
Deep Projective Rotation Estimation through Relative
Supervision

Anonymous Author(s)
Affiliation
Address
email

Abstract: Orientation estimation is the core to a variety of vision and robotics1

tasks such as camera and object pose estimation. Deep learning has offered a way2

to develop image-based orientation estimators; however, such estimators often re-3

quire training on a large labeled dataset, which can be time-intensive to collect. In4

this work, we explore whether self-supervised learning from unlabeled data can5

be used to alleviate this issue. Specifically, we assume access to estimates of the6

relative orientation between neighboring poses, such that can be obtained via a lo-7

cal alignment method. While self-supervised learning has been used successfully8

for translational object keypoints, in this work, we show that naively applying rel-9

ative supervision to the rotational group SO(3) will often fail to converge due to10

the non-convexity of the rotational space. To tackle this challenge, we propose a11

new algorithm for self-supervised orientation estimation which utilizes Modified12

Rodrigues Parameters to stereographically project the closed manifold of SO(3)13

to the open manifold of R3, allowing the optimization to be done in an open Eu-14

clidean space. We empirically validate the benefits of the proposed algorithm for15

rotational averaging problem in two settings: (1) direct optimization on rotation16

parameters, and (2) optimization of parameters of a convolutional neural network17

that predicts object orientations from images. In both settings, we demonstrate18

that our proposed algorithm is able to converge to a consistent relative orienta-19

tion frame much faster than algorithms that purely operate in the SO(3) space.20

Additional information can be found on our anonymized website.21

1 Introduction22

Pose estimation is a critical component for a wide variety of computer vision and robotic tasks. It is a23

common primitive for grasping, manipulation, and planning tasks. For motion planning and control,24

estimating an object’s pose can help a robot avoid collisions or plan how to use the object for a given25

task. The current top performing methods for pose estimation use machine learning to estimate the26

object’s pose from an image; however, training these estimators tends to rely on direct supervision27

of the object orientation [1, 2, 3]. Obtaining such supervision can be difficult and requires either28

time-consuming annotations or synthetic data, which might differ from the real world. In this work,29

we explore whether self-supervised learning can be used to alleviate this issue by training an object30

orientation estimator from unlabeled data. Specifically, we assume that we can estimate the relative31

rotation of an object between neighboring object poses in a self-supervised manner. Such relative32

supervision can be easily obtained in practice, for example through a local registration method such33

as ICP [4] or camera pose estimation.34

Relative self-supervision has been previously used for representation learning in estimating transla-35

tional keypoints [5, 6, 7]. These methods use only relative supervision to ensure that the keypoints36

are consistent across views of the object, and do not directly supervise the keypoint locations. In this37

work, we explore whether such relative self-supervision can similarly be used in estimating object38

orientations. We show that naively applying such relative supervision to rotations on the SO(3)39

manifold will often fail to converge. Unlike self-supervised learning of translational keypoints, the40

rotational averaging problem [8] is inherently non-convex, with many local optima. While there exist41

global optimization algorithms which jointly optimize all pairs of rotations for this problem [9, 10],42
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they are not easily integrated into the iterative, stochastic gradient descent methods used to train43

neural network-based pose estimators.44

To address this issue, we propose a new algorithm, Iterative Modified Rodrigues Projective Averag-45

ing, which uses Modified Rodrigues Parameters to map from the closed manifold of SO(3) to the46

open space of R3. In doing so, we obtain faster convergence with a lower likelihood of falling into47

local optima. Our experiments show that our method converges faster and more consistently than the48

standard SO(3) optimization and can easily be integrated into a neural network training pipeline.49

Additionally, in the supplement, we include an intuitive theoretical example describing how, while50

not all local optima are removed, the dimensionality of a set of problematic configurations is greatly51

reduced when optimizing using our algorithm, as compared to optimizing in the space of SO(3).52

The primary contributions of this work are:53

• We propose a new algorithm, Iterative Modified Rodrigues Projective Averaging, which is54

an iterative method for learning rotation estimation using only relative supervision and can55

be applied to neural network optimization.56

• We empirically investigate the convergence behavior of our algorithm as compared to opti-57

mizing on the SO(3) manifold.58

• We demonstrate that our algorithm can be used to train a neural network-based pose esti-59

mator using only relative supervision.60

2 Related Work61

Averaging and Consensus Estimation: Consensus methods, sometimes referred to as averaging62

methods, have a long history of research. The goal of these methods is, given a distributed set63

of estimates, to produce a consistent prediction of a value using relative information. While there64

are iterative algorithms with good convergence properties in Euclidean space [11, 12, 13, 14, 15],65

optimizing over the closed manifold of SO(3) can be more difficult, as the region is non-convex,66

with many local minima. Hartley et al. [8, 16] describe several methods of finding a consistent set67

of rotations, though their convergence is similarly not guaranteed outside of a radius r ≤ π
2 ball68

in SO(3). Wang and Singer [10] find an exact solution to this problem, using a combination of a69

semidefinite programming relaxation and a robust penalty function. More recently, Shonan Rota-70

tion Averaging [9] shows that projecting to higher dimensional spaces allows for the recovery of71

a globally optimal solution using semidefinite programming. Chatterjee and Govindu [17, 18] use72

iterative re-weighted least-squares to recover a global optimal solution using global error estimates.73

Shi and Lerman [19] extends this work, using cycle consistency and message passing. Chen et al.74

[20] tackle the problem through an hybrid appracoh of obtaining a global solution via semidefinite75

programming, then refining the solution through iterative SO(3) log space update. These solu-76

tions require global error estimates or semidefinate programming, which are incompatible with the77

stochastic gradient descent methods used to train neural networks. These methods are infeasible78

for our problem, as they do not well integrate with the SGD training frameworks used for neural79

networks.80

Supervised Orientation Estimation: Past work has explored using a neural network to predict an81

object’s orientation. Traditionally, these methods rely on supervising the rotations using a known82

absolute orientation, whether in the form of quaternions [21, 1, 22], axis-angle [23], or Euler an-83

gles [24]. More recently, 6D [25, 2], 9D [26], and 10D [27] representations have been developed84

for continuity and smoothness. Recently, Terzakis et al. [28] introduced Modified Rodrigues Param-85

eters, a projection of the unit quaternion sphere S3 to R3 used in attitude control [29], to a range86

of common computer vision problems. Terzakis et al. [28] does not, however, address the unique87

problems found in the rotation averaging problem.88

Some methods, such as DeepIM [30], have posed the rotation estimation problem purely as a relative89

problem, computing the transform to rotate from one object pose to another. Similarly, se(3)-90

TrackNet [31] tracks object pose using a Lie Algebra-based orientation update. While these methods91

do remove the need for absolute supervision, the resulting estimates are only useful when compared92

to an anchor image with an absolute orientation given. In practice, obtaining an absolute pose can be93

useful for both planning and joint learning of orientation representation and control. For this reason,94

we seek to estimate an absolute pose using relative supervision.95
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Recently, there has been research into mapping the Riemannian optimization to the Euclidean opti-96

mization used for network training [32, 33, 34, 35, 36]. These methods focus on applying tangent97

space gradients from losses in 3D transformation groups. Specifically, Projective Manifold Gradient98

Layer [32] ensures that the gradients take into account any projection operations, such that the gra-99

dients point towards the nearest valid representation in the projection’s preimage. While this does100

map the Riemannian optimization into a Euclidean problem, it does not solve the problems caused101

by the closed manifold of SO(3), as this does not alter the underlying topology of this manifold.102

