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Abstract

Standard reinforcement learning from human feedback (RLHF) approaches relying
on parametric models like the Bradley-Terry model fall short in capturing the
intransitivity and irrationality in human preferences. Recent advancements suggest
that directly working with preference probabilities can yield a more accurate reflec-
tion of human preferences, enabling more flexible and accurate language model
alignment. In this paper, we propose a self-play-based method for language model
alignment, which treats the problem as a constant-sum two-player game aimed at
identifying the Nash equilibrium policy. Our approach, dubbed Algorithm (SPPO),
utilizes iterative policy updates to provably approximate the Nash equilibrium.
Additionally, we propose a new SPPO objective which is both strongly motivated
by theory and is simple and effective in practice. In our experiments, using only
60k prompts (without responses) from the UltraFeedback dataset and without
any prompt augmentation, by leveraging a pre-trained preference model PairRM
with only 0.4B parameters, SPPO can obtain a model from fine-tuning Mistral-
7B-Instruct-v0.2 that achieves the state-of-the-art length-controlled win-rate of
28.53% against GPT-4-Turbo on AlpacaEval 2.0. It also outperforms the (itera-
tive) DPO and IPO on MT-Bench, Arena-Hard, and the Open LLM Leaderboard.
Starting from a stronger base model Llama-3-8B-Instruct, we are able to achieve a
length-controlled win rate of 38.77%. Notably, the strong performance of SPPO is
achieved without additional external supervision (e.g., responses, preferences, etc.)
from GPT-4 or other stronger language models.

1 Introduction

Table 1: AlpacaEval 2.0 leaderboard results.

Model AlpacaEval 2.0
LC. Win Rate Win Rate

GPT-4 Turbo 50.0 50.0
Claude 3 Opus 40.5 29.1
Llama-3-8B-SPPO Iter3 38.8 39.9
GPT-4 0314 35.3 22.1
Llama 3 70B Instruct 34.4 33.2
Mistral-7B-SPPO Iter3 (best-of-16) 32.1 34.9
GPT-4 0613 30.2 15.8
Snorkel (Mistral-PairRM-DPO best-of-16) 30.0 34.9
Mistral Medium 28.6 21.9
Mistral-7B-SPPO Iter3 28.5 31.0
Claude 2 28.2 17.2
Snorkel (Mistral-PairRM-DPO) 26.4 30.2
Gemini Pro 24.4 18.2
Mistral 8×7B v0.1 23.7 18.1
Llama 3 8B Instruct 22.9 22.6

Large Language Models (LLMs) have demon-
strated impressive capabilities, yet they face
challenges in ensuring reliability, safety, and eth-
ical alignment. Reinforcement Learning from
Human Feedback (RLHF) offers a solution by
fine-tuning models to align with human prefer-
ences. Traditional RLHF methods (Christiano
et al., 2017; Ouyang et al., 2022) rely on reward
models to guide this process, but they often fall
short of capturing the complexities of human
behavior.
Recent research highlights the limitations of
parametric preference models like Bradley and
Terry (1952), which assume consistent and tran-
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sitive human preferences. Instead, studies suggest that human preferences can be inconsistent and
influenced by various factors, challenging the effectiveness of these models(Tversky, 1969).
To address these issues, researchers have begun exploring more flexible algorithms that directly handle
preference probabilities. Emerging approaches, such as Self-play Preference Optimization (SPO,
Swamy et al., 2024), aim to identify optimal policies through self-play mechanisms. These methods
offer potential improvements but require significant adaptation for large-scale LLM fine-tuning.
In this paper, we introduce Self-Play Preference Optimization (SPPO), a new self-play algorithm
designed to solve the two-player constant-sum game for LLM alignment. SPPO utilizes an exponential
weight update algorithm within a self-play framework, where policies are fine-tuned on synthetic data
generated by the model itself. Our contributions include a provably convergent SPPO algorithmic
framework, optimizing a theoretically motivated and practically effective loss objective. Empirical
evidence shows that SPPO enhances the Mistral-7B-Instruct-v0.2 and Llama-3-8B-Instruct model,
achieving significant improvements without external supervision from stronger models like GPT-4.

2 Preliminaries
We consider the preference learning scenario as follows. Given a text sequence (commonly referred to
as prompt) x = [x1, x2, . . . ], two text sequences y = [y1, y2, . . . ] and y′ are generated as responses
to the prompt x. An autoregressive language model π given the prompt x can generate responses y
following the probability decomposition

π(y|x) =
N∏
i=1

π(yi|x,y<i).

Given the prompt x and two responses y and y′, a preference oracle (either a human annotator or
a language model) will provide preference feedback o(y ≻ y′|x) ∈ {0, 1} indicating whether y is
preferred over y′. We denote P(y ≻ y′|x) = E[o(y ≻ y′|x)] as the probability of y “winning the
duel” over y′. The KL divergence of two probability distributions of density p and q is defined as
KL(p∥q) = Ey∼p(y)

[
log p(y)

q(y)

]
.

2.1 RLHF with General Preference

Following Wang et al. (2024); Munos et al. (2023), we aim to establish RLHF methods without
a reward model, as the human preference can be non-transitive (Tversky, 1969). Under a general
preference oracle P(y ≻ y′|x), we follow Dudík et al. (2015) and aim to identify the von Neumann
winner. More specifically, the von Neumann winner π∗ is the (symmetric) Nash equilibrium of the
following two-player constant-sum game:

(π∗, π∗) = argmax
π

min
π′

Ex∼X

[
Ey∼π(·|x),y′∼π′(·|x)

[
P(y ≻ y′|x)

]]
. (2.1)

In addition, we define the winning probability of one response y against a distribution of responses π
as

P(y ≻ π|x) = Ey′∼π(·|x)[P(y ≻ y′|x)],

and the winning probability of one policy π against another policy π′ as

P(π ≻ π′|x) = Ey∼π(·|x)Ey′∼π′(·|x)[P(y ≻ y′|x)].

Furthermore, we define P(π ≻ π′) = Ex∼X [P(π ≻ π′|x)], where x is a prompt drawn from the
prompt distribution X . The two-player constant-sum game (2.1) can be simplified as

(π∗, π∗) = argmax
π

min
π′

P(π ≻ π′).

3 Self-Play Preference Optimization (SPPO)
In this section, we introduce the Self-Play Preference Optimization (SPPO) algorithm, derived from
the following theoretical framework.

