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Abstract
Large language models have been successfully
applied to programming assistance tasks, such
as code completion, code insertion, and instruc-
tional code editing. However, these applications
remain insufficiently automated and struggle to
effectively integrate various types of information
during the programming process, including cod-
ing history, code context, and user instructions. In
this work, we propose a new framework that com-
prehensively integrates these information sources,
and collect data to train models and evaluate their
performance. Firstly, to thoroughly evaluate how
well models align with different types of informa-
tion and the quality of their outputs, we introduce
a new benchmark, APEval (Assist Programming
Eval), to comprehensively assess the performance
of models in programming assistance tasks. Then,
for data collection, we develop a data generation
pipeline, Programming-Instruct, which synthe-
sizes training data from diverse sources, such as
GitHub and online judge platforms. This pipeline
can automatically generate various types of mes-
sages throughout the programming process. Fi-
nally, using this pipeline, we generate 219K sam-
ples, fine-tune multiple models, and develop the
CursorCore series. We show that CursorCore out-
performs other models of comparable size. This
framework unifies applications such as inline chat
and automated editing, contributes to the advance-
ment of coding assistants.

1. Introduction
Since the rise of large language models (LLMs), AI-assisted
programming technology has developed rapidly, with many
powerful LLMs being applied in this field (Zan et al., 2022;
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Liang et al., 2024; Yang et al., 2024). The technology mainly
takes two forms. One form involves completing a specified
code snippet at the end or inserting corresponding code at
a designated position, typically accomplished by founda-
tion models (Chen et al., 2021; Bavarian et al., 2022) that
support relevant input formats. The other form involves gen-
erating or editing code snippets based on natural language
instructions or reflections through interaction with the en-
vironment, usually carried out by instruction models that
have been further aligned (Shinn et al., 2023; Cassano et al.,
2023b; Muennighoff et al., 2024; Paul-Gauthier, 2024). Fig-
ure 1 shows simple examples of these forms.

However, in practical applications, neither the completion
or insertion mode nor the instruction-based mode is per-
fect. The completion or insertion mode generates based on
the current code context, but in actual coding, we are con-
tinuously editing the code rather than just completing and
inserting. We prefer that the model predicts the upcoming
edits, as neither completion nor insertion accurately reflects
the coding process, and requires programmers to perform
additional operations. The instruction-based mode allows
for code editing, but it also has drawbacks, such as writing
prompts for specific tasks may be slower or challenging.
The process is not automated enough, programmers would
prefer a model that can proactively predict future changes
without needing extra prompts. In our view, the core is-
sue lies in the limitations of the input and output in both
forms of programming assistance. These forms either just
align the output with the current code context, limiting com-
pletion or insertion instead of editing, or align the output
with the user’s natural language instructions. However, to
effectively assist with programming, an AI programming
assistant needs to utilize anything throughout the program-
ming process. It should be capable of aligning with the
history of code changes, the current content of the code,
and any instructions provided by the user, predicting the
required responses and corresponding changes, reducing
any actions required by users.

To solve these issues, in this paper, we introduce a new
framework of AI-assisted programming task: Assistant-
Conversation to align anything during programming pro-
cess. To comprehensively evaluate the alignment of models
with different information in the programming process and
the quality of the corresponding outputs, we propose a new
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Assist (Ours)Complete

def function(s):
frequency = {c: s.count(c) for c in set(s)}

Here is a Python implementation:
def function(s):

frequency = {c: s.count(c) for c in set(s)}
return frequency

return frequency

frequency = {c: s.count(c) for c in set(s)}
def function(s):

return frequency

Write a function that calculates the frequency of each 

character in a string using Python.

frequency[c] = frequency[c] + 1

def function(s):
frequency = {c: s.count(c) for c in set(s)}
return frequency

We uses a dict comprehension to count the occurrences. 

It is more concise and readable compared to before.

def function(s):

def function(s):
for c in s:
frequency[c] = frequency[c] + 1

Insert

Instruct

Implement it concisely.

def function(s):
for c in s:
frequency[c] += 1

History (H):

Code editing history

Current Context (C):

Current code context

User Instruction (U):

Prompt or feedback

Assistant Output (A):

Output of the model

C

C

C

C

A

A

A

AU
U

H1

H2

H3

Figure 1. Different forms of programming assistance. The common uses of current LLMs are shown on the left. Our framework is shown
on the right.

benchmark, APEval (Assist Programming Eval), to com-
prehensively assess the performance of models in assisting
programming. For the Assistant-Conversation framework,
we build a data generation pipeline, Programming-Instruct,
to synthesize corresponding training data from various data
sources. This data generation method can produce any types
of messages throughout the programming process, without
any additional human annotation and does not rely on spe-
cific models. We use it to generate 219K data points and use
them to fine-tune multiple models, resulting in the Cursor-
Core series. These models achieve state-of-the-art results
when compared with other models of comparable size.

In conclusion, our main contributions are:

• Assistant-Conversation: A new framework to align
anything during programming process.

• Programming-Instruct: Data synthesis pipeline to pro-
duce any types of messages throughout the program-
ming process, and 219K data collected using it.

• APEval: A comprehensive benchmark for assessing
the ability to utilize various types of information to
assist programming.

• CursorCore: One of the best model series with the
same number of parameters for AI-assisted program-
ming tasks.

Code, models and data are freely available at https://
github.com/TechxGenus/CursorCore.

2. Assistant-Conversation: New Conversation
Framework for Programming Assistants

In this section, we introduce a new conversational frame-
work, Assistant-Conversation, aimed at simplifying the pro-
gramming process1. The framework leverages all available

1In this work, “conversation” refers to the common format used
in LLM generation, rather than multi-turn dialogues.

information during programming to streamline work for
programmers. By precisely defining various types of infor-
mation and their formats, Assistant-Conversation directly
aligns with the input and output requirements of applications
such as automated editing and inline chat. This framework
facilitates model alignment, enabling fast and accurate gen-
eration and parsing.

2.1. Framework Formulation

We introduce the elements of Assistant-Conversation: Sys-
tem (S), History (H), Current Context (C), User Instruction
(U), and Assistant Output (A). A represents the output of
the model, while the inputs consist of S, H, C, U. Figures 1
and 2 shows several examples of them. These definitions
will be referenced throughout the rest of this work.

System S (Optional) The system instruction provided to
the model at the beginning, which configures the answering
style, overall task description and other behaviors. In this
work, we fix it to a simple “You are a helpful programming
assistant.” and omit it from the subsequent discussion.

History H (Optional) The program’s editing history, con-
sisting of multiple pieces of code. These may include several
snippets or may not be present at all. We refer to them as
H1, · · ·, Hn.

Current Context C The code context currently being
processed, along with temporary information like cursor
position or selected code area.

User Instruction U (Optional) User instructions related
to the code, either written by the programmer or generated as
feedback based on interactions with external environments
(such as a code interpreter).

Assistant Output A The output of the model, consists of
modified code and chat-style interaction with the program-
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from typing import List

def generate_range(start: int, end: int, step: int) ->
List[int]:

l = []
i = start
while (step > 0 and i < end) or (step < 0 and i > end):
l.append(i)
i += step

return l

Based on the previous revisions and the current code, it appears 

that… The loop condition is (step > 0 and i < end) or (step 

< 0 and i > end), and there is an additional check for step == 0

inside the loop. However, this check is redundant because the loop 

condition already ensures that the loop will not run if step is zero.

Therefore, the predicted modification is to remove the redundant 

check for step == 0 inside the loop, simplifying the code without 

changing its functionality. This will make the function more 

concise and easier to understand.
...

while (step > 0 and i < end) or (step < 0 and i > end):
l.append(i)
if step == 0:
break

i += step
return l

from typing import List

def generate_range(start: int, end: int, step: int) ->
List[int]:

...
l = []
i = start
while True:
l.append(i)
# Decide the condition to break the loop
if (step > 0 and i >= end) or (step < 0 and i <= end):
break

i += step
return l

...
while (step > 0 and i < end) or (step < 0 and i > end) 

or step == 0:
l.append(i)
if step == 0:
break

...

H1

H2

H3

C

A

Model Input: Model Output:

module.exports = function(ctx) {
ctx.cookies.set('returning', 'true', { maxAge:

10 * 365 * 24 * 60 * 60 * 1000 })
}

C

Model Input:

Fix returning user cookie to not be HTTP-only. U

module.exports = function(ctx) {
ctx.cookies.set('returning', 'true', { maxAge:

10 * 365 * 24 * 60 * 60 * 1000, httpOnly: false })
}

To make the cookie not HTTP-only, we need to explicitly set the 

httpOnly option to false. This will allow the cookie to be 

accessed by client-side scripts.

Here's the plan:

1. Locate the ctx.cookies.set method call in the current code.

2. Add the httpOnly: false option to the options object passed to 

the set method.

A

Model Output:

Figure 2. Examples of Assistant-Conversation from our training data. The top example demonstrates predicting the corresponding edits
and explanations based on historical edits and the current code context. The bottom example demonstrates predictions based on the
current code and user instructions.

mer. In this work, we mainly focus on the prediction of
modified code.

2.2. Comparisons of Assistant-Conversation

Completion and insertion modes face challenges when
modeling both C and H Although they can utilize C, they
fail to capture H, limiting the modeling of future changes in
C, and are incapable of deleting or editing code. Although
user instructions and reflection information can be used
through comments and assert statements, this capability is
weak and unstable.

Chat models are not ideal for all programming assistance
tasks These models focus on user input rather than the
code content, while the input should primarily be centered
on C instead of just user instructions. In traditional conversa-
tional frameworks, the sole input source is U, which works
for chatbots but not for application assistants. Input sources
should include C, H, and U, as both H and U are related to
C. Although instruction models can represent the interac-
tion history between users and assistants, they struggle to
capture the historical changes in the application’s content.
Prompt engineering can integrate some of this information
into existing models, but the impact is limited. Constructing
prompts with numerous tokens increases cost and reduces

efficiency, and models may also lack alignment and proper
training for such inputs.

Our framework addresses these issues We use multiple
input sources to harness all relevant information from the
programming process. For the output, we divide it into two
parts: modified code and chat-style communication with
the programmer, aligning with the common practices of
users. When the user only requires responses based on U,
similar to instruction models, we can omit H and C, suppress
code modifications, and provide only chat output to ensure
compatibility with past chat modes.

2.3. Specifications and Implementation

To represent a piece of code like C, we can either use it
directly or wrap it in a markdown code block. However,
representing code changes, such as H or changes in A, is
more complex. We can either use the whole code, patches
that alter the code, or records of both the modification loca-
tions and the specific changes. Some methods work well but
experience issues when handling longer texts, such as out-
putting the entire modified code, which can be slow. Other
methods output minimal content, like providing only the
modification locations and changes. These are faster but
still not optimal in terms of performance. We represent
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code changes in the experiments of the main body using
the whole code format, and we investigate different ways
to represent these modifications, as detailed in Appendix B.
Additionally, we explore methods for compressing historical
code changes in Appendix I.

In some cases, programmers assign assistants to focus on
specific areas of code. They might use the cursor to mark a
general location or directly select a range of code, as shown
in Figure 2. We handle this by treating them as special
tokens (see Appendix F for further details).

We structure conversations in the order of S-H-C-U-A to
match the actual workflow. This mirrors the chronologi-
cal sequence in which information is generated during the
programming process. By doing so, we maximize prefix
overlap across multiple requests, utilizing prefix caching
to reduce redundant kv-cache computations and improve
efficiency (Zheng et al., 2023a). A is organized in code-
chat order, prioritizing code edits due to their importance in
real-time applications where speed is crucial.

3. APEval: Benchmark for Assisted
Programming

3.1. Benchmark overview

Past benchmarks assessing LLM code capabilities have ef-
fectively evaluated tasks like program synthesis (Chen et al.,
2021; Austin et al., 2021), code repair (Muennighoff et al.,
2024; Jimenez et al., 2024), and instructional code editing
(Cassano et al., 2023b; Paul-Gauthier, 2024; Guo et al.,
2024b). However, they fall short in fully assessing how
models use various types of information to assist in pro-
gramming. This gap calls for a new benchmark.

Table 1. APEval Statistics and breakdown of tasks by information
type.

APEval Statistics

Python 164 Samples
Multilingual 984 Samples
Language Python, C++, Java, JavaScript, Go, Rust

Details Mean Max

Snippets (H) 2.8 10
Lines (H|C|U) 21.7 | 8.4 | 3.2 139 | 31 | 19
Chars (H|C|U) 0.6K | 0.3K | 0.2K 5.1K | 1.4K | 1.2K

As discussed in Section 2.1, programming assistance can
involve different types of information, with H and U being
optional. Thus, there are four possible combinations of infor-
mation: H, C, U; H, C; C, U; and only C. HumanEval (Chen
et al., 2021) is a well-known benchmark for evaluating code
completion. It has been extended to assess other tasks such
as code insertion (Bavarian et al., 2022), instruction-based

tasks (CodeParrot, 2023; Muennighoff et al., 2024), and
multilingual generation (Zheng et al., 2023b; Cassano et al.,
2023a). We refer to these works and further extend it to
comprehensively evaluate the model’s ability to assist pro-
gramming. We randomly categorize each task into one
of the four types, then manually implement the functions
and simulate the potential instructions that programmers
might give to an LLM during the process, collecting all
interactions. We invite programmers with varying levels of
experience to annotate the data. After processing, we get the
new benchmark, Assist Programming Eval (APEval), which
contains approximately 1K multilingual samples. Detailed
statistics are shown in Table 1. Specific details regarding
the collection process and examples of our benchmark can
be found in Appendix C, which includes detailed human
annotation rubric and results.