3 Problem Definition103

We formally describe the problem of self-supervised orientation estimation below. We assume that104

we are given a set of inputs observations {I1, . . . , IN}, of an object where, in each input observation105

Ii, the object is viewed from an unknown orientation Ri. These inputs could be in the form of106

images, point clouds, or some other object representation. While we do not know the absolute object107

orientations Ri in any reference frame, we assume that we do know a subset of the relative rotations108

Rij , possibly from a local registration method like ICP, between the object in images Ij and Ii, such109

that Ri = RjiRj . Our goal is to learn a function f(Ii) that estimates an orientation of the object110

in each image, f(Ii) = R̂i that minimizes the pairwise error of all input pairs, with respect to the111

geodesic distance metric d(Ri, Rj) = ‖ log(R>i Rj)‖2. Given a set of rotationsR = {R1, . . . , RN},112

the core optimization objective is thus:113

min
R̂i,R̂j∈R

∑
i,j

d(R̂i, R
j
i R̂j) (1)

Note that this optimization does not have a unique solution, since the solution R̂i := SRi,∀i mini-114

mizes this error for any constant rotation S.115

In many robotics tasks, relative rotations can be accurately estimated only when their magnitude is116

small as many registration algorithms, such as ICP, requires a good initialization near the optimum.117

Following this observation, we assume that we can only accurately supervise relative rotations when118

they are small in magnitude. This leads to a local neighborhood structure where each rotation Ri is119

connected toRj only in a local neighborhood aroundRi, when d(Ri, Rj) < ε, and the set of allRj’s120

connected toRi form the neighborhood set ofNi. While the algorithms described in this manuscript121

do not rely on this angle ε, it can be scaled as needed based on the accuracy of the relative rotation122

estimation method (e.g. ICP, etc).123

Our eventual goal is to represent the function f(Ii) = R̂i as a neural network. Thus, we restrict124

the methods with which we compare to iterative methods that are updated using only a sampled125

subset of the rotations (as opposed to methods that perform a global optimization over the entire126

set of rotations {R1, . . . , RN}). This requirement is to match the conditions required by stochastic127

gradient descent, the primary method of training neural networks.128

4 Baselines129

Preliminaries. The 3D rotational space of SO(3) , {R ∈ R3×3 : R>R = I3×3,det (R) = 1} is130

a compact matrix Lie group, which topologically is a compact manifold. Due to the compactness131

of the SO(3) manifold, there exist configurations of pairs of points where multiple, non-unique132

geodesically minimal paths exist between them; for instance, there are two unique geodesically133

minimal paths for a pair of antipodal points on a circle, and there are infinitely many for a pair of134

antipodal points on a sphere. This is not the case in an open manifold like the 3D Euclidean space of135

R3, over which there exists a unique geodesically minimal path between any arbitrary pair of points.136

The distinction in compactness between the 3D rotational space of SO(3) and 3D Euclidean space137

makes optimization over SO(3) more ill-conditioned than over the space of R3. This results in the138

optimization over the rotational space being non-convex. These properties of the SO(3) manifold139

will affect the convergence of self-supervised orientation estimation, which we discuss below.140

While self-supervised learning for objects translation, specifically in the form of object keypoints [5,141

6, 7], has shown great success, in this work, we show that naively applying such an iterative self-142

supervised formulation to the rotational group SO(3) will often fail to converge. Below we discuss143

two approaches to self-supervised orientation estimation in SO(3).144
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Quaternion Averaging: A standard objective in rotation estimation is to minimize the geodesic145

distance between a predicted unit quaternion and its corresponding ground-truth orientation [37, 8],146

θ = arccos(2〈q̂i, qgt〉2) where q̂i is the predicted orientation for image i and qgt is the ground-truth147

orientation. An objective function is often defined to directly minimize this geodesic distance [37].148

In our task, defined above (Section 3), we are given the relative rotation qji between some pairs of149

rotations qi and qj . Using this relative supervision, we can use the geodesic distance between a150

sampled estimate, q̂i, its desired relative position with respect to a sampled neighbor and a known151

relative rotation qji , q̃i = qji ⊗ q̂j , leading to the loss Lq = 1− 〈q̂i, qji ⊗ q̂j〉2, where ⊗ denotes the152

quaternion multiplication. Note that this loss is monotonically related to the geodesic distance when153

using unit quaternions, while avoiding the need to compute an arccos.154

SO(3) Averaging: To optimize the rotations with respect to the non-Euclidean geometry of155

the rotational manifold of SO(3), one approach is described by Manton [38]. Each orien-156

tation is iteratively updated in the tangent space using the logmap of SO(3) and projected157

back to SO(3) using the exponential map. Specifically, we can take the gradient of the loss158

LSO(3) =
∥∥∥log (R>i RjiRj)∥∥∥2

(2a) ∇r̂iLSO(3) = r∆ = log
(
R>i R

j
iRj

)
(2b)159

which gives the update step R̂i ← R̂i exp(γr∆), where γ is the learning rate and log is the logmap160

of SO(3). When optimizing the full set of orientations, this algorithm can fall into local optima due161

to the closed nature of the space which allows any orientation to be reached by two unique straight162

paths, as the space wraps around on itself.163

5 Method164

We propose an alternative that projects the optimization to an open image and optimizes the dis-165

tances in that space. Specifically, we use the Modified Rodriguez Projection to minimize the relative166

error between neighboring poses in R3. We provide experiments in Section 6 that show that self-167

supervised orientation estimation using Modified Rodriguez Projection converges much faster than168

self-supervised orientation estimation in SO(3), with theoretic analysis of an illustrative example169

available in the supplement.170

5.1 Iterative Modified Rodrigues Projective Averaging171

Figure 1: Projection of relative supervision, qji , shown in red, from
back-projected rotation q̂j := φ−1(ψ̂j) to q̂j into the MRP space
update, φ∆, shown in green. While q̃i could have been selected as
the the goal rotation, it would have induced a much larger move-
ment in the projected space.

As mentioned previously, optimizing172

on a closed space, such as SO(3)173

or S3 can be problematic, since the174

relative distance between two points175

can eventually be minimized by mov-176

ing them in the exact opposite direc-177

tion of the minimum path between178

them. To alleviate this issue, we179

would like to instead perform self-180

supervised learning in an open space,181

where this symmetry is broken. This182

can be done using Modified Ro-183

drigues Parameters (MRP) [39, 28].184

MRP is the stereographic projection185

of the closed manifold of the quater-186

nion sphere S3 to R3, and has been187

widely used in attitude estimation and188

control [29]. In combining this pro-189

jection with the mapping between SO(3) and S3, this projection can be used to optimize rotations.190

We define a unit quaternion q = [ρ ν] ∈ S3 , {x ∈ R4 : ‖x‖ = 1}, where ρ ∈ R defines the191

scalar component and ν ∈ R3 defines the imaginary vector component of the unit quaternion. The192

projection operator φ(q) = ψ ∈ R3 and its inverse φ−1(ψ) = q ∈ S3 are given by [39, 28] where193

