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Figure 1: Illustration of sequence samples from our RGB-Event MOT benchmark. (a) RGB-based
MOT results. (b) Our RGB-Event MOT results. (c) Quantitative comparisons of RGB vs. RGB-
Event methods.

ABSTRACT

Leveraging the power of contemporary deep learning techniques, it has become
increasingly convenient for methodologies to recognize, detect, and track objects
in real-world scenarios. Nonetheless, challenges persist, particularly regarding
the robustness of these models in recognizing small objects, operating in low-
illumination conditions, or dealing with occlusions. Recognizing the unique ad-
vantages offered by Event-based vision - including superior temporal resolution,
vast dynamic range, and minimal latency - it is quickly becoming a coveted tool
among computer vision researchers. To bolster foundational research in areas
such as object detection and tracking, we present the first cross-modal RGB-Event
multi-object tracking benchmark dataset. This expansive repository encompasses
nearly one million carefully annotated ground-truth bounding boxes, offering an
extensive data resource for research endeavors. Designed to augment the practical
implementation of Event-based vision technology, this dataset proves particularly
beneficial in intricate and challenging environments, including low-light situa-
tions, scenarios marked by occlusions, and contexts involving diminutive objects.
The utility and potency of cross-modal detection and tracking models have been
extensively tested and confirmed through our experimental studies. The encour-
aging results not only affirm the necessity of these models but also highlight their
efficacy, thus emphasizing the benchmark’s potential to significantly propel the
advancement of Event-based vision technology. We have included the code in the
supplementary material and will make the dataset publicly available.

1 INTRODUCTION

In the realm of computer vision, RGB image-based learning algorithms have made significant strides
in multi-object tracking (MOT) under normal environments. However, challenges persist in detect-
ing and tracking objects under less-than-ideal conditions, such as low-light environments, occluded
scenes, and situations involving small or distant objects. For example, as illustrated in Table 1, a
substantial performance decline is observed when transitioning from MOT17 (Milan et al., 2016) to
our dataset, which is inclusive of varied corner cases.
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Table 1: Comparisons of tracking performance of state-of-the-art RGB-based MOT methods on the
well-known MOT benchmark dataset, i.e., MOT17, and our dataset with varied corner cases. For the
two metrics, the larger, the better. Note that even though we trained the methods with the training
set of our dataset, the performance is still much lower than that on MOT17 (see the results in Table
4).

Dataset Metric TrackFormer SMILEtrack BoT-SORT ByteTrack Deep OC-SORT

MOT17 MOTA 74.1 81.0 80.5 80.3 79.4
IDF1 68.0 80.5 80.2 77.3 80.6

Ours MOTA 12.3 28.7 28.8 28.2 27.2
IDF1 15.9 34.5 34.4 33.6 33.7

Event cameras, with their high dynamic range and low latency, offer significant advantages in
these challenging scenarios. They are capable of naturally capturing object patterns in low-light
situations, overcoming one of the major limitations of traditional RGB cameras. Furthermore, the
distinctive sensing pattern of Event cameras makes them an invaluable tool for sensing variations
in occluded objects, another hurdle in RGB-only sensing patterns. Moreover, for the detection and
tracking of small or remote objects, Event cameras can provide extra motion clues to help build
effective solutions. Their unique capabilities allow for the observation and interpretation of subtle
changes (Perot et al., 2020), making them particularly suited for tasks that require precision and
sensitivity. Therefore, it is promising to address the above-mentioned corner cases by developing
RGB-Event-based MOT, as illustrated in Fig. 1.

However, there are limited datasets available for current algorithm design and validation. Thus, we
make the first attempt to establish a benchmark that leverages the synergies of RGB and Event-
based data for MOT. This paper provides an in-depth exploration of our methodology, empirical
evidence of its superiority over traditional RGB-only sensing, and a roadmap for further research and
development in this domain. Moreover, we have built a baseline to validate the superiority of cross-
modal RGBEvent perception. Our findings lay the groundwork for a new frontier in cross-modal
RGB-Event-based detection and tracking, promising significant improvements in a wide range of
applications.

