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Abstract001

Deep learning models trained on extensive002
Electronic Health Records (EHR) data have003
achieved high accuracy in diagnosis predic-004
tion, offering the potential to assist clinicians in005
decision-making and treatment planning. How-006
ever, these models lack two crucial features007
that clinicians highly value: interpretability008
and interactivity. The “black-box” nature of009
these models makes it difficult for clinicians010
to understand the reasoning behind predictions,011
limiting their ability to make informed deci-012
sions. Additionally, the absence of interac-013
tive mechanisms prevents clinicians from in-014
corporating their own knowledge and experi-015
ence into the decision-making process. To ad-016
dress these limitations, we propose II-KEA, a017
knowledge-enhanced agent-driven causal dis-018
covery framework that integrates personalized019
knowledge databases and agentic LLMs. II-020
KEA enhances interpretability through ex-021
plicit reasoning and causal analysis, while022
also improving interactivity by allowing clin-023
icians to inject their knowledge and experi-024
ence through customized knowledge bases and025
prompts. II-KEA is evaluated on both MIMIC-026
III and MIMIC-IV, demonstrating superior per-027
formance while offering enhanced interpretabil-028
ity and interactivity, as supported by the results029
of extensive case studies.030

1 Introduction031

Accurate diagnosis prediction is crucial for improv-032

ing clinical outcomes by enabling timely interven-033

tions and optimizing treatment planning. In recent034

years, the growing availability of Electronic Health035

Records (EHR) (e.g., MIMIC datasets (Johnson036

et al., 2016, 2023)) has provided valuable real-037

world data, allowing researchers to develop more038

advanced and complex deep learning models to039

uncover predictive patterns from a data science040

perspective. These models often integrate domain041

knowledge of medical concepts to identify intri-042
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Figure 1: Comparison between deep learning ap-
proaches and our approach.

cate correlations in disease progression and co- 043

morbidities, demonstrating promising predictive 044

performance. Despite their success in prediction 045

accuracy, these methods have two key limitations: 046

• Lack of interpretability: deep learning models 047

inherently function as “black boxes,” offering 048

little transparency into the clinical reasoning be- 049

hind their predictions. 050

• Lack of interactivity: most models operate in 051

an end-to-end manner, limiting practitioner inter- 052

action with the system. This prevents users from 053

asking follow-up questions, customizing predic- 054

tion goals, or incorporating their own knowledge 055

and experience to refine predictions. 056

The lack of both interpretability and interactiv- 057

ity undermines trust and acceptance among health- 058

care professionals who depend on these predictions 059

for informed decision-making. In recent years, 060

Large Language Models (LLMs) have demon- 061

strated extensive knowledge, strong instruction- 062

following capabilities, and impressive reasoning 063

abilities, offering promising solutions to address 064

these limitations. The development of agentic 065

LLMs has further enhanced their flexibility and ca- 066
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pabilities through dynamic interactions with the en-067