3.1 Theoretical Framework

There are well-known algorithms to approximately solve the Nash equilibrium in a constant-sum
two-player game. In this work, we follow Freund and Schapire (1999) to establish an iterative
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framework that can asymptotically converge to the optimal policy on average. We start with a
theoretical framework that conceptually solves the two-player game for t = 1, 2, . . . as follows:

πt+1(y|x) ∝ πt(y|x) exp(ηP(y ≻ πt|x)). (3.1)

(3.1) is an iterative framework that relies on the multiplicative weight update in each round t and
enjoys a clear structure. Initially, we have a base policy π1 usually from some supervised fine-tuned
model. In each round, the updated policy πt+1 is obtained from the reference policy πt following the
multiplicative weight update. More specifically, a response y should have a higher probability weight
if it has a higher average advantage over the current policy πt.
Equivalently, (3.1) can be written as

πt+1(y|x) =
πt(y|x) exp

(
ηP(y ≻ πt|x)

)
Zπt

(x)
, (3.2)

where Zπt
(x) =

∑
y πt(y|x) exp

(
ηP(y ≻ πt|x)

)
is the normalizing factor (a.k.a., the partition

function). For any fixed x and y, the ideal update policy πt+1 should satisfy the following equation:

log

(
πt+1(y|x)
πt(y|x)

)
= η · P(y ≻ πt|x)− logZπt(x). (3.3)

Unlike the pair-wise design in DPO or IPO that cancels the log normalizing factor logZπt
(x) by

differentiating (3.3) between y and y′, we choose to approximate (3.3) directly in terms of L2

distance:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
−
(
ηP(y ≻ πt|x)− logZπt

(x)
))2

. (3.4)

Estimation of the Probability The optimization objective (3.4) can be approximated with finite
samples. We choose to sample K responses y1,y2, . . . ,yK ∼ πt(·|x) for each prompt x, and denote
the empirical distribution by π̂K

t . The finite-sample optimization problem can be approximated as

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
−
(
ηP(y ≻ π̂K

t |x)− logZπ̂K
t
(x)
))2

. (3.5)

Specifically, P(y ≻ π̂K
t |x) =

∑K
k=1 P(y ≻ yk|x)/K and Zπ̂K

t
(x) = Ey∼πt(·|x)[exp(ηP(y ≻

π̂K
t |x))]. Zπ̂K

t
(x), treated as an expectation, can be further estimated by B new samples with in total

O(KB) queries of the preference oracle P. (3.5) is an efficiently tractable optimization problem.
Informally speaking, when K →∞, (3.5) will recover (3.4). We have the following guarantee on
the convergence of (3.4):
Theorem 3.1. Assume the optimization problem (3.4) is realizable. Denote πt as the policy obtained
via (3.4) and the mixture policy π̄T = 1

T

∑T
t=1 πt. By setting η = Θ(1/

√
T ), we have that

max
π

[
P(π ≻ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
= O(1/

√
T ).

Theorem 3.1 characterizes the convergence rate of the average policy across the time horizon T
towards the Nash equilibrium, in terms of the duality gap. The proof is based on Theorem 1 in Freund
and Schapire (1999) with slight modification. For completeness, we include the proof in Appendix C.
Alternatively, we can avoid estimating logZπ̂K

t
(x) by replacing it simply with η/22 in (3.5) to obtain

a more clear objective:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
− η

(
P(y ≻ π̂K

t |x)−
1

2

))2

. (3.6)

Intuitively, if a tie occurs (i.e., P(y ≻ π̂K
t |x) = 1/2), we prefer the model does not update weight

at y. If y wins over π̂K
t on average (i.e., P(y ≻ π̂K

t |x) > 1/2), then we increase the probability
density at y to employ the advantage of y over π̂K

t . In our experiments, we choose to minimize the
objective (3.6).

2Assuming the winning probability between any pair is a fair coin toss, when K → ∞, we can show that
indeed Zπ̂K

t
(x) → eη/2.
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Algorithm 1 Self-play Probabilistic Preference Optimization (SPPO)

1: input: base policy πθ1
, preference oracle P, learning rate η, number of generated samples K.

2: for t = 1, 2, . . . do
3: Generate synthetic responses by sampling x ∼ X and y1:K ∼ πt(·|x).
4: Annotate the win-rate P(yk ≻ yk′ |x),∀k, k′ ∈ [K].
5: Select responses from y1:K to form dataset Dt = {(xi,yi, P̂ (yi ≻ πt|xi))}i∈[N ].
6: Optimize πθt+1 according to (3.6):

θt+1 ← argmin
θ

E(x,y,P̂ (y≻πt|x))∼Dt

(
log

(
πθ(y|x)
πt(y|x)

)
− η

(
P̂ (y ≻ πt|x)−

1

2

))2

.

(3.7)

7: end for

3.2 The SPPO Algorithm

Based on the aforementioned theoretical framework, we propose the Self-Play Preference Optimiza-
tion algorithm in Algorithm 1.
In each round t, Algorithm 1 will first generate K responses y1,y2, . . . ,yK according to πt(·|x) for
each prompt x (Line 3). Then, the preference oracle P will be queried to calculate the win rate among
the K responses (Line 4). At Line 5, certain criteria can be applied to determine which response
should be kept in the constructed dataset Dt and construct the prompt-response-probability triplet
(x,y, P̂ (y ≻ πt|x)). We will discuss the design choices later in Section 4. One straightforward
design choice is to include all K responses intoDt and each P̂ (yi ≻ πt|x) is estimated by comparing
yi to all K responses. In total, O(K2) queries will be made. Then the algorithm will optimize (3.6)
on the dataset Dt (Line 6).

3.3 Connection to Policy Gradient

While SPPO is derived from the iterative framework (Freund and Schapire, 1999) for two-player
games, the square loss in the SPPO objective (3.4) provides an alternative interpretation for SPPO
as a semi-online variant of policy gradient method due to its special loss form. The difference from
standard policy gradient is that it collects samples from πθt at the start of iteration t, rather than
perform on-policy sampling at each gradient step.
Consider a general reward function r(y;x), the RLHF problem can be written as:

max
θ

J(θ) := Ex∼X ,y∼πθ(·|x)

[
r(y;x)− η−1 log

πθ(y|x)
πref(y|x)

]
. (3.8)

The policy gradient of the objective J(θ) is:

∇J(θ) = Ex∼X ,y∼πθ(·|x)

[(
r(y;x)− η−1 log

πθ(y|x)
πref(y|x)

− b(x)

)
∇ log πθ(y|x)

]
(3.9)

= ηEx∼X ,y∼πθ(·|x)

[
−∇

(
r(y;x)− η−1 log

πθ(y|x)
πref(y|x)

− b(x)

)2]
, (3.10)

where the first line follows the policy gradient theorem (Sutton et al., 1999) and the baseline b(x) is
an arbitrary constant relying only on x used for variance reduction. Comparing the square loss (3.10)
with the SPPO objective (3.4) (rewritten below):

θt+1 = argmin
θ

Ex∼X ,y∼πθt (·|x)

[(
P(y ≻ πθt

|x)− η−1 log

(
πθ(y|x)
πθt

(y|x)

)
− η−1 logZπθt

(x)

)2]
,

one can see that the win rate P(y ≻ πθt
|x) is exactly the reward SPPO aims to maximize, and

η−1 logZπθt
(x) is in fact the best possible baseline–the (soft) value function. When the value

function is not available in practice, it can be replaced by any constant baseline to reduce the variance
of the policy gradient. We choose 1/2 as a good approximation to η−1 logZπθt

(x) but the constant
can vary depending on the human preference model (see Appendix B). This connection can also
be extended to token-level preference optimization under the Max-Entropy RL formuation (see
Section A).
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Comparing with the general framework proposed by Swamy et al. (2024), SPPO can be seen as
a new, straightforward variant of policy gradient method without the need of extra modifications
such as gradient clipping in PPO, Hessian calculation in TRPO, or maintaining multiple components
(Q-critic, V-critic, actor, etc.) in many policy optimization algorithms.