In summary, the main contributions of this paper are two-fold:

• we introduce a cross-modal RGB-Event dataset for MOT. This dataset represents a ground-
breaking effort to confront the challenging scenarios frequently encountered in object per-
ception, such as those involving diminutive objects, adverse illumination conditions, and
occlusions. The main objective behind this effort is to pave the way for the development of
a more robust object perception system; and

• we undertake an exhaustive assessment, encompassing state-of-the-art MOT algorithms.
This evaluation was designed to scrutinize the potential advantages of fusing both RGB
and event-based data for MOT. Our analysis not only sheds light on the performance en-
hancements but also provides insights into the potential synergies between the two data
modalities, underscoring the practical significance of their integration in advancing the
field of MOT.

2 RELATED WORK

RGB image-based perception has formed the cornerstone of computer vision research for a long
time. Classical methods employ handcrafted feature extraction techniques like Scale-Invariant Fea-
ture Transform (SIFT) and Histogram of Oriented Gradients (HOG). These have seen considerable
success in numerous applications. However, the subsequent rise and rapid progression of deep learn-
ing marked a pivotal shift in this field, with Convolutional Neural Networks (CNNs) outclassing pre-
vious methods in tasks like object detection, segmentation, and recognition. In recent developments,
numerous learning-based MOT methods have illustrated exceptional capabilities in object localiza-
tion. Deep SORT (Wojke et al., 2017) integrates deep learning-driven appearance descriptors with
the classical SORT tracking methodology. Tracktor++ (Bergmann et al., 2019) innovatively employs
the object detector for tracking, removing the necessity for data association. FairMOT (Zhang et al.,
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2021), a one-shot approach, concurrently detects and tracks objects, addressing challenges inher-
ent in two-shot methods. CenterTrack (Zhou et al., 2020) extends object detection to video object
tracking by using the object as the center point. TrackR-CNN (Voigtlaender et al., 2019) expands
upon Mask R-CNN (He et al., 2017) to accommodate video object detection and tracking tasks, and
ByteTrack (Zhang et al., 2022b) executes MOT through a detection and re-identification pipeline.

Frameworks like Faster R-CNN (Girshick, 2015), YOLO (Redmon et al., 2016), and SSD (Liu
et al., 2016) have revolutionized the field of object detection by adopting region proposal networks
and end-to-end detection paradigms. Additionally, semantic segmentation witnessed significant en-
hancements by introducing techniques like Fully Convolutional Networks (FCNs) and U-Nets. De-
spite these advancements, traditional image-based perception has limitations, particularly in the
context of real-time processing, low-illumination scenarios, and dealing with occluded or minuscule
objects. While several algorithms (Dong et al., 2015; Hou et al., 2023; Li et al., 2023) have been
introduced to enhance image quality, subsequently facilitating high-level visual tasks, these meth-
ods often inevitably extend computation times for image reconstruction. Furthermore, there is no
guarantee that the reconstructed images will faithfully represent the authentic visual characteristics
of the scenes. Hence, it becomes imperative to integrate supplementary visual cues or signals to
interpret the scene accurately.

Event-based perception, on the other hand, is a relatively newer development in the field of com-
puter vision, particularly driven by the emergence of event-based sensors. These sensors, such as
Dynamic Vision Sensors (DVS), offer substantial advantages in terms of high temporal resolution,
wide dynamic range, and low latency. They operate by capturing changes in pixel intensity, produc-
ing a stream of Events that are timestamped with high precision.

This unique operating principle allows event-based perception to excel when traditional image-based
perception falls short - for instance, in low-light conditions, high-speed scenarios, or environments
with high dynamic range. Nevertheless, the major challenge for Event-based perception has been
the scarcity of rich, well-annotated datasets needed for training robust models.

