is no, for any physical stochastic reservoir. As
we will see, by introducing stochasticity, the performance of physical stochastic reservoirs is de-
graded to at most a polynomial in the number of output bits amount of IPC, even when considering
all 2n readout monomials (which form the conventional “state space” of the system). This makes
it particularly important to be able to meaningfully select the “best” outputs, which requires some
understanding of where the information is encoded. We will leave this problem to future work. In
this section, we write only pk(u) to refer to the probability of bitstring k at timestep t when being
driven by input U(t), however the reader should be aware that because the reservoir has memory, it
would be more appropriate to write pk(u) = pk(U−a(t)) for some a corresponding to the reservoir’s
effective memory, e.g. in Equation (1) a = h0. We start with a lemma.
Lemma 2. (Hu et al. (2022)) The IPC in the probability representation is given as

IPC =
∑ 1

1 + σ̃2
k

= Tr
(
∆(⟨X⟩)−1⟨X⟩⟨XT ⟩

)
, (8)
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where ∆ : Rd → R(d,d) maps a vector to the diagonal matrix with entries given by the vector.

Proof.

Tr
(
(I + Q̃ξ)−1

)
= Tr

(
(D−

1
2 VT (∆(⟨X⟩) − ⟨X⟩⟨XT ⟩)V D−

1
2 + I)−1

)
(9)

= Tr
(
(⟨X⟩⟨XT ⟩

−1
∆(⟨X⟩))−1

)
(10)

= Tr
(
∆(⟨X⟩)−1⟨X⟩⟨XT ⟩

)
(11)

where we have expanded the variance with respect to the reservoir stochasticity, taking advantage of
the fact the signals are Bernoulli random variables in the probability representation.

Theorem 2. The IPC of any physical stochastic reservoir is polynomial.

Proof. The right hand side of Lemma 2, with the notation in Definition 5, gives

IPC =
2n∑
k

∫
dµ(u)p2

k(u)∫
dµ(u)pk(u)

, (12)

for some measure µ. For any value of u we have that

2n∑
k

pk(u) = 1. (13)

Because of this, the signals must generally be relatively small, and moreover when they are not
small, they must decay rapidly. For each pk(u) we imagine that it has behavior in these decaying
regions, which we will call “tails”, proportional to some 1/gk(u), i.e. pk(u) ∼ 1/gk(u), so that we
have the condition

2n∑
k

1/gk(u) = 1. (14)

For instance, a constant number can have constant tails, a polynomial number can have polyno-
mial tails and any super polynomial number needs to have inverse super polynomial tails. Because
the functions can only grow polynomially by Lemma 1, we have that they have peaks that are
O(poly(u)/gk(u)). We have so far written all functions as functions of u, but we note that, as pre-
viously discussed in Lemma 1, the scale of the drive in any family of parameterized reservoirs will
be related to n. Because we are integrating out u below, we replace the functional dependence on u
with one on n. The IPC is thus bounded as given as

IPC =
2n∑
k

∫
dµ(u)p2

k(u)∫
dµ(u)pk(u)

≤

2n∑
k

poly(n)/gk(n) = poly(n), (15)

where we have bounded each term based on the inequality
∫

dµp2
k(u) ≤ poly(n)

gk(n)

∫
dµpk(u), and used

Equation (14).

5 Connections to Learning Theory

In this section we discuss connections between the results proved in the previous section and modern
ideas in statistical learning theory.

5.1 A lower bound on the fat-shattering dimension

In the context of machine learning and statistical learning theory, complexity measures are used to
characterize the expressive power of hypothesis classes and bound generalization error. One such
complexity measure is the fat-shattering dimension (Kearns & Schapire (1994)), a concept that
extends the classical VC Dimension (Shalev-Shwartz & Ben-David (2014)) to real-valued function
classes, making it particularly suited for studying learning behavior of probabilistic classifiers and
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regression problems. We will start by introducing the fat-shattering dimension, and a theorem of
Barlett et al. (Bartlett et al. (1994)). We will use this theorem to prove Theorem 4 which states that
the reservoir dynamics, i.e.