ψ = φ ([ρ ν]) = ν
1+ρ and [ρ ν] = φ−1(ψ) =

[
1−‖ψ‖2
1+‖ψ‖2

2ψ
1+‖ψ‖2

]
. Given this projective orien-194
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tation space, we need to map our relative rotation Rji into the projective space in order to use these195

relative rotations for the self-supervised learning task. This projection is required, as the relative196

supervision is in SO(3), and the direction and magnitude of this relative measurement are distorted197

differently in different regions of the projective MRP space. Given a pair of estimated projected ro-198

tations ψ̂i := φ(R̂i) and ψ̂j := φ(R̂j), we project ψ̂j back to a unit quaternion φ−1(ψ̂j) = q̂j ∈ S3199

and rotate it according to Rji , q̃i = qji ⊗ q̂j , where ⊗ is quaternion multiplication and qji is the200

quaternion form of Rji . The resulting unit quaternion q̃i is then projected back into the Modified201

Rodrigues Parameter space, ψ̃i. A simplified visual analogy of this process is shown in Figure 1.202

While this relative rotation could be applied and projected at either the sampled point ψ̂i, or the203

neighboring location ψ̂j , we select the neighboring location ψ̂j , as it does not require us to compute204

gradients through the forward or inverse projections φ(·) and φ−1(·), respectively. This projected205

rotation ψ̃i represents the value ψ̂i should hold, relative to the current predicted rotation ψ̂j . It206

should be noted that ψ(q) 6= ψ(−q), while q and −q represent the same rotation. In terms of the207

projective space, this means that the sign of q̃i matters. To remove this ambiguity, we select the208

nearest projection to ψ̂i in the projective MRP space. It should be noted that this is different from209

selecting the closer antipode on S3, as the large deformations found near the south pole1 can cause210

the nearer antipode in S3 to be further in MRP space. In contrast, if we were to select a consistent211

sign for the scalar component q̃i, for example ensuring the scalar component is always positive,212

a small change in ψ̂j can cause large changes in ψ̃i. While this change is required to stabilize our213

optimization, it does add some ambiguity to the direction of optimization. However, the directions to214

each of the projected locations, ψ(q̃i) and ψ(−q̃i), are only anti-parallel (pulling in exactly opposite215

directions) when ψ̃i − ψ̂i intersects the origin.216

The loss with respect to a given estimate, ψ̂i, can then be written as the l2 distance be-217

tween its current value and the projected relative location, ψ̃i, relative to a given neighbor, ψ̂j :218

LΨ+ =
∥∥∥ψ̂i − φ(q̃i)∥∥∥2

(3a) LΨ− =
∥∥∥ψ̂i − φ(−q̃i)∥∥∥2

(3b) LΨ = min(LΨ−,LΨ+) (3c)219

where we recall that, q̃i = qji ⊗ q̂j , and q̂j = φ−1(ψ̂j).220

Note that, while ψ̂j is a predicted value, we do not pass gradients through it, allowing it to anchor221

the update to a consistent orientation. The gradient update2 is then given by:222

∇ψ̂i
LΨ = ψ∆ =

{
ψ̂i − φ (q̃i) , if LΨ+ < LΨ−

ψ̂i − φ (−q̃i) , otherwise
(4)

Additionally, a maximum gradient step, η, in the projective space is imposed, ψ∆ ← η ψ∆

‖ψ∆‖ , if223

the gradient exceeds a defined amount.This prevents extremely large steps from being taken, as the224

projective transform can distort the space.225

6 Experiments226

Next, we perform experiments to show that our method converges faster and more consistently than227

the alternative approaches. Our empirical results are grouped into two settings: (1) direct optimiza-228

tion of randomly generated rotations, Section 6.1, and (2) optimization of the parameters of a con-229

volutional neural network using synthetically rendered images, Section 6.2. In both cases, relative230

orientations between elements in a neighborhood are provided. We show Iterative Modified Ro-231

drigues Projective Averaging is able to converge faster and more often than alternative approaches.232

We further show in Section 6.2 that our method can easily be used to supervise convolutional neural233

networks, when only relative orientation information is available.234

1The south pole in this case is described by the quaternion −1 + 0i+ 0j + 0k
2We omit a constant factor for brevity, and integrate it into the learning rate, γ.
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Figure 2: Relative rotation consensus with direct optimization of rotation parameters over 50 unique environ-
ments with 100 random generated orientations each (left) and Alamo 1DSfM [40] (right). Median average-
pair-wise angular error (◦) between each estimated rotations is shown, with shaded region representing the first
and third quartile for each method. The max average-pair-wise angular error for each algorithm at each iteration
is shown as a dashed line.

Avg Pairwise Angular Error < 5◦ Normalized AUC
Algorithm Mean Steps Max Steps Min Steps Mean Max Min
SO(3) 157.7K Not Converged 85.0K 24.47 82.92 7.55

4D PMG [32] 126.1K Not Converged 27.0K 15.67 52.40 3.06
6D PMG [25] 235.9K Not Converged 80.0K 43.53 89.15 11.34
9D PMG [26] 284.5K Not Converged 150.0K 62.94 101.77 17.77

Quaternion 160.3K Not Converged 40.0K 23.55 84.85 3.47
MRP (Ours) 37.5K 160.0K 15.0K 5.08 15.56 2.18

Table 1: Number of iteration steps until convergence and Normalized Area Under Curve (nAUC) over 50 unique
environments of 100 randomly generated orientations. 300K optimization steps are taken for each experiment.

6.1 Direct Parameter Optimization235

We evaluate the convergence behaviour of our Iterative Modified Rodrigues Projective Averaging236

method, MRP (Ours) , described in Section 5.1, as well as the SO(3) averaging method, described237

in Section 4. For the SO(3) averaging method, we implement both the pure Riemannian opti-238

mization , SO(3), as well as a method using a Projective Manifold Gradient Layer [32] to map239

the Riemannian gradient of the SO(3) averaging loss, Equation 2a, to a Euclidean optimization240

in RD, where we test D = 4, D = 6 [25], and D = 9 [26], 4D PMG [32], 6D PMG [25],241

9D PMG [26], respectively. Additionally, we evaluate direct quaternion optimization, described in242

Sections 4, Quaternion.243

Uniformly Sampled Rotations. We test the performance of each algorithm when directly optimiz-244

ing the rotation parameters of a set of size N = 100 with known relative rotations Rji , and local245

neighborhood structure. Ground truth and initial estimated rotations are both randomly sampled246

from a uniform distribution in SO(3). Each rotation, Ri, has a neighborhood, Ni, consisting of the247

closest |Ni| = 3 rotations with respect to geodesic distance. The connectivity of this neighborhood248

graph is checked to ensure the graph contains only a single connected component. We test all algo-249

rithms over 50 sets of unique environments, each with N = 100 randomly generated orientations250

as described above. The estimated rotations are updated by each algorithm in batches of size 8, for251

300K iterations.252

As the goal of our algorithm is to improve the convergence properties of iterative averaging meth-253

ods, we analyze each algorithm at various stages of optimization. We are particularly interested in254

the average number of update steps until the algorithm has converged, which we define as when the255

average angular error between all pairs of rotations is below 5◦. As we can see in Figure 2, the Itera-256

tive Modified Rodrigues Projective Averaging method, MRP (Ours), converges before the standard257

SO(3) averaging method. On average, our method converged to within 5◦ in 37K steps. The next258

best method, 4D PMG [32], which takes over three times as many iterations to converge to the same259
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% Avg Pairwise Angular Error < 5◦ Final Error(◦)
Algorithm 30K 70K 100K 150K 300K Mean Median
SO(3) 0% 0% 6% 57% 94% 2.056 0.10