3.2. Evaluation Process and Metrics

In all tasks, we use the classic Pass@1 metric to execute the
generated code, which is the simplest version of the Pass@k
metric (Chen et al., 2021). Since APEval is an extension
of HumanEval, we evaluate its Python version using the
test set created by EvalPlus (Liu et al., 2023) and assess its
other language versions using bigcode-evaluation-harness
(Ben Allal et al., 2022). We set the Python version as the de-
fault version for evaluation, and report the results from both
the basic and extra tests. We provide the model with relevant
information during the programming process, and the model
immediately returns the modified code. Some methods may
improve performance by increasing the number of output
tokens to model the thinking process; we discuss this further
in Appendix G.

4. Programming-Instruct: Collect any data
during programming

To align models with programming-related data, relevant
training data must be collected. While large amounts of un-
supervised code (Kocetkov et al., 2023) and instruction data
(Wei et al., 2023b; Luo et al., 2024b) have been gathered,
there remains a significant lack of data on the coding pro-
cess. Manually annotating the coding process is expensive,
so we propose Programming-Instruct, a method to automate
this data collection.

4.1. Data Sources

To ensure both quality and diversity in the coding process
data, we collect information from three different sources:
AI Programmer, Git Commit, and Online Judge submission.

AI Programmer For each code snippet, we use LLMs to
generate the corresponding coding history. Since human
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AI Programmer

Git Commit

Online Judge Submission

Git commit: Change the order of return values

Problem: Write a function that accepts an integer and checks 

whether it is odd or even. If the number is even, the function 

should return true; if is odd, it should return false.

Example Input: 2 Example Output: true

def min_max(arr):
return max(arr),min(arr)

def min_max(arr):
return min(arr),max(arr)

1 F

function isEven(number) {
return number / 2 = 0;

}

function isEven(number) {
return number;

}1 2

query {
users {
user

}
}

query {
users {
name

}
}

query {
users {
id
name

}
}

query {
users {
id
name

}
}

Create

History

1 2F F

function isEven(number) {
return number % 2 == 0;

}

function isEven(number) {
return number % 2 === 0;

}3 F

Figure 3. Samples from AI Programmer, Git Commit and Online Judge Submission.

@faster

def pow(a,b):

def pow(a,b):
return a^b

# Name

def pow(a,b):
return a**b

1

2

3

4

# Name

@faster
def pow(a,b):
return a**b

F

-@faster
+def pow(a,b):

+ return a^b

def pow(a,b):
return a^b

C

H1

H2

+# Name

- return a^b
+ return a**b

+@faster

M1

M2

M3

def pow(a,b):
return a^b

C

-@faster
+def pow(a,b):

H1

+ return a^b H2

×
×
√C
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M1
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U
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√

@faster
def pow(a,b):
return a**b

A

Figure 4. Data processing pipeline. The randomly selected time point is the third, data type is H and C.

coding approaches vary widely, we utilize several LLMs,
each guided by three distinct prompts, representing novice,
intermediate, and expert programmers. The LLMs then
return their version of the coding process. Prompts used are
shown in Appendix O.

Git Commit Some software can automatically track
changes, such as Git. We use Git Commit data from Github,
which captures users’ code edits and modification histories.

Online Judge Submission Many online coding platforms
like Leetcode and Codeforces allow users to submit code for
execution and receive feedback. During this process, users
continuously modify their code until it is finalized. We also
make use of this data.

Through these sources, we obtain a large number of samples,
each consisting of multiple code snippets. The last snippet in
each sample is referred to as the final snippet (F). Examples
of data sources are shown in Figure 3.

4.2. Data Processing

After collecting programming processes, we process them to
meet the requirements of Assistant-Conversation. Figure 4
shows the steps of data processing. First, we randomly
select a time point in the coding process, referred to as C.
As mentioned in Section 2.1, H and U are optional, we need
to collect four types of data distinguished according to input
data types: H, C, U; H, C; C, U; and only C. For each
sample, we randomly designate one type. If the selected
type includes H, We use the preceding edits of C as the

historical records H.

We then handle each type of data based on whether U is
available. For cases without U, we segment the changes
from C to F based on continuity, referring to them as M,
and let LLMs analyze and then judge whether each segment
of M aligns with user’s purpose through principle-driven
approaches (Bai et al., 2022; Sun et al., 2023; Lin et al.,
2024). This approach accounts for ambiguity in user intent
when inferring from H or C. For example, if a programmer
actively adds some private information at the beginning of
the code without it being mentioned in the previous records,
LLMs should not predict this change. We discard segments
deemed irrelevant, and merge the remaining ones as out-
puts that models need to learn to predict. For cases with U,
we follow the instruction generation series methods (Wang
et al., 2023b; Wei et al., 2023b; Luo et al., 2024b) by in-
putting both the historical edits and current code into the
LLM, prompting it to generate corresponding instructions.

In addition to the above, we model selected code regions,
cursor positions, and make LLMs create chat-style interac-
tions with users. Further details are provided in Appendix D.

5. CursorCore: Fine-tune LLMs to align
anything

5.1. Base models

We fine-tune existing base LLMs to assist with program-
ming tasks. Over the past few years, many open-source
foundation models have been trained on large code corpora
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Table 2. Statistics of our training data.

Sample Language History Snippets Input Length Output Length
Num Num Mean / Max Mean / Max Mean / Max

AI Programmer 70.9K - 2.0 / 17 0.6K / 25K 1.0K / 5.2K

Git Commit 88.0K 14 1.5 / 15 1.5K / 19.9K 1.4K / 5.2K

Online Judge Submission 60.5K 44 3.8 / 96 4.8K / 357.2K 1.9K / 35.1K

sourced from GitHub and other platforms, demonstrating
strong performance in coding. We choose the base ver-
sions of Deepseek-Coder (Guo et al., 2024a), Yi-Coder (AI
et al., 2024) and Qwen2.5-Coder (Hui et al., 2024) series,
as fine-tuning is generally more effective when applied to
base models rather than instruction models. After training,
we refer to them as CursorCore-DS, CursorCore-Yi and
CursorCore-QW2.5 series. Deepseek-Coder has achieved
state-of-the-art performance on numerous coding-related
benchmarks over the past year, gaining wide recognition.
Yi-Coder and Qwen2.5-Coder are the most recently released
models at the start of our experiments and show the best per-
formance on many benchmarks for code now. These models
are widely supported by the community, offering a good
balance between size and performance, making them suit-
able for efficient experimentation. For ablation experiments,
we use the smallest version, Deepseek-Coder-1.3B, to ac-
celerate the process. We use a chat template adapted from
ChatML (OpenAI, 2023) to model Assistant-Conversation
during training, as detailed in Appendix M. Training details
can be found in Appendix E.
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Figure 5. Distribution of programming language in the training
data.
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Figure 6. Distribution of history snippet counts in the training data.
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Figure 7. Distribution of input lengths in the training data.
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Figure 8. Distribution of output lengths in the training data.

5.2. Training data

We use Programming-Instruct to collect data. For AI Pro-
grammer, we gather code snippets from datasets such as
the Stack (Kocetkov et al., 2023) and OSS-Instruct (Wei
et al., 2023b), then prompt LLMs to generate the program-
ming process. For Git Commit data, we collect relevant
information from EditPackFT (Cassano et al., 2023b) (a fil-
tered version of CommitPackFT (Muennighoff et al., 2024))
and further refine it through post-processing and filtering.
Regarding Online Judge Submission data, we source the
programming process from the Codenet dataset (Puri et al.,
2021). First, we group all submissions by user for each
problem, then exclude invalid groups without correct sub-
missions to obtain complete programming processes. These
are then fed into the processing pipeline to generate the final
training data. In total, we accumulate 219K samples, with
detailed statistics and distributions shown in Tables 2 and 3
and Figures 5 to 8. AI Programmer data has the shortest
average length, while Online Judge Submission data has the
longest. To ensure compatibility with previous chatbot-style
interactions and further improve model performance, we
also incorporate the Evol-Instruct dataset (ISE-UIUC, 2023)
collected using the GPT series (Ouyang et al., 2022), which
has been widely recognized for its high quality during train-
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ing. Following StarCoder’s data processing approach (Li
et al., 2023), we decontaminate our training data.

During data collection, we randomly utilize two power-
ful open-source LLMs: Mistral-Large-Instruct (Mistral-
AI, 2024b) and Deepseek-Coder-V2-Instruct (DeepSeek-AI
et al., 2024). These models have demonstrated performance
comparable to strong closed-source models like GPT-4o
across many tasks, and are currently the only two open-
source models scoring over 90% on the classic HumanEval
benchmark at the start of our experiment. Additionally, they
are more cost-effective and offer easier reproducibility than
GPT-4o. For Mistral-Large-Instruct, we quantize the model
using the GPTQ (Frantar et al., 2022) algorithm and deploy
it locally with SGLang (Zheng et al., 2023a) and Marlin
kernel (Frantar et al., 2024) on 4 Nvidia RTX 4090 GPUs.
For Deepseek-Coder-V2-Instruct, we use its official API for
integration.

Table 3. The proportion of four combinations of information dur-
ing programming in our training data.

C H, C C, U H, C, U

AI Programmer 24.1 22.2 25.4 28.3

Git Commit 25.9 20.0 28.0 26.1

Online Judge Submission 27.5 19.7 29.4 23.4

6. Evaluation and Results
In this section, we evaluate the CursorCore models. We
begin by describing the experimental setup and then present
and analyze the results.

6.1. Experimental setup

We conduct the data selection ablation and primary eval-
uation on our APEval benchmark, and provide results on
well-known benchmarks such as Python program synthesis,
automated program repair, and instructional code editing,
which are detailed in Appendix J. We choose prominent
open-source and closed-source LLMs as our baselines. For
all benchmarks, we use greedy decoding to generate evalua-
tion results. CursorCore natively supports various inputs in
APEval, whereas base and instruction LLMs require addi-
tional prompts for effective evaluation. We design few-shot
prompts separately for base and instruction models, as de-
tailed in Appendix N. Data selection ablation can be found
in Appendix H.

6.2. Evaluation results on APEval

In Table 4, we present the results of evaluating CursorCore
series models and other LLMs on the Python version of
APEval. The results for multilingual versions can be found

in Appendix L. It includes both the average results and the
results across four different types of information within the
benchmark, each item in the table is the score resulting from
running the base tests and extra tests. We also report the
evaluation results of other well-known models, which can
be found in Appendix K.

CursorCore outperforms other models of comparable
size CursorCore consistently outperforms other models
in both the 1B+ and 6B+ parameter sizes. It achieves the
highest average score, with the best 1B+ model surpassing
the top scores of other models by 10.4%, and even by 11.5%
when running extra tests. Similarly, the best 6B+ model
exceeds by 4.3%, and by 3.0% in the case of extra tests.
Additionally, across various information types, CursorCore
consistently demonstrates optimal performance among all
similarly sized models.

Instruction models mostly outperform base models For
most model series, instruction-tuned models outperform
their corresponding base models, as instruction fine-tuning
generally enhances model capabilities (Ouyang et al., 2022;
Longpre et al., 2023). The only exception observed in our
experiments is the latest model, Qwen2.5-Coder. Its base
model achieves a very high score, while the instruction-
tuned model performes worse. We attribute the base model’s
high performance to its extensive pre-training, which in-
volved significantly more tokens than previous models (Hui
et al., 2024). This training on a wide range of high-quality
data grants it strong generalization abilities, enabling it to
effectively handle the newly defined APEval task format.
In contrast, the instruction-tuned model is not specifically
aligned with this task, leading to a decrease in its APEval
score. This highlights the challenges of aligning models
with numerous diverse tasks, especially small models.

Performance difference between general and code LLMs
is strongly related to model size In 1B+ parameter mod-
els, general LLMs significantly underperform code LLMs.
Even the best-performing general model scores over 10%
lower compared to the best-performing code model, despite
having more parameters. For models with 6B+ parameters,
while general LLMs still lag behind code LLMs, the perfor-
mance gap narrows considerably, with general LLMs even
surpassing in certain cases involving specific information
types. When it comes to 10B+ models, the performance dif-
ference between general and code LLMs becomes negligible.
We think that smaller models, due to their limited parameter
capacity, tend to focus on a single domain, such as pro-
gramming assistance, while larger models can encompass
multiple domains without compromising generalizability.

Gap between closed models and the best open models
is smaller Historically, open-source models significantly
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Table 4. Evaluation results of LLMs on APEval.
Model C H, C C, U H, C, U Avg.