vironment, tool utilization, and inter-agent collabo-068

ration. These advancements hold great potential for069

enabling clinicians to engage more effectively with070

predictive models, fostering greater adaptability071

and user-driven refinement.072

Inspired by these advancements, we propose073

II-KEA, a knowledge-enhanced Agentic Causal074

Discovery framework designed for Interpretable075

and Interactive Diagnosis Prediction. II-KEA is a076

multi-agent system comprising three LLM agents077

namely Knowledge Synthesis Agent, Casual Dis-078

covery Agent, and Decision-Making Agent collabo-079

ratively, and is powered by both clinical dataset and080

domain knowledge. Similar to other deep learning081

approaches, II-KEA predicts medical diagnoses082

by addressing the question:“What diseases is a pa-083

tient likely to be diagnosed with given their past084

diagnosis history?" However, unlike purely data-085

driven methods, II-KEA approaches the problem086

from a causal perspective, delving deeper into the087

underlying mechanisms to answer:“What diseases088

are likely to be caused by the conditions a patient089

has already been diagnosed with?"—thus refram-090

ing the task as a causal discovery problem. Recent091

advances in Large Language Models (LLMs) have092

demonstrated promising performance in causal dis-093

covery, alleviating the need for complex, data-094

centric, and resource-intensive traditional methods.095

However, LLMs often generate incorrect answers096

when domain knowledge is insufficient. To address097

this limitation, we enhance the causal discovery098

process by integrating both knowledge-driven rea-099

soning through Retrieval Augmented Generation100

(RAG) and data-grounded inference, ensuring a101

deeper contextual understanding and better align-102

ment with real-world observations.103

To this end, we emphasize that II-KEA is104

clinician-friendly framework that ensures both in-105

terpretability and interactivity.106

• II-KEA is interpretable. The LLM agents107

make II-KEA inherently interpretable by en-108

abling the decision-making agent to provide de-109

tailed explanations and reasoning behind its pre-110

dictions. Additionally, II-KEA gains an extra111

layer of interpretability through causal analy-112

sis. The causal graph generated by the causal113

discovery agent offers an intuitive and compre-114

hensive representation of the causal mechanisms115

between diseases, making it easier for users to116

understand the underlying relationships.117

• II-KEA is interactive. Clinicians can inter-118

act with and customize the prediction process 119

through two pathways. First, the RAG feature of 120

II-KEA enables generalization by incorporating 121

external knowledge, allowing clinicians to conve- 122

niently provide the knowledge sources their own 123

or selected knowledge sources as the knowledge 124

database. Second, clinicians can interact with 125

the decision-making agent by specifying their 126

personal preferences, ensuring that predictions 127

are tailored to their specific needs. 128

We evaluate II-KEA on EHR datasets, including 129

MIMIC-III and MIMIC-IV, demonstrating superior 130

performance along with enhanced interpretability 131

and interactivity, supported by extensive ablation 132

and case studies. 133

2 Methodology 134

We propose, II-KEA, a multi-agent system consist- 135

ing of three LLM-based agents working collabo- 136

ratively and is powered by both clinical datasets 137

and domain knowledge. II-KEA aims to uncover 138

causal relationships between diseases and predict 139

future medical diagnoses. In this section, we intro- 140

duce each LLM agent and knowledge module and 141

provide a summary of the overall framework. 142

2.1 Knowledge databases 143

2.1.1 Clinical datasets 144

We construct a clinical dataset using training 145

data from Electronic Health Records (EHR). Each 146

record contains diagnosis information for individ- 147

ual patients across multiple visits. This database 148

comprises two data frames: a Disease Transition 149

Probability Matrix and a Diagnosis Matrix. 150

Let D denote the complete set of diseases, and 151

Ptrain denote the patient set from training data. 152

The Disease Transition Probability Matrix, denoted 153

as AT ∈ R|D|×|D|, captures the probability of dis- 154

ease j occurring after disease i. The underlying 155

intuition is that temporal precedence is a necessary 156

but not sufficient condition for causality. Identify- 157

ing diseases that frequently follow a target disease 158

helps narrow down potential causal candidates. By 159

pre-selecting frequently co-occurring diseases, we 160

provide the LLM agent with a shortlist of candi- 161

dates, reducing its workload when assessing causal 162

relationships, as we will discuss later. In construct- 163

ing this matrix, for each visit, we define disease B 164

as a successor of disease A if: 165

• Disease B appears in a patient’s next visit after 166

the visit in which disease A is diagnosed. 167
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Figure 2: An overview of II-KEA framework. It consists of three LLM-based agents working collaboratively and
is powered by both clinical datasets and domain knowledge. During inference, a patient’s diagnosis history is
processed to identify possible diseases. A Knowledge Synthesis Agent retrieves and summarizes relevant documents.
Then, a Causal Discovery Agent uncovers causal relationships using both external knowledge and observational
data, forming a causal graph. Finally, a Decision-Making Agent integrates all this information—along with optional
clinician input—to predict the diagnosis and provide explanations.

• Disease B appears in the same visit as disease A.168

The second condition accounts for the fact that169

patients may not visit clinicians frequently, mean-170

ing that a succession disease and the target disease171

could be diagnosed simultaneously.172

AT [a, b] =
Na,b∑

p∈P
∑mp−1

i=1 I[a ∈ Di
p]
, (1)173

where174

Na,b =
∑

p∈Ptrain

mp−1∑
i=1

I[a ∈ Di
p∧(b ∈ Di+1

p ∨b ∈ Di
p)],

(2)175

I[·] is the indicator function. AT [a, b] is an entry of176

AT , representing the transition probability between177

disease a and disease b. Ptrain denotes the set of178

all patients in the training set, and Di
p represents the179

set of diseases diagnosed for patient p during their i-180

th visit. Note that AT is not necessarily symmetric,181

meaning that AT [a, b] ̸= AT [b, a] in general. The182

diagnosis matrix AD ∈ R|Ptrain|×|D| records the183

occurrence of each disease for all patients. We184

consider the occurrence of disease a for a patient185

to be 1 if the patient is has been diagnosed with the186

disease in any revisits: 187

AD[p, a] = 1(a ∈
⋃

i∈mp

Di
p), (3) 188

we calculate the fitting score between the diagno- 189

sis matrix and the output causal graph to provide 190

feedback to the causal discovery agent, as we will 191

discuss in section 2.2. 192

2.1.2 Domain knowledge database 193

We construct a vector database powered by Chro- 194

maDB1 as the source of external knowledge for 195

the Retrieval-Augmented Generation (RAG) of the 196

knowledge synthesis agent, as discussed in Section 197

2.2. The database can contain any domain knowl- 198

edge from different sources such as web pages, pub- 199

lished papers, or clinical notes. In this paper, we 200

scrape text from Wikipedia pages corresponding to 201

each disease listed in ICD-9. Each Wikipedia page 202

is segmented into sections such as “Overview”, 203

“Signs and Symptoms”, “Causes”, “Diagnosis”, 204

“Prevention”, “Treatment”, “Epidemiology”, “His- 205

tory”, “Terminology”, and “Society and Culture”. 206

When creating the vector database, each section 207

1https://pypi.org/project/chromadb/
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is treated as an individual document, and its key208