4D PMG [32] 2% 32% 46% 72% 90% 1.969 0.14
6D PMG [25] 0% 0% 4% 20% 52% 20.096 3.20
9D PMG [26] 0% 0% 0% 2% 20% 40.125 43.02

Quaternion 0% 12% 30% 56% 82% 9.72 0.04
MRP (Ours) 66% 88% 96% 98% 100% 0.004 0.004

Table 2: Percentage of experiments converged and final angular errors over 50 unique environments of 100
randomly generated orientations. 300K optimization steps are taken for each experiment.

level of accuracy. Further, Table 1 shows that our method is the only one to converge across all260

environments within 300K iterations. For each method, we also compute the mean area under the261

pairwise error curve, with the number of steps normalized to between zero and one (nAUC), also262

shown in Table 1. We find that in the best, average, and worst case scenarios, our method has the best263

convergence behavior. To quantify convergence behavior, we also compute the percentage of trials264

that achieve average pairwise angular error below 5◦ at different stages of training, as shown on the265

left in Table 2. We find that at each stage of training, the Iterative Modified Rodrigues Projective266

Averaging, MRP (Ours), training has a lower average pairwise error, shown in Table 2. Our method267

also converged far more often at each stage of training, also shown in Table 2.268

Mean Relative Mean Absolute
Error (◦) Error (◦) Mean nAUC

Algorithm E. Island Alamo E. Island Alamo E. Island Alamo
4D PGM [32] 11.94 15.00 7.34 9.94 25.60 47.20
6D PGM [25] 11.26 18.84 6.90 13.09 27.77 58.04
9D PGM [26] 10.22 16.32 6.32 11.43 29.31 60.14

Quaternion 11.58 13.40 7.23 8.93 16.01 22.57
MRP (Ours) 8.84 9.89 5.49 6.56 16.21 25.61
IRLS-GM[17] - - 3.04 3.64 - -
IRLS-` 1

2
[18] - - 2.71 3.67 - -

MLP[19] - - 2.61 3.44 - -
Table 3: Rotation Averaging Results on 1DSfM [40] dataset. Results before the double lines are comparisons
of local method by mean relative error (◦), mean absolute error (◦) and normalized area under curve (nAUC)
after 20K iterations. Results under the double lines are obtained from global methods which require optimizing
over global set of relative orientations data at each step. Results for sections with dashed line are not available
from global methods [19].

Structure from Motion Dataset. To test our algorithms under natural noise conditions, we also269

evaluate our algorithm on the 1DSfM [40] structure from motions datasets. These datasets contain270

full transforms for each sample; however, we are only concerned with optimizing the rotations. Each271

environment is tested with 5 random initializations and the estimated rotations are updated by each272

algorithm in batches of size 64, for 20K iterations. The results of a subset of the environments are273

shown in Table 3 and the remainder can be found in the supplement. The noise characteristics of274

relative rotations in this dataset are similar to those found when capturing relative poses, but, unlike275

the environments found in the previous section (Uniformly Sampled Rotations), the distribution of276

rotations does not fully cover the orientation space. As a result, all methods converge relatively277

quickly. Our algorithm outperforms the baselines in terms of accuracy. While the Quaternion opti-278

mization converges slightly faster, it consistently finds a lower accuracy configuration, resulting in a279

low nAUC, but higher relative and absolute accuracy. More details can be found in the supplemental.280

6.2 Neural Network Optimization281

To show that the Iterative Modified Rodrigues Projective Averaging method, MRP (Ours), can be282

used to learn orientation using neural networks by optimizing the parameters of a simple CNN,283

specifically a ResNet18 [41], we follow the procedure as in Section 6.1 with some minor changes.284

Instead of operating directly on a set of rotation parameters, we learn a function ψ̂i = f(Ii) from285
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Mean Median
Algorithm Error (◦) Error (◦) 5◦ Acc (%)

4D PMG [32] 123.84 123.96 0
Quaternion 28.83 21.74 50

MRP (Ours) 3.71 3.73 100
Oracle 1.58 1.56 100

Table 4: Final results for image based rotation estimation. Final mean and median angular error (◦) after 10K
steps over 8 unique environments of 100 images associated with randomly generated orientations are shown.
Percentage of runs converged below 5◦ angular error is also showed at 10K steps.Oracle

MRP
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Figure 3: Estimated rotation frame learned for the YCB [1] drill model using Iterative Modified Rodrigues
Projective Averaging and relative rotations (x, y, z) (left). Results for rotations estimated by neural networks
given images of the YCB drill [1] rendered at each of 100 random rotations with various supervisions, (right).
Median average-pairwise angular error (◦) is shown with shaded areas representing the first and third quartile
over all training sessions. The max average-pairwise angular error for each algorithm at each iteration is shown
as a dashed line.

rendered images of the YCB drill [1] model, shown in Figure 3, rendered at each of 100 random286

orientations Ri. We continue to only supervise each method described in Section 6.1 using the287

relative rotations between each image. We compare the best performing methods, and, as a lower288

bound, we also train an oracle network, Oracle, with the ground truth rotations, Ri and cosine289

quaternion loss. We use the Adam [42] optimizer, batch size of 32 and learning rate of 1×10−4 for290

all experiments, and with a maximum training time of 10K steps, trained over 8 environments, each291

with 100 images associated with randomly generated rotations. We report final mean and median292

pairwise angular error, and the percentage of runs converged below 5◦ pairwise angular error as 5◦293

Acc. We find that MRP (Ours) is able to converge to a rotational frame consistent with the relative294

rotations used for supervision relatively quickly, with a significantly lower average-pairwise-error295

than all other relative methods, shown in Figure 3 and Table 4.296

We also perform experiments on generalization to unseen poses and find that a curriculum is re-297

quired (see supplement for details). For the generalization experiments, we found that MRP (Ours)298

achieves a mean pairwise angular error or 5.19◦, Quaternion achieves 12.41◦, and 4D PMG [32]299

never converged, with final error of 125.09◦.300

7 Limitations301

While this parameterization of the rotational space is valuable for learning rotations using only rel-302

ative supervision, it is not without limitations. One of the primary ones is the need for a curriculum303

for generalizability to unseen relative rotations. Without this, our experiment show that all represen-304

tations fall into the local optima of outputting a constant orientation. Additionally, in generalization305

experiments, we are only able to achieve a final error of 5 degrees. This may not be accurate enough306

for many fine motor tasks, though an additional refinement network that is trained to handle rotations307

within a sub-region of the whole rotation space could reduce this error.308

8



8 Conclusion309

In this paper, we show that through the use of Modified Rodrigues Parameters, we are able to310

open the closed manifold of SO(3), improving the convergence behavior of the rotation averag-311

ing problem. We show that Iterative Modified Rodrigues Projective Averaging is able to outperform312

the naive application of relative-orientation supervision in both direct parameter optimization and313

image-based rotations estimation from neural networks. We hope our method allows more systems314

to convert the relative supervision of relative methods, like ICP, to consistent and accurate absolute315

poses.316
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A Intuitive Example1

We present an intuitive example of when optimizing a set of orientations to solve the rotation av-2

eraging problem described in Equation (1), in the main text, can fail. In this example, we show3

the benefits of the Iterative Modified Rodrigues Projective Averaging approach over the baseline4

approach. We show that, while both SO(3) averaging and Iterative Modified Rodrigues Projective5