Closed Models

GPT-4o 68.3 (63.4) 61.0 (56.1) 75.6 (75.6) 56.1 (53.7) 65.2 (62.2)

10B+ Models

Codestral-V0.1-22B 68.3 (56.1) 41.5 (41.5) 75.6 (73.2) 48.8 (46.3) 58.5 (54.3)
DS-Coder-33B-Inst 63.4 (56.1) 56.1 (48.8) 70.7 (63.4) 51.2 (48.8) 60.4 (54.3)
Qwen2.5-72B-Inst 73.2 (68.3) 53.7 (51.2) 78.0 (70.7) 56.1 (56.1) 65.2 (61.6)

Mistral-Large-123B-Inst 65.9 (58.5) 56.1 (46.3) 73.2 (68.3) 48.8 (48.8) 61.0 (55.5)
DS-Coder-V2-236B-Inst 78.0 (65.9) 48.8 (43.9) 68.3 (61.0) 53.7 (48.8) 62.2 (54.9)

6B+ Models

Llama-3.1-8B-Inst 24.4 (24.4) 31.7 (29.3) 53.7 (51.2) 39.0 (34.1) 37.2 (34.8)
Gemma-2-9B-It 56.1 (53.7) 41.5 (36.6) 51.2 (46.3) 36.6 (29.3) 46.3 (41.5)

DS-Coder-6.7B-Base 29.3 (24.4) 26.8 (22.0) 41.5 (31.7) 22.0 (19.5) 29.9 (24.4)
DS-Coder-6.7B-Inst 56.1 (53.7) 41.5 (36.6) 70.7 (61.0) 34.1 (29.3) 50.6 (45.1)

Yi-Coder-9B 29.3 (26.8) 26.8 (22.0) 17.1 (17.1) 29.3 (26.8) 25.6 (23.2)
Yi-Coder-9B-Chat 56.1 (51.2) 39.0 (36.6) 73.2 (70.7) 36.6 (36.6) 51.2 (48.8)
Qwen2.5-Coder-7B 56.1 (53.7) 41.5 (36.6) 65.9 (56.1) 31.7 (29.3) 48.8 (43.9)

Qwen2.5-Coder-7B-Inst 22.0 (19.5) 46.3 (39.0) 75.6 (65.9) 41.5 (39.0) 46.3 (40.9)
CursorCore-DS-6.7B 68.3 (63.4) 41.5 (39.0) 68.3 (63.4) 36.6 (31.7) 53.7 (49.4)

CursorCore-Yi-9B 53.7 (53.7) 46.3 (43.9) 75.6 (68.3) 43.9 (36.6) 54.9 (50.6)
CursorCore-QW2.5-7B 65.9 (61.0) 41.5 (39.0) 65.9 (63.4) 48.8 (43.9) 55.5 (51.8)

1B+ Models

Llama-3.2-3B-Instruct 14.6 (14.6) 22.0 (19.5) 29.3 (26.8) 34.1 (31.7) 25.0 (23.2)
Gemma-2-2B-It 14.6 (14.6) 22.0 (19.5) 29.3 (26.8) 34.1 (31.7) 25.0 (23.2)

DS-Coder-1.3B-Base 0.0 (0.0) 12.2 (12.2) 17.1 (12.2) 19.5 (14.6) 12.2 (9.8)
DS-Coder-1.3B-Inst 39.9 (36.6) 39.0 (36.6) 39.0 (29.3) 34.1 (34.1) 37.8 (34.1)

Yi-Coder-1.5B 2.4 (0.0) 2.4 (2.4) 14.6 (14.6) 12.2 (7.3) 7.9 (6.1)
Yi-Coder-1.5B-Chat 31.7 (31.7) 4.9 (4.9) 51.2 (41.5) 26.8 (22.0) 28.7 (25.0)
Qwen2.5-Coder-1.5B 43.9 (36.6) 26.8 (26.8) 51.2 (41.5) 36.6 (34.1) 39.6 (34.8)

Qwen2.5-Coder-1.5B-Inst 14.6 (14.6) 17.1 (14.6) 43.9 (34.1) 31.7 (29.3) 26.8 (23.2)
CursorCore-DS-1.3B 36.6 (31.7) 39.0 (31.7) 53.7 (46.3) 26.8 (22.0) 39.0 (32.9)
CursorCore-Yi-1.5B 46.3 (39.0) 34.1 (29.3) 68.3 (58.5) 36.6 (34.1) 46.3 (40.2)

CursorCore-QW2.5-1.5B 46.3 (43.9) 48.8 (43.9) 65.9 (61.0) 39.0 (36.6) 50.0 (46.3)

lag behind closed-source models, like those in the GPT se-
ries, leading to a preference for closed-source models in
synthetic data generation and other applications (Taori et al.,
2023; Xu et al., 2023). However, with the continuous ad-
vancement of open-source LLMs, increasingly powerful
models have emerged. On APEval, the best open-source
models—such as Qwen2.5-72B-Instruct, Mistral-Large-
Instruct, and Deepseek-Coder-V2-Instruct—demonstrate
performance that closely approaches that of the leading
GPT series model, GPT-4o. This indicates that the perfor-
mance gap between open-source and closed-source LLMs
has considerably narrowed, encouraging the development of
more interesting applications based on open-source LLMs.
Despite this progress, GPT-4o remains more comprehensive
than open-source LLMs. It utilizes H far more effectively
than any other model, demonstrating its strong capability to

process and align with various types of information. This is
an area where open-source LLMs still need to improve.

7. Conclusion
This work explores how LLMs can maximize the use of any
available information during programming process to assist
coding. We introduce Assistant-Conversation to model the
diverse types of information involved in programming. We
present APEval, a new benchmark that includes various
historical edits and instructions, providing a comprehensive
evaluation of the model’s programming assistance capa-
bilities. Additionally, we propose Programming-Instruct,
which is designed to collect data for training LLMs to assist
programming, along with their corresponding data sources.
Furthermore, we train CursorCore, which demonstrate out-
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standing performance in assisting programming tasks while
achieving a good balance between efficiency and cost. We
also conduct extensive ablation experiments and analyzes.
Beyond enhancing traditional approaches of programming
assistance, we plan to extend this approach to support mod-
els capable of assisting with repository-level development
as well as other applications.
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A. Related Work
A.1. AI-Assisted Programming

AI-assisted programming has a long history, encompassing various tasks such as clone detection (Lu et al., 2021), knowledge
tracing (Liu et al., 2019; Li et al., 2022; Gao et al., 2025), data mining (Wang et al., 2023a; Zhang et al., 2024c), code
retrieval (Li et al., 2024b;c; 2025), code summarization (Jiang et al., 2025; Sun et al., 2024), program synthesis (Chen et al.,
2021; Austin et al., 2021), automatic program repair (Gulwani et al., 2016; Zhao et al., 2024), code editing (Wei et al.,
2023a), and code optimization (Shypula et al., 2024). These tasks attempt to incorporate a wide range of information into
their processes, such as historical edits (Gupta et al., 2023; Zhang et al., 2022) and user instructions (Cassano et al., 2023b).
In the past, however, they were typically addressed by custom-built models, which were difficult to scale across different
tasks and types of information. With the rise of LLMs, AI-assisted programming increasingly leverages LLMs to handle
multiple types of tasks simultaneously. Numerous high-quality open-source and closed-source products, such as Continue
(Continue-Dev, 2024), Aider (Paul-Gauthier, 2024), Copilot (Github-Copilot, 2022) and Cursor (Cursor-AI, 2023), are
based on this approach.

A.2. Code Models

Recently, LLMs have attracted significant attention in the research community for their impact on enhancing various aspects
of code intelligence. Open-source code LLMs like CodeLlama (Rozière et al., 2023; Touvron et al., 2023), Deepseek-Coder
(Guo et al., 2024a; DeepSeek-AI et al., 2024), StarCoder (Li et al., 2023; Lozhkov et al., 2024), Codegemma (Team et al.,
2024), Codestral (Mistral-AI, 2024a), Codegeex (Zheng et al., 2023b), Yi-Coder (AI et al., 2024), and Qwen-Coder (Hui
et al., 2024) have made substantial contributions by utilizing large code corpora during training. Some models, such as
WizardCoder (Luo et al., 2024b), OctoCoder (Muennighoff et al., 2024), CodeLlama-Instruct, Deepseek-Coder-Instruct,
MagiCoder (Wei et al., 2023b), Yi-Coder-Chat, and Qwen-Coder-Instruct, have been fine-tuned using instruction data
collected through methods like Self-Instruct (Wang et al., 2023b; Taori et al., 2023), Evol-Instruct, and OSS-Instruct. These
models are specifically trained on code-related instructions, improving their ability to follow coding instructions. They have
made significant breakthroughs in tasks like code completion and editing.

A.3. Code Benchmarks

HumanEval (Chen et al., 2021) is one of the most well-known benchmarks in the code domain, featuring several variants
that extend it to different programming languages, extra tests, and broader application scenarios. Other notable benchmarks
include MBPP (Austin et al., 2021) for program synthesis, DS1000 (Lai et al., 2022) for data science tasks, SWE-Bench
(Jimenez et al., 2024) for real-world software engineering problems, and CanItEdit / CodeEditorBench (Cassano et al.,
2023b; Guo et al., 2024b) for code editing. Additionally, LiveCodeBench (Jain et al., 2024) focuses on contamination-free
evaluations, while ClassEval(Du et al., 2023), Bigcodebench (Zhuo et al., 2024) and Naturecodebench (Zhang et al., 2024b)
provide comprehensive program synthesis assessments. CRUXEval (Gu et al., 2024) targets reasoning, CrossCodeEval
(Ding et al., 2023) focuses on repository-level code completion, and Needle in the code (Hui et al., 2024) is designed for
long-context evaluations.

B. Code modification representation
As discussed in Section 2.3, there are various ways to represent code modifications. Many previous works have explored
techniques for instruction-based code editing (Wei et al., 2023a; Muennighoff et al., 2024; Paul-Gauthier, 2024; Sweep-AI,
2024). We build upon these works with the following formats, as shown in Figure 9:

Whole file format (WF) We use the entire code, allows for a straightforward representation of the modifications. However,
when only small parts of the code are changed, this method leads to redundancy, especially for long code files. Certain
mitigation can be achieved through technologies such as retrieval-based speculative decoding (Yang et al., 2023; He et al.,
2024).

Unified diff format (UD) The diff format is a common way to represent code changes, widely adopted for its efficiency
and readability. Among various diff formats, unified diff is one of the most popular, as it efficiently shows code changes
while reducing redundancy. It is commonly used in software tools such as git and patch.
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Location-and-change format (LC) To further reduce redundancy, we consider further simplify the diff formats by
showing only the location and content of the changes. The location is based on line numbers. Some reports indicate that
LLMs often struggle with localization, so we insert line numbers into the code to assist them.

Search-and-replace format (SR) Another option is to eliminate the need for localization altogether by simply displaying
the part to be modified alongside the updated version. This format eliminates the need for line numbers.

We conduct experiments using Deepseek-Coder-1.3B with these formats. For quick experiments, we train the model on
data generated by AI Programmer. We then evaluate their performance on APEval, with results shown in Figure 10. In
programming assistance tasks, where real-time performance is critical, such as in tasks like auto completion or editing, the
generation speed becomes particularly important. The number of tokens in both input and output directly affects the model’s
speed, and the editing format greatly impacts the token count. Therefore, we also report the average input-output token
count for each format in Figure 11.

def func(s):
s = s[::-1]
return s

1

2

3

def func(s):
return s[::-1]

@@ -2,2 +2 @@
- s = s[::-1]
- return s
+ return s[::-1]

WF UD

LC

1,3
---------------

return s[::-1]

s = s[::-1]
return s

----------------
return s[::-1]

SR

Figure 9. Different formats for representing code modifi-
cations.

WF UD LC SR20

22

24

26

28

30

32

Pa
ss

@
1(

%
)

Extra tests
Base tests

Figure 10. Performance of models us-
ing different formats on APEval.

WF UD LC SR50

100

150

200

250

300

350

400

450

To
ke

n 
N

um

Input
Output

Figure 11. Context length for models
using different formats on APEval.

The results show that using WF yields the best performance, followed by SR and LC, with UD performing the worst. In
terms of token usage, LC uses the fewest tokens, followed by SR and UD, while WF uses the most. The average token count
for SR and UD is only slightly lower than that of WF, as they are more concise for small code changes, when a large portion
needs modification, they must include both versions, making them less efficient than using WF instead.

Recent research has pointed out correlations and scaling laws between model input and output length, as well as performance
(OpenAI, 2024; Snell et al., 2024). Our results align with these findings. As the length increases, performance improves
consistently across LC, SR, and WF. UD performs poorly in both token usage and performance, likely because it contains
redundant information, such as both line numbers and content for the modified sections, where only one would suffice. This
redundancy reduces the format’s efficiency compared to the other three formats.