Recent efforts have been made to curate more extensive and varied datasets for Event-based percep-
tion, and researchers have also started exploring ways to apply popular deep learning techniques,
like CNNs, to Event data. In an exploration of Event-based sensing, Bryner et al. (2019) endeavored
to ascertain the 6-DOF pose of a camera, making significant strides in understanding the application
of Event cameras. In a complementary vein, Mitrokhin et al. (2018) proposed a unique solution
to accommodate camera motion, employing a parametric model that captures the intricate spatio-
temporal geometry of Event data. Li & Shi (2019), in an effort to enrich the understanding of Event-
stream object appearance, incorporated the VGG-Net-16 into their methodology, thereby demon-
strating a robust approach to Event-based object tracking. de Tournemire et al. (2020) proposed the
first large-scale object detection dataset for automotive applications. Moreover, Perot et al. (2020)
further proposed an Event-based object detection dataset with a high spatial resolution Prophesee
Event camera. Drawing inspiration from the well-established Siamese-matching paradigm, Chae
et al. (2021) developed an innovative solution for object tracking that learns an edge-aware similarity
within the event domain. Building on the foundational tracking-learning-detection pipeline, Ramesh
et al. (2018) ventured into the development of an object tracking algorithm specifically designed for
Event cameras. This work notably represented the first foray into the realm of learning-based long-
term Event tracking. In recent developments, Zhang et al. (2022a) introduced a pioneering spiking
Transformer, designed to encode the spatio-temporal information of object tracking. Extending the
potential of Event data, Zhu et al. (2022) proposed the utilization of inherent motion information
within Event data as a strategy to achieve effective object tracking, marking a substantial advance-
ment in the field. To facilitate the fusion of RGB and event data, Zhu et al. (2023) proposed to utilize
augmentations on transformer attention matrix patterns, resulting in an effective cross-modal fusion
manner. Zubić et al. (2023) explored the effectiveness of different representations on event-based
object detection.

However, there’s still much ground to be covered in developing more sophisticated algorithms and
models that can effectively utilize the high-temporal resolution data generated by event-based sen-
sors. Our proposed cross-modal RGB-Event benchmark is an attempt to address these challenges
and advance the field of event-based perception.
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Table 2: Statistic of multi-object tracking and cross-modal RGB-Event tracking datasets, where
“RGB” denotes the RGB images, “Event” indicates the Event streams and “GS” represents the
grayscale images.

Dataset MOT17 MOT20 DanceTrack FE108 VisEvent COESOT RGBEvt-MOT
Videos 14 8 100 108 820 1,354 12

Avg. tracks 96 432 9 1 1 1 247
Total. tracks 1,342 3,456 990 108 820 1,354 2,962
Avg. len. (s) 35.4 66.8 52.9 48.3 18.1 14.14 67.8
Total len. (s) 463 535 5292 5216 14,845 19,148 813
Modalities RGB RGB RGB GS+Event RGB+Event RGB+Event RGB+Event
Resolution 1920×1080 1920×1080 – 346×260 346×260 346×260 2560×1600

Sensor Latency 33 40 50 1e−3 1e−3 1e−3 1e−3

(ms)
Total images 11,235 13,410 105,855 208,672 371,127 478,721 21,336

Figure 2: Statistics of our proposed RGB-Event MOT benchmark. (a) The number of objects with
different classes and attributes. (b) Size distribution of object bounding boxes. (c) Distribution of
the number of bounding boxes per image.

3 DETAILS OF OUR RGB-EVENT BENCHMARK DATASET

As aforementioned, current learning-based methods, equipped with exceptional modeling capac-
ities, have demonstrated proficient performance in visual object recognition under normal condi-
tions. However, their effectiveness is severely compromised under complex, real-world scenarios.
This observation prompts an exploration into supplementary vision cues to augment tracker robust-
ness. We are particularly drawn to the untapped potential of event cameras, characterized by rich
temporal/motion data and a high-dynamic range. Leveraging this, we aim to enhance object recog-
nition under adverse visual scenarios marked by small sizes, low illumination, and occlusions. Our
dataset hinges on the distinctive advantages of event data, enabling algorithms to gain comprehen-
sive insights into the surrounding environment. The detailed comparisons between related datasets
are shown in Table 2.

3.1 DATASET COLLECTION

In the process of dataset collection, we strategically employed a stereo configuration of RGB and
event cameras to capture image and event streams. This methodology served to create a dataset
exclusively comprised of fully static viewpoints, thereby guaranteeing consistency across all data
points. The focus of our data collection was to encapsulate challenging scenarios that are typi-
cally experienced in the field, such as low-light environments, small-sized objects, and instances of
occlusion.

The core of our data collection procedure was underscored by the crucial alignment task. In ac-
cordance with calibration methods delineated by (Zhang, 2000), we initially attempted alignment
by matching planar patterns across views to compute the homograph matrix. However, the inher-
ent limitations of stereo parallax presented a challenge; it restricted the accuracy of alignment to a
specific depth range.