Averaging share a class of non-optimal critical points, in the projective case, these critical points are6

a subset of the problematic configurations for SO(3) averaging.7

A.1 Examples of Critical Points8

In this section, we analyze a class of critical points shared by both standard SO(3) averaging and9

Iterative Modified Rodrigues Projective Averaging. For simplicity, we will examine the N = 310

rotation case, where R = {R1, R2, R3} with relative rotations of Rji := RiR
>
j . As this is an11

iterative algorithm, we need to initialize our predicted rotations to some values R̂ = {R̂1, R̂2, R̂3}.12

In this case, we initialize each predictions to R̂i := RiR0 exp
((
θ0 + i 2π

N

)
ω0

)
where R0 is an13

arbitrary but constant rotational offset, ω0 and θ0 define an arbitrary, but constant axis and constant14

rotation, about which each initial estimate R̂i is rotated an additional angle of θi. We find that if15

we use the previously described methods to update this initial configuration, under certain values16

of R , R0, θ0, and ω0, the expected update at each value R̂i is 0, forming a critical point for each17

algorithm.18

A.1.1 Critical Point for SO(3) Averaging19

Given the initial predictions of R̂ defined above, for all values of R , R0, θ0, and ω0, we find that20

the expectation of the gradient of SO(3) averaging loss, Ei,j
[
∇r̂iLSO(3)

]
, is 0. The gradient of21

any sampled pair i, j is given by22

∇iLi,jSO(3) : = ∇r̂iLSO(3)

(
R̂i, R̂j , R

j
i

)
= log

(
R̂>i R

j
i R̂j

)
= log

(
(RiR0 exp (θiω0))

>
RjiRjR0 exp (θjω0)

)
= log (exp ((θj − θi)ω0))

= wrap[−π,π) [(θj − θi)]ω0

= wrap[−π,π)

[
2π

N
(j − i)

]
ω0

=
2π

N
(j − i)ω0.

This lead to an expected gradient of each estimate rotation R̂i of23
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Ej
[
∇r̂iLSO(3)

(
R̂i, R̂j , R

j
i

) ∣∣∣i = 1
]
=

1

2
wrap[−π,π)

∑
j 6=i

2π

N
(j − i)

ω0 = 0.

For all estimates R̂i, this sums to an integer multiple of 2πω0, which, due to the definition of the24

SO(3) exponential map, wraps to 0.25

A.1.2 Critical Point for Iterative Modified Rodrigues Projective Averaging26

When optimizing using our Iterative Modified Rodrigues Projective Averaging method, we find that27

this configuration is only a critical point when the relative orientations between each pair of rotations28

are equal and opposite, i.e., Rji = Rk>i → Rji = exp
(
± 2π
N ω0

)
and the predicted orientations are29

initialized at identity: R0 = I. This only happens when the true orientations R are evenly spaced30

about an axis of rotations: Ri := exp
((
θ0 − i 2π

N

)
ω0

)
, leaving only axis of rotation ω0 and the31

constant angular offset θ0 about that axis as free parameters.32

As we are trying to update these rotations using a method compatible with stochastic gradient de-33

scent, we are concerned with the expectation of our update with respect to a sampled pair. In this34

case, the expected loss and update, defined in Equations (3c) (4) in the main text, respectively, for35

any projected rotation ψ̂i and its neighbor ψ̂j is Li,jΨ+ :=
∥∥∥ψ̂i − φ(qji ⊗ φ−1(ψ̂j))

∥∥∥2

where qji is the36

quaternion associated with Rji . As all ψ̂i are initialized to the identity, i.e., φ(qI) = 0 where qI is37

the identity quaternion, we get38

Li,jΨ+ :=
∥∥∥−φ−1(qji )

∥∥∥2
∇iLi,jΨ+ := −φ−1(qji )39

Li,jΨ− :=
∥∥∥−φ−1(−qji )

∥∥∥2
∇iLi,jΨ− := −φ−1(−qji )40

The relative rotations in this configuration are41

Rji := exp

(
±2π

3
ω0

)
with relative quaternions qji :=

[
cos(π3 ) ± sin(π3 )ω0

]
, which leads to42

φ(qji ) =
± sin(π3 )ω0

1 + cos(π3 )
=
±ω0√

3
φ(−qji ) =

∓ sin(π3 )ω0

1− cos(π3 )
= ±
√
3ω0.43

This results in the potential losses for the positive and negative antipodes of44

Li,jΨ+ = ‖φ(qji )‖ =
1

3
Li,jΨ− = ‖φ(−qji )‖ = 345

for all pairs of i, j. Selecting the minimum loss antipodes, we get gradients of46

∇iLi,jΨ =
∓1√
3
ω0 ∇iLi,jΨ =

±1√
3
ω0,47

for j = i + 1 and j = i − 1, respectively. The final expectation of the gradients with respect48

neighborhood sampling is49

Ej
[
∇ψ̂i
LSO(3)(ψ̂i, ψ̂j , R

j
i )|i = 1

]
=

1

2

∑
j 6=i

∇iLi,jΨ =
1

2

(
1√
3
ω0 −

1√
3
ω0

)
= 0.

While this demonstrates that our method is not without critical points, even in this simple example, it50

shows that this configuration is only problematic when the true rotations are equally spaced around51

an axis of rotation, ω0, and the estimates are initialized at identity. This compares very favorably to52

the SO(3) algorithm, which can be in a critical point for any set of relative rotations, Rji , and with53

initialization that can vary with an additional arbitrary constant rotation R0.54
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B 1DSfM Datasets55

We report results on all structure from motions datasets available in the 1DSfM [1]. Each environ-56

ment is tested with 5 random initializations and the estimated rotations are updated by each algorithm57

in batches of size 64, for 20K iterations. While Iterative Modified Rodrigues Projective Averaging,58

MRP (Ours) outperform all PMG [2] based methods, the direct Quaternion optimization regu-59

larly converges to relatively accurate local optima more quickly than ours, as shown in Table S3 and60

Figure S.1. That being said, our method converges to a more accurate final configuration for most61

datasets, with respect to mean relative error, Table S4, mean absolute error, Table S1, and median62

absolute error, Table S2. Our method, as well as the baselines, do not appear to perform well on the63

larger datasets. As a reminder, this algorithm is specifically designed for training deep learned meth-64

ods, not for direct rotation optimization. When training deep learned methods, all of the weights are65

shared, allowing the network to use a single example to improve the accuracy of all rotations near66

that example. Additionally, we see poor performance on datasets with extremely large observation67

noise, specifically Gendarmenmarkt, whose median observation error is over 12 degrees. All dataset68

statistics can be found in Table S5. These datasets do not fully cover the orientation space, and tend69

to largely cover only variations in yaw. For results on datasets that represent full coverage of the70

orientation space, see the Uniformly Sampled Rotations dataset or the Neural Network Optimization71

dataset.72

Dataset
Mean Absolute Error (◦)

4D PGM 6D PGM 9D PGM Quat MRP (Ours) IRLS-GM IRLS-` 1
2

MLP
[2] [2, 3] [2, 4] [5] [6] [7]

Ellis Island 7.5 7.03 6.41 7.44 5.59 3.04 2.71 2.61
NYC Library 9.23 8.32 7.38 8.92 6.03 2.71 2.66 2.63