F′ = {p0...0(t), . . . , p1...1(t)}, (16)
are not agnostically learnable (defined below in Definition 10), and consequently have super poly-
nomial fat-shattering dimension.
Definition 7. Let X be a domain of instances (i.e. an unlabeled data set) and let H be a class of
real-valued functions mapping fromX to [0, 1], i.e., h : X → [0, 1]. Given a real value (the “width”)
γ > 0, the γ-fat-shattering dimension of H , denoted by fatγ(H), is defined as the largest natural
number d for which there exist d instances in X and a set of thresholds {t1, . . . , td} ⊆ [0, 1] such that
for each subset S ⊆ {1, . . . , d}, there is a function hS ∈ H satisfying the following conditions:

• For every i ∈ S , hS (xi) ≥ ti + γ.

• For every i < S , hS (xi) ≤ ti − γ.

The fat-shattering dimension captures the ability of a hypothesis class to have a substantial gap of
at least 2γ between the values assigned by certain hypotheses to elements inside subset S and ele-
ments outside subset S . Including the thresholds and the real-valued range of the functions makes
the fat-shattering dimension valuable when studying learning behavior for probabilistic classifiers
and regression problems. In this work, we consider a reservoir that has 2n possible outputs. We
imagine using these outputs to perform a classification task on the input signal by considering a
linear combination of empirical estimates p̂i(u) to perform binary classification on u. As a particu-
larly illustrative example, consider “switching signals” (e.g Figure 1b and Figure 1a) which, upon
receiving ui with i ∈ S , raises p0...0(ui) above 0.5 by at least γ and with i < S lowers p0...0(ui) below
0.5 by at least γ. Choosing ti = 0.5, such a reservoir has a fat-shattering dimension of at least |S |.
Such a reservoir may not be implementable, however, given the specific dynamics available, or the
details of the input signal. In particular, the illustrative example of “switching signals” (Figure 1b
and Figure 1a) is limited by the ability of physical system to drive large enough changes in the
dynamics to produce these signals. Furthermore, we have considered the deterministic case here,
where the functions pk(u) are treated as accessible real-valued functions. To accurately model the
stochastic signals considered in this paper, we must consider the setting where these real-valued
functions are instead corrupted by noise. In particular, we will assume they are the parameters of a
Bernoulli distribution. To this end, (Bartlett et al. (1994); Kearns & Schapire (1994); Kearns et al.
(1992); Kearns (1998); Haussler (1992)) consider the model of probabilistic computation. To start,
we define probabilistic concepts and agnostic learning.
Definition 8. (Kearns & Schapire (1994)) A probabilistic concept f over a domain set X is a map-
ping f : X → [0, 1]. For each x ∈ X, we interpret f (x) as the probability that x is a positive example
of the probabilistic concept f . A learning algorithm in this framework is attempting to infer some-
thing about the underlying target probabilistic concept f solely on the basis of labeled examples
(x, b), where b ∈ {0, 1} is a bit generated randomly according to the conditional probability f (x),
i.e., b = 1 with probability f (x). The value f (x) may be viewed as a measure of the degree to which
x exemplifies some concept f .

To connect the capacity (Definition 2) to existing work in learning theory, we now define the error
integral of a classifier.
Definition 9.

erP(h) =
∫
|h(x) − y|dP(x, y) = ⟨

√
(h(x) − y)2⟩, (17)

denotes the error integral of a classifier h trained on samples from a probability distribution P(x, y),
with the averaging notation being defined in Definition 1.