vector is generated by embedding the document209

text using the pre-trained Sentence-BERT model210

all-MPNet-base-v2, which exhibits exceptional211

performance in capturing semantic similarities be-212

tween sentences.213

2.2 Multi-agent Framework214

The goal of II-KEA is to predict a patient’s fu-215

ture diagnoses by conducting causal discovery on216

their diagnosis history and identifying diseases that217

are most likely caused by past conditions. How-218

ever, directly asking an LLM agent to perform this219

task across thousands of diseases would be com-220

putationally expensive. Instead, we leverage a Dis-221

ease Transition Probability Matrix, denoted as AT ,222

to select candidate diseases, acknowledging that223

temporal precedence is a necessary condition for224

causality. For a patient p, let Dp denote the set225

of diseases they have been diagnosed with in the226

past. The set of candidate diseases Sp that could227

be caused by Dp is then obtained as:228

Sp = {b | M[a, b] > ϵ, ∀a ∈ Dp} (4)229

We then provide both the diagnosis history230

set Dp and the candidate disease set Cp to the231

agents to determine which diseases are causally232

linked. To ensure that the causal discovery pro-233

cess is grounded in sufficient domain knowledge,234

a straightforward approach would be to query a235

vector database separately for each disease in Dp236

and Cp and send the retrieved text to the causal237

discovery agent. However, this approach has two238

major drawbacks: 1) Independently querying each239

disease focuses on individual diseases rather than240

the relationships between them, failing to retrieve241

information most relevant to causal links. 2) The242

retrieved documents may contain redundant infor-243

mation, be excessively long, and exceed the pro-244

cessing capacity of LLMs. To address these issues,245

we develop a Knowledge Synthesis Agent.246

Knowledge Synthesis Agent, Aknowledge. The247

role of Aknowledge is to generate high-quality con-248

textual information for the causal discovery process.249

Its generation process consists of two steps. In the250

first step, the agent is provided with the database251

metadata, the patient’s diagnosis history Dp, and252

the candidate disease set Cp. It is responsible for253

generating a query text to retrieve relevant infor-254

mation from the database. This query text should255

effectively summarize Dp and Cp while being tai-256

lored to the specific database based on its meta- 257

data, which defines its characteristics and content. 258

We then encode the query text using the same pre- 259

trained Sentence-BERT model and retrieve the k 260

most relevant documents. In the second step, Aks 261

performs reasoning-in-documents, refining the re- 262

trieved information by removing redundancies and 263

generating a concise summary. These summarized 264

documents are then stored for use by the causal 265

discovery agent, enabling a Retrieval-Augmented 266

Generalization (RAG) approach. We summarize 267

the workflow of the Aknowledge in Algorithm 1. 268

Causal Discovery Agent, Acausal. The role of 269

Acausal is to identify potential causal relationships 270

among a set of diseases. We provide it with the 271

patient’s diagnosis history set Dp and the candidate 272

disease set Cp as a whole, along with the summa- 273

rized external knowledge generated by Aknowledge. 274

We then adapt the iterative causal discovery pro- 275

cedure proposed in (Abdulaal et al., 2024): 276

1. Hypothesis generation. Given the summarized 277

external knowledge and the empty graph G∅, 278

which consists of all entities in Dp and Cp with 279

no initial relations, the Acausal LLM generates 280

an initial causal graph as a directed acyclic graph 281

(DAG), Gs
t=0. 282

2. Model fitting. At each iteration t, we fit the 283

causal model using a data-driven approach with 284

real-world observations. Specifically, we mea- 285

sure the log-likelihood, lt, of the diagnosis ma- 286

trix AD under the current model Gs
t . 287

lt =
∑

p∈Ptrain

∑
a∈D

logP (Xa
p | {Xb

p | b ∈ Pa(a)})

(5)
288

where Pa(a) denotes the parent diseases of a in 289

Gs
t , and Xa

p ∈ {0, 1} represents the observation 290

of disease a in patient p. 291

3. Post-processing. We update the memory Mt to 292

store the causal graph and the fitting score from 293

the previous and current time steps, including 294

Mt, Mt−1, lt, and lt−1. This memory is retained 295

for the next step. 296

4. Hypothesis amendment. The LLM refines the 297

causal model based on the stored memory to 298

enhance its accuracy and better capture causal 299

relationships. It then outputs the updated causal 300

graph as Gs
t+1. 301

Steps 2 to 4 are repeated iteratively until a stop- 302

ping criterion is met, (when the change in Gs
t falls 303
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below a predefined threshold or the number of itera-304