Piazza del Popolo 16.37 16.1 15.88 15.24 10.03 4.10 3.99 3.73
Madrid Metropolis 13.55 13.23 11.78 13 11.25 5.30 4.88 4.65

Yorkminster 9.13 8.34 7.48 8.56 5.3 2.60 2.45 2.47
Montreal Notre Dame 8.17 7.65 6.24 7.76 4.02 2.63 2.26 2.06

Tower of London 8.02 8.12 8.36 7.44 5.58 3.42 3.41 3.16
Notre Dame 8.71 7.96 7.03 8.55 5.80 2.63 2.26 2.06

Alamo 9.41 11.98 10.98 8.74 6.42 3.64 3.67 3.44
Gendarmenmarkt 66.41 73.7 68.29 46.63 48.82 39.24 39.41 44.94

Union Square 32.46 40.86 40.92 13.44 10.22 6.77 6.77 6.54
Vienna Cathedral 29.18 31.42 32.94 18.67 13.60 8.13 8.07 7.21

Roman Forum 63.23 64.85 60.51 18.11 55.65 2.66 2.69 2.62
Piccadilly 53.35 84.37 106.84 26.29 29.98 5.12 5.19 3.93
Trafalgar 121.93 124.18 125.15 69.65 91.67 - - -

Table S1: Final Mean Absolute Rotation Error Results on 1DSfM [1] dataset. Results on the left before
the double lines are comparisons of local method after 20K iterations. Results on the right after the double lines
are obtained from global methods which require optimizing over global set of relative orientations data at each
step. Results associated sections with dashed line are not available from global methods [7].
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Dataset
Median Absolute Error (◦)

4D PGM 6D PGM 9D PGM Quat MRP (Ours) IRLS-GM IRLS-` 1
2

MLP
[2] [2, 3] [2, 4] [5] [6] [7]

Ellis Island 3.68 3.25 3.12 4.04 2.96 1.06 0.93 0.88
NYC Library 6.11 5.52 4.85 6.11 4.04 1.37 1.30 1.24

Piazza del Popolo 9.51 9.32 9.32 9.29 6.12 2.17 2.09 1.93
Madrid Metropolis 9.37 9.06 7.86 9.07 6.99 1.78 1.88 1.26

Yorkminster 6.44 5.77 4.56 6.11 3.29 1.59 1.53 1.45
Montreal Notre Dame 3.86 3.56 2.86 3.90 2.30 0.58 0.57 0.51

Tower of London 4.87 5.84 6.36 4.64 3.59 2.52 2.50 2.20
Notre Dame 4.39 3.73 3.09 4.48 2.61 0.78 0.71 0.67

Alamo 4.73 5.77 5.16 4.90 3.48 1.30 1.32 1.16
Gendarmenmarkt 64.08 71.57 62.9 43.91 45.92 7.07 7.12 9.87

Union Square 27.75 34.68 34.84 9.75 6.85 3.66 3.85 3.48
Vienna Cathedral 13.80 13.77 16.73 11.67 6.34 1.92 1.76 2.83

Roman Forum 53.78 62.46 57.71 16.56 41.95 1.58 1.57 1.37
Piccadilly 42.34 79.74 107.32 19.67 15.09 2.02 2.34 1.81
Trafalgar 126.71 129.57 130.45 65.54 89.09 - - -

Table S2: Final Median Absolute Rotation Error Results on 1DSfM [1] dataset. Results on the left before
the double lines are comparisons of local method after 20K iterations. Results on the right after the double lines
are obtained from global methods which require optimizing over global set of relative orientations data at each
step. Results associated sections with dashed line are not available from global methods [7].

Dataset Mean nAUC
4D PGM [2] 6D PGM [2, 3] 9D PGM [2, 4] Quat MRP (Ours)

Ellis Island 22.56 24.07 25.02 15.05 14.58
NYC Library 28.53 31.12 32.07 18.20 16.84

Piazza del Popolo 37.36 44.18 43.98 25.13 22.21
Madrid Metropolis 35.91 38.49 39.15 24.34 24.48

Yorkminster 36.82 42.37 44.91 18.71 18.43
Montreal Notre Dame 33.97 37.54 40.37 17.69 16.19

Tower of London 39.98 45.99 49.54 18.14 18.85
Notre Dame 38.77 43.04 46.05 20.78 21.10

Alamo 39.87 49.08 50.22 20.47 22.05
Gendarmenmarkt 97.45 101.77 100.11 74.76 71.39

Union Square 77.22 87.01 89.76 34.60 46.20
Vienna Cathedral 72.25 81.07 83.48 38.74 42.94

Roman Forum 103.59 105.73 108.88 52.05 82.30
Piccadilly 115.83 123.41 126.16 62.87 78.31
Trafalgar 126.43 126.49 126.5 108.19 115.90

Table S3: Final Mean Normalized AUC on all 1DSfM [1] datasets after 20K iterations
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Dataset Mean Relative Error (◦)
4D PGM [2] 6D PGM [2, 3] 9D PGM [2, 4] Quat MRP (Ours)

Ellis Island 12.21 11.49 10.37 11.87 9.03
NYC Library 14.29 12.94 11.51 13.67 9.30

Piazza del Popolo 21.91 21.24 20.64 20.74 13.49
Madrid Metropolis 20.43 19.84 17.85 19.62 17.09

Yorkminster 13.73 12.64 11.58 12.97 8.35
Montreal Notre Dame 12.5 11.59 9.58 11.93 6.22

Tower of London 12.41 12.24 12.44 11.56 8.71
Notre Dame 14.15 13.1 11.65 13.86 9.66

Alamo 14.23 17.47 15.75 13.17 9.78
Gendarmenmarkt 84.21 89.61 84.77 60.25 62.98

Union Square 44.44 55.4 55.94 19.98 15.52
Vienna Cathedral 41.8 45.62 44.18 26.64 20.32

Roman Forum 79.24 77.18 78.03 25.04 64.25
Piccadilly 74.25 105.15 122.06 38.61 46.21
Trafalgar 126.18 126.42 126.49 81.28 97.53

Table S4: Final Mean Relative Error (◦) on all 1DSfM [1] datasets after 20K iterations

Dataset # Nodes # Edges Mean Error Median Error
Ellis Island 227 20K 12.52 2.89

NYC Library 332 21K 14.15 4.22
Piazza del Popolo 338 25K 8.4 1.81
Madrid Metropolis 341 24K 29.31 9.34

Yorkminster 437 28K 11.17 2.68
Montreal Notre Dame 450 52K 7.54 1.67

Tower of London 472 24K 11.6 2.59
Notre Dame 553 104K 14.16 2.7

Alamo 577 97K 9.1 2.78
Gendarmenmarkt 677 48K 33.33 12.3

Union Square 789 25K 9.03 3.61
Vienna Cathedral 836 103K 11.28 2.59

Roman Forum 1084 70K 13.84 2.97
Piccadilly 2152 309K 19.1 4.93
Trafalgar 5058 679K 8.64 3.01

Table S5: Dataset sizes and observation accuracies (◦) for all 1DSfM [1] datasets
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Gendarmenmarkt: (N=677)
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Figure S.1: Optimization results for all 1DSfM [1] datasets, ordered by number of cameras (N). Median
average-pairwise angular error (◦) is shown with shaded areas representing the first and third quartile over
all training sessions. The max average-pairwise angular error for each algorithm at each iteration is shown as a
dashed line.