C. Details regarding the collection process of APEval
We inform the annotators about the function’s entry point and its purpose, and allow them to send instructions to the AI
programming assistant at appropriate moments. We then use screen recording tools to capture the annotators’ process
of wrtining this function. Afterward, we manually analyze the recordings to construct our benchmark. The historical
information, current code, and user instructions are all provided by annotators based on the specified function functionality,
to cover various code editing scenarios.

During the process of creating the benchmark, in order to better evaluate the model’s ability to utilize historical edits and
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integrate this information with user instructions, we collected samples for the (H, C) and (H, C, U) types that required the
use of relevant historical information to accurately infer user intent. If a sample contained only a single type of information
(such as only C or only U), it might be impossible to provide an adequate answer due to a lack of sufficient information.

In our benchmark collection process, we initially annotated one programming process for each task. For some tasks, the
annotators consulted the programming assistant; for others, they did not. Similarly, some tasks involved complex editing
histories, while others did not. Upon reviewing the data, we found that for certain tasks, it was nearly impossible to collect
realistic programming processes containing specific types of information. For example, Some tasks are straightforward and
can be completed with just a few lines of code. Programmers who have undergone basic training can write these solutions
quickly without needing to consult an assistant or repeatedly revise their code. Conversely, some tasks may involve calling
specific libraries or algorithms that most annotators are unfamiliar with, leading them to rely on the programming assistant.
It would be unrealistic and counterproductive to instruct annotators to ”always consult the AI” or ”edit your code repeatedly,”
as this would deviate from real-world scenarios and undermine our intention to use human-annotated data. Considering
these reasons, we did not collect programming traces for the entire test set. While we still hope that the number of samples
of four different combinations is at least balanced. At this stage, the number of samples for combinations involving all four
data types was relatively similar. So we asked annotators to label additional programming process traces for combinations
with fewer samples and collected the corresponding traces. Meanwhile, for combinations with slightly more samples, we
discarded some of their traces. Subsequently, we manually translated them into different programming languages. Through
this process, we established our final benchmark. Simplified examples of the annotated data is illustrated in Figure 12.

Example 2

# Current
def has_close_elements(n, t):

for i in range(len(n - 1)):

for j in range(i + 1, len(n)):

if n[i] - n[j] < t or n[j] - n[i] < t:

# History 1
def incr_list(l: list):

return [x++ for x in l]

# Current
def incr_list(l: list):

Example 1

Figure 12. Simplified examples of APEval, which covering various code editing scenarios that require integrating multiple types of
information to infer user intent. The left example checks if any two numbers in a list are closer than a given threshold. The current logic is
flawed and should verify if the absolute difference between two values is less than t. The model must detect this issue, fix the error, and
generate the remaining code. The right example shows a programmer replacing incorrect code with a corrected version. Without historical
edits, the model cannot infer the function’s intent. Thus, it must use edit history to make accurate code edits.

D. Additional details about Programming-Instruct
In our code editing records, we place no limits on the granularity or number of edits. Changes between two code versions
may involve anything from a single character to multiple extensive modifications. However, data collected from various
sources may be compressed, resulting in incomplete records. This compression can lead to a higher proportion of large-scale
edits, particularly in Git Commit data. To address this issue, we propose a decomposition strategy: when there are multiple
changes between versions, we break them down into single-step modifications, with the steps ordered randomly. For Git
Commit data, we apply this decomposition strategy with a 90% probability, while for AI Programmer and Online Judge
Submission data, we apply it with a 50% probability.

We randomly select a time point from the records to represent C. In practice, we prefer the model to provide assistance
at earlier stages. Thus, we implement a simple rule where the random selection follows an exponential distribution, with
the probability of selecting each time point decreasing by 10% with each subsequent step. This biases the model toward
choosing earlier time points.

In addition to generating H and U, as discussed in Section 4.2, we also simulate the programmer’s specification of the target
area and model interactions in a chat-style format. The target modification area is created using a random algorithm, as
described in Appendix F, while the chat-style interaction is generated using LLMs which is similar to the generation of
instructions. Prompts used for it are provided in Appendix O.
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E. Training details
Our models are trained for 2 epochs using the Transformers library (Wolf et al., 2020). We enhance memory efficiency and
speed with techniques such as Deepspeed ZeRO3 (Rajbhandari et al., 2019), ZeRO Offload (Ren et al., 2021), FlashAttention2
(Dao, 2024), and triton kernels (Hsu et al., 2024). We calculate the maximum sequence length that can be processed per
batch based on the available VRAM. Using the First-Fit Decreasing algorithm (Kundu et al., 2024), we pack training samples
to ensure that each batch reaches its maximum sequence length, thereby optimizing training speed. The training process
employs the Adafactor optimizer (Shazeer & Stern, 2018) with a learning rate of 5e-5, coupled with a cosine scheduler
featuring 15 warm-up steps.

F. Target area representation
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location information on
APEval.

To modify code, programmers often specify the parts requiring changes, typically in one of two
ways: either by clicking with the cursor to indicate a general area or by selecting a specific text
range with defined start and end points. We model both cases using special tokens: “<|target|>”
for cursor positions, and “<|target start|>” and “<|target end|>” to mark the selected region’s
boundaries. While collecting training data, we determine modification locations based on the code
differences before and after changes. In real-world applications, the decision to provide explicit
locations—and their granularity—varies among programmers. To account for this variability, we
introduce randomized choices for determining the form and location, integrating this approach
into the Programming-Instruct pipeline.

We evaluate CursorCore-DS-1.3B on APEval both with and without location information to assess
its impact on performance. The results in Figure 13 show that including location information
has minimal effect, likely because most APEval examples are relatively short, enabling LLMs
to easily infer modification locations, much like humans do without a cursor. Previous works,
such as those on automated program repair (Zhang et al., 2024a), have emphasized the importance
of identifying the modification location. We believe this emphasis stems from traditional code
completion and insertion paradigms, as well as the natural alignment of specifying modification
points with human thought processes. However, with the advancement of LLMs, the benefit of
providing location information diminishes when generating code at the function or file level. This
may need further exploration in longer contexts, such as repository-level editing tasks.

G. Discussion about thought process
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Figure 14. Performance of models using
thought process or not on APEval.

Incorporating reasoning processes in prompts has been shown to improve model
performance, as demonstrated in various works like CoT (Wei et al., 2022) and
ReACT (Yao et al., 2023). Some studies have even integrated these processes
into the training phase to further enhance effectiveness (Zelikman et al., 2022).
In this work, we also explore a self-taught approach, where we prompt LLMs
to reverse-generate the reasoning process from outputs and incorporate them
into the model’s output during training. Our model and data setup follow the
same configuration as described in Appendix B to enable quick experiments.
The evaluation results are shown in Figure 14.

After incorporating reasoning into training, the model shows slight performance
improvements, but the output length increases significantly. The tokens used for
reasoning often exceed those in the modified code. Since many programming-
assist applications require real-time responses, longer reasoning times may be
impractical, so we do not integrate this process into CursorCore. We believe
that the decision to use reasoning processes should be based on a combination
of factors, such as performance, latency, model size, and specific application
requirements.
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H. Data Selection Ablation
We train the smallest model Deepseek-Coder-1.3B on different combinations of datasets to determine the optimal data mix.
The results of the ablation study are shown in Figure 15.
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Figure 15. Data Selection Ablation on APEval.

AI Programmer has the highest data quality Among
the various data sources, the model trained on the AI Pro-
grammer dataset achieve the best performance on APEval.
We believe this is primarily because the data aligns well
with the required format of APEval. Moreover, unlike
other data sources such as Git Commit, the AI Program-
mer data is almost entirely synthesized by LLMs, except
for the initial code. As LLMs have advanced, the quality
of their generated data has generally surpassed that of
data collected and filtered from human-created sources.

Importance of mixing data with different information
types We find that using high-quality chat-style data
alone, such as the Evol-Instruct dataset, does not achieve
the desired performance; it underperforms compared to
the AI Programmer dataset. However, when combining
both datasets, the model shows a notable improvement.
This indicates that to better align the model with a variety
of data and information, it is necessary to use datasets
containing diverse types of information.

Our final selection We combine data from all sources for training. Since current research on Code LLMs primarily
focuses on performance in Python, and training on multilingual data leads to a slight decrease in APEval scores, we use only
the Python part of the Git Commit and Online Judge Submission datasets. As a result, we get CursorCore series models.

I. Conversation retrieval for Assistant-Conversation
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Figure 16. Performance of models using dif-
ferent sliding window sizes evaluated on
APEval.

Not all code editing records are necessary for inferring user intent and predict-
ing output. Some past modifications, such as simple typos corrected shortly
after, offer little value to future predictions, and thus can be safely removed.
Additionally, if a programmer continuously interacts with the model without
deleting these records, the editing history will accumulate and grow until it
exceeds the model’s maximum context length. This could negatively affect
performance and speed.

To address this, it is essential to compress the editing history or retrieve only the
relevant portions. Similar to how many conversation retrieval techniques, such
as memory modules (Packer et al., 2023), prompt compression (Jiang et al.,
2023) and query rewriting (Ye et al., 2023), are used to manage dialogues for
chatbots, these methods can be adapted for handling code editing records. In
this work, we explore a basic approach, sliding window, to investigate possible
solutions. When the number of historical editing records surpasses a predefined
threshold, the model automatically discards the oldest entries.

We evaluate this method on APEval, as shown in Figure 16. The impact of
setting a sliding window of a certain size on the results is minimal, indicating
that compressing the historical records effectively balances performance and
efficiency.
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Table 5. Evaluation results on EvalPlus, CanItEdit and OctoPack.

Model EvalPlus CanItEdit OctoPack
HE (+) MBPP (+) Desc. Lazy HE Fix

DS-Coder-6.7B-Base 47.6 (39.6) 70.2 (56.6) 34.3 27.6 23.8
DS-Coder-6.7B-Inst 74.4 (71.3) 75.1 (66.1) 41.9 31.4 42.1

CursorCore-DS-6.7B (Chat) 78.0 (73.2) 74.1 (63.8) 45.7 31.4 43.3
CursorCore-DS-6.7B (Inline) 73.8 (67.1) 71.2 (59.8) 38.1 32.4 32.3
CursorCore-DS-6.7B (Tab) 72.0 (65.9) 74.3 (63.0) 6.7 6.7 25.6

Yi-Coder-9B 55.5 (47.0) 69.6 (56.9) 47.6 34.3 32.3
Yi-Coder-9B-Chat 83.5 (76.8) 84.4 (71.4) 58.1 45.7 54.3

CursorCore-Yi-9B (Chat) 84.1 (79.3) 84.4 (73.5) 56.2 41.0 56.1
CursorCore-Yi-9B (Inline) 79.9 (72.0) 83.6 (69.6) 48.6 35.2 33.5
CursorCore-Yi-9B (Tab) 79.3 (71.3) 83.9 (72.5) 10.5 10.5 25.6

Qwen2.5-Coder-7B 61.6 (53.0) 76.7 (63.0) 49.5 40.0 17.1
Qwen2.5-Coder-7B-Inst 87.2 (83.5) 83.5 (71.7) 53.3 44.8 54.3

CursorCore-QW2.5-7B (Chat) 80.5 (75.6) 77.0 (64.3) 51.4 44.8 50.6
CursorCore-QW2.5-7B (Inline) 79.9 (73.2) 77.0 (64.0) 57.1 39.0 41.5
CursorCore-QW2.5-7B (Tab) 79.9 (74.4) 75.1 (64.3) 5.7 5.7 27.4

DS-Coder-1.3B-Base 34.8 (26.8) 55.6 (46.9) 13.3 8.6 1.2
DS-Coder-1.3B-Inst 65.2 (59.8) 61.6 (52.6) 26.7 17.1 29.3

CursorCore-DS-1.3B (Chat) 68.9 (63.4) 61.9 (49.7) 21.9 14.3 30.4
CursorCore-DS-1.3B (Inline) 57.9 (53.7) 60.1 (51.1) 25.7 17.1 17.1
CursorCore-DS-1.3B (Tab) 63.4 (57.3) 65.6 (54.8) 2.9 2.9 8.5

Yi-Coder-1.5B 40.6 (34.8) 59.0 (50.0) 21.0 12.4 3.7
Yi-Coder-1.5B-Chat 67.7 (64.0) 66.9 (56.6) 21.0 23.8 37.2

CursorCore-Yi-1.5B (Chat) 68.9 (65.2) 65.6 (54.8) 27.6 24.8 38.4
CursorCore-Yi-1.5B (Inline) 60.4 (54.3) 65.6 (55.0) 28.6 24.8 22.6
CursorCore-Yi-1.5B (Tab) 67.1 (59.1) 66.1 (56.6) 4.8 4.8 20.1

Qwen2.5-Coder-1.5B 43.9 (36.6) 69.3 (58.5) 31.4 22.9 4.9
Qwen2.5-Coder-1.5B-Inst 70.7 (66.5) 69.3 (59.4) 28.6 21.0 32.9

CursorCore-QW2.5-1.5B (Chat) 71.3 (65.9) 69.3 (58.5) 31.4 22.9 36.6
CursorCore-QW2.5-1.5B (Inline) 66.5 (60.4) 68.5 (58.2) 23.8 20.0 36.6
CursorCore-QW2.5-1.5B (Tab) 64.0 (58.5) 67.2 (56.6) 1.0 1.0 13.4

J. Evaluation results of other benchmarks
We also evaluate CursorCore on other well-known benchmarks. We use HumanEval+ and MBPP+ (Liu et al., 2023) to
evaluate Python program synthesis, CanItEdit (Cassano et al., 2023b) for instructional code editing, and the Python subset
of HumanEvalFix from OctoPack (Muennighoff et al., 2024) for automated program repair. All benchmarks are based on
their latest versions, and HumanEvalFix uses the test-based repair version as described in the original paper. To generate
results, we consistently use vLLM (Kwon et al., 2023) due to its versatility and support for customized conversation formats.
Evaluations are conducted within each benchmark’s execution environment.