The following definition requires the learner to perform almost as well, with high probability, as the
best hypothesis in some class G, referred to as a touchstone class, for any particular learning task.
The word agnostic in this setting is used because there is no assumption of an underlying function
generating the training examples. We will consider a randomized learning algorithm which takes a
sample of length m and chooses sequences z ∈ Zm at random from Pm

Z , and gives it to a deterministic
mapping A as a parameter. Deterministic algorithms are a subset of these mappings where the A
ignores the random string.
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Definition 10. (Bartlett et al. (1994)) Suppose G is a class of [0, 1]-valued functions defined on X,
P is a probability distribution on X × [0, 1], 0 < ε, δ < 1, and m ∈ N. A randomized learning
algorithm L is a pair (A, PZ), where PZ is a distribution on a set Z, and A is a mapping from⋃

m(X × R)m × Zm to [0, 1]X . For an algorithm A and a distribution to be learned DZ on a set Z, we
write that L = (A,DZ). We say that L (ε, δ)-learns in the agnostic sense with respect to G from m
examples if, for all distributions P on X × [0, 1](

Pm × Dm
Z

)
{(x, y, z) ∈ Xm × [0, 1]m × Zm :

erP(A(x, y, z)) ⩾ inf f∈G erP( f ) + ε
}
< δ,

where erP(·) is the error integral introduced in Definition 9. The function class G is agnostically
learnable if there is a learning algorithm L and a function m0 : (0, 1) × (0, 1) → N such that, for
all 0 < ε, δ < 1, algorithm L(ε, δ)-learns in the agnostic sense with respect to G from m0(ε, δ)
examples. If, in addition, m0 is bounded by a polynomial in 1/ε and 1/δ, we say that G is small-
sample agnostically learnable.

In our case, we will see that physical stochastic reservoir computers provide an example of a par-
ticular probability distribution for which learning the functions describing their dynamics is not
small-sample agnostically learnable due to the degradation in capacity on those functions. We start
with a corollary of Theorem 2 and a theorem by Bartlett et al., before proving our second theorem.
Corollary 1. For any physical stochastic reservoir there are Ω(g(n)) learning tasks fi such that

erP( fi) ≥ 1 − O(poly(n)/g(n)), (18)

where g(n) = ω(poly(n)).

Proof. Because, for small errors (|(h(x) − y)| ≤ 1),

erP(h) ≥
√
⟨h2⟩T (1 −CT [h]), (19)

we see a small capacity also implies a large error. This will allow us to prove our corollary and
connect with the statistical learning literature. Specifically, we see that

erP(h) ≥
√
⟨h2⟩T −

√
⟨h2⟩T CT [h]/2 + O(CT [h]2), (20)

for small capacity.

In Theorem 2 we argued that for any physical stochastic reservoir there are super-polynomially many
functions in the touchstone class, fi ∈ F′ (defined in Equation (16)), that have inverse superpolyno-
mially poor capacity, i.e. h such that

CT [h] = O(poly(n)/g(n)), (21)

where g(n) ∈ ω(poly(n)). We consider the learning problem with the touchstone class F

F = { fi | fi is a linear combination of functions in F′ and CT ( fi) = O(poly(n)/g(n))}. (22)

Note that in particular, this class includes the poor SNR eigentasks of the reservoir. The IPC, as we
have seen, gives a measure of the SNR over each signal, and is normalized by definition. Replacing
the capacity in our previous inequality with poly(n)/g(n), we have

erP( f ) ≥
√
⟨ f 2

i ⟩T (1 − O(poly(n)/g(n))). (23)

These functions form an orthonormal basis, and so we set the norm of the function to one, arriving
at the desired inequality.

This corollary relates the classification error of Definition 9 of a reservoir performing an eigentask
to its capacity, defined in Definition 2. Intuitively this is possible because the capacity is a measure
of the SNR, and low SNR makes classification more difficult. We now give a theorem of Bartlett
et al. that relates the fat-shattering dimension to small-sample agnostic learnability, and follow
with our own theorem, showing that the fat-shattering dimension of the probabilistic concept class
of reservoir functions has super-polynomial fat-shattering dimension. We start with a technical
definition.
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Definition 11. (Bartlett et al. (1994); Haussler (1992)) Consider a σ−algebra A on Z. A class of
functions G is PH-permissible if it can be indexed by a set T such that

1. T is a Borel subspace of a compact metric space T and

2. the function f : Z×T → R that indexes G by T is measurable with respect to the σ−algebra
A ×B(T ), where B(T ) is the σ−algebra of Borel sets on T .