4 Experiments
4.1 Experiment Setup

We briefly summarize our experiment setup as below. For a full description of our experiment setup,
see Section F.
Base Model and Datasets: We follow Snorkel’s experimental setup, using Mistral-7B-Instruct-v0.2
and Llama-3-8B-Instruct as our base model and Ultrafeedback for prompts. We split the dataset into
three portions to avoid overfitting and ensure fair comparison with Snorkel.
Preference Model: We use PairRM, a 0.4B pair-wise preference model based on DeBERTA-V3,
trained on high-quality human-preference datasets. PairRM outputs a "relative reward" to balance
accuracy and efficiency, following Snorkel’s methodology.
Response Generation and Selection: We sample K = 5 responses per prompt with top p = 1.0 and
temperature 1.0. We select the responses with the highest and lowest PairRM scores as the winning
and losing responses respectively.
Baselines and Benchmarks: We evaluate Snorkel, iterative DPO and IPO, and Self-rewarding LM
as baselines. Benchmarks include AlpacaEval 2.0, MT-Bench, Arena-Hard, and the Open LLM
Leaderboard, covering various aspects of language model evaluation.

4.2 Experimental Results

Table 2: AlpacaEval 2.0 evaluation of models in
Baselines).

Model AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B-Instruct-v0.2 17.11 14.72 1676
Mistral-7B-Instruct-v0.2 (best-of-16) 22.45 17.94 1529

Snorkel (Mistral-PairRM-DPO) 26.39 30.22 2736
Snorkel (Mistral-PairRM-DPO best-of-16) 29.97 34.86 2616

Self-Rewarding 70B Iter1 - 9.94 1092
Self-Rewarding 70B Iter2 - 15.38 1552
Self-Rewarding 70B Iter3 - 20.44 2552

Mistral-7B-DPO Iter1 23.81 20.44 1723
Mistral-7B-DPO Iter2 24.23 24.46 2028
Mistral-7B-DPO Iter3 22.30 23.39 2189

Mistral-7B-IPO Iter1 23.78 20.77 1693
Mistral-7B-IPO Iter2 21.08 23.38 2660
Mistral-7B-IPO Iter3 20.06 22.47 2760

Mistral-7B-SPPO Iter1 24.79(+7.69) 23.51(+8.79) 1855
Mistral-7B-SPPO Iter2 26.89(+2.10) 27.62(+4.11) 2019
Mistral-7B-SPPO Iter3 28.53(+1.64) 31.02(+3.40) 2163

Mistral-7B-SPPO Iter1 (best-of-16) 28.71(+6.26) 27.77(+9.83) 1901
Mistral-7B-SPPO Iter2 (best-of-16) 31.23(+2.52) 32.12(+4.35) 2035
Mistral-7B-SPPO Iter3 (best-of-16) 32.13(+0.9) 34.94(+2.82) 2174

Llama-3-8B-Instruct 22.92 22.57 1899

Llama-3-8B-SPPO Iter1 31.73(+8.81) 31.74(+9.17) 1962
Llama-3-8B-SPPO Iter2 35.15(+3.42) 35.98(+4.24) 2021
Llama-3-8B-SPPO Iter3 38.77(+3.62) 39.85(+3.87) 2066

Due to the space limit, we only report the results
on AlpacaEval 2.0 in the following and postpone
the rest results including ablation studies to the
appendix.
Table 2 (AlpacaEval 2.0) shows the win rate over
the GPT-4-Turbo baseline of different models
on 805 prompts. We also include one column in-
dicating the length-controlled win rate, and one
column on the average length of each model,
to account for the tendency of the LLM-based
judge to favor longer sequence outputs — an
issue colloquially termed the "reward hacking"
phenomenon. According to the table, Mistral-
7B-SPPO Iter3 has the highest win rate, 28.52%
for the length-controlled version, and 31.02%
for the overall win rate. The performance gains
over previous iterations are 7.69% (Mistral-7B-
Instruct → Iter1), 2.10% (Iter1 → Iter2), and
1.64% (Iter2→ Iter3), respectively, indicating
steady improvements across iterations, as illus-
trated in Figure 1. We also apply SPPO to a stronger baseline model, i.e., Llama-3-8B-Instruct, and
the fine-tuned model Llama-3-8B-SPPO has a higher length-controlled win rate 38.77% and overall
win rate 39.85%. The performance gains are more significant: 8.81% (Llama-3-8B-Instruct→ Iter1),
3.42% (Iter1→ Iter2), and 3.62% (Iter2→ Iter3), summing up to a total gain of 15.85%.
Additionally, the result indicates that SPPO achieves superior performance compared to the iterative
variants of DPO and IPO. The length-controlled win rate for SPPO reaches 28.53%, outperforming
the DPO’s best rate of 26.39% (by Snorkel) and IPO’s rate of 25.45%. Notably, while DPO and IPO
training tend to significantly increase the average output length—2736 and 2654, respectively—SPPO
shows a more moderate length increase, moving from 1676 in the base model to 2163 at the third
iteration. Finally, we present the best-of-16 results for each model, selected using the PairRM reward
model. We find that re-ranking with the preference model at test time can consistently improve the
performance of base model (Mistral-7B-Instruct-v0.2), DPO (Snorkel), and SPPO (Iter3) by 5.34%,
3.57%, and 3.6%, respectively.
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A Token-Level Q∗ Learning
Rafailov et al. (2024a) showed that under the Max-Entropy RL formulation, the token-level log-ratio
log πθ(y|x)

πref(y|x) can be seen as an implicit token-level reward or advantage function (invariant under
reward shaping). Below we show the square loss in SPPO can also lead to the optimal Max-Entropy
policy π∗, with token-level optimal value/advantage function.
We first briefly restate the setting and results in Rafailov et al. (2024b). The token-level MDP defines
the state sh = (x, y1, y2, . . . , yh−1) as the prefix tokens, and the action ah = yh as the next token.
An auto-regressive language model π(y|x) can be viewed as a token-level policy π(ah|sh) and the
transition kernel is known and deterministic because it only concatenates the next token to the prefix
to form a new token sequence sh+1 = (x, y1, y2, . . . , yh).
The Max-Entropy RL setting again considers the reverse-KL regularized reward maximization
problem:

max
θ

Ex∼X ,y∼πθ(·|x)[r(y;x)]− η−1Ex∼X [KL(πθ(·|x)∥πref(·|x))]

=Ex∼X ,y∼πθ(·|x)[r(y;x) + η−1 log πref(y|x)] + η−1Ex∼X [H(πθ(·|x))].
We denote the optimal solution for the problem above as π∗. Rafailov et al. (2024a) showed that the
Bradley-Terry preference model (E.2) can be rewritten as:

P(yw ≻ yl|x) = σ

(
η−1

|yw|∑
h=1

log
π∗(awh |swh )
πref(awh |swh )

− η−1

|yl|∑
h=1

log
π∗(alh|slh)
πref(alh|slh)

)
,

where the state and action is defined as in the token-level MDP introduced above, with superscription
(·)w and (·)l denoting if it is for the winner yw or the loser yl. And maximizing the log likelihood
with π∗ replaced by πθ gives the DPO loss.
From now on we assume the horizon is fixed at H for simplicity. The derivation of the Max-Entropy
RL formulation relies on the (soft) optimal value function Q∗ and V ∗ as3:

V ∗(sH+1) = r(sH+1) := r(y;x), (reward at EOS)

Q∗(sh,ah) = η−1 log πref(ah|sh) + V ∗(sh+1),

V ∗(sh) = η−1 log
∑
a

exp
(
ηQ∗(sh,a)

)
, when h ≤ H.