In response to this obstacle, we embraced a more hands-on approach to ensure the precision of
alignment across stereo views. This involved the manual collection of correspondence points, from
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Figure 3: Sequence samples from our RGB-Event MOT benchmark.

which we calculated the homograph matrix. Our meticulous approach to this critical step enhanced
the reliability of the alignment, fostering the robustness and utility of our dataset. This refinement to
our methodology ensured desirable alignment for stereo views, thereby fortifying the dependability
of our dataset and its relevance to our study.

It should be highlighted that due to the intrinsic parallax between the stereo of the event and RGB
data, achieving an exact correspondence between them is challenging. In contrast to cross-modal
reconstruction tasks, which necessitate stringent alignment across diverse data modalities, high-level
computational tasks, such as detection and tracking, often remain robust even with minor spatial
discrepancies in certain regions or boundaries. Consequently, the methodology proposed for data
collection is instrumental in facilitating studies on visual perception tasks.

3.2 RGB-EVENT SEQUENCES

The comprehensive comparison and statistics of our proposed dataset are presented in Ta-
bles 3 and A-1. Comprising 12 unique sequences, each featuring RGB frames paired with
a corresponding Event stream, the dataset represents a substantive resource for advancing the
study of MOT. The RGB data is captured using the GoPro-10 camera, boasting a formidable
4K resolution of 3840 × 2160. Meanwhile, the Event stream is recorded utilizing a Celex5
event camera, offering a spatial resolution of 1280 × 800. The meticulous calibration of
both cameras yields an RGB stream operating at 24-30 frames per second with a resolution
of 3840 × 2160, synchronized with an Event stream at a resolution of 1280 × 800. Our
dataset specifically addresses three prevailing challenges that traditional RGB cameras strug-
gle to manage effectively: objects of small size, low-illumination conditions, and occlusion.

Table 3: Details of our RGB-Event benchmark dataset for
MOT.

#Seq. FPS (RGB) Length Track Density Attributes Training
01 24 2249 419 77.6 Small-size ✓
02 24 965 174 53.7 Low-light ✓
03 24 1450 292 56.8 Low-light ×
04 24 1675 316 63.1 N.A. ✓
05 24 1401 273 130.1 Small-size ×
06 24 1411 181 73.1 Low-light ×
07 24 1276 210 70.0 Occlusion ×
08 24 1793 425 84.7 Low-light ✓
09 30 799 211 65.2 N.A. ✓
10 30 1471 242 47.0 N.A. ×
11 30 2999 108 38.3 Occlusion ✓
12 30 3000 111 44.2 Occlusion ×

Small Size Objects. The task of dis-
cerning small objects poses a con-
siderable challenge in the domain of
object detection, a hurdle that tra-
ditional RGB cameras often strug-
gle to overcome due to the paucity
of semantic information inherent in
smaller objects. This issue may be
addressed effectively by exploiting
the temporal information of the ob-
jects, which can offer valuable in-
sights for object recognition. With
this in mind, our dataset incorporates
scenarios featuring small-sized objects, thereby fostering the development of sophisticated algo-
rithms capable of leveraging the rich temporal information present in event data for more accurate
detection and tracking of diminutive entities.
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Low-Illumination Condition. In practical applications, diminished lighting conditions often lead
to a compromised image quality, which in turn negatively impacts the accuracy of sensory data.
Owing to the high dynamic range of event cameras, these devices serve as an effective solution to
such challenging circumstances. Our dataset deliberately includes scenarios captured under low-
illumination conditions. This inclusion presents an opportunity for algorithms to augment their
performance in less-than-ideal lighting environments, thus serving as a robust test bed for assessing
their adaptability to real-world conditions.

Occlusion. Target objects often encounter partial or complete obstruction by other entities. This in-
terference is particularly challenging for tracking systems and can impact the functionality of neural
networks such as Multiple Layer Perceptrons and CNNs. Specifically, it may cause the object’s fea-
tures to be contaminated by the obstructive information, leading to incorrect or missed detections.
However, thanks to the distinctive sensing pattern of the event camera, changes can be detected
with extremely low latency. This capability helps the network concentrate on the subject matter
instead of the obstructions, thereby reducing the likelihood of feature contamination. To corroborate
this premise, we have included sequences in our dataset that present varying degrees of occlusion.
This encourages the creation of tracking and detection mechanisms that are adept at managing such
circumstances effectively.