tions exceeds a limit). We summarize the workflow305

of the Causal Discovery Agent in Algorithm 2.306

Decision-Making Agent, Adecision. Adecision307

integrates and evaluates all available informa-308

tion, including diagnosis history sets, summarized309

knowledge, and the causal graph, to make the final310

prediction on a patient’s diagnosis. Additionally,311

clinicians or users can provide their preferences,312

comments, or experiences to customize the pre-313

diction. For example, they may indicate that they314

are particularly concerned about kidney-related dis-315

eases. The agent is then tasked with producing316

the diagnosis list in a structured format along with317

an explanation of the reasoning behind its deci-318

sion. We summarize the workflow of the Decision-319

Making Agent in Algorithm 3.320

2.3 II-KEA Inference321

II-KEA does not involve any training process but322

requires data preprocessing. First, the EHR train-323

ing dataset is processed to construct the Disease324

Transition Probability Matrix AT and the Diag-325

nosis Matrix AD, as described in Section 2.1.1.326

Additionally, a knowledge vector database Γ is pre-327

pared following Section 2.1.2. Both matrices and328

the database are stored for later inference. During329

inference, for each patient, we collect their diag-330

nosis history Dp and apply the preprocessing steps331

outlined in Section 2.1.1 to determine the candidate332

disease set Sp. The Knowledge Synthesis Agent333

Aknowledge then retrieves relevant documents from334

Γ and summarizes them into Γsummary
p . Next, the335

Causal Discovery Agent Acausal iteratively uncov-336

ers causal relationships within the expanded dis-337

ease set Dp ∪ Sp, leveraging both external knowl-338

edge from Γsummary
p and observational data from339

AD. This process results in a causal graph Gs.340

Finally, the Decision-Making Agent Adecision in-341

tegrates all available information, including the di-342

agnosis history Dp, candidate diseases Sp, summa-343

rized documents Γsummary
p , causal graph Gs, and344

an optional clinician-provided comment C. Using345

this information, the model predicts the patient’s di-346

agnosis and provides explanations for the decision.347

We provide the overview of II-KEA in Figure 2,348

the prompt details in Appendix D. The workflow349

of its inference process is shown in Algorithm 4.350

3 Experiments & Setup 351

3.1 Datasets 352

We utilize both the MIMIC-III (Johnson et al., 353

2016) and MIMIC-IV (Johnson et al., 2023) 354

datasets for our experiments. MIMIC-III contains 355

7,493 patients with multiple visits (T ≥ 2) between 356

2001 and 2012, while MIMIC-IV includes 85,155 357

patients with multiple visits spanning from 2008 to 358

2019. Due to the overlapping time period between 359

the two datasets, we randomly sample 10,000 pa- 360

tients from MIMIC-IV between 2013 and 2019 to 361

ensure minimal redundancy. For the diagnosis pre- 362

diction task, the objective is to predict the medical 363

codes appearing in the subsequent admission. 364

To verify the efficiency of the proposed model, 365

MIMIC-III is split into training (6,000 patients), 366

validation (1,900 patients), and test (1,000 patients) 367

sets. Similarly, MIMIC-IV is divided into 8,000, 368

1,000, and 1,000 patients accordingly. The last 369

recorded visit of each patient serves as the predic- 370

tion target, while the preceding visits are used as 371

input features. Different from typical predictive 372

models, we feed II-KEA by admission records 373

of those patients in the training data for getting 374

co-occurrence matrix, and examine predictive per- 375

formance upon 500 patient cohort. 376

3.2 Tasks & Evaluation Metrics 377

Our experiments focus on the task of Diagnosis 378

Prediction, which aims to predict all medical codes 379

that will appear in a patient’s next admission. This 380

task is formulated as a multilabel classification 381

problem. To evaluate model performance, we use 382

weighted F1 score (w-F1) and top-k recall (R@k) 383

as metrics, following prior work (Choi et al., 2016a; 384

Bai et al., 2018). The w-F1 score is a weighted 385

sum of the F1 score across all classes, providing an 386

overall assessment of prediction quality. The R@k 387

metric represents the proportion of true-positive in- 388

stances among the top-k predictions relative to the 389

total number of positive samples, reflecting model 390

effectiveness in capturing relevant medical codes. 391

3.3 Baselines 392

To assess the performance of II-KEA, we compare 393

it against 8 machine learning (ML)-based EHR 394

models originally designed for diagnostic predic- 395

tion: (i) RNN/CNN-based models: RETAIN (Choi 396

et al., 2016b), Dipole (Ma et al., 2017), and Time- 397

line (Bai et al., 2018). (ii) Graph-based models: 398

Chet (Lu et al., 2022) and SeqCare (Xu et al., 2023). 399
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(iii) Transformer-based models: G-BERT (Shang400

et al., 2019a), BEHRT (Li et al., 2020), and GT-401

BEHRT (Poulain and Beheshti, 2024).402

Moreover, we compare 3 most recent base-403

lines that combine language models with ma-404

chine learning-based predictors (LM+ML): Graph-405

Care (Jiang et al., 2024), RAM-EHR (Xu et al.,406

2024), and DualMAR (Hu et al., 2024). To ensure407

a fair comparison, we use condition codes as the408

sole input feature (e.g., excluding procedures and409

medications used in GraphCare), and we recon-410

struct the knowledge base using ICD-9-CM codes411

instead of CCS codes. Other agentic baselines like412

ColaCare (Wang et al., 2024) are excluded from413

the comparison due to its extensive input require-414

ments, which lead to unstable predictions when415

only condition codes are provided.416

3.4 Implementation Details417

We implement II-KEA using Python 3.10. For418

all agents, we utilize ChatGPT-4o mini (OpenAI419

et al., 2024), accessed via the Azure OpenAI,420

as our LLM. To build the vector database,421

we employ ChromaDB, where document embed-422

dings are generated using a pre-trained Sentence-423

BERT all-MPNet-base-v2 model provided by the424

Sentence Transformers. We report the average425

performance (%) and standard deviation of each426

baseline over 5 runs, and we set the temperature427

value in II-KEA as 0. When evaluating the predic-428

tion performance of II-KEA we set the optional429

clinical comment to be empty.430

3.5 Main Results431

Table 1 presents the performance comparison,432

demonstrating that the proposed model, II-433

KEA, achieves state-of-the-art results across both434

datasets. Specifically, II-KEA outperforms GT-435

BEHRT by 2.44% in w-F1, 0.73% in R@10, and436

1.06% in R@20 on MIMIC-IV, with similar perfor-437

mance gains observed on MIMIC-III. The results438

further indicate that graph-based and transformer-439

based models consistently outperform RNN- and440

CNN-based approaches. Notably, knowledge-441

based models such as DualMAR leverage knowl-442

edge graphs to enhance learning, yielding a 9%443

improvement in R@20 on MIMIC-III. Similarly,444

transformer-based models like GT-BEHRT im-445

prove w-F1 by approximately 8% on MIMIC-IV.446

While GT-BEHRT and DualMAR achieve compet-447

itive performance in certain metrics, II-KEA con-448

sistently surpasses both across the majority of eval-449
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20