We say a class G of real-valued functions is permissible if the class lG : {lg | g ∈ G}, lg : (x, y) →
(y − g(x))2 is PH-permissible.

Theorem 3. (Bartlett et al. (1994)) Suppose G is a permissible class of [0, 1] valued functions
defined on X. Then G is agnostically learnable if and only if its fat-shattering function is finite, and
G is small-sample agnostically learnable if and only if there is a polynomial p such that fatγ(G) <
p(1/γ) for all γ > 0.

We will now demonstrate that due to the degradation in IPC, a learning algorithm cannot, in general,
differentiate between the different learning tasks described by a reservoir’s eigentasks without using
an exponential number of observations. Hence we will demonstrate that there does not exist a
learning algorithm that can agnostically learn the reservoir dynamics with poly(1/δ, 1/ϵ) samples.
Specifically, we show that the assumption that the class of functions encoded by the dynamics of
the reservoir is learnable in the presence of noise is not compatible with that class containing many
orthogonal functions. If they are learned, they are learned despite the noise, and must all therefore be
similar to a single learned function. But they cannot be too similar to the learned function, because
then they would be similar to each other, and they are orthogonal.

Theorem 4. There does not exist a polynomial p such that fatγ(F) < p(1/γ) for all γ > 0 for the
concept class of functions F corresponding to reservoir dynamics of an infinite family of reservoirs.

Proof. Since the errors are one-sided - the learner cannot perform better than the reservoir function
at its own eigentask - the condition for agnostic learnability, is that for all ϵ > 0 with probability
1 − δ > 0, it is possible to take enough samples so that

|F|∑
i

erP(A(x, y, z)) ≤
|F|∑
i

erP( fi) + ϵ. (24)

Using Corollary 1, we can relate the error to the capacity, so that for the collection of functions F
with small capacity, this is equivalent to

|F|∑
i

erP(A(x, y, z)) ≤
|F|∑
i

(1 − ci + ϵ), (25)

with high probability, where ci denote the terms that are O(poly(n)/g(n)) in Equation (23). For small-
sample agnostically learnability, we have the number of samples m0 = poly(1/δ, 1/ϵ). Because the
identically zero function is among the functions that the learning algorithm must perform well on,
i.e. 0 ∈ F, we can bound the the probability of success based on the probability that the learning
algorithm falsely reports the identically zero function. For the functions we are considering, the
capacity is low, and hence from our proof of Theorem 2 we can choose n such that the probability
of the learning algorithm sampling anything nonzero is small. In particular, for a probability q that
any particular sample is nonzero, the probability p that the learner samples all zeros, consistent with
the function being the zero function, is given as

p = (1 − q)m0 ≈ m0q ≈ poly(1/δ, 1/ϵ)poly(n)/g(n), (26)

for g(n) ∈ ω(poly(n)). Making this approximation requires m0q ≪ 1, so that we choose
poly(n, 1/ϵ, 1/δ)/g(n) ≪ 1. A sufficient condition, therefore, is choosing n ≈ max (1/δ, 1/ϵ). In
this case, the learner is unable to do better than guessing that the signal is small or zero, and in-
curring an error proportional to the size of the signal. Hence the condition for agnostic learnability
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becomes
|F|∑
i

erP(A(x, y, z)) =
|F|∑
i

(
∫
| fi(x) − A(x, y, z)|dP(x, y))

≥

|F|/2∑
i

∫
| fi(x) − fi+|F|/2(x)|dP(x, y)