3.3 DATA FORMAT

Event Stream. Due to the fact that the event data is sparse in the 3D spatio-temporal space, we pro-
vide the raw data of event clouds. It contains four dimensions (x, y, p, t), where x ∈ [1, 1280], y ∈
[1, 800] denote the spatial locations, p ∈ {−1, 1} indicates the polarity, i.e., increasing or decreasing
of the pixel intensity and t is the timestamp with the unit of µs.

Besides, we also provide frame-based representation to quickly adapt the event data into an im-
age processing pipeline. Specifically, we equally quantify the time between two frames into three
intervals δt. For each pixel of an event frame, its value is calculated by the accumulation of

I(x, y) = Ī + δ ×
∑
ti

e(x, y, ti), ti ∈ δt, (1)

where I(x, y) ∈ Rh,w indicate the event frame. By employing voxelization in the temporal do-
main, and Ī , δ are scalars representing the base and increment magnitude, which are empirically
selected as 127 and 30, respectively. We can effectively standardize the sporadically distributed
event data, making it more amenable for neural network processing. This approach allows us to
leverage established CNN architectures for event data processing. It is important to acknowledge,
however, that this methodology might intrinsically reduce the high temporal resolution inherent to
event data. Nonetheless, the primary objective of this paper is to establish a benchmark for evalu-
ating RGB-Event MOT algorithms, and our experimental validation serves as an assessment of the
effectiveness of integrating event data into RGB-centric vision systems.

RGB Stream. Similar to the image-based MOT, the RGB stream is structured as a sequence of
images. Due to the unique structure of event data, we have aligned the images to the event stream
via homograph transformation.

Annotation. We adhere to the MOT20 annotation format, which includes ten elements: frame index,
object ID, bounding box coordinates (x, y) with its width (w) and height (h), confidence score, two
placeholder values (-1, -1), and the object class. Our dataset contains annotations for four different
categories of objects, namely pedestrians, vehicles, trucks, and two-wheels.

4 BASELINE METHODS

In order to leverage the unique characteristics of event data, i.e., the high-dynamic range and tem-
poral resolution, for facilitating image-based object recognition, we have developed a cross-modal
pipeline to conduct an in-depth analysis of cross-modal fusion. We initiate our discussion with a
comprehensive exploration and evaluation of the prevailing RGB-based MOT algorithms. The ex-
isting MOT algorithms and datasets predominantly concentrate on distinct categories, for instance,
pedestrians or vehicles. This specialization typically leads to a bifurcated tracking pipeline that ini-
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Figure 4: The flowchart of our proposed RGB-Event MOT framework. The process commences
with the incorporation of both RGB and event streams as input, which are then processed through a
typical backbone neural network to facilitate primary feature embedding. A fusion strategy (such as
simply averaging of dual streams or feature mask modeling) is then administered to the cross-modal
data, amplifying their interactive capabilities, and the fused features are further fed into a typical
RGB image-based detector. In the association stage, we can employ a re-identification module to
associate boxes with distinct targets. Note that the mask modeling is only applied in the training
phase.

tially identifies the objects and subsequently associates distinct bounding boxes with corresponding
IDs from preceding frames.

Consequently, two avenues for enhancing MOT accuracy emerge: (1) optimizing detection perfor-
mance through the integration of RGB and event data and (2) refining the association mechanism.
Given that the quality of detection proposals significantly influences the overall MOT performance,
our paper predominantly concentrates on augmenting the detection outcomes by amalgamating RGB
and event branches, aiming to elevate the overall efficacy of MOT.

Given the extensive spatial dimensions inherent to both image and event data, it is imperative to
initiate the fusion of these two kinds of data streams at an early stage to ensure algorithmic efficiency.
As depicted in Fig. 4, our initial step involves the extraction of primary feature maps from both RGB
and Event streams. Subsequently, to manage a highly effective fusion of RGB and Event streams, we
investigate different fusion techniques: (1)“AVG”: directly averaging the event and RGB streams
to harness the collective information; (2)“MASK”: introducing an advanced mask modeling to
facilitate the network’s adaptive utilization of both RGB and Event data.

These fused features are then directed through the extraction and proposal network to generate object
proposals. In the concluding step, Re-ID or alternative algorithms are employed to associate these
proposals, culminating in the achievement of MOT.