Unlike previous LLMs, CursorCore supports multiple input formats, and different formats may produce different results. To
comprehensively showcase this, we categorize input formats based on specific assisted programming scenarios into three
cases:

• Chat: Similar to the chat format of ChatGPT (Ouyang et al., 2022), we wrap the query before passing it to the model,
which returns a response in a chat style. The final result is obtained after post-processing.

• Inline: Similar to Copilot Inline Chat (Github-Copilot, 2022) and Cursor Command K (Cursor-AI, 2023) scenarios,
corresponding to the combination of C and U in Assistant-Conversation. Compared to the Chat mode, it is more tightly
integrated with the IDE and returns less additional content.
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• Tab: Similar to the use case of Copilot++ (Cursor-AI, 2023), it is the most automated of all scenarios. We provide only
the C to the model. For instructional code editing and automated code repair, no explicit instructions are passed.

Evaluation results are shown in Table 5. Our model outperforms the corresponding instruction-tuned and base models across
several benchmarks. However, the performance of the 6B+ model, when compared to its corresponding models, is not as
strong as that of the 1B+ model. Notably, with the recent release of Qwen2.5-Coder-7B at the start of our experiments, we
outperform it on only one benchmark, while other models achieve better performance across more benchmarks. We attribute
it to the quantity of high-quality data: larger models require more high-quality data for training. While the current dataset is
sufficient to train a highly effective 1B+ model, additional data is needed to train a more competitive 6B+ model.

We analyze the evaluation results of various input types defined in real-world assisted programming scenarios. The results
of the Chat and Inline modes are comparable, with Chat mode showing a slight advantage. We attribute this to the flexibility
of the Chat format, which allows the model to output its thought process and thus enhances output accuracy. The Tab mode
shows comparable results on EvalPlus but underperforms on HumanEvalFix and struggles with CanItEdit, likely due to
variations in the informational content of task instructions. For program synthesis based on docstrings, instructions like
“complete this function” provide minimal additional context. In contrast, program repair tasks provide crucial information by
indicating the presence of errors. When only code is available, the model must first determine correctness independently.
Instructional code editing tasks clearly state objectives, such as implementing a new feature, requiring the model to fully
understand the given information, as accurate predictions based solely on code are nearly impossible.

Table 6. Evaluation results on Zeta, DS1000 and ClassEval.

Model Zeta DS1000 ClassEval

DS-Coder-1.3B-Base 18.2 16.2 13.0
DS-Coder-1.3B-Inst 42.4 20.7 13.0
CursorCore-DS-1.3B 45.5 21.2 17.0

To further evaluate the ability of CursorCore to leverage
historical information for editing and its applicability to more
general software engineering tasks, we additionally conduct
experiments on Zeta (Zed-Industries, 2025), DS1000 (Lai
et al., 2022), and ClassEval (Du et al., 2023), as shown in
Table 6. For Zeta, we report the average accuracy across all
evaluated samples, with correctness judged by GPT-4o based
on the associated assertion text. For DS1000 and ClassEval,
we choose to use the Inline and Tab modes, as they most
closely resemble the original formats of them. We report the average score across all samples, using the subset of ClassEval
that evaluates class-level generation. All generations are produced under greedy decoding. These results collectively
demonstrate the strong effectiveness of CursorCore.

K. Additional evaluation results on APEval
We also report the evaluation results of various versions of other well-known models on APEval, as shown in Table 7.

L. Multilingual evaluation results on APEval
We report the evaluation results on multilingual versions of APEval, as shown in Tables 8 to 13. CursorCore series achieve
state-of-the-art performance across all languages, strongly demonstrating the effectiveness of our approach.

M. Chat template
Our model’s chat template (OpenAI, 2023) is adapted from the ChatML template, where each message in the conversation
is restricted to one of the following roles: system, history, current, user, or assistant. The assistant’s output includes both
code modifications and chat interaction with the user. To indicate code changes, we use two special tokens “<|next start|>”
and “<|next end|>” to wrap the code modification parts. This approach models Assistant-Conversation effectively and is
compatible with standard ChatML templates and chatbot applications. Figure 17 illustrates an example of our chat template,
while Figure 18 presents examples of the chat template when using the LC and SR modes described in Appendix B.

N. Prompts for evaluation
We report the prompts used to evaluate base LLMs on APEval in Table 20, while the prompts used for evaluating instruct
LLMs are presented in Table 21.
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Table 7. Additional evaluation results of LLMs on APEval.
Model C H, C C, U H, C, U Total

Llama-3.2-1B 0.0 (0.0) 14.6 (12.2) 2.4 (4.9) 14.6 (12.2) 7.9 (7.3)
Llama-3.2-1B-Instruct 7.3 (7.3) 14.6 (14.6) 19.5 (19.5) 22.0 (19.5) 15.9 (15.2)

Gemma-2-2B 7.3 (7.3) 4.9 (2.4) 12.2 (12.2) 14.6 (9.8) 9.8 (7.9)
Llama-3.2-3B 14.6 (14.6) 12.2 (9.8) 26.8 (19.5) 22.0 (17.1) 18.9 (15.2)
StarCoder2-3B 19.5 (19.5) 19.5 (17.1) 22.0 (19.5) 22.0 (17.1) 20.7 (18.3)

Phi-3.5-3.8B-Inst 24.4 (22.0) 19.5 (14.6) 34.1 (34.1) 39.0 (34.1) 29.3 (26.2)
StarCoder2-7B 7.3 (7.3) 14.6 (12.2) 19.5 (14.6) 22.0 (17.1) 15.9 (12.8)
Llama-3.1-8B 12.2 (12.2) 17.1 (14.6) 19.5 (19.5) 22.0 (17.1) 17.7 (15.9)
Gemma-2-9B 22.0 (22.0) 19.5 (17.1) 17.1 (19.5) 22.0 (17.1) 20.1 (18.9)

Codegeex4-All-9B 43.9 (41.5) 34.1 (31.7) 73.2 (61.0) 34.1 (34.1) 46.3 (42.1)
StarCoder2-15B 26.8 (24.4) 24.4 (22.0) 43.9 (36.6) 29.3 (24.4) 31.1 (26.8)

DS-Coder-V2-16B-Base 24.4 (24.4) 22.0 (19.5) 31.7 (26.8) 22.0 (17.1) 25.0 (22.0)
DS-Coder-V2-16B-Inst 43.9 (41.5) 41.5 (31.7) 68.3 (63.4) 36.6 (31.7) 47.6 (42.1)

Gemma-2-27B 36.6 (36.6) 24.4 (22.0) 56.1 (46.3) 26.8 (24.4) 36.0 (32.3)
Gemma-2-27B-It 63.4 (56.1) 48.8 (41.5) 68.3 (63.4) 41.5 (39.0) 55.5 (50.0)

DS-Coder-33B-Base 31.7 (31.7) 26.8 (22.0) 43.9 (36.6) 24.4 (24.4) 31.7 (28.7)
Llama-3.1-70B 24.4 (24.4) 24.4 (22.0) 46.3 (39.0) 29.3 (24.4) 31.1 (27.4)

Llama-3.1-70B-Inst 61.0 (56.1) 46.3 (46.3) 65.9 (58.5) 56.1 (51.2) 57.3 (53.0)
Qwen2.5-72B 63.4 (61.0) 36.6 (34.1) 75.6 (63.4) 39.0 (34.1) 53.7 (48.2)

DS-Coder-V2-236B-Base 41.5 (39.0) 36.6 (31.7) 58.5 (56.1) 36.6 (34.1) 43.3 (40.2)
GPT-4o-Mini 17.1 (17.1) 36.6 (31.7) 78.0 (70.7) 53.7 (43.9) 46.3 (40.9)

O. Prompts for data collection
We design specific system prompts and few-shot examples to collect high-quality training data, as we find that many
examples are very difficult to complete with current LLMs, and only a few of them can be successfully completed using
rough prompts. For AI Programmer, we utilize LLMs to simulate programmers at three different skill levels, with each level
using a distinct set of prompts as shown in Tables 14 to 16. Additionally, prompts used for evaluating whether the outputs
align with user intent, generating user instructions, and facilitating chat interactions between models and users are outlined
in Tables 17 to 19. Partial few-shot examples are shown in Figures 19 to 24.

P. Limitations and future work
Repo-level development assistance In this work, we focus on supporting the development of single files or function-level
code. However, real-world development operates at the repository level, involving multiple files and greater interaction with
IDEs. Previous research has made notable advances in repository-level tasks such as code completion (Zhang et al., 2023),
issue fixing (Jimenez et al., 2024), and documentation generation (Luo et al., 2024a). Repository-level code assistance deals
with larger datasets, and achieving optimal performance and speed will require more effort. We leave the exploration of
multi-file repository-level programming assistance and leveraging additional IDE interactions for future work.

More scenarios and criteria for evaluation Our benchmark is relatively small and based on a multilingual extension of
HumanEval, making it insufficient to cover all development scenarios. Beyond using the classic Pass@k metric to evaluate
accuracy, other criteria should also be considered, such as evaluating the model’s efficiency, security, and redundancy (Huang
et al., 2024; Pearce et al., 2021; Li et al., 2024a).

Preference-based optimization Methods like PPO (Schulman et al., 2017) and DPO (Rafailov et al., 2023), which
optimize models based on human preferences, have been widely used in LLMs. In programming assistance, programmers
can provide feedback on predicted outputs for identical or similar coding processes, further optimizing the model (Shinn
et al., 2023). To enable this, a significant amount of feedback data from programmers using AI-assisted tools should be
collected or synthesized.
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Table 8. Evaluation results of LLMs on the C++ version of APEval.
Model C H, C C, U H, C, U Avg.

6B+ Models

DS-Coder-6.7B-Base 41.5 36.6 58.5 31.7 42.1
DS-Coder-6.7B-Inst 29.3 34.1 61.0 39.0 40.9

Yi-Coder-9B 29.3 43.9 34.1 29.3 34.1
Yi-Coder-9B-Chat 34.1 36.6 56.1 39.0 41.5
Qwen2.5-Coder-7B 39.0 41.5 65.9 39.0 46.3

Qwen2.5-Coder-7B-Inst 12.2 31.7 63.4 41.5 37.2
CursorCore-DS-6.7B 48.8 43.9 65.9 34.1 48.2

CursorCore-Yi-9B 53.7 46.3 68.3 39.0 51.8
CursorCore-QW2.5-7B 46.3 43.9 63.4 43.9 49.4

1B+ Models

DS-Coder-1.3B-Base 29.3 4.9 34.1 9.8 19.5
DS-Coder-1.3B-Inst 31.7 39.0 41.5 36.6 37.2
Yi-Coder-1.5B-Chat 24.4 26.8 17.1 22.0 22.6

Yi-Coder-1.5B 19.5 22.0 14.6 14.6 17.7
Qwen2.5-Coder-1.5B 34.1 31.7 48.8 36.6 37.8

Qwen2.5-Coder-1.5B-Inst 17.1 31.7 34.1 34.1 29.3
CursorCore-DS-1.3B 39.0 39.0 56.1 39.0 42.7
CursorCore-Yi-1.5B 46.3 34.1 56.1 34.1 42.7

CursorCore-QW2.5-1.5B 41.5 39.0 58.5 36.6 43.9

Table 9. Evaluation results of LLMs on the Java version ofAPEval.
Model C H, C C, U H, C, U Avg.

6B+ Models

DS-Coder-6.7B-Base 51.2 43.9 61.0 46.3 50.6
DS-Coder-6.7B-Inst 48.8 34.1 68.3 51.2 50.6

Yi-Coder-9B 43.9 46.3 36.6 41.5 42.1
Yi-Coder-9B-Chat 43.9 41.5 56.1 39.0 45.1
Qwen2.5-Coder-7B 63.4 53.7 70.7 46.3 58.5

Qwen2.5-Coder-7B-Inst 22.0 46.3 70.7 51.2 47.6
CursorCore-DS-6.7B 63.4 56.1 65.9 48.8 58.5

CursorCore-Yi-9B 56.1 61.0 68.3 46.3 57.9
CursorCore-QW2.5-7B 65.9 58.5 78.0 51.2 63.4

1B+ Models

DS-Coder-1.3B-Base 29.3 24.4 36.6 26.8 29.3
DS-Coder-1.3B-Inst 39.0 39.0 48.8 43.9 42.7

Yi-Coder-1.5B 24.4 29.3 24.4 36.6 28.7
Yi-Coder-1.5B-Chat 31.7 24.4 12.2 26.8 23.8
Qwen2.5-Coder-1.5B 39.0 43.9 53.7 48.8 46.3

Qwen2.5-Coder-1.5B-Inst 34.1 36.6 53.7 48.8 43.3
CursorCore-DS-1.3B 43.9 43.9 58.5 43.9 47.6
CursorCore-Yi-1.5B 53.7 48.8 53.7 46.3 50.6

CursorCore-QW2.5-1.5B 53.7 51.2 53.7 51.2 52.4
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Table 10. Evaluation results of LLMs on the JavaScript version of APEval.