Rafailov et al. (2024a) showed that the optimal policy π∗ satisfies:

η−1 log π∗(ah|sh) = Q∗(sh,ah)− V ∗(sh)

= η−1 log πref(ah|sh) + V ∗(sh+1)− V ∗(sh).

It can be verified that for s1 = (x), we have ηV ∗(s1) = log
∑

y πref(y|x) exp
(
ηr(y;x)

)
:

exp
(
ηV ∗(s1)

)
=
∑
a1

exp
(
ηQ∗(s1,a1)

)
=
∑
a1

πref(a1|s1) exp
(
ηV ∗(s2)

)
=
∑
a1,a2

πref(a1|s1)πref(a2|s2) exp
(
ηV ∗(s3)

)
· · ·

=
∑

(a1,a2,...,aH)

H∏
h=1

πref(ah|sh) exp
(
ηr(sH+1)

)
=
∑
y

πref(y|x) exp
(
ηr(y;x)

)
.

3Here we restated with the sequence-level reward r(y;x). Rafailov et al. (2024a) started their derivation
from a ground-truth token-level reward r(sh,ah), which is under-specified due to the reward reshaping issue (Ng
et al., 1999): reshaping the reward will not affect the Bradley-Terry preference probability so it is impossible to
recover the ground-truth reward from the preference signal (Rafailov et al., 2024a, Section 4.2).
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Going back to the SPPO objective (3.4) at t-th iteration, if we set πref = πt and r(y;x) = P(y ≻
πt|x), we have V ∗(s1) = η−1 logZπt(x), and the learning objective at t-th iteration becomes:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
−
(
ηP(y ≻ πt|x)− logZπt

(x)
))2

= argmin
π

Es1∼X ,ah∼πt(·|sh)

( H∑
h=1

log
π(ah|sh)
π∗(ah|sh)

)2

. (A.1)

Similar to DPO, SPPO “secretly” encourages the policy πθ to converge to the optimal policy π∗

at token level via the square loss form (A.1). Additionally, one may realize that minimizing the
square-loss form is related to minimizing the KL divergence KL(πθ∥π∗) via policy gradient:

∇θKL(πθ∥π∗) = Es1∼X ,ah∼πθ(·|sh)

[( H∑
h=1

log
πθ(ah|sh)
π∗(ah|sh)

) H∑
h=1

∇θ log πθ(ah|sh)
]

= Es1∼X ,ah∼πθ(·|sh)

[
∇θ

( H∑
h=1

log
πθ(ah|sh)
π∗(ah|sh)

)2]
.

B Approximating the Normalizing Factor
As discussed before, we replace the log-partition factor with a constant to avoid either estimating or
predicting the log-partition factor. In hindsight, the approximation of the normalizing factor serves
as a baseline for variance reduction, and does not need to be exact. Here we discuss the implicit
assumptions and how we obtained an approximation based on different assumptions on human
preference behaviour.
We first consider the case where we have K responses and then calculate the limit of Zπ̂K

t
(x) when

K →∞. We have two extreme cases:

1. The most “disordered” case: any preference is a fair coin flip
2. The most “ordered” case: there is a strict ordering among all responses.

The most “disordered” case Specifically, we have K different responses y1,y2, . . . ,yK for the
given prompt x. Since we consider the general preference setting, we assume that the preference
probability between yi and yj (i < j) we observe is a fair coin toss:

P(yi ≻ yj |x) =
{
1, w.p. 1/2,
0, w.p. 1/2.

Note that for simplicity, we assumed that the preference probability follows the Bernoulli distribution,
not the preference feedback. The preference feedback is deterministic since the preference probability
is either 0 or 1. Assuming P(yi ≻ yj |x) follows any other 1/2-mean distribution will yield the same
constant.
We define the random variable pi,j := 2P(yi ≻ yj |x) − 1 for convenience. In total, we have
K(K − 1)/2 independent Rademacher random variable for all i < j, and then we have pj,i = −pi,j
for all i > j. For i = j, pi,j = 0. We also define Xi =

∑K
j=1 pi,j/K.

Given the setting and notations above, we have

P(yi ≻ π̂K
t |x) =

K∑
j=1

P(yi ≻ yj |x)/K = 1/2 +Xi.

Further,

Zπ̂K
t
(x) =

K∑
i=1

exp(ηP(yi ≻ π̂K
t |x))/K = eη/2 ·

K∑
i=1

eηXi/K.

For any fixed i, we have the expectation as follows:

E[eηXi ] = E

[
K∏
j=1

eηpi,j/K

]
=

K∏
j=1

E
[
eηpi,j/K

]
=

(
eη/K + e−η/K

2

)K−1

,
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where the last equation comes from the definition of pi,j (note that pi,i = 0). The variance is:

Var[eηXi ] = E[e2ηXi ]− E[eηXi ]2 =

(
e2η/K + e−2η/K

2

)K−1

−
(
eη/K + e−η/K

2

)2K−2

.

Additionally, the covariance between eηXi and eηXj (i ̸= j) is:

Cov(eηXi , eηXj ) = E[eηXi+ηXj ]− E[eηXi ]E[eηXj ]

= E

[
exp

(
η

K∑
k=1

pi,k/K + η

K∑
l=1

pj,l/K

)]
− E[eηXi ]E[eηXj ]

=

(
eη/K + e−η/K

2

)2K−4

− E[eηXi ]E[eηXj ]

=

(
eη/K + e−η/K

2

)2K−4

−
(
eη/K + e−η/K

2

)2K−2

,

where the third line holds because pi,i = pj,j = 0, pi,j + pj,i = 0, and the rest terms are i.i.d..
One can check that when K →∞, we have E[eηXi ]→ 1, Var[eηXi ]→ 0, and Cov(eηXi , eηXj )→
0. By Chebyshev’s inequality,

∑K
i=1 e

ηXi/K will converge to 1 in probability. So we have

Zπ̂K
t
(x) = eη/2 ·

K∑
i=1

eηXi/K → eη/2,

and we can approximate logZπ̂K
t
(x) with η/2.

The most “ordered” case We assume there is an ordering σ(·) among the K different responses
y1,y2, . . . ,yK for the given prompt x. The preference probability between yi and yj (i < j) is:

P(yi ≻ yj |x) =
{
1, if σ(i) < σ(j),

0, if σ(i) > σ(j).