22
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30 MIMIC-III

II-KEA-causal
II-KEA-knowledge II-KEA
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Figure 3: Comparison between different version of II-
KEA. F1 scores on MIMIC-III and MIMIC-IV are re-
ported.

uation criteria. Overall, these findings underscore 450

the effectiveness of II-KEA in diagnosis predic- 451

tion and highlight the potential of a unified agentic 452

framework for advancing predictive healthcare. 453

3.6 Ablation Study 454

We conduct ablation studies to evaluate the effec- 455

tiveness of components in II-KEA. Specifically, we 456

aim to understand how causal analysis and external 457

knowledge contribute to prediction performance. 458

The Knowledge Synthesis Agent and the Causal 459

Discovery Agent are separately removed from the 460

prediction workflow and weighted F1 scores are 461

reported in Figure 3. We denote the version with- 462

out the Causal Discovery Agent as II-KEA-causal 463

and the version without the Knowledge Synthesis 464

Agent as II-KEA-knowledge. The results show 465

that II-KEA-causal experiences a more significant 466

performance drop than the full model, highlight- 467

ing the crucial role of causal analysis in improving 468

prediction accuracy. In contrast, removing external 469

knowledge (II-KEA-knowledge) results in only a 470

marginal decline, suggesting a lesser impact in its 471

current form. We hypothesize that this is because 472

our knowledge database is sourced from Wikipedia, 473

which primarily serves as a demonstration of ex- 474

ternal knowledge integration but may offer lim- 475

ited domain-specific medical insights. However, 476

this also underscores the potential for improvement 477

by incorporating curated databases or clinician- 478

maintained knowledge sources. 479

3.7 Case Study 480

We conduct a case study to analyze how different 481

agents within II-KEA function and collaborate dur- 482

ing the decision-making process. We randomly se- 483

lect a patient from the MIMIC-III dataset and report 484

the output of each agent during inference, as shown 485

in Figure 4. The Causal Discovery Agent identifies 486
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Table 1: Prediction Results on MIMIC-III and MIMIC-IV for Diagnosis Prediction. The best results for each
metric are highlighted, and the second bests results are underlined.

MIMIC-III MIMIC-IV
Type Models w-F1 R@10 R@20 w-F1 R@10 R@20

ML

RETAIN 18.37 (0.78) 32.12 (0.79) 32.54 (0.63) 23.11 (0.78) 37.32 (0.79) 40.15 (0.63)
Dipole 14.66 (0.21) 28.73 (0.22) 29.44 (0.21) 22.16 (0.21) 36.21 (0.22) 38.74 (0.21)
Timeline 20.46 (0.22) 30.73 (0.12) 34.83 (0.10) 24.76 (0.22) 39.89 (0.12) 44.87 (0.10)
Chet 22.63 (0.22) 33.64 (0.32) 37.87 (0.22) 25.74 (0.22) 39.23 (0.32) 42.67 (0.22)
SeqCare 24.36 (0.12) 37.47 (0.11) 40.53 (0.12) 26.12 (0.12) 42.91 (0.11) 46.25 (0.12)
G-BERT 22.28 (0.32) 35.62 (0.21) 36.46 (0.22) 25.12 (0.32) 41.91 (0.21) 46.25 (0.22)
BEHRT 23.15 (0.21) 34.68 (0.32) 35.97 (0.11) 24.53 (0.21) 38.42 (0.32) 44.89 (0.11)
GT-BEHRT 25.21 (0.18) 36.15 (0.23) 40.97 (0.41) 30.17 (0.18) 44.93 (0.23) 50.67 (0.41)

LM+ML
GraphCare 25.16 (0.31) 36.74 (0.28) 41.89 (0.36) 27.59 (0.31) 42.07 (0.28) 48.19 (0.36)
RAM-EHR 23.27 (0.24) 34.66 (0.18) 38.49 (0.25) 26.97 (0.29) 41.17 (0.30) 46.23 (0.21)
DualMAR 25.37 (0.17) 38.24 (0.26) 41.86 (0.24) 27.97 (0.17) 44.07 (0.26) 48.19 (0.24)

Agent II-KEA 28.61 (0.00) 38.52 (0.00) 43.86 (0.00) 29.87 (0.00) 45.66 (0.00) 51.73 (0.00)