C Curriculum for Neural Network Optimization73

We find that a curriculum is required for any relatively supervised method to generalized to unseen74

orientation. This curriculum training involves starting with a initial base rotation. The model is75

rendered at this base rotation and a random rotation within 30◦ of this base rotation. This base76

rotation is initially sampled with θ = 30◦ of a constant anchor orientation, until the average training77

angular error of the previous epoch drops below a given threshold, in this case, 5◦. Once the error78

drops below this threshold, the angular range, θ, from which this base rotation is sampled is increased79

by 5◦. This process is repeated, increasing the value of θ by 5◦ each time the error threshold is80

reached. We find that MRP (Ours) is able to complete the curriculum in a reasonable number81

of iterations, about 100K, achieving a median final pairwise accuracy of 5.19◦ over three training82

sessions. This test error is sampled from two random rotations across the SO(3), differing from83

the training error, which are sampled based on the curriculum and are always, at most, 30◦ apart.84

The quaternion optimization method, Quaternion, stalls out at curriculum angle of 90◦, achieving85

a final pairwise accuracy of 12.41◦ and the 4D PMG [2] method never gets past the first level of the86
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curriculum, with a final error of 125.09◦. The full training progression of each method, over three87

random initialization each, can be seen in Figure C88

One way this curriculum could be applied to captured data as follows: given a video, a curriculum89

could be established based on temporal proximity in the video. Choosing an arbitrary initial frame90

of the video as a anchoring frame, a curriculum can be generate by increasing temporal distance to91

neighboring frames until the entire video has been used in training.92
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Curriculum Results - Test Set

4D PMG Quaternion MRP (Ours)

Curriculum Angle (left) and Average Pairwise Error (right), sampled over the full orientation space
for three training sessions with each method. Median average-pairwise angular error (◦) is shown

with shaded areas representing the first and third quartile over all training sessions. The max
average-pairwise angular error for each algorithm at each iteration is shown as a dashed line.

Curriculum Angle (left) and Average Pairwise Error (right), sampled over the full orientation space
for three training sessions with each method. Median average-pairwise angular error (◦) is shown
with shaded areas representing the first and third quartile over all training sessions. The max average-
pairwise angular error for each algorithm at each iteration is shown as a dashed line.

Figure S.2:
Curriculum Angle (left) and Average Pairwise Error (right), sampled over the full orientation space for three
training sessions with each method. Median average-pairwise angular error (◦) is shown with shaded areas
representing the first and third quartile over all training sessions. The max average-pairwise angular error for
each algorithm at each iteration is shown as a dashed line.

D 3D Object Rotation Estimation via Relative Supervision from Pascal3D+93

Images94

D.1 Experimental Setup95

Pascal3D+ [8] is a standard benchmark for categorical 6D object pose estimation from real images.96

We follow similar experimental settings as in [2, 4] for 3D object pose estimation from single97

images. Following [2, 4], we discard occluded or truncated objects and augment with rendered98

images from [9]. We report 3D object pose estimation via relative orientation supervision results99

on two object categories of Pascal3D+ image dataset: sofa and bicycle. We compare our method100

MRP with five baselines: Quaternion, 4D PMG [2], 6D PMG [2, 3], 9D PMG [2, 4] and 10D101

PMG [2, 10].102

We use ResNet18 [11] as the model backbone to predict object rotation from single images. The103

model is supervised by the geodesic error between the induced relative orientation between the104

predicted absolute orientations for a pair of images, and the relative orientation between the ground105

truth absolute orientations for the image pair.106

Specifically, MRP is supervised by the geodesic distance on the MRP manifold as described in107

Equation 3 and 4 in the main paper. Quaternion is supervised by quaternion geodesic distance108

as described in Equation 2 in the main paper. While 4D/6D/9D/10D PMG are supervised by the109

geodesic error derived from projective manifold gradients as in [2]. We use the same batch size of110

20 as in [2, 4], and use Adam [12] with learning rate of 1e-4.111
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D.2 Result Analysis112

Results for sofa showed in Figure S.3 and Table S6. Results for bicycle showed in Figure S.4113

and Table S7. Pascal3D+ Sofa. For sofa category, as seen in Table S6, we find that after 50K114

training iterations, MRP (Ours) achieves a mean angular pairwise error of 14.09◦ on the test set,115

outperforms all other baselines. Quaternion achieves the worst error out of all methods, with final116

angular pairwise error of 26.35◦. Besides achieving the lowest test angular error, we also find that117

MRP (Ours) has the fastest convergence speed, as seen in Figure S.3.118

Figure S.3: 3D Object Pose Estimation via Relative Supervision on Pascal3D+ Sofa Images. Mean test
pairwise angular error in degrees of sofa at different iterations of training. Trained over 50K training steps for 2
random seeds per method. Solid lines stand for mean errors, dashed line stand for max errors, and shaded area
represents error standard deviation.

Algorithm Mean Test Angular Pairwise Error (◦)
4D PMG [2] 16.53

6D PMG [2, 3] 15.65
9D PMG [2, 4] 17.17

10D PMG [2, 10] 16.67
Quaternion 26.35

MRP (Ours) 14.09
Table S6: Final Mean Test Angular Pairwise Error on Pascal3D+ sofa Images after 50K training itera-
tions.

Pascal3D+ Bicycle. For bicycle category, as seen in Table S7, we find that after 50K training119

iterations, MRP (Ours) achieves a mean angular pairwise error of 29.21◦ on the test set, outperforms120

all other baselines. Besides achieving the lowest test angular error, we also find that MRP (Ours)121

has the fastest convergence speed, as seen in Figure S.4.122
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Figure S.4: 3D Object Pose Estimation via Relative Supervision on Pascal3D+ Bicycle Images. Mean test
pairwise angular error (◦) of bicycle at different iterations of training. Trained over 50K training steps for 2
random seeds per method. Solid lines stand for mean errors, dashed line stand for max errors, and shaded area
represents error standard deviation.

Algorithm Mean Test Angular Pairwise Error (◦)
4D PMG [2] 33.48

6D PMG [2, 3] 31.73
9D PMG [2, 4] 30.78

10D PMG [2, 10] 35.30
Quaternion 31.06

MRP (Ours) 29.21
Table S7: Final Mean Test Angular Pairwise Error on Pascal3D+ bicycle Images after 50K training
iterations.