Again, the preference feedback is deterministic: as long as yi is ranked higher than yj , yi will always
be preferred over yj . The same responses still tie: P(yi ≻ yi|x) = 1/2.
Without loss of generality, we can assume y1 ≺ y2 ≺ y3 ≺ · · · ≺ yK . Given the setting and
notations above, we have

P(yi ≻ π̂K
t |x) =

K∑
j=1

P(yi ≻ yj |x)/K =
i− 1 + 1/2

K
,

because for yi, there are i− 1 responses that are strictly worse, and yi ties with itself.
For the normalizing factor, we have

logZπ̂K
t
(x) = log

( K∑
i=1

exp(ηP(y ≻ π̂K
t |x))/K

)

= log

( K∑
i=1

exp

(
η
i− 1/2

K

)
/K

)
→ log

(∫ 1

0

exp(ηx)dx

)
= log

eη − 1

η
.

where the third line (limiting) can be obtained by the squeeze theorem.
For η = 1, log eη−1

η ≈ 0.54η. For large η ≈ 1e3 as we used in the experiments, we have
log eη−1

η ≈ η.
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Choice of η Depending on how “disordered” the preference is, η can vary between η/2 and η.
As this paper is partially motivated by human intransitive and irrational preference behavior,
we chose to use η/2 to approximate logZπ̂K

t
(x). Fine-tuning the coefficient of this constant as a

hyperparameter is also an option and can help improve performance on given dataset.

C Proof of Theorem 3.1
Proof of Theorem 3.1. Suppose the optimization problem is realizable, we have exactly that

πt+1(y|x) ∝ πt(y|x) exp(ηP(y ≻ πt|x)), for t = 1, 2, . . . . (C.1)

To prove that the exponential weight update can induce the optimal policy, we directly invoke a
restated version of Theorem 1 in Freund and Schapire (1999):
Lemma C.1 (Theorem 1 in Freund and Schapire (1999), restated). For any oracle P and for any
sequence of mixed policies µ1, µ2, . . . , µT , the sequence of policies π1, π2, . . . , πT produced by
(C.1) satisfies:

T∑
t=1

P(πt ≺ µt) ≤ min
π

[
η

1− e−η

T∑
t=1

P(π ≺ µt) +
KL(π∥π0)

1− e−η

]
.

By setting µt = πt, we have that

T

2
≤ min

π

[
ηT

1− e−η
P(π ≺ π̄T ) +

KL(π∥π0)

1− e−η

]
,

where the LHS comes from that P(πt ≺ πt) = 1/2 and the RHS comes from that 1
T

∑T
t=1 P(π ≺

πt) = P(π ≺ π̄t). Now rearranging terms gives

1− e−η

2η
≤ min

π

[
P(π ≺ π̄T ) +

KL(π∥π0)

ηT

]
.

Note that π0 is an autoregressive model that is fully supported on a finite vocabulary (π0(yk+1|x,y1:k)
has non-zero probability for every token). Because its support is a large but finite set, | log π0(·)|
is bounded from above. So we can naively bound the KL-divergence KL(π∥π0) ≤ ∥ log π0(·)∥∞,
which can be seen as a (large) constant.
By choosing η = ∥ log π0(·)∥∞√

T
, we have

1

2
− ∥ log π0(·)∥∞

4
√
T

+O(T−1) ≤ min
π

[
P(π ≺ π̄T )

]
+

√
∥ log π0(·)∥∞

T
,

where the LHS comes from Taylor’s expansion 1−e−η

2η = 1
2 −

η
4 + O(η2). Notice that 1/2 at the

LHS is already the value of the symmetric two-player constant-sum game. This shows that for
appropriately chosen η and T , the mixture policy π̄T is close to the minimax optimal policy (Nash
equilibrium).
The optimality gap is thus bounded by

max
π

[
P(π ≻ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
= max

π

[
1− P(π ≺ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
= 2

(
1

2
−min

π

[
P(π ≺ π̄T )

])
= O

(
1√
T

)
.

D Related Work
RLHF with Explicit/Implicit Reward Model Originally, reinforcement learning from human
feedback (RLHF) was proposed by Christiano et al. (2017) as a methodology that first learns a reward
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model reflecting human preferences and then uses reinforcement learning algorithms to maximize the
reward. This methodology is applied by Ouyang et al. (2022) to fine-tune instruction-following large
language models and leads to the popular ChatGPT.
The reward model in the works mentioned above assumes a parametric model such as the Bradley-
Terry model (Bradley and Terry, 1952), which assigns a “score” representing how preferred a given
response is. More recently, Rafailov et al. (2024b) proposed to instead directly solve the closed-form
solution of such a score implied by the Bradley-Terry model. The Direct Policy Optimization (DPO)
method is claimed to be more efficient and stable, yet, still implicitly assumes such a reward model
that specifies the “score”. In a similar spirit, Zhao et al. (2023) proposed to calibrate the score so
that the score of the winner in comparison has a margin over the score of the loser, and induces
a different SLic loss. Similarly, Ethayarajh et al. (2024) derived a different loss function (called
KTO) from the Kahneman-Tversky human utility function, which implicitly denotes a score of the
given response. Liu et al. (2023) proposed Rejection Sampling Optimization (RSO) which utilizes
a preference model to generate preference pairs with candidates sampled from the optimal policy;
then preference optimization is applied on the sampled preference pairs. Hong et al. (2024) proposed
Odds Ratio Preference Optimization (ORPO) algorithm that can perform supervised fine-tuning and
preference alignment in one training session without maintaining an intermediate reference policy.

RLHF with General Preference Model Often, the human preference is not strictly transitive, and
cannot be sufficiently represented by a single numerical score. Azar et al. (2023) proposed a general
preference optimization objective based on the preference probability between a pair of responses
instead of a score of a single response. They further propose a learning objective based on identity
mapping of the preference probability called IPO (Preference Optimization with Identity mapping),
which aims to maximize the current policy’s expected winning probability over a given reference
policy. Munos et al. (2023) formulated the RLHF problem with general preference as a two-player,
constant-sum game, where each player is one policy that aims to maximize the probability of its
response being preferred against its opponent. They aim to identify the Nash equilibrium policy of
this game and propose a mirror-descent algorithm that guarantees the last-iterate convergence of a
policy with tabular representations4. Wang et al. (2024) proposed to identify the Nash equilibrium
policy for multi-step MDPs when a general preference model is present and shows that the problem
can be reduced to a two-player zero-sum Markov game.

Theory of RLHF There is also a line of research to analyze RLHF and provide its theoretical
guarantees. Zhu et al. (2023) studied the standard RLHF with separate reward-learning and model-
tuning and proposed a pessimistic reward-learning process that provably learns a linear reward model.
Wang et al. (2024) proposed a framework to reduce any RLHF problem with a reward model to a
reward-based standard RL problem. Additionally, they proposed to identify the Nash equilibrium
policy when a general preference model is present and show that the problem can be reduced to a
two-player zero-sum Markov game. Xiong et al. (2023) studied the reverse-KL regularized contextual
bandit for RLHF in different settings and proposed efficient algorithms with finite-sample theoretical
guarantees. Ye et al. (2024) studied the theoretical learnability of the KL-regularized Nash-Learning
from Human Feedback (NLHF) by considering both offline and online settings and proposed provably
efficient algorithms. Ji et al. (2024) proposed an active-query-based proximal policy optimization
algorithm with regret bounds and query complexity based on the problem dimension and the sub-
optimality gap.