5 EXPERIMENTS

In light of the preceding discussion, we have conducted a series of experiments to corroborate the
necessity of integrating event data in such temporal contexts. Our initial evaluation involved assess-
ing the performance of pre-trained MOT trackers, including TrackFormer (Meinhardt et al., 2022),
SMILEtrack (Wang et al., 2023), BoT-SORT (Aharon et al., 2022), ByteTrack (Zhang et al., 2022b),
and Deep OC-SORT (Maggiolino et al., 2023), on our specifically curated datasets, to gauge their
efficacy under extreme conditions.

5.1 EVALUATION METRICS

Evaluating the performance of MOT algorithms requires several specialized metrics that capture var-
ious aspects of tracking performance. Following the previous works (Milan et al., 2016; Dendorfer
et al., 2020), we utilize the following metrics for the MOT task.

Multiple Object Tracking Accuracy (MOTA) is a composite measure that takes into account false
positives, missed targets, and identity switches. It is defined as 1− (errors/GT ), where errors are
the sum of false positives, misses, and identity switches, and the GT is the total number of ground
truth bounding boxes. MOTA can take values from −∞ to 1, with 1 indicating perfect tracking
performance.
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Table 4: Quantitative comparisons of different methods: ByteTrack (Zhang et al., 2022b), Deep
OC-SORT (Maggiolino et al., 2023) and TrackFormer on the proposed dataset for MOT. Gray
region denotes the methods w/o re-training on our dataset. “↑” (resp. “↓”) indicates the higher
(resp. lower), the better. We did not obtain results when training BOT-SORT only with event data
because the training process keeps crashing despite our attempts with different solutions. Such an
observation also indicates that straightforwardly adapting existing RGB-based detectors to event
data is not an optimal choice, and event data tailored detectors should be investigated.

Methods Modality Fusion MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDs ↓ Recall ↑ MT ↑ ML ↓
TrackFormer RGB – 12.3% 15.9% 47,993 512,700 4,600 20.4% 51 983
SMILEtrack RGB – 28.7% 34.5% 53,968 402,353 2,810 37.6% 163 634
BoT-SORT RGB – 28.8% 34.4% 54,012 402,263 2,809 37.6% 162 634
ByteTrack RGB – 28.2% 33.6% 54,948 404,724 2,801 37.2% 150 638

Deep OC-SORT RGB – 27.2% 33.7% 43,515 423,265 2,378 34.3% 136 716

ByteTrack

RGB – 35.8% 37.1% 67,685 342,070 4,072 37.1% 264 543
Event – 18.3% 22.6% 22,640 502,211 1,755 22.1% 78 1,225

RGB+Event AVG 43.0% 41.8% 73,153 289,560 4,489 55.1% 327 422
RGB+Event MASK 43.6% 41.3% 77,413 281,297 4,825 56.3% 332 381

BOT-SORT

RGB – 36.4% 37.9% 67,933 337,852 4,131 47.6% 280 783
Event – – – – – – – – –

RGB+Event AVG 40.5% 41.0% 76,950 295,155 5,060 53.5% 298 460
RGB+Event MASK 41.3% 41.1% 77,105 295,831 5,167 54.1% 301 416

IDF1 Score measures the ratio of correctly identified detections over the average number of ground-
truth and computed detections. It provides a balance between precision and recall and is particularly
useful in assessing the performance of trackers in handling identity switches.

Mostly Tracked (MT) and Mostly Lost (ML) Targets provide measures of the ratio of ground-
truth trajectories that are covered by the tracker for at least 80% of their respective lifespans (MT),
or less than 20% (ML). High MT and low ML values are desirable.

Identity Switches (IDS) counts the number of times the identity of a tracked object is incorrectly
changed. Lower values are better, as fewer identity switches indicate more accurate tracking.

False Positives (FP) and False Negatives (FN). FP represents the instances where the tracker mis-
takenly identifies an object that does not exist in the ground truth. Conversely, FN is the instances
where the tracker fails to identify an object that is present in the ground truth. Lower FP and FN
values indicate better tracking performance as they signify fewer misidentifications and omissions
respectively.