a causal graph, visualized in the figure, which helps487

illustrate the underlying mechanisms connecting488

different diseases. For the Decision-Making Agent,489

we provide outputs both with and without clinician490

input. In the first query, no specific guidance is491

given, leading to a more general prediction that492

considers all possible diseases. In contrast, in the493

second query, the clinician provides additional in-494

put, specifying a focus on kidney-related diseases.495

Consequently, the model prioritizes kidney-related496

predictions. It is important to note that the per-497

formance of these two versions cannot be directly498

compared; rather, the key advantage is that clin-499

icians can incorporate their expertise and prefer-500

ences to tailor predictions to their specific needs501

(e.g., a nephrologist may prioritize kidney-related502

diseases). We also observe that both versions of the503

predictions not only provide disease codes but also504

offer detailed explanations, enhancing interpretabil-505

ity and helping clinicians in making informed deci-506

sions and determining next-step treatment plans.507

4 Related Work508

We categorize prior work into clinical prediction509

(section 4.1), agentic approaches (section 4.2), and510

causal inference (appendix B.1).511

4.1 Predictive Healthcare in EHR512

Predictive modeling in healthcare has advanced513

significantly with the adoption of deep learning514

techniques applied to Electronic Health Records515

(EHR) data. Existing neural network-based models,516

including RNN/Attention-based approaches (Choi517

et al., 2016a, 2017; Ma et al., 2020), graph-based518

models (Choi et al., 2017; Ma et al., 2018; Lu et al.,519

2021), and Transformer-based architectures (Shang 520

et al., 2019b; Luo et al., 2020; Poulain and Be- 521

heshti, 2024), have demonstrated effectiveness 522

in capturing temporal patterns and interactions 523

among medical concepts. Recent work (Jiang et al., 524

2024) has explored leveraging external knowledge 525

sources beyond hierarchical structures such as 526

ICD-9-CM by integrating Large Language Models 527

(LLMs) to enhance medical predictions. 528

Still, most models remain black boxes, offering 529

limited interpretability and restricting healthcare 530

professionals from interacting with the system to 531

refine or adjust predictions. In clinical applications, 532

predictive models must provide faithful explana- 533

tions, such as causal pathways, and allow interac- 534

tive refinement based on expert guidance. 535

4.2 LLM Agents for Healthcare AI 536

More recently, LLMs have demonstrated agen- 537

tic capabilities in clinical applications through 538

multi-agent frameworks. EHRAgent (Shi et al., 539

2024) utilizes multiple agents for multi-tabular 540

retrieval, integrating external tools and long- 541

term memory to handle complex clinical queries. 542

KG4Diagnosis (Zuo et al., 2024) enhances diag- 543

nostic reasoning through hierarchical agent collab- 544

oration and knowledge graph construction guided 545

by semantic understanding. ColaCare (Wang 546

et al., 2024) improves EHR-based report gener- 547

ation and treatment planning by facilitating col- 548

laboration between DoctorAgents and MetaAgent 549

using retrieval-augmented generation (RAG) tech- 550

niques. MDAgents (Kim et al., 2024) and Agent- 551

Clinic (Schmidgall et al., 2024) simulate clinical in- 552

teractions using multi-agent systems, where agents 553
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Generate a search qu ery to retrieve the most relev ant 
infor mation from the kn owledge d atabase using 

{Dia gnosis history}, { Candidate diseases}.

Search query:  "Retrieve disease summar ies and ICD-
9 classificatio ns for conditions r elated to nausea, 
anemia, fever, asthma, and pulmonary embo lism. 
Emph asize conn ections to acute respirator y fai lure, 
kidney failure, p neumonia, hyper lipidemia, acid osis, an d 
anticoagulant therapy. Focus on disease d escriptions, 
common symptoms, path ophysiology, ICD-9 
catego rization s, and kno wn comor bidities. E xtract 
insights on disease p rogr ession, treatment guidelin es, 
and historical cases where available. Prioritize cr oss-
references between  th ese conditions and  r elevant 
medical literatu re."

Summery: Pu lmonar y hypertension (PH) is classified  
into  fiv e group s. Gro up I (PAH) is caused by narro wed lung 
arteries, often idiopath ic, heritable, or drug-ind uced, and  
linked  to  con ditions like connective tissue disease an d 
HIV. Group  II results from left heart disease, Group III  
from lung diseases like COPD, Grou p IV fro m chr onic 
arterial obstruction (e.g., CTEPH), and Gr oup V from 
unclear mechanisms, includ ing systemic and  metab olic 
disorder s.

Remove redun dant informatio n fr om the document that is 
irr elevant to the patient’s {diagnosis history}  and 
{ca ndida te diseases}. 
Generate a concise summary.

Prediction: For this second  p atient, I  will p redict possible future 
diagnoses based on their curr ent and past medical history, cau sal 
disease relationships, an d medical knowledge:
1.End-Stage Renal Disease (ESRD) – 585.6
The patient has chr onic kid ney disease, hypertensive chron ic kidney  
disease, and acute kidney failu re, making E SRD a high -risk 
pro gressio n.
2. Recurre nt Myocardial Inf arction – 410.1
A h istor y of cor onary athero scler osis and old myocardial infarction 
suggests a h igh pr obability of another hear t attack.
3. Ischemic Stroke  – 434.91
The presen ce of atrial fibrillatio n, hy pertension, and coronary  d isease 
increases the risk o f stroke d ue to embolism……

Prediction: Given the patien t's history of chronic kidney disease 
(CKD), acute kidney failu re, hy pertensive chronic kidney disease, 
diab etes mellitus, acido sis, amyloido sis, and  long-term use of 
anticoagulants, the following kidney-related conditio ns are likely to 
develop in the futur e:
1. End-Stage Renal Disease (ESRD) – 585.6
The patient alr eady has chro nic kidn ey disease stage V and a history of 
hyp ertensive kidn ey disease. Progression to ESRD, requ iring dialysis or 
kidney transplantation, is highly probab le.
2. Ne phrotic Syndrome – 581.9
The presen ce of amyloidosis increases the likelih ood of protein  leakage 
in ur ine, leading to nephro tic syndr ome, which worsens kidney function .
3. Diabetic Nephropathy  – 250.4x
Given the history of diab etes mellitus, the kidneys are likely  to  suffer 
further  d amage from diabetes-related microvascular complications, 
leading to  p roteinur ia and wo rsening renal function……

Pr oduce a DAG to represent the causality 
between the set of disease names. A summar y 
of the patient and  all disease is prov ided as 
{summarie s} . Output in  J SON form. 