Self-Play Fine-Tuning Most works mentioned above (Rafailov et al., 2024b; Zhao et al., 2023;
Azar et al., 2023; Ethayarajh et al., 2024) consider one single optimization procedure starting from
some reference policy. The same procedure may be applied repeatedly for multiple rounds in a
self-play manner. In each round, new data are generated by the policy obtained in the last round;
these new data are then used for training a new policy that can outperform the old policy.
The self-play fine-tuning can be applied to both scenarios with or without human preference data.
For example, Singh et al. (2023) proposed an Expectation-Maximization (EM) framework where in
each round, new data are generated and annotated with a reward score; the new policy is obtained
by fine-tuning the policy on the data with a high reward. Chen et al. (2024) proposed a self-play
framework to fine-tune the model in a supervised way. In each round, new preference pairs are
synthesized by labeling the policy-generated responses as losers and the human-generated responses
as winners. Then DPO is applied in each round to fine-tune another policy based on these synthesized

4Due to the tabular representation, computing the normalizing factor is prohibitive and the algorithm is
approximately executed by sampling one token instead of a full response.
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preference data. Yuan et al. (2024) proposed Self-Rewarding Language Models, where the language
model itself is used to annotate preference on its own responses. Iterative DPO is applied to fine-tune
language models on these annotated data. These works show iterative fine-tuning can significantly
improve the performance.
Swamy et al. (2024) considered a more general multi-step Markov Decision Process (MDP) setting
and proposed Self-play Preference Optimization (SPO), an RLHF framework that can utilize any
no-regret online learning algorithm for preference-based policy optimization. They then instantiated
their framework with Soft Policy Iteration as an idealized variant of their algorithm, which reduces to
the exponential weight update rule (3.1) when constrained to the bandit setting. The main difference
is that they focus on the multi-round Markov decision process (MDP) in robotic and game tasks rather
than on fine-tuning large language models and approximating the update using policy optimization
methods such as PPO.
Concurrent to our work, Rosset et al. (2024) proposed the Direct Nash Optimization (DNO) algorithm
based on the cross-entropy between the true and predicted win rate gaps, and provided theoretical
guarantees on the error of finite-sample approximation. However, their practical version still utilizes
the iterative-DPO framework as in Xu et al. (2023) with the DPO loss instead of their derived DNO
loss. Notably, in their experiments, they added the GPT-4 generated responses as their “gold sample”
into their fine-tuning data, and used GPT-4 as a judge to assign a numerical score to each response
for preference pair construction. In sharp contrast, our work does not require the use of any strong
external supervision besides a small-sized reward model. Another concurrent work (Gao et al., 2024)
proposed REBEL, an iterative fine-tuning framework via regressing the relative reward. When
applied to the preference setting, it results in a similar algorithm to our algorithm SPPO, except that
SPPO approximates the log-partition factor logZπt

(x) with a constant η/2 while REBEL regresses
on the win rate difference (so that logZπt

(x) is canceled). Additionally, Calandriello et al. (2024)
pointed out that optimizing the IPO loss (Azar et al., 2023) iteratively with self-play generated
data is equivalent to finding the Nash equilibrium of the two-player game, and they proposed the
IPO-MD algorithm based on this observation, which generates data with a mixture policy similar to
the Nash-MD algorithm.

E Comparison with DPO, IPO, and KTO
In practice, we utilize mini-batches of more than 2 responses to estimate the win rate of a given
response, while the DPO and IPO loss focus on a single pair of responses. When only a pair of
responses yw and yl is available, we have the pair-wise symmetric loss based on the preference triplet
(x,yw,yl) defined as:

ℓSPPO(x,yw,yl;θ;πref) :=

(
log

(
πθ(yw|x)
πref(yw|x)

)
− η
(
P(yw ≻ yl|x)−

1

2

))2

+

(
log

(
πθ(yl|x)
πref(yl|x)

)
− η
(
P(yw ≺ yl|x)−

1

2

))2

, (E.1)

where P(yw ≻ yl|x) can be either a soft probability within [0, 1] or a hard label 1 indicating yw ≻ yl.
We now compare the SPPO loss to other baselines assuming a hard label yw ≻ yl is given. For the
ease of comparison, let (β = η−1):

a = β log

(
πθ(yw|x)
πref(yw|x)

)
, b = β log

(
πθ(yl|x)
πref(yl|x)

)
, c = βKL(πθ∥πref),

then we have

ℓDPO(yw,yl,x) = − log σ(a− b), (E.2)

ℓIPO(yw,yl,x) = [(a− b)− 1]2, (E.3)
ℓKTO(yw,yl,x) = σ(−a+ c) + σ(b− c) (simplified), (E.4)

where σ(x) = ex/(ex + 1) and the SPPO loss can be written as

ℓSPPO(yw,yl,x) = (a− 1/2)2 + (b+ 1/2)2.

It can be seen that SPPO not only pushes the gap between a and b to be 1, but also attempts to push
value of a to be close to 1/2 and the value of b to be close to −1/2 such that πθ(yw|x) > πref(yw|x)
and πθ(yl|x) < πref(yl|x). We believe this is particularly important: when there are plenty of
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preference pairs, DPO and IPO can ensure the policy will converge to the target policy, but when the
preference pairs are scarce (e.g., one pair for each prompt), there is no guarantee that the estimated
reward of the winner a will increase and the estimated reward of the loser b will decrease. Instead,
only the reward gap between the winner and the loser (i.e., a− b) will increase. This phenomenon is
observed by Pal et al. (2024) that DPO only drives the loser’s likelihood to be small, but the winner’s
likelihood barely changes. We believe that fitting β log

(
πt+1(y|x)
πt(y|x)

)
directly to P(y ≻ πt|x)− 1/2

is more effective than IPO which attempts to fit β log
(

πt+1(yw|x)
πt(yw|x)

)
− β log

(
πt+1(yl|x)
πt(yl|x)

)
to P(yw ≻

πt|x) − P(yl ≻ πt|x). In addition, SPPO shares a similar spirit as KTO. The KTO loss pushes a
to be large by minimizing σ(−a+ c) and pushes b to be small by minimizing σ(b− c). In contrast,
SPPO pushes a to be as large as 1/2 and b to be as small as −1/2.
On the other hand, we would like to comment that although DPO and KTO can be extended to their
iterative variants, they are not by nature iterative algorithms and do not have provable guarantees that
they can reach the Nash equilibrium. In contrast, SPPO and IPO are by design capable to solve the
Nash equilibrium iteratively. SPPO is superior to IPO because its design explicitly alleviates the data
sparsity issue, as discussed above and detailed in Pal et al. (2024).