≥

|F|/2∑
i

∫
( fi(x) − fi+|F|/2(x))2dP(x, y) = |F|,

(27)

where we have used the triangle inequality for the first inequality, | fi(x)− fi+|F|/2(x)| ≤ 1 and | fi(x)−
fi+|F|/2(x)| ≥ ( fi(x)− fi+|F|/2(x))2 for the second inequality and orthogonality of the reservoir functions
for the final equality. In particular, integrating over the input measure first, e.g.∫

dµ(x)dν(y) f1(x, y) f2(x, y) =
∫

dν(y)
∫

dµ(x) f1(x, y) f2(x, y) = 0, (28)

due to the orthogonality of the functions under µ. Putting this together with Equation (25), we have

|F| ≤
|F|∑
i

erP(A(x, y, z)) ≤
|F|∑
i

(1 − ci + ϵ). (29)

so that this is violated if
1
|F|

|F|∑
i

ci > ϵ (30)

i.e. that the worst signals still provide some small utility on average. This requirement can be
made arbitrarily weak since the condition for agnostic learnability is that this is true for all ϵ, and
hence what we have demonstrated is that there is an (ϵ, δ,m0) for which we can choose n such that
the reservoir dynamics are not small-sample agnostically learnable. An alternative interpretation
is that any such learner would provide a witness that the eigentasks are not orthogonal under the
reservoir dynamics, since this would require the eigentasks to be too similar to each other. Hence,
we conclude from Theorem 3 that there is no polynomial p such that fatγ(F) < p(1/γ) for all γ > 0
if Equation (30) holds.

At this point we have taken a kind of limit, assuming that our reservoir is a member of an infinite
family of reservoirs. For each (ϵ, δ), we have required only that the number of samples scales
polynomially with the reservoir size, and hence not only does the function class corresponding to the
infinite family of reservoirs have a superpolynomial fat-shattering dimension, but also the functions
that constitute this family are generally efficient (in the number of samples) to compute.

6 Discussion

By connecting ideas from learning with dynamical systems to concepts in statistical learning theory,
we have found that the fat-shattering dimension of the functions represented by reservoir dynamics
is superpolynomial in the inverse of the fat-shattering width γ. Intuitively, what we have shown
is that, because reservoirs have a large number of low SNR eigentasks, and because no learning
algorithm can be expected to do better than a reservoir at its eigentasks while being subjected to the
same noise as the reservoir, the class of functions represented by the reservoir is itself challenging
to learn. Surprisingly, this informs us about the growth of the fat-shattering dimension of the model
at small scales (γ → 0), whereas considerations from the dynamics in Theorem 4 immediately rule
out a collection of “switching” signals which instead seems to suggest a restriction on the growth
of the function class at large scales (1/γ → 0). While the fat-shattering dimension, similarly to
the VC dimension(Shalev-Shwartz & Ben-David (2014)), can be further used to establish bounds
on generalization error through connections with Rademacher complexity(Shalev-Shwartz & Ben-
David (2014)), we leave this to future work.
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Rowlands, Guilhem J. Ribeill, and Hakan E. Türeci. Fundamental limits to expressive capacity
of finitely sampled qubit-based systems. arXiv:2301.00042, 2022.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998.

Michael J Kearns and Robert E Schapire. Efficient distribution-free learning of probabilistic con-
cepts. Journal of Computer and System Sciences, 48(3):464–497, 1994.

Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward efficient agnostic learning. In
Proceedings of the fifth annual workshop on Computational learning theory, pp. 341–352, 1992.

Rodrigo Martı́nez-Peña and Juan-Pablo Ortega. Quantum reservoir computing in finite dimensions.
Physical Review E, 107(3), mar 2023. doi: 10.1103/physreve.107.035306. URL https://doi.
org/10.1103%2Fphysreve.107.035306.

Rodrigo Martı́nez-Peña and Juan-Pablo Ortega. Quantum reservoir computing in finite dimensions.
2022. doi: 10.48550/ARXIV.2212.00396. URL https://arxiv.org/abs/2212.00396.

Pere Mujal, Rodrigo Martı́nez-Peña, Gian Luca Giorgi, Miguel C. Soriano, and Roberta Zambrini.
Time-series quantum reservoir computing with weak and projective measurements. npj Quantum
Information, 9(1), feb 2023. doi: 10.1038/s41534-023-00682-z. URL https://doi.org/10.
1038%2Fs41534-023-00682-z.