Are there lin ks y ou’d  like to  ad d?
Any you thin k sh ould  b e r emoved?
Any direction s sh ould  b e r eversed ?
Output a new valid JSON.

Diagnosis history
Thrombocyto penia, unsp ecified, Iatrogenic pneumotho rax, Pneumonia, organism unsp ecified, 
Lung involvement in other diseases classified  elsewhere, Acute kidney failure, unsp ecified, 
Coronary  ath erosclerosis of native coro nary artery, Co ngestive heart failure, u nspecified , Acu te 
posthemorr hagic anemia, Atr ial fibri llation, Abdo minal aneu rysm withou t men tion of ruptur e……

Candidate diseases
Sar co idosis, Unspecified essential hypertension, Sever e sepsis, Acute respirator y fai lure, Other 
and un specified hy perlipidemia, Infection  an d inflammator y reaction due to other  vascular device, 
implant, and graft, Septic shock, Old myocard ial infarctio n, Percutaneous transluminal coronary  
angioplasty status, Diab etes mellitus with out mention of complication……

Clinical comment:
I 'm p articular ly concerned  ab out kid ney-related diseases.

DAG.json

DAG.json

……

Reasoning in document

Retrieved
Documents

A summary of the patien t an d all d isease is pro vided as {summary}, a 
DAG to  r epresen t th e causality between  th e set of disease names is 
given as {DAG.json}.
Pr edict a list o f diseases the patient may be diagnosed in the future. 
{clinical comm ent} can be prov ided optio nally. 

Without clinical comment

With clinical comment

Knowledge retrieval agent Causal discovery agent Decision-making agent

Figure 4: A case study on a patient from MIMIC-III.

collaborate to support multi-modal reasoning and554

communication benchmarking. These studies high-555

light an emerging trend in agentic AI for clinical ap-556

plications, where LLMs leverage in-context learn-557

ing and dynamically retrieve medical knowledge558

to provide personalized and adaptive responses.559

Still, the integration of LLM agents for sequen-560

tial diagnostic prediction remains underexplored,561

presenting an opportunity to develop interactive562

and explainable models for medical diagnosis.563

5 Conclusion564

In this paper, we introduce II-KEA, a knowledge-565

enhanced Agentic Causal Discovery framework566

designed for interpretable and interactive diagnosis567

prediction. II-KEA consists of three LLM-based568

agents working collaboratively and is powered by569

both clinical datasets and domain knowledge. We570

evaluate II-KEA on the MIMIC-III and MIMIC-571

IV datasets and conduct both ablation and case572

studies to demonstrate its effectiveness. The ethical573

consideration can be checked in Appendix A.574

6 Limitation and Future Work 575

II-KEA showcases a promising paradigm for in- 576

terpretable and interactive diagnosis prediction by 577

leveraging LLM agents. However, II-KEA has 578

significant potential to solve a broader range of 579

medical challenges. Future work includes: 580

• Enhancing external domain knowledge: In 581

this work, we use the Wikipedia database as a 582

proof of concept. In future work, we aim to 583

integrate more domain-specific external knowl- 584

edge sources to enhance diagnosis prediction in 585

fine-grained target domains. 586

• Expanding task diversity: While this work fo- 587

cuses on diagnosis prediction, future research 588

will explore additional tasks tailored to clini- 589

cians’ needs, such as treatment planning and 590

personalized medical recommendations. 591

• Incorporating multiple stakeholders: The cur- 592

rent version of II-KEA facilitates interactions 593

only with clinicians. Future iterations will ex- 594

plore collaborative decision-making involving 595

multiple stakeholders to enhance holistic and 596

patient-centered care. 597
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Appendix791

A Privacy and Ethical Statement792

Our work involves the analysis of EHR data, which793

contains sensitive personal medical information.794

In compliance with the PhysioNet Credentialed795

Health Data Use Agreement 1.5.02, we conducted796

all interactions between the language models and797

the EHR data through Azure OpenAI Service3,798

which adheres to enterprise-grade security and com-799

pliance standards. We also submitted the opt-out800

form4 to decline human review in terms of the801

responsible use guidelines specified for MIMIC802

datasets available at Responsible Use of MIMIC803

Data with online services5, which outlines proper804

handling of EHR data when used with generative805

models. This ensured that the capabilities of large806

language models were applied without compro-807

mising the privacy and confidentiality of patient808

information. Furthermore, we continuously and809

carefully monitor our compliance with these guide-810

lines and relevant privacy regulations to uphold the811

ethical use of data in our research and operations.812

B Additional Related Work813

B.1 Causality Inference on LLM814

Causal inference is a cornerstone of medical re-815

search, enabling the discovery of relationships be-816

tween clinical factors. LLMs, equipped with exten-817

sive domain knowledge, have the potential to assist818

in causal graph generation and infer causal relation-819

ships from unstructured data. Consequently, recent820

studies have started exploring LLM-driven causal821

discovery frameworks (Liu et al., 2024). Several822

works (Le et al., 2024; Shen et al., 2024; Choi823

et al., 2022; Kıcıman et al., 2024; Long et al.,824

2023; Jiralerspong et al., 2024) have employed825

LLMs for causal relation inference and graph gen-826

eration, yet their application to EHR-based pre-827

dictive tasks remains limited. Most existing ap-828

proaches focus on general causal reasoning tasks829

or static datasets, without fully leveraging the inter-830

active and adaptive capabilities of LLM agents for831

healthcare-specific causal discovery.832

2https://physionet.org/about/licenses/physionet-
credentialed-health-data-license-150/