F Full Experiment Setup

Base Model and Datasets We follow the experimental setup of Snorkel5, a model that utilizes
iterative DPO to achieve state-of-the-art performance on AlpacaEval benchmarks. Specifically, we
use Mistral-7B-Instruct-v0.2 as our base model6. Mistral-7B-Instruct-v0.2 is an instruction fine-tuned
version of Mistral-7B-v0.2 model (Jiang et al., 2023a). We also adopt Ultrafeedback (Cui et al.,
2023) as our source of prompts which includes around 60k prompts from diverse resources. During
generation, we follow the standard chat template of Mistral-7B. To avoid overfitting during the
fine-tuning, we split the dataset into three portions and use only one portion per iteration. These
settings were also adopted by training the model Snorkel-Mistral-PairRM-DPO7 (Snorkel). We follow
the splitting in Snorkel for a fair comparison. Additionally, we use Llama-3-8B-Instruct8 as a stronger
base model along with the same preference dataset and data splitting.

Preference Model We employ PairRM (Jiang et al., 2023b), an efficient pair-wise preference
model of size 0.4B. PairRM is based on DeBERTA-V3 (He et al., 2021) and trained on high-quality
human-preference datasets. Results on benchmarks like Auto-J Pairwise dataset (Li et al., 2023a)
show that it outperforms most of the language-model-based reward models and performs comparably
with larger reward models like UltraRM-13B (Cui et al., 2023). We refer the readers to the homepage
on Huggingface9 for detailed benchmark results. We therefore keep PairRM as our ranking model
following Snorkel for a balance between accuracy and efficiency.
Specifically, PairRM will output a “relative reward” s(y,y′;x) that reflects the strength difference
between y and y′, i.e.,

P(y ≻ y′|x) = exp(s(y,y′;x))

1 + exp(s(y,y′;x))
.

Unlike the Bradley-Terry-based reward model, PairRM only assigns the relative reward which is not
guaranteed to be transitive (i.e., s(y1,y2;x) + s(y2,y3;x) ̸= s(y1,y3;x)). So it indeed models the
general preference.

Response Generation and Selection During the generation phase in each iteration, we use top
p = 1.0 and temperature 1.0 to sample from the current policy. We sample with different random
seeds to get K = 5 different responses for each prompt. Previous works utilizing Iterative DPO
choose 2 responses to form a pair for each prompt. For a fair comparison, we do not include all
K = 5 responses in the preference data but choose two responses among them. Following Snorkel,
we choose the winner yw and loser yl to be the response with the highest and lowest PairRM score,

5https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
7https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
8https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
9https://huggingface.co/llm-blender/PairRM
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which is defined for each response yi as:

sPairRM(yi;x) :=
1

K

K∑
k=1

s(yi,yk;x).

Probability Estimation We then estimate the win rate over the distribution by the average win rate
over all the sampled responses as explained in (3.5):

P̂ (yi ≻ πt|x) =
1

K

K∑
k=1

P(yi ≻ yk|x),∀i ∈ [K].

Hyperparameter Tuning The experiments are conducted on 8 × Nvidia A100 GPUs. For SPPO,
we trained three iterations in total. In each iteration, we selected the model trained on the first
epoch of the 20k prompts from UltraFeedback to proceed to the next iteration. For both Mistral-7B-
Instruct-v0.2 and Llama-3-8B-Instruct, the global training batch size is set to 64, and η is set to 1e3.
The learning rate schedule is determined by the following hyperparameters: learning rate=5.0e-7,
number of total training epochs=18, warmup ratio=0.1, linear schedule. The best hyper-parameters
for each model are selected by the average win rate (judged by PairRM-0.4B) on a hold-out subset of
Ultrafeedback as the metric. For more details on the win-rate comparison using PairRM as a judge,
please refer to Section 4.2 and Figure 3.

Baselines We evaluate the following base models as well as baseline methods for fine-tuning LLMs:

• Mistral-7B-Instruct-v0.2: Mistral-7B-Instruct-v0.2 is an instruction fine-tuned version of Mistral-
7B-v0.2 model (Jiang et al., 2023a). It is the starting point of our algorithm.

• Snorkel (Mistral-PairRM-DPO): We directly evaluate the uploaded checkpoint on HuggingFace10.
This model is obtained by three rounds of iterative DPO from Mistral-7B-Instruct-v0.2.

• (Iterative) DPO: We also implement the iterative DPO algorithm by ourselves. The experimental
settings and model selection schemes align with those used for SPPO, except for the adoption of
the DPO loss function as defined in (E.2). Hyperparameters are optimized to maximize the average
win-rate assessed by PairRM at each iteration. Note that the practical algorithm in Rosset et al.
(2024) is essentially the same as iterative DPO.

• (Iterative) IPO: We implement the iterative IPO algorithm by ourselves. The experimental setting
and the model selection scheme is the same as iterative DPO, except that the loss function is the
IPO loss (E.3). For fair comparison, hyperparameters for IPO is also selected by evaluation using
the average PairRM win-rate on the hold-out subset of Ultrafeedback.

• Self-rewarding LM: Yuan et al. (2024) proposed to prompt the LLM itself as a preference judge to
construct new preference pairs and iteratively fine-tune the LLM with the DPO algorithm. We use
the AlpacaEval 2.0 win rate reported by Yuan et al. (2024) for comparison. Note that Self-rewarding
LM is a trained from Llama 2 70B.

• Llama-3-8B-Instruct: Llama-3-8B-Instruct is an instruction-tuned model optimized for dialogue
use cases and outperforms many of the available open-source chat models on common industry
benchmarks.

Benchmarks Following previous works, we use AlpacaEval 2.0 (Dubois et al., 2024a), Arena-
Hard(Li et al., 2024), MT-Bench (Zheng et al., 2024), and Open LLM Leaderboard (Beeching et al.,
2023a) as our evaluation benchmarks.

• AlpacaEval 2.0 is an LLM-based automatic evaluation benchmark. It employs AlpacaFarm
(Dubois et al., 2024b) as its prompts set composed of general human instructions. The model
responses and the reference response generated by GPT-4-Turbo are fed into a GPT-4-Turbo-based
annotator to be judged. We follow the standard approach and report the win rate over the reference
responses.

• Arena-Hard (Li et al., 2024) is a high-quality benchmark that claims to be harder and has the
highest correlation and separability to Chatbot Arena among popular open-ended LLM benchmarks
including AlpacaEval 2.0. We evaluate our models Mistral-PairRM-SPPO and the baseline models.

10https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
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Figure 1: Win Rate against GPT-4-Turbo with (a) and without (b) Length Controlling (LC) on
AlpacaEval 2.0. SPPO demonstrates steady improvements on both LC and raw win rates.

• MT-Bench (Zheng et al., 2024) is a collection of 80 high-quality multi-turn open-ended questions.
The questions cover topics like writing, role-playing, math, coding, etc.. The generated answer is
judged by GPT-4 and given a score directly without pairwise comparison.

• Open LLM Leaderboard (Beeching et al., 2023a) consists of six datasets, each of which focuses
on a facet of language model evaluation. In detail, the evaluation rubric includes math problem-
solving, language understanding, human falsehood mimicking, and reasoning. We follow the
standard evaluation process and use in-context learning to prompt the language model and compute
the average score over six datasets to measure the performance.