Model C H, C C, U H, C, U Avg.

6B+ Models

DS-Coder-6.7B-Base 29.3 26.8 51.2 39.0 36.6
DS-Coder-6.7B-Inst 48.8 41.5 58.5 36.6 46.3

Yi-Coder-9B 22.0 41.5 17.1 39.0 29.9
Yi-Coder-9B-Chat 48.8 34.1 56.1 41.5 45.1
Qwen2.5-Coder-7B 51.2 36.6 68.3 43.9 50.0

Qwen2.5-Coder-7B-Inst 22.0 34.8 63.4 43.9 40.9
CursorCore-DS-6.7B 48.8 41.5 61.0 36.6 47.0

CursorCore-Yi-9B 56.1 51.2 70.7 43.9 55.5
CursorCore-QW2.5-7B 51.2 36.6 70.7 46.3 51.2

1B+ Models

DS-Coder-1.3B-Base 19.5 9.8 26.8 26.8 20.7
DS-Coder-1.3B-Inst 29.3 34.1 36.6 36.6 34.1

Yi-Coder-1.5B 19.5 17.1 7.3 22.0 16.5
Yi-Coder-1.5B-Chat 17.1 19.5 9.8 12.2 14.6
Qwen2.5-Coder-1.5B 31.7 31.7 48.8 39.0 37.8

Qwen2.5-Coder-1.5B-Inst 19.5 26.8 43.9 39.0 32.3
CursorCore-DS-1.3B 34.1 36.6 41.5 43.9 39.0
CursorCore-Yi-1.5B 34.1 34.1 41.5 41.5 37.8

CursorCore-QW2.5-1.5B 34.1 34.1 51.2 41.5 40.2

Table 11. Evaluation results of LLMs on the Go version of APEval.
Model C H, C C, U H, C, U Avg.

6B+ Models

DS-Coder-6.7B-Base 26.8 24.4 31.7 39.0 30.5
DS-Coder-6.7B-Inst 29.3 39.0 56.1 43.9 42.1

Yi-Coder-9B 39.0 29.3 39.0 36.6 36.0
Yi-Coder-9B-Chat 34.1 24.4 41.5 31.7 32.9
Qwen2.5-Coder-7B 41.5 36.6 53.7 41.5 43.3

Qwen2.5-Coder-7B-Inst 12.2 22.0 58.5 46.3 34.8
CursorCore-DS-6.7B 56.1 34.1 56.1 46.3 48.2

CursorCore-Yi-9B 48.8 34.1 56.1 36.6 43.9
CursorCore-QW2.5-7B 58.5 41.5 58.5 51.2 52.4

1B+ Models

DS-Coder-1.3B-Base 22.0 7.3 26.8 29.3 21.3
DS-Coder-1.3B-Inst 31.7 22.0 36.6 34.1 31.1

Yi-Coder-1.5B 7.3 14.6 2.4 9.8 8.5
Yi-Coder-1.5B-Chat 19.5 14.6 17.1 29.3 20.1
Qwen2.5-Coder-1.5B 34.1 24.4 39.0 36.6 33.5

Qwen2.5-Coder-1.5B-Inst 22.0 22.0 36.6 34.1 28.7
CursorCore-DS-1.3B 41.5 34.1 43.9 41.5 40.2
CursorCore-Yi-1.5B 46.3 29.3 43.9 34.1 38.4

CursorCore-QW2.5-1.5B 51.2 34.1 61.0 41.5 47.0
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Table 12. Evaluation results of LLMs on the Rust version of APEval.
Model C H, C C, U H, C, U Avg.

6B+ Models

DS-Coder-6.7B-Base 26.8 26.8 31.7 39.0 31.1
DS-Coder-6.7B-Inst 29.3 31.7 34.1 39.0 33.5

Yi-Coder-9B 29.3 34.1 29.3 39.0 32.9
Yi-Coder-9B-Chat 26.8 29.3 46.3 31.7 33.5
Qwen2.5-Coder-7B 46.3 34.1 48.8 36.6 41.5

Qwen2.5-Coder-7B-Inst 9.8 22.0 51.2 36.6 29.9
CursorCore-DS-6.7B 36.6 34.1 34.1 39.0 36.0

CursorCore-Yi-9B 41.5 34.1 48.8 41.5 41.5
CursorCore-QW2.5-7B 48.8 39.0 51.2 39.0 44.5

1B+ Models

DS-Coder-1.3B-Base 22.0 22.0 31.7 29.3 26.2
DS-Coder-1.3B-Inst 19.5 26.8 36.6 31.7 28.7

Yi-Coder-1.5B 22.0 24.4 17.1 29.3 23.2
Yi-Coder-1.5B-Chat 14.6 22.0 12.2 29.3 19.5
Qwen2.5-Coder-1.5B 34.1 29.3 39.0 41.5 36.0

Qwen2.5-Coder-1.5B-Inst 26.8 24.4 36.6 36.6 31.1
CursorCore-DS-1.3B 24.4 29.3 36.6 34.1 31.1
CursorCore-Yi-1.5B 24.4 31.7 41.5 31.7 31.1

CursorCore-QW2.5-1.5B 36.6 31.7 39.0 43.9 37.8

Table 13. Average evaluation results of LLMs across different language versions on APEval.

Model C H, C C, U H, C, U Avg.

6B+ Models

DS-Coder-6.7B-Base 34.2 30.9 45.9 36.2 36.8
DS-Coder-6.7B-Inst 40.3 37.0 58.1 40.6 44.0

Yi-Coder-9B 32.1 37.0 28.9 35.8 33.4
Yi-Coder-9B-Chat 40.6 34.2 54.9 36.6 41.5
Qwen2.5-Coder-7B 49.6 40.7 62.2 39.8 48.1

Qwen2.5-Coder-7B-Inst 16.7 33.8 63.8 43.5 39.5
CursorCore-DS-6.7B 53.7 41.9 58.5 40.2 48.6

CursorCore-Yi-9B 51.7 45.5 64.6 41.9 50.9
CursorCore-QW2.5-7B 56.1 43.5 64.6 46.7 52.7

1B+ Models

DS-Coder-1.3B-Base 20.3 13.4 28.9 23.6 21.5
DS-Coder-1.3B-Inst 31.9 33.3 39.9 36.2 35.3

Yi-Coder-1.5B 16.7 19.1 13.8 22.0 17.9
Yi-Coder-1.5B-Chat 22.4 17.9 19.5 23.2 20.7
Qwen2.5-Coder-1.5B 36.2 31.3 46.8 39.9 38.5

Qwen2.5-Coder-1.5B-Inst 22.4 26.4 41.5 37.4 31.9
CursorCore-DS-1.3B 36.6 37.0 48.4 38.2 39.9
CursorCore-Yi-1.5B 41.8 35.3 50.8 37.4 41.1

CursorCore-QW2.5-1.5B 43.9 39.8 54.9 42.3 45.2
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<|im_start|>system

You are a helpful programming assistant.<|im_end|>

<|im_start|>history

```python
frequency[c] = frequency[c] + 1
```<|im_end|>

<|im_start|>history

```python
def function(s):

for c in s:
frequency[c] = frequency[c] + 1

```<|im_end|>

<|im_start|>history

```python
def function(s):

for c in s:
frequency[c] += 1

```<|im_end|>

<|im_start|>current

```python
def function(s):
```<|im_end|>

<|im_start|>user

```python

Implement it concisely.

```<|im_end|>

<|im_start|>assistant

<|next_start|>```python
def function(s):

frequency = {c: s.count(c) for c in set(s)}
return frequency

```<|next_end|><|im_end|>

Integrated Development 

Environment (IDE)

Chat Template

H2

H1

H3

C

U

A

Figure 17. Example of chat template and its corresponding demonstration in the IDE scenario.

Enhance performance with API calls We aim to integrate function calls (Patil et al., 2023) into the model to further
enhance its capabilities. One potential application is incorporating function calls into the thinking process, such as retrieving
information or executing partial code for feedback. Although our final models excludes this thinking step due to performance
and speed considerations, we are exploring hybrid approaches to introduce this process while maintaining speed and
combine it with other strategies for searching how to edit. Another application is leveraging function calls in output, where
calling a Python script for tasks like variable replacement might be more efficient than manually generating code blocks or
search-and-replace strategies. For repository-level changes, using terminal commands or IDE APIs could sometimes be a
more convenient solution.

Expand to other applications Our framework is designed for programming assistance applications, but the alignment
approach can also be applied to other types of AI assistants. For example, in designing an art assistant, it should be able to
predict the next drawing step based on the artist’s previous drawing patterns, the current state of the canvas, and the artist’s
instructions. Extending this approach to design assistants for other applications is an interesting research direction.
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Chat Template (SR)

<|im_start|>system

You are a helpful programming assistant.<|im_end|>

<|im_start|>history

0,3

```python
frequency[c] = frequency[c] + 1
```<|im_end|>

<|im_start|>history

2,3

```python
frequency[c] = frequency[c] + 1

```<|im_end|>

<|im_start|>history

1,1

```python
for c in s:
frequency[c] += 1

```<|im_end|>

<|im_start|>current

```python
1 def function(s):
```<|im_end|>

<|im_start|>user

```python

Implement it concisely.

```<|im_end|>

<|im_start|>assistant

<|next_start|>1,1

```python
frequency = {c: s.count(c) for c in set(s)}
return frequency

```<|next_end|>

We uses a dict comprehension to count the 

occurrences. It is more concise and readable 

compared to before.<|im_end|>

<|im_start|>system

You are a helpful programming assistant.<|im_end|>

<|im_start|>history

```python
frequency[c] = frequency[c] + 1
<|search_and_replace|>
def function(s):

for c in s:
frequency[c] = frequency[c] + 1

```<|im_end|>

<|im_start|>history

```python
frequency[c] = frequency[c] + 1

<|search_and_replace|>
frequency[c] += 1

```<|im_end|>

<|im_start|>history

```python
def function(s):

for c in s:
frequency[c] += 1

<|search_and_replace|>
def function(s):
```<|im_end|>

<|im_start|>current

```python
def function(s):
```<|im_end|>

<|im_start|>user

```python

Implement it concisely.

```<|im_end|>

<|im_start|>assistant

<|next_start|>```python
def function(s):
<|search_and_replace|>
def function(s):

frequency = {c: s.count(c) for c in set(s)}
return frequency

```<|next_end|>

We uses a dict comprehension to count the 

occurrences. It is more concise and readable 

compared to before.<|im_end|>

Chat Template (LC) 

Figure 18. Example of chat templates in LC and SR modes.
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Table 14. Prompt designed to leverage LLMs for simulating the behavior of a novice programmer.

Please play the role of a novice programmer. You are required to write a piece of code.
Simulate the real process of repeatedly adding, deleting, and modifying the code. Please return
the code block after each step of editing. While writing the code, make some mistakes, such
as incorrect logic or syntax errors, etc.

Table 15. Prompt designed to leverage LLMs for simulating the behavior of an ordinary programmer.

Please act as an ordinary programmer. Now, you need to write a piece of code. Please simulate
the process of repeatedly adding, deleting, and modifying the code during the actual coding
process. Please return the code block after each editing step. Try to simulate the coding
process of an ordinary programmer as much as possible.

Table 16. Prompt designed to leverage LLMs for simulating the behavior of an expert programmer.

Please play the role of an expert programmer. You are now required to write a piece of code.
Please simulate the process of repeatedly adding, deleting, and modifying code during the real
coding process. Please return the code block after each step of editing. During the coding
process, you should be as professional as possible.

Table 17. Prompt designed to generate user instructions.

You are a programming assistant. The following content includes information related to your
programming assistance, which may contain the record of the programming process, the
current code, the git commit after all changes, relevant details about the problem, and your
predicted modifications. Please generate an instruction for you to make the corresponding
modifications, ensuring it resembles instructions typically given by a human programmer.
The instruction may be detailed or concise and may or may not specify the location of the
modification. Return the generated instruction in the following format:
‘‘‘
**instruction:**
{instruction}
‘‘‘

Table 18. Prompt designed to generate chat-style interactions between models and users.

You are a programming assistant. The following content includes information related to your
programming assistance, which may contain the record of the programming process, the
current code, the user instruction, and your predicted modifications. Please provide the chat
conversation for making the prediction. This may include analyzing the past programming
process, speculating on the user’s intent, and explaining the planning and ideas for modifying
the code. Return your chat conversation in the following format:
‘‘‘
**chat:**
{chat}
‘‘‘
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Table 19. Prompt designed to evaluate whether the outputs align with user intent.