3https://azure.microsoft.com/en-us/products/ai-
services/openai-service/

4https://azure.microsoft.com/en-us/products/cognitive-
services/openai-service/

5https://physionet.org/news/post/gpt-responsible-use

However, causal discovery is essential for di- 833

agnosis prediction, as it provides a structured 834

explanation of disease co-occurrences, facilitat- 835

ing more transparent and interpretable decision- 836

making. Bridging this gap is crucial for achiev- 837

ing explainable AI in clinical practice by enabling 838

collaborative causal reasoning among AI agents. 839

Furthermore, integrating interactive causal discov- 840

ery mechanisms allows healthcare professionals 841

to refine insights and better understand disease re- 842

lationships, ultimately improving diagnosis and 843

treatment planning. 844

C Pseudocodes 845

Algorithm 1 Knowledge Synthesis Agent,
Aknowledge.

Input: Diagnosis history Dp, Candidate dis-
eases Sp, Knowledge vector database Γ with
meta data KΓ.
// Generate search query
qsearch = LLMsearch(Dp,Sp,KΓ)
// Retrieve k most relevant documents from
database Γ
Γq = query(qsearch,Γ)
for each document γ ∈ Γq:

// Reasoning in document
aγ = LLMreason−in−doc(γ,Dp,Sp)

end for
Output: Summarized document set
Γsummary
p = aγ | γ ∈ Γq.

D Prompt Details 846

In this section, we provide the prompt templates for 847

knowledge retrieval agent, causal discovery agent, 848

and decision-making agent, separately. 849
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Algorithm 2 Causal Discovery Agent, Acausal.

Input: Empty graph G∅ consists of entities
from Dp ∪ Sp, Candidate diseases , Summa-
rized document set Γsummary

p , diagnosis ma-
trix AD

t ≜ 0
// Hypothesis generation
Gs
t=0 = LLMhypo-gen(G∅,Γ

summary
p )

While 1:
// Model fitting
lt =log likelihood (Gs

t ,AD)
// Post-processing
M ≜ {Gs

t ,Gs
t−1, lt, lt−1}

// Hypothesis amendment
Gs
t+1 = LLMhypo-amend(M)

if stopping criteria is meet: Gs ≜ Gs
t+1

break
t = t+ 1

Output: Final causal graph Gs

Algorithm 3 Decision-Making Agent, Adecision.

Input: Diagnosis history Dp, Candidate dis-
eases Sp, Summarized document set Γsummary

p ,
Causal graph Gs, Optional clinician comment
C
// Make diagnosis prediction with explanations
Dpred, E = LLMdecison(Sp,Γ

summary
p ,Gs, C)

Output: Predicted diagnosis Dpred and expla-
nations E

Algorithm 4 II-KEA inference.
Require: Pretrained LLM model, EHR train-
ing data Dp | p ∈ Ptrain, Knowledge vector
database Γ with meta data KΓ.
// Data processing
Calculate AT and AD with Equation 1 and 3.
// Inference
For p ∈ Ptest:

Input: Diagnosis history Dp

Obtain candidate disease Sp with Equation
4.

// Knowledge Synthesis Agent
Γsummary
p = Asummary(Dp,Sp,KΓ)

// Causal Discovery Agent
Gs = Acausal(Dp,Sp,Γ

summary
p ,AD)

// Decision-Making Agent
Dpred, E =

Adecision(DpSp,Γ
summary
p ,Gs, C)

Output: Final causal graph Gs, predicted
1: diagnosis Dpred and explanations E .

Knowledge retrieval agent - Prompt

# Knowledge retrieval:
Generate a search query to retrieve
the most relevant information from the
knowledge database using {Diagnosis
history} and {Candidate diseases}. The
generated search query should take
into account the characteristics of the
knowledge database, as described by the
provided {Meta-data}.

# Reasoning in document:
Summarize the {Document i}. The output
summary should satisfy the following
requirements:
Relevance: Include only information
related to the patient’s {Diagnosis
history} and {Candidate diseases}.
Conciseness: Remove redundant and
unnecessary details while maintaining key
insights.
Clarity: Ensure the summary is
well-structured and easy to understand.
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Causal discovery agent - Prompt

# Hypothesis Generation:
Generate a Directed Acyclic Graph (DAG)
to represent the causal relationships
between the given set of {Disease names}.
Use the provided {Summary}, along with
contextual knowledge and reasoning, to
infer causality. The output should be in
JSON format.

# Hypothesis Amendment:
Adjust the causal graph based on the current
and previous versions stored in {Memory},
along with their fitting scores. Consider
the following questions:
Are there any links that should be added?
Should any existing links be removed?
Should any directions be reversed?
Generate a revised causal graph and output
it in a valid JSON format.

851

Decision-making agent - Prompt

Predict a list of diseases the patient may
be diagnosed with in the future based on:
Patient summary and disease information:
{Summary}
Causal DAG of disease relationships:
{DAG.json}
Optional clinician comment: {Clinician
comment}
Output format:
A JSON list of predicted ICD-9 codes.
A detailed explanation of the reasoning
process.
Separate the two parts using the special
token <SEP>.
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