5.2 EXPERIMENTAL RESULTS

In addition, we engaged state-of-the-art MOT algorithms, namely ByteTrack (Zhang et al., 2022b)
and BOT-SORT (Aharon et al., 2022), applying them to diverse combinations of modalities to as-
certain their adaptability and performance metrics. The results, delineated in Table 4, unequivocally
underscore three pivotal observations. We also refer readers to Figs. A-2 to A-7 in Appendix for
more visual results, as well as the video demo contained in the Supplementary Material.

Challenges Presented by the Proposed Dataset. Contemporary MOT trackers typically exhibit
exemplary performance, as evidenced by nearly 80% MOTA on established benchmarks like the
MOT16/20 datasets. However, when confronted with our proposed dataset, even state-of-the-art
methods are significantly challenged, achieving a MOTA of approximately 28%. This precipitous
decline in performance underscores both the complexity and the critical need for intensified research
efforts to address these nuanced corner cases within the field of computer vision.

Advancements Afforded by Event Data Integration. Following the integration of event data into
MOT algorithms, a noticeable enhancement in performance is observed, with ByteTrack and BOT-
SORT. This uptick underscores the effectiveness of incorporating event data into MOT processing.
It’s essential to highlight that our exploration into the utilization of RGB-Event MOT is founda-
tional; we anticipate subsequent, more intricate research to further refine and optimize RGB-Event
algorithms.

The Influence of Aggregation Techniques on Data Fusion. Our experiments involved utilizing
simplistic averaging and mask modeling for feature aggregation, revealing nuanced impacts on the
outcome. Evidently, mask modeling outperformed the fundamental average fusion, indicating its
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efficacy in enhancing performance. These insights are instrumental, prompting the development of
sophisticated fusion methods tailored to address the intricacies of cross-modal challenges.

6 DISCUSSIONS

Despite the strengths and advantages of our dataset, it is also worth acknowledging the following
limitations, which would facilitate the following research:

Static Viewpoints. The current version of our dataset solely comprises static/fixed viewpoints. The
lack of sequences captured from moving viewpoints may constitute a limitation as it restricts the
range of scenarios that our dataset can simulate. Note that in fields such as surveillance, even a fixed
viewpoint can be very helpful.

Isolated Hard Cases. The dataset includes a variety of hard cases, such as small-sized objects,
low-illumination conditions, and occluded objects. However, these hard cases are presented in iso-
lation from each other, providing limited opportunities to evaluate the effectiveness of algorithms in
situations where multiple hard cases co-occur. Addressing multiple challenges concurrently is also
required in some real-world scenarios.

Diversity of Scenes. While our dataset captures a broad range of scenarios, the diversity of scenes,
in terms of background settings, lighting conditions, and object types, may be insufficient to chal-
lenge and evaluate tracking algorithms fully. Additional diversity would likely further improve the
generalizability of the models trained on this dataset. In the future, we will continue to collect data
with attributes like motion blur and over-exposure to exploit the potential of event data further.

Potential Research Directions. An effective fusion strategy is paramount, as evidenced by experi-
mental results indicating that the application of a mask enhances the representation of cross-modal
embeddings. Consequently, there is scope for further exploration and refinement of fusion tech-
niques and regularization terms to optimize this process. Additionally, devising a proficient embed-
ding method for event data is essential, potentially entailing the direct processing of raw event data
to preserve its intrinsic high temporal resolution. Furthermore, the development of a specialized box
association algorithm is requisite, one that is tailored to capitalize on the unique attributes of event
data, thereby bolstering the efficacy of the RGB-Event MOT algorithm. This nuanced approach
promises to leverage the distinct characteristics of event data, offering enhanced performance and
accuracy in complex tracking environments.

7 CONCLUSION

In this paper, we introduced a novel cross-modal RGB-Event dataset for MOT, designed to push the
boundaries of current tracking methods. The dataset presents a collection of sequences incorporating
challenging scenarios like low illumination, small object detection, and object occlusion, which are
difficult for traditional RGB-only sensing methods to handle effectively.

The unique combination of RGB and event streams, captured using state-of-the-art equipment, offers
a rich data source for developing and evaluating advanced MOT algorithms. This dataset opens the
door to the exploration of the high-dynamic-range and low-latency capabilities of event cameras in
tandem with conventional RGB data. While we acknowledge some limitations, including a lack of
moving viewpoints and isolated presentation of hard cases, the value of this dataset in advancing
the field of MOT is undoubted. We expect it to motivate researchers to develop more robust and
versatile detection and tracking methods capable of overcoming the challenges presented.