You are tasked with assisting a programmer by maintaining a record of the programming
process, including potential future changes. Your role is to discern which changes the pro-
grammer desires you to propose proactively. These should align with their actual intentions
and be helpful. To determine which changes align with a programmer’s intentions, consider
the following principles:

1. **Understand the Context**: Assess the overall goal of the programming project. Ensure
that any proposed change aligns with the project’s objectives and the programmer’s current
focus.

2. **Maintain Clear Communication**: Before proposing changes, ensure that your sug-
gestions are clear and concise. This helps the programmer quickly understand the potential
impact of each change.

3. **Prioritize Stability**: Avoid proposing changes that could introduce instability or
significant complexity unless there is a clear benefit. Stability is often more valued than
optimization in the early stages of development.

4. **Respect the Programmer’s Preferences**: Pay attention to the programmer’s coding style
and preferences. Propose changes that enhance their style rather than contradict it.

5. **Incremental Improvements**: Suggest changes that offer incremental improvements
rather than drastic overhauls, unless specifically requested. This approach is less disruptive
and easier for the programmer to integrate.

6. **Consider Long-Term Maintenance**: Propose changes that improve code maintainability
and readability. This includes refactoring for clarity, reducing redundancy, and enhancing
documentation.

7. **Balance Proactivity and Reactivity**: Be proactive in suggesting improvements that
are likely to be universally beneficial (e.g., bug fixes, performance enhancements). However,
be reactive, not proactive, in areas where the programmer’s specific intentions are unclear or
where personal preference plays a significant role.

For each potential change, return ‘True‘ if suggesting this change would be beneficial to the
programmer, return ‘False‘ if the change does not align with the programmer’s intentions or if
they do not want you to predict this change. Give your decision after analyzing each change.
Provide your response in the following format:

‘‘‘
**Analysis of change 1:**

Your analysis here.

**Decision:** ‘True‘ or ‘False‘

**Analysis of change 2:**

Your analysis here.

**Decision:** ‘True‘ or ‘False‘

...
‘‘‘
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Table 20. Prompt used to evaluate base LLMs.

Read the following messages during programming and return the modified code in this format:

<|next start|>{modified code}<|next end|>

<|messages start|>Programming process 1:
‘‘‘python
a = 1
b = 2
c = a + b
‘‘‘

Current code:
‘‘‘python
i = 1
b = 2
c = a + b
‘‘‘

User instruction:
Please change variable names.<|messages end|>

<|next start|>‘‘‘python
i = 1
j = 2
k = i + j
‘‘‘<|next end|>

Read the following messages during programming and return the modified code in this format:

<|next start|>{modified code}<|next end|>

<|messages start|>Programming process 1:
{Programming process 1}

...

Programming process n:
{Programming process n}

Current code:
{Current code}

User instruction:
{User instruction}<|messages end|>
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Table 21. Prompt used to evaluate instruct LLMs.

user
Read the following messages during programming and return the modified code in this format:

<|next start|>{modified code}<|next end|>

Programming process 1:
‘‘‘python
a = 1
b = 2
c = a + b
‘‘‘

Current code:
‘‘‘python
i = 1
b = 2
c = a + b
‘‘‘

User instruction:
Please change variable names.

assistant
<|next start|>‘‘‘python
i = 1
j = 2
k = i + j
‘‘‘<|next end|>

user
Read the following messages during programming and return the modified code in this format:

<|next start|>{modified code}<|next end|>

Programming process 1:
{Programming process 1}

...

Programming process n:
{Programming process n}

Current code:
{Current code}

User instruction:
{User instruction}

assistant
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user:
**The final code:**

```
def if_continuous_modify(code1, code2, code3):

"""
Check if code3 is a continuous modification of 

code1 and code2.

Args:
code1 (str): The first code string.
code2 (str): The second code string.
code3 (str): The third code string.

Returns:
bool: True if code3 is a continuous 

modification of code1 and code2, False otherwise.
"""
# Calculate the Levenshtein distance between 

code1 and code2
dist1 = Levenshtein.distance(code1, code2)
# Calculate the Levenshtein distance between 

code2 and code3
dist2 = Levenshtein.distance(code2, code3)
# Calculate the Levenshtein distance between 

code1 and code3
dist3 = Levenshtein.distance(code1, code3)

# Check if code3 is a continuous modification of 
code1 and code2

if dist3 == dist1 + dist2:
return True

else:
return False

```

assistant:
Alright, let's simulate the development process of this code, 

including typical errors and revisions. I'll start from the initial 

attempt and evolve the code step by step to reach the final version 

you provided.

### Step 1: Initial Attempt

The initial attempt might be a rough structure without importing 

necessary libraries and possible syntax errors.

```python
def is_continuous_modify(code1, code2, code3):

"""
Checks if code3 is a continuation of 

modifications from code1 through code2
"""
dist1 = levenstein.distance(code1, code2)
dist2 = levenstein.distance(code2, code3)
dist3 = levenstein.distance(code1, code3)

if dist3 == dist1 + dist2
return true

else:
return False

```

**Issues:** 

- Misspelling of the function name (`Levenshtein` as 

`levenstein`).

- Syntax error with missing colon at the end of the `if` statement.

- Incorrect capitalization of `true`.

### Step 2: Syntax Corrections

Addressing the syntax errors and some spelling issues.

```python
def is_continuous_modify(code1, code2, code3):

"""
Checks if code3 is a continuation of 

modifications from code1 through code2
"""
dist1 = Levenshtein.distance(code1, code2)
dist2 = Levenshtein.distance(code2, code3)
dist3 = Levenshtein.distance(code1, code3)

if dist3 == dist1 + dist2:
return True

else:
return False

```

**Issues:** 

- The `Levenshtein` library is not imported.

### Step 3: Importing the Necessary Library

Adding the import statement for the Levenshtein library.

```python
import Levenshtein

def is_continuous_modify(code1, code2, code3):
"""
Checks if code3 is a continuation of 

modifications from code1 through code2
"""
dist1 = Levenshtein.distance(code1, code2)
dist2 = Levenshtein.distance(code2, code3)
dist3 = Levenshtein.distance(code1, code3)

if dist3 == dist1 + dist2:
return True

else:
return False

```

**Issues:** 

- Could improve naming and documentation clarity.

### Step 4: Renaming Function and Improving Documentation

Final adjustments include renaming the function and enhancing the 

docstring for better clarity.

```python
import Levenshtein

def if_continuous_modify(code1, code2, code3):
"""
Check if code3 is a continuous modification of 

code1 and code2.

Args:
code1 (str): The first code string.
code2 (str): The second code string.
code3 (str): The third code string.

Returns:
bool: True if code3 is a continuous 

modification of code1 and code2, False otherwise.
"""
dist1 = Levenshtein.distance(code1, code2)
dist2 = Levenshtein.distance(code2, code3)
dist3 = Levenshtein.distance(code1, code3)

if dist3 == dist1 + dist2:
return True

else:
return False

```

This demonstrates a typical progression in coding, from an initial 

rough draft with errors, through corrections and improvements, to a 

final, refined code block.

Figure 19. Few-shot prompts designed to leverage LLMs for simulating the behavior of a novice programmer.
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user:
**The final code:**

```
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids, unsqueeze_dim=1):

cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)

b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed

```

assistant:
Let's simulate the coding process to reach the final version of 

the `apply_rotary_pos_emb` function.

### Step 1: Initial Function Setup

Initially, the programmer might start by defining the function 

and setting up the parameters they know they need to work 

with.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

# Initial setup
pass

```

### Step 2: Add Basic Operations

Next, they'll add the basic operations that are essential for the 

function, such as selecting the cosine and sine values based on 

position IDs.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

cos = cos[position_ids]
sin = sin[position_ids]

```

### Step 3: Introduce Unsqueeze Operation

Then, realizing they need to match the dimensions, they add 

the `unsqueeze` operation.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

cos = cos[position_ids].unsqueeze(1)
sin = sin[position_ids].unsqueeze(1)

```

### Step 4: Reshape and Process q and k

After ensuring the dimensions of `cos` and `sin`, the 

programmer starts processing `q` and `k`. They need to 

reshape these tensors to work with the embeddings correctly.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

cos = cos[position_ids].unsqueeze(1)
sin = sin[position_ids].unsqueeze(1)

b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)
```

### Step 5: Define `rotate_half` and Compute Embeddings

Next, they realize they need a helper function `rotate_half` 

and compute the final embeddings for `q` and `k`.

```python
def rotate_half(x):

return torch.cat([-x[..., 1::2], x[..., ::2]], 
dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

cos = cos[position_ids].unsqueeze(1)
sin = sin[position_ids].unsqueeze(1)

b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed

```

### Step 6: Final Adjustments for Flexibility

Lastly, realizing the need for more flexibility, they introduce 

the `unsqueeze_dim` parameter.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids, unsqueeze_dim=1):

cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)

b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed

```

This completes the journey to the final version of the 

`apply_rotary_pos_emb` function.

Figure 20. Few-shot prompts designed to leverage LLMs for simulating the behavior of an ordinary programmer.
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user:
**The final code:**

```
static void replace_all(std::string & s, const
std::string & search, const std::string & replace) {

std::string result;
for (size_t pos = 0; ; pos += search.length()) {

auto new_pos = s.find(search, pos);
if (new_pos == std::string::npos) {

result += s.substr(pos, s.size() - pos);
break;

}
result += s.substr(pos, new_pos - pos) + 

replace;
pos = new_pos;

}
s = std::move(result);

}
```

assistant:
Let's simulate the development process of the `replace_all` 

function in C++ step by step, showing how a programmer might 

iteratively refine and improve the code.

### Step 1: Basic Function Structure

Initially, I might start with the simplest possible structure to 

replace occurrences of a substring with another substring in a 

given string.

```cpp
void replace_all(std::string & s, const std::string 
& search, const std::string & replace) {

// Initial approach to find and replace
size_t pos = s.find(search);
while (pos != std::string::npos) {

s.replace(pos, search.length(), replace);
pos = s.find(search, pos + replace.length());

}
}
```

### Step 2: Consider Performance and Correctness

I realize the initial approach can be inefficient due to modifying 

the string in place. Also, it doesn't handle overlapping substrings 

well. Let's use a buffer to build the result.

```cpp
void replace_all(std::string & s, const std::string 
& search, const std::string & replace) {

std::string result;
size_t pos = 0;
size_t new_pos;
while ((new_pos = s.find(search, pos)) != 

std::string::npos) {
result += s.substr(pos, new_pos - pos);
result += replace;
pos = new_pos + search.length();

}
result += s.substr(pos);
s = result;

}
```

### Step 3: Optimize with `std::move`

I notice that the final assignment to `s` can benefit from 

`std::move` to avoid unnecessary copying.

```cpp
void replace_all(std::string & s, const std::string 
& search, const std::string & replace) {

std::string result;
size_t pos = 0;
size_t new_pos;
while ((new_pos = s.find(search, pos)) != 

std::string::npos) {
result += s.substr(pos, new_pos - pos);
result += replace;
pos = new_pos + search.length();

}
result += s.substr(pos);
s = std::move(result);

}
```

### Step 4: Refine and Transition to Static Function

To ensure encapsulation and promote reusability, I decide to make 

the function `static`.

```cpp
static void replace_all(std::string & s, const
std::string & search, const std::string & replace) {

std::string result;
size_t pos = 0;
size_t new_pos;
while ((new_pos = s.find(search, pos)) != 

std::string::npos) {
result += s.substr(pos, new_pos - pos);
result += replace;
pos = new_pos + search.length();

}
result += s.substr(pos);
s = std::move(result);

}
```

### Step 5: Final Refinements

Finally, I realize the for loop structure can be more concise and 

less error-prone, integrating the position updates right into the 

loop structure.