Kohei Nakajima and Ingo Fischer (eds.). Reservoir Computing. Springer Singapore, 2021. doi:
10.1007/978-981-13-1687-6. URL https://doi.org/10.1007%2F978-981-13-1687-6.

10

https://doi.org/10.1038/srep00514
https://doi.org/10.1038%2Fsrep22381
https://doi.org/10.1063%2F5.0068941
https://arxiv.org/abs/1709.10211
https://doi.org/10.1109%2Ftnnls.2019.2899649
https://doi.org/10.1103%2Fphysreve.107.035306
https://doi.org/10.1103%2Fphysreve.107.035306
https://arxiv.org/abs/2212.00396
https://doi.org/10.1038%2Fs41534-023-00682-z
https://doi.org/10.1038%2Fs41534-023-00682-z
https://doi.org/10.1007%2F978-981-13-1687-6


Under review as a conference paper at ICLR 2024

Anthony M Polloreno. Characterizing Quantum Devices Using the Principles of Quantum Informa-
tion. PhD thesis, University of Colorado at Boulder, 2023.

Anthony M Polloreno, Reuben RW Wang, and Nikolas A Tezak. A note on noisy reservoir compu-
tation. arXiv preprint arXiv:2302.10862, 2023.

David Poulin, Angie Qarry, Rolando Somma, and Frank Verstraete. Quantum simulation of time-
dependent hamiltonians and the convenient illusion of hilbert space. Physical review letters, 106
(17):170501, 2011.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

C. E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 28(4):
656–715, October 1949. doi: 10.1002/j.1538-7305.1949.tb00928.x. URL https://doi.org/
10.1002/j.1538-7305.1949.tb00928.x.

D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental unification of
reservoir computing methods. Neural Networks, 20(3):391–403, apr 2007. doi: 10.1016/j.neunet.
2007.04.003. URL https://doi.org/10.1016%2Fj.neunet.2007.04.003.

AJB Ward. A straight forward proof of roth’s lemma in matrix equations. International Journal of
Mathematical Education in Science and Technology, 30(1):33–38, 1999.

11

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1016%2Fj.neunet.2007.04.003


Under review as a conference paper at ICLR 2024

(a)

(b)

Figure 1: a) “Switching signals”, with exponential tails, proportional to 2u. With exponential
changes in the probabilities, the reservoir is able to drive very rapid changes in the output
signals, and thus able to fit four signals with trivial confusion probabilities near their
peaks. In particular, observe that the red, low alpha signal is able to achieve a probability
of nearly one between the first and second (blue and orange) and second and third
(orange and green) signals. b)“Switching signals”, with polynomial tails, proportional to
u2. The overlap where the signals cross is more substantial, and consequently fewer
signals can be fit into the space. This results in significant rates of “confusion”, e.g. the
red signal has probabilities that are significantly smaller than 1 in the regions between
pairs of the first and second (blue and orange), or second and third (orange and green)
higher alpha signals.
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A Physical Reservoirs and Proof of Lemma 1

The idea of physical or physically accessible circuits have been discussed in the literature (e.g.
(Shannon (1949); Poulin et al. (2011)), however we are not aware of references that prove that gen-
eral stochastic digital computers can only have polynomial changes in the probabilities. We thus
include a proof of Lemma 1 here. Our proof relies on an understanding of quantum computational
dynamics, and thus has not been included in the main text, to avoid burdening the reader. In a fu-
ture version of this manuscript we will instead use the formalism of generators of the dynamics of
probabilistic circuits when considered as Markov chains. The current argument is included due to
its familiarity to the author. In principle, an argument involving purely classical dynamics would
be both simpler and more elucidating. In particular, in the same way that unitary operators have
generating Hermitian operators, Markov chains have generators. Markov chains are equivalent de-
scriptions of probabilistic circuits in the same way unitary operators are equivalent descriptions of
quantum circuits.