Moving forward, we plan to address the identified limitations in future versions of our dataset,
thereby providing even more comprehensive tools for the development of RGB-Event-based MOT
algorithms. By establishing this benchmark, we aim to inspire further research and innovation in the
field and anticipate significant advances in the performance and capabilities of MOT systems.

ETHICS STATEMENT

The development of cross-modal RGB-Event MOT systems offers promising advancements in ob-
ject detection and tracking, particularly in challenging environments such as low-illumination con-
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ditions or those marked by occlusions. By leveraging Event-based vision’s distinctive advantages,
including superior temporal resolution, vast dynamic range, and minimal latency, our benchmark
dataset aims to elevate the standards and robustness of computer vision models. It is our belief
that implementing this dataset can lead to safer and more efficient applications in areas that rely on
real-time detection and tracking, such as autonomous vehicles and surveillance. This research was
carried out using synthesized and publicly available data, thus eliminating the need for live partici-
pants and ensuring there are no potential privacy breaches. All original creators of utilized datasets
have been duly acknowledged in accordance with academic norms. Furthermore, we are committed
to making the code and dataset publicly accessible, furthering transparency and promoting collabo-
rative research in this domain.
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A APPENDIX

In this appendix, we provide more statistics and visual results omitted from the manuscript due to
space limitations.

A.1 DETAILS OF OUR RGB-EVENT DATASET

As shown in Table A-1 and Fig. A-1, we give the samples and detailed statistics of our proposed
RGB-Event dataset in the section.

Figure A-1: Illustration of sequence samples from our RGB-Event MOT benchmark.

Table A-1: Statistics of annotations in the proposed cross-modal RGB-Event tracking datasets.
#Seq. Sum of a Seq. Average of a Seq.

Pedes. Vehicle Truck Two-Wheels All cls. Pedes. Vehicle Truck Two-Wheels All cls.
01 122,670 41,366 7,149 1,792 172,977 55.03 18.56 3.21 0.80 77.60
02 54,779 9,688 0 340 64,807 45.42 8.03 0.00 0.28 53.73
03 65,580 15,481 0 1,296 82,357 45.23 10.68 0.00 0.89 56.80
04 59,973 20,145 4,032 474 84,624 44.72 15.02 3.01 0.35 63.11
05 187,234 34,329 5,915 250 227,728 106.99 19.62 3.38 0.14 130.13
06 124,731 36,793 2,256 1,248 165,028 55.26 16.30 1.00 0.55 73.12
07 77,783 0 0 0 77,783 60.96 0.00 0.00 0.00 60.96
08 94,935 0 0 0 94,935 84.69 0.00 0.00 0.00 84.69
09 52,077 0 0 0 52,077 65.18 0.00 0.00 0.00 65.18
10 66,816 2,394 0 0 69,210 45.42 1.63 0.00 0.00 47.05
11 75,571 36,017 0 3,159 114,747 25.20 12.01 0.00 1.05 38.26
12 97,362 33,792 0 9,91 132,145 32.55 11.30 0.00 0.33 44.18

Total 1,079,511 229,705 19,352 9,550 1,338,118 50.60 10.76 0.91 0.45 62.72

A.2 VISUALIZATION OF TRACKING PERFORMANCE

As shown in Figs. A-2 to A-7, we compared six testing sequences W/ and W/O Event data.
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Figure A-2: We present a qualitative comparison between a conventional RGB-based baseline
method and our proposed RGB-Event approach on multiple frames within the thrid sequence.
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Figure A-3: We present a qualitative comparison between a conventional RGB-based baseline
method and our proposed RGB-Event approach on multiple frames within the fifth sequence.
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Figure A-4: We present a qualitative comparison between a conventional RGB-based baseline
method and our proposed RGB-Event approach on multiple frames within the sixth sequence.
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Figure A-5: We present a qualitative comparison between a conventional RGB-based baseline
method and our proposed RGB-Event approach on multiple frames within the seventh sequence.
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Figure A-6: We present a qualitative comparison between a conventional RGB-based baseline
method and our proposed RGB-Event approach on multiple frames within the tenth sequence.
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Figure A-7: We present a qualitative comparison between a conventional RGB-based baseline
method and our proposed RGB-Event approach on multiple frames within the twelfth sequence.
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