G Full Experimental Results
G.1 Additional Tables and Plots

Evaluation using GPT-4 as a judge Human evaluation remains the benchmark for quality and
accuracy (Askell et al., 2021; Ouyang et al., 2022). However, due to its limitations in scalability
and reproducibility, we explore the alternative approach of using the advanced capabilities of GPT-4
(OpenAI et al., 2023) as an automatic evaluation tool. We conduct GPT-4-based automatic evaluation
on AlpacaEval 2.0 (Li et al., 2023b), MT-Bench (Zheng et al., 2023), and Arena-Hard (Li et al.,
2024) to measure the chatbot capability of our model. The results can be found in Table 2 for
AlpacaEval 2.0, Figure 2 (left) for MT-Bench, and Figure 2 (right) for Arena-Hard. We found that
the performance of SPPO models consistently improves throughout all iterations.
Table 2 (AlpacaEval 2.0) shows the win rate over the GPT-4-Turbo baseline of different models on 805
prompts. We also include one column indicating the length-controlled win rate, and one column on
the average length of each model, to account for the tendency of the LLM-based judge to favor longer
sequence outputs — an issue colloquially termed the "reward hacking" phenomenon. According
to the table, Mistral-7B-SPPO Iter3 has the highest win rate, 28.52% for the length-controlled
version, and 31.02% for the overall win rate. The performance gains over previous iterations are
7.69% (Mistral-7B-Instruct→ Iter1), 2.10% (Iter1→ Iter2), and 1.64% (Iter2→ Iter3), respectively,
indicating steady improvements across iterations, as illustrated in Figure 1. We also apply SPPO to a
stronger baseline model, i.e., Llama-3-8B-Instruct, and the fine-tuned model Llama-3-8B-SPPO has
a higher length-controlled win rate 38.77% and overall win rate 39.85%. The performance gains are
more significant: 8.81% (Llama-3-8B-Instruct→ Iter1), 3.42% (Iter1→ Iter2), and 3.62% (Iter2→
Iter3), summing up to a total gain of 15.85%.
Additionally, the result indicates that SPPO achieves superior performance compared to the iterative
variants of DPO and IPO. The length-controlled win rate for SPPO reaches 28.53%, outperforming
the DPO’s best rate of 26.39% (by Snorkel) and IPO’s rate of 25.45%. Notably, while DPO and IPO
training tend to significantly increase the average output length—2736 and 2654, respectively—SPPO
shows a more moderate length increase, moving from 1676 in the base model to 2163 at the third
iteration. Finally, we present the best-of-16 results for each model, selected using the PairRM reward
model. We find that re-ranking with the preference model at test time can consistently improve the
performance of base model (Mistral-7B-Instruct-v0.2), DPO (Snorkel), and SPPO (Iter3) by 5.34%,
3.57%, and 3.6%, respectively. Notably, this shows that while SPPO significantly enhances model
alignment using PairRM-0.4B as the sole external supervision, it has not resulted in over-optimization
against the preference model (Gao et al., 2023).
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Table 3: AlpacaEval 2.0 evaluation of various models (detailed in Baselines) in terms of both normal
and length-controlled (LC) win rates in percentage (%). Mistral-7B-SPPO Iter3 model achieves
the highest LC win rate of 28.53% and a normal win rate of 31.02%. SPPO demonstrates steady
performance gains across iterations and outperforms other baselines which show a tendency to
produce longer responses. Additionally, re-ranking with the PairRM reward model (best-of-16) at
test time consistently enhances the performance across all models and SPPO (best-of-16) achieves
high win rate without strong external supervision like GPT-4. We additionally include the results
obtained from fine-tuning Llama-3-8B-Instruct, which also show steady performance improvement.

Model AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B-Instruct-v0.2 17.11 14.72 1676
Mistral-7B-Instruct-v0.2 (best-of-16) 22.45 17.94 1529

Snorkel (Mistral-PairRM-DPO) 26.39 30.22 2736
Snorkel (Mistral-PairRM-DPO best-of-16) 29.97 34.86 2616

Self-Rewarding 70B Iter1 - 9.94 1092
Self-Rewarding 70B Iter2 - 15.38 1552
Self-Rewarding 70B Iter3 - 20.44 2552

Mistral-7B-DPO Iter1 23.81 20.44 1723
Mistral-7B-DPO Iter2 24.23 24.46 2028
Mistral-7B-DPO Iter3 22.30 23.39 2189

Mistral-7B-IPO Iter1 23.78 20.77 1693
Mistral-7B-IPO Iter2 21.08 23.38 2660
Mistral-7B-IPO Iter3 20.06 22.47 2760

Mistral-7B-SPPO Iter1 24.79(+7.69) 23.51(+8.79) 1855
Mistral-7B-SPPO Iter2 26.89(+2.10) 27.62(+4.11) 2019
Mistral-7B-SPPO Iter3 28.53(+1.64) 31.02(+3.40) 2163

Mistral-7B-SPPO Iter1 (best-of-16) 28.71(+6.26) 27.77(+9.83) 1901
Mistral-7B-SPPO Iter2 (best-of-16) 31.23(+2.52) 32.12(+4.35) 2035
Mistral-7B-SPPO Iter3 (best-of-16) 32.13(+0.9) 34.94(+2.82) 2174

Llama-3-8B-Instruct 22.92 22.57 1899

Llama-3-8B-SPPO Iter1 31.73(+8.81) 31.74(+9.17) 1962
Llama-3-8B-SPPO Iter2 35.15(+3.42) 35.98(+4.24) 2021
Llama-3-8B-SPPO Iter3 38.77(+3.62) 39.85(+3.87) 2066

Table 4: AlpacaEval 2.0 leaderboard results of both normal and length-controlled (LC) win rates in
percentage (%). Mistral-7B-SPPO can outperform larger models and Mistral-7B-SPPO (best-of-16)
can outperform proprietary models such as GPT-4(6/13). Llama-3-8B-SPPO exhibits even better
performance.

Model AlpacaEval 2.0
LC. Win Rate Win Rate

GPT-4 Turbo 50.0 50.0
Claude 3 Opus 40.5 29.1
Llama-3-8B-SPPO Iter3 38.8 39.9
GPT-4 0314 35.3 22.1
Llama 3 70B Instruct 34.4 33.2
Mistral-7B-SPPO Iter3 (best-of-16) 32.1 34.9
GPT-4 0613 30.2 15.8
Snorkel (Mistral-PairRM-DPO best-of-16) 30.0 34.9
Mistral Medium 28.6 21.9
Mistral-7B-SPPO Iter3 28.5 31.0
Claude 2 28.2 17.2
Snorkel (Mistral-PairRM-DPO) 26.4 30.2
Gemini Pro 24.4 18.2
Mistral 8×7B v0.1 23.7 18.1
Llama 3 8B Instruct 22.9 22.6

In Table 1, we compare SPPO on the AlpacaEval 2.0 leaderboard with other state-of-the-art AI
chatbots. We found our SPPO model outperforms many competing models trained on