Proof. (Poulin et al. (2011) establishes that arbitrary time-dependent quantum dynamics are no
stronger (and clearly as strong as, by taking logarithms of the gates and applying them as Hamil-
tonians) the quantum circuit model. We start by noting that quantum circuits can only generate
polynomial changes in the probability amplitudes. To see this, all evolutions are given as

ρ̇ = i[H, ρ], (31)

so that for real H the solutions are given roughly as complex exponentials in the (real) eigenvalues
of H. If we assume that the norm of H is at most polynomial in the system size and time, this is
sufficient to argue that the changes in the amplitudes are also at most polynomial in n and t.

For quantum circuits we will consider circuits that consist of coherent AND (Toffoli) and OR gates,
as well as k-bit rotations, i.e. Equation (32). Each of these circuits is bijective with a classical circuit
consisting of classical AND, OR and k-bit probabilistic not gates via the following construction.

First, consider any function p(t) describing the parameter of a time-varying Bernoulli distribution
associated with a bit. This is identically given by averaging two over two unitary operations:

U1(t) = e−i arccos (
√

p(t))X =


√

p(t)
2 − 1

2 i
√

1 − p(t)

− 1
2 i
√

1 − p(t)
√

p(t)
2

 (32)

U2(t) = ei arccos (
√

p(t))X =


√

p(t)
2

1
2 i
√

1 − p(t)
1
2 i
√

1 − p(t)
√

p(t)
2

 (33)

p̂(t) =
1
2

(U∗1(t) ⊗ U1(t) + U∗2(t) ⊗ U2(t)), (34)

where p̂(t) describes the conjugation action on the vectorized density matrix, and follows from
Roth’s lemma ((Horn & Johnson (2012); Ward (1999), i.e.

p̂(t) vec (ρ) =
1
2

(U1(t)ρU†1(t) + U2(t)ρU†2(t)), (35)

where, given a density matrix ρ of size n×n, the vectorization of ρ, denoted by vec(ρ), is an operator
that rearranges ρ into a column vector of size n2 × 1. This is done by stacking the columns of ρ on
top of one another. Mathematically, the vectorization operation gives
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ρ =


ρ11 ρ12 . . . ρ1n
ρ21 ρ22 . . . ρ2n
...

...
. . .

...
ρn1 ρn2 . . . ρnn

 , vec(ρ) =



ρ11
ρ21
...
ρn1
ρ12
ρ22
...
ρn2
...
ρ1n
ρ2n
...
ρnn



(36)

To generate correlated changes in probabilities of different bits, we can exponentiate, e.g., X ⊗ X,
which generates transitions between 00 and 11. This argument thus establishes an equivalence be-
tween dynamics in a classical stochastic circuit, and the dynamics of two different quantum circuits.

Now that we have established a bijection, we would like to argue that the rate of change of the two
different dynamics are polynomially related. To see this, consider that any amplitude α(t) ∼

√
p(t),

so that
dα(t)

dt
∼

1

2
√

p(t)

dp
dt
. (37)

By assumption, the left hand side is a polynomial, so that

dp

2
√

p(t)
∼ poly(t)dt (38)

√
p(t) ∼ poly(t), (39)

and we are done. In particular, we see that if a polynomial depth k-local classical stochastic cir-
cuit produces superpolynomial changes in the bitstring probabilities, there must exist a polynomial
depth k-local quantum circuit which produces superpolynomial changes in amplitudes, which is
impossible.

This argument has shown that arbitrary p(t) can be produced by creating two quantum systems, and
that a superpolynomial change in p(t) would produce a superpolynomial change in a quantum circuit.
The complexity of the classical circuit that produces p(t) is related to the complexity of the quantum
circuit that produces U1(t) and U2(t), and in particular can generate a change in probabilities p(t)
that is superpolynomial if and only if the corresponding quantum circuit generates a change in the
amplitudes of the corresponding quantum state that is superpolynomial.
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