```cpp
static void replace_all(std::string & s, const
std::string & search, const std::string & replace) {

std::string result;
for (size_t pos = 0; ; pos += search.length()) {

auto new_pos = s.find(search, pos);
if (new_pos == std::string::npos) {

result += s.substr(pos, s.size() - pos);
break;

}
result += s.substr(pos, new_pos - pos) + 

replace;
pos = new_pos;

}
s = std::move(result);

}
```

This final version improves readability and maintains the 

optimized performance by constructing the result string in a single 

pass.

Figure 21. Few-shot prompts designed to leverage LLMs for simulating the behavior of an expert programmer.
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user:
**record:**

Revised code changes:

```diff

@@ -1 +1,5 @@
+/**
+ * magical invsqrt function from Quake III code
+ * see: http://www.codemaestro.com/reviews/9
+ */

```

Current code:

```c
1 /**
2  * magical invsqrt function from Quake III code
3  * see: http://www.codemaestro.com/reviews/9
4  */
5 
```

**change 1:**

```diff
@@ -3,3 +3,19 @@
* see: http://www.codemaestro.com/reviews/9
*/

+float InvSqrt(float x)
+{
+       float xhalf = 0.5f*x;
+       int i = *(int*)&x;
+       i = 0x5f3759df - (i>>1);
+       x = *(float*)&i;
+       x = x*(1.5f-xhalf*x*x);
+       return x;
+}
+
+int main(void) {
+       int result = InvSqrt(0.00056);
+       printf("Result: %d (should be 42)", result);
+       return result != 42;
+}
+
```

assistant:
**Analysis of change 1:**

The change introduces the `InvSqrt` function implementation and a 

basic test case within the `main` function. This change is appropriate and 

beneficial. The primary goal is to implement and test the `InvSqrt` 

function, a well-known algorithm from the Quake III code. Adding the 

function and a basic test case aligns directly with this goal. The 

implementation is clear and concise, following common C coding 

practices. The function's logic is straightforward and well-documented, 

making it easy to understand. Overall, the proposed change is a logical 

next step in developing the `InvSqrt` function and ensuring it works 

correctly.

**Decision:** `True`

user:
**record:**
Revised code changes:
```diff
@@ -1 +1,21 @@

+package com.google.gwtjsonrpc.client;
+
+public class VoidResult_JsonSerializer extends
JsonSerializer<VoidResult> {
+  public static final VoidResult_JsonSerializer
INSTANCE =
+      new VoidResult_JsonSerializer();
+
+  private VoidResult_JsonSerializer() {
+  }

+
+  @Override
+  public void printJson(final StringBuffer sb, final
VoidResult o) {
+    sb.append("{}");
+  }
+
+  @Override
+  public VoidResult fromJson(final Object o) {
+    return VoidResult.INSTANCE;
+  }
+}
+
```

Current code:

```java
1 
2 
3 package com.google.gwtjsonrpc.client;
4 
5 public class VoidResult_JsonSerializer extends
JsonSerializer<VoidResult> {
6   public static final VoidResult_JsonSerializer
INSTANCE =
7       new VoidResult_JsonSerializer();
8 
9   private VoidResult_JsonSerializer() {
10   }
11 
12   @Override
13   public void printJson(final StringBuffer sb, final
VoidResult o) {
14     sb.append("{}");
15   }
16 
17   @Override
18   public VoidResult fromJson(final Object o) {
19     return VoidResult.INSTANCE;
20   }
21 }
22 
```

**change 1:**

```diff@@ -1,3 +1,16 @@
+// Copyright 2008 Google Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the 
"License");
+// you may not use this file except in compliance with 
the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in 
writing, software
+// distributed under the License is distributed on an 
"AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, 
either express or implied.
+// See the License for the specific language governing 
permissions and
+// limitations under the License.

package com.google.gwtjsonrpc.client;

```

assistant:
**Analysis of change 1:**

Without enough information to confirm the use of the Apache License, 

predicting this change may not align with the programmer's intentions or 

the project's actual licensing requirements.

**Decision:** `False`

Figure 22. Few-shot prompts designed to evaluate whether the outputs align with user intent.

36



CursorCore: Assist Programming through Aligning Anything

user:
Revised code changes:

```diff
@@ -3,6 +3,10 @@
def create_cnn_model(in_channels, config):

layers = []
conv2d = nn.Conv2d(in_channels, config, 

kernel_size=3, padding=1)
- layers += [conv2d, nn.ReLU(inplace=True)]
+    if batch_norm:
+        layers += [conv2d, nn.BatchNorm2d(config)]
+    else:
+        layers += [conv2d]
+    layers += [nn.ReLU(inplace=True)]

model = nn.Sequential(*layers)
return model

```

Revised code changes:

```diff
@@ -1,6 +1,6 @@
import torch.nn as nn

-def create_cnn_model(in_channels, config):
+def create_cnn_model(in_channels, config, 
batch_norm=False):

layers = []
conv2d = nn.Conv2d(in_channels, config, 

kernel_size=3, padding=1)
if batch_norm:

```

Current code:

```
1 import torch.nn as nn
2 
3 def create_cnn_model(in_channels, config, 
batch_norm=False):
4     layers = []
5     conv2d = nn.Conv2d(in_channels, config, 
kernel_size=3, padding=1)
6     if batch_norm:
7         layers += [conv2d, nn.BatchNorm2d(config)]
8     else:
9         layers += [conv2d]
10     layers += [nn.ReLU(inplace=True)]
11     model = nn.Sequential(*layers)
12     return model
```

Changes in predictions:

```diff
@@ -1,12 +1,11 @@
import torch.nn as nn

-def create_cnn_model(in_channels, config, 
batch_norm=False):
+def create_cnn_model(in_channels, config, 
batch_norm):

layers = []
conv2d = nn.Conv2d(in_channels, config, 

kernel_size=3, padding=1)
if batch_norm:

- layers += [conv2d, nn.BatchNorm2d(config)]
+        layers += [conv2d, nn.BatchNorm2d(config), 
nn.ReLU(inplace=True)]

else:
- layers += [conv2d]
- layers += [nn.ReLU(inplace=True)]
+        layers += [conv2d, nn.ReLU(inplace=True)]

model = nn.Sequential(*layers)
return model

```

assistant:

**instruction:**

Update the `create_cnn_model` function to ensure that the `ReLU` 

activation function is added immediately after the `BatchNorm` layer 

if `batch_norm` is enabled. Adjust the function signature to remove 

the default value for the `batch_norm` parameter. The updated code 

should handle the addition of the `ReLU` layer conditionally based on 

the `batch_norm` parameter.

user:
Current code:

```ruby
1 # frozen_string_literal: true
2 module
Extensions::DeferredWorkflowStatePersistence::Workflo
w; end
3 module
Extensions::DeferredWorkflowStatePersistence::Workflo
w::Adapter; end
4 module
Extensions::DeferredWorkflowStatePersistence::Workflo
w::Adapter::DeferredActiveRecord
5   extend ActiveSupport::Concern
6   included do
7     include Workflow::Adapter::ActiveRecord
8     include InstanceMethods
9   end
10 
11   module InstanceMethods
12     def persist_workflow_state(new_value)
13       write_attribute(self.class.workflow_column, 
new_value)
14       true
15     end
16   end
17 end
18 
```

Git commit message after all changes:

Include WorkflowActiverecord in the state persistence extension.

Changes in predictions:

```diff
@@ -1,10 +1,12 @@
# frozen_string_literal: true

+require 'workflow_activerecord'
+
module

Extensions::DeferredWorkflowStatePersistence::Workflo
w; end
module

Extensions::DeferredWorkflowStatePersistence::Workflo
w::Adapter; end
module

Extensions::DeferredWorkflowStatePersistence::Workflo
w::Adapter::DeferredActiveRecord

extend ActiveSupport::Concern
included do

- include Workflow::Adapter::ActiveRecord
+    include
WorkflowActiverecord::Adapter::ActiveRecord

include InstanceMethods
end

```

assistant:
**instruction:**

At the beginning of the file, add the statement `require 
'workflow_activerecord'`; On line 7, change `include 
Workflow::Adapter::ActiveRecord` to `include 
WorkflowActiverecord::Adapter::ActiveRecord`; Ensure the 

final code reflects the necessary changes for including 

`WorkflowActiverecord` in the state persistence extension.

Figure 23. Few-shot prompts designed to generate user instructions
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user:
Revised code changes:

```diff
@@ -14,3 +14,30 @@

if (row == n) {
vector<string> board = generateBoard(queens, n);
solutions.push_back(board);

+        } else {
+            for (int i = 0; i < n; i++) {
+                if (columns.find(i) != columns.end()) {
+                    continue;
+                }
+                int diagonal1 = row - i;
+                if (diagonals1.find(diagonal1) != 
diagonals1.end()) {
+                    continue;
+                }
+                int diagonal2 = row + i;
+                if (diagonals2.find(diagonal2) != 
diagonals2.end()) {
+                    continue;
+                }
+                queens[row] = i;
+                columns.insert(i);
+                diagonals1.insert(diagonal1);
+                diagonals2.insert(diagonal2);
+                backtrack(solutions, queens, n, row + 1, 
columns, diagonals1, diagonals2);
+                queens[row] = -1;
+                columns.erase(i);
+                diagonals1.erase(diagonal1);
+                diagonals2.erase(diagonal2);
+            }
+        }
+    }
+
+    vector<string> generateBoard(vector<int> &queens, int n)
```

Revised code changes:

```diff
@@ -3,41 +3,3 @@

vector<vector<string>> solveNQueens(int n) {
auto solutions = vector<vector<string>>();
auto queens = vector<int>(n, -1);

- auto columns = unordered_set<int>();
- auto diagonals1 = unordered_set<int>();
- auto diagonals2 = unordered_set<int>();
- backtrack(solutions, queens, n, 0, columns, 
diagonals1, diagonals2);
- return solutions;
- }
-
- void backtrack(vector<vector<string>> &solutions, 
vector<int> &queens, int n, int row, unordered_set<int> 
&columns, unordered_set<int> &diagonals1, unordered_set<int> 
&diagonals2) {
- if (row == n) {
- vector<string> board = generateBoard(queens, n);
- solutions.push_back(board);
- } else {
- for (int i = 0; i < n; i++) {
- if (columns.find(i) != columns.end()) {
- continue;
- }
- int diagonal1 = row - i;
- if (diagonals1.find(diagonal1) != 
diagonals1.end()) {
- continue;
- }
- int diagonal2 = row + i;
- if (diagonals2.find(diagonal2) != 
diagonals2.end()) {
- continue;
- }
- queens[row] = i;
- columns.insert(i);
- diagonals1.insert(diagonal1);
- diagonals2.insert(diagonal2);
- backtrack(solutions, queens, n, row + 1, 
columns, diagonals1, diagonals2);
- queens[row] = -1;
- columns.erase(i);
- diagonals1.erase(diagonal1);
- diagonals2.erase(diagonal2);
- }
- }
- }
-
- vector<string> generateBoard(vector<int> &queens, int n)
```

Revised code changes:

```diff
@@ -3,3 +3,17 @@

vector<vector<string>> solveNQueens(int n) {
auto solutions = vector<vector<string>>();
auto queens = vector<int>(n, -1);

+        solve(solutions, queens, n, 0, 0, 0, 0);

+        return solutions;
+    }
+
+    vector<string> generateBoard(vector<int> &queens, int n) 
{
+        auto board = vector<string>();
+        for (int i = 0; i < n; i++) {
+            string row = string(n, '.');
+            row[queens[i]] = 'Q';
+            board.push_back(row);
+        }
+        return board;
+    }
+};
```

Current code:

```cpp
1 class Solution {
2 public:
3     vector<vector<string>> solveNQueens(int n) {
4         auto solutions = vector<vector<string>>();
5         auto queens = vector<int>(n, -1);
6         solve(solutions, queens, n, 0, 0, 0, 0);
7         return solutions;
8     }
9 
10     vector<string> generateBoard(vector<int> &queens, int
n) {
11         auto board = vector<string>();
12         for (int i = 0; i < n; i++) {
13             string row = string(n, '.');
14             row[queens[i]] = 'Q';
15             board.push_back(row);
16         }
17         return board;
18     }
19 };
```

Predicted modifications:

```diff
@@ -5,6 +5,23 @@

auto queens = vector<int>(n, -1);
solve(solutions, queens, n, 0, 0, 0, 0);
return solutions;

+    }
+
+    void solve(vector<vector<string>> &solutions, 
vector<int> &queens, int n, int row, int columns, int
diagonals1, int diagonals2) {
+        if (row == n) {
+            auto board = generateBoard(queens, n);
+            solutions.push_back(board);
+        } else {
+            int availablePositions = ((1 << n) - 1) & 
(~(columns | diagonals1 | diagonals2));
+            while (availablePositions != 0) {
+                int position = availablePositions & (-
availablePositions);
+                availablePositions = availablePositions & 
(availablePositions - 1);
+                int column = __builtin_ctz(position);
+                queens[row] = column;
+                solve(solutions, queens, n, row + 1, columns 
| position, (diagonals1 | position) >> 1, (diagonals2 | 
position) << 1);
+                queens[row] = -1;
+            }
+        }

}

vector<string> generateBoard(vector<int> &queens, int n) 
{
```

assistant:
**chat:**

The revised code transitions from using sets to bitwise operations for solving the 

N-Queens problem, aiming to optimize the algorithm by reducing dynamic 

memory allocations and improving speed. Initially, the original code utilized sets 

(`unordered_set<int>`) to track columns and diagonals. The user likely seeks 

to enhance efficiency, prompting the replacement of these sets with integer bit 

masks. To achieve this, the `solve` function is adjusted to use bitwise 

operations for conflict checks, calculating `availablePositions` using 

bitwise AND and NOT operations to identify valid queen placements. The 

`__builtin_ctz` function finds the least significant bit set to 1, corresponding 

to a valid column, and the recursive `solve` call updates bit masks for columns 

and diagonals after placing a queen. This maintains the backtracking logic while 

leveraging bitwise operations for performance. The `generateBoard` function 

remains unchanged, as it simply formats the result. This approach ensures 

efficient, streamlined code for the N-Queens problem.

Figure 24. Few-shot prompts designed to generate chat-style interactions between models and users.
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