E 3D Object Rotation Estimation via Relative Supervision from123

ModelNet40 Point Clouds124

E.1 Experimental Setup125

ModelNet40 [13] is a standard benchmark for categorical 6D object pose estimation from 3D point126

clouds. We follow similar experimental settings as in [2]. We follow the same train/test data split as127

in [2] and report 3D object pose estimation via relative orientation supervision results on the airplane128

category of ModelNet40 dataset. We compare our method MRP with four baselines: Quaternion,129

4D PMG [2], 6D PMG [2, 3], 9D PMG [2, 4] and 10D PMG [2, 10] . We use PointNet++ [14] as130

the model backbone to predict 3D absolute object rotation from single point cloud generated from131

the ModelNet40 3D CAD models, as in [2]. The model is supervised by the geodesic error between132

the induced relative orientation between the predicted absolute orientations for a pair of point clouds,133

and the relative orientation between the ground truth absolute orientations for the point cloud pair.134

We sample 1024 points per point cloud as in [2, 4], use a batch size of 14. As for training, we use135

Adam [12] with learning rate of 1e-3, and run over 1 trial for each method.136

We find that for any of the compared methods to generalize to unseen test point cloud instances, a137

curriculum is needed. We train with a curriculum over the rotation space, the curriculum details can138

be found in Section C. Specifically we start with base rotation range with θ = 30◦ of a constant139

anchor orientation, and θ is increased by 5◦ whenever the previous mean epoch train angular error140

drops below the curriculum threshold, 5◦. To speed up the training procedure, we increase this141

curriculum threshold to 8◦ once θ gets to 125◦.142
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E.2 Result Analysis143

Results on the airplane object class from ModelNet40 dataset is shown in Figure S.5 and Table S8.144

As seen in Figure S.5 and Table S8, MRP (Ours) is able to go through the curriculum in 250K iter-145

ations, reaching final test pairwise angular error of 5.49◦. Quaternion goes through the curriculum146

much slower, reaching curriculum angle θ = 90◦ at the end of 250K steps. 4D PMG, 6D PMG,147

9D PMG and 10D PMG, on the other hand, is not able to progress beyond the original curriculum148

angle of θ = 30◦, reaching final test pairwise angular error around 35◦ after 200K iterations. In149

summary, MRP (Ours) achieves faster convergence rate than all baselines, and is able to achieve150

final test angular error on the order of 5◦ after progressing through the curriculum.151
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Figure S.5: 3D Object Rotation Estimation via Relative Supervision from ModelNet40 Point Clouds -
airplane. Left: Curriculum angle progression through training iterations. Right: Average test pairwise angular
error (◦), sampled over the full orientation space for 1 training session with each method.

Algorithm Mean Test Angular Pairwise Error (◦)
4D PMG [2] 35.35

6D PMG [2, 3] 34.12
9D PMG [2, 4] 35.80

10D PMG [2, 10] 35.26
Quaternion 12.86

MRP (Ours) 5.49
Table S8: Final Mean Test Angular Pairwise Error on ModelNet40 airplane Point Clouds after at most
250K training iterations.

F Absolute Orientation Supervision152

F.1 Experimental Setup153

In this paper, we are assuming that only relative orientation supervision is available; however, in154

this section we explore how different orientation representations perform if absolute orientation su-155

pervision is available, and specifically how Modified Rodriguez Parameters (MRP) [15] used in156

this paper compare. To explore this, we perform an experiment on rotation estimation from 2D157

images of rendered YCB drill supervised with absolute orientation instead of relative supervision.158

We follow the same experimental setup as in Section 6.2 in the main paper, utilizing ResNet18 [11]159

as the model backbone to predict absolute 3D object orientations from sets of 2D rendered object160

images, rendered at 100 random rotations each. The neural network model is supervised by the161

geodesic error between the predicted absolute orientation and the ground truth absolute orienta-162

tion. We compare the performance of different rotation parameterizations on this task. Specifically,163

we compare the Modified Rodriguez Parameters (MRP) [15] ( Oracle-MRP) with Quaternions164

(Oracle-Quaternion). Each method is trained for 10K steps, over 8 different rendered image sets.165
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We report the mean global pairwise angular error over the whole set of 100 images over the training166

process in Table S9.167

F.2 Result Analysis168

We report results on three metrics: 1) mean global train absolute angular error; 2) median global train169

absolute angular error; 3) percentage of runs that converge with final pairwise angular error < 2◦170

after 10K steps, which is referred to as 2◦ Acc. Specifically, global relative angular error is calculated171

as the all-pair relative angular error for all pairs within the image set of 100. As see in Table S9,172

Oracle-MRP achieves comparable but larger mean and median pairwise angular error compared to173

Oracle-Quaternion, while both methods achieves the same 2◦ Acc of 87.5%. In summary, through174

this simple experiment, we find that MRP is able to achieve comparable but slightly worse train175

error for absolute orientation supervision compared to quaternions. Thus in the case of direct pose176

supervision, MRP may not be the best choice of rotation representation; using an open manifold177

such as in MRP is beneficial only in the case of relative pose supervision.178

Mean Median
Algorithm Error (◦) Error (◦) 2◦ Acc (%)

Oracle-Quaternion 1.58 1.56 87.5
Oracle-MRP 1.81 1.86 87.5

Table S9: Absolute Orientation Supervision for Image Based Rotation Estimation from Rendered YCB
Drill Images using MRP vs Quaternions Parametrization. Final mean, median angular train error (◦) and
convergence (< 2◦) percentage for image based rotation estimation from rendered YCB drill images with
absolute orientation supervision, after 10K training steps over 8 sets of 100 rendered images.

G Object Orientation Prediction Qualitative Visual Results179

We further show some qualitative visual illustrations of the object orientation prediction of trained180

model at convergence, trained using our iterative MRP averaging method via relative orientation su-181

pervision below. Examples from orientation estimation on the rendered YCB drill data as described182

in Section 6.2 in the main paper is shown in Figure S.6. Examples from orientation estimation on183

unseen Pascal3D+ sofa category data as described in Supplement Section D.1 is shown in Figure G,184

and prediction on unseen Pascal3D+ bicycle category is shown in Figure S.8.185
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Figure S.6: Qualitative Visual Examples for Object Orientation Estimation of MRP (Ours) on Rendered
YCB Drill Images. We show qualitative visual examples of predicted object 3D orientation by converged ori-
entation prediction model trained via iterative MRP averaging with relative orientation supervision, the model
is evaluated after training for 10K steps from neural net optimization experiment described Sec 6.2 of the main
paper. The predicted orientation is shown as coordinate frame (x, y, z). On the bottom of each example, we
show in text of the ground truth relative orientation angular difference (◦) between the pair of images, and
their predicted relative orientation angular difference (◦) induced from the absolute object orientation predicted
for each image. And finally we show the difference between the predicted relative angular difference and the
ground truth relative angular difference as angular error (◦).
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Figure S.7: Qualitative Visual Examples for Object Orientation Estimation of MRP (Ours) on Unseen
Pascal3D+ Sofa Images. We show qualitative visual examples of predicted object 3D orientation by con-
verged orientation prediction model trained via iterative MRP averaging with relative orientation supervision,
the model is evaluated after training for 50K steps from 3D object rotation estimation on Pascal3D+ experiment
as described Sec D of this supplement. The predicted orientation is shown as coordinate frame (x, y, z). On the
bottom of each example, we show in text of the ground truth relative orientation angular difference (◦) between
the pair of images, and their predicted relative orientation angular difference (◦) induced from the absolute
object orientation predicted for each image. And finally we show the difference between the predicted relative
angular difference and the ground truth relative angular difference as angular error (◦).
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Figure S.8: Qualitative Visual Examples for Object Orientation Estimation of MRP (Ours) on Unseen
Pascal3D+ Bicycle Images We show qualitative visual examples of predicted object 3D orientation by con-
verged orientation prediction model trained via iterative MRP averaging with relative orientation supervision,
the model is evaluated after training for 50K steps from 3D object rotation estimation on Pascal3D+ experiment
as described Sec D of this supplement. The predicted orientation is shown as coordinate frame (x, y, z). On the
bottom of each example, we show in text of the ground truth relative orientation angular difference (◦) between
the pair of images, and their predicted relative orientation angular difference (◦) induced from the absolute
object orientation predicted for each image. And finally we show the difference between the predicted relative
angular difference and the ground truth relative angular difference as angular error (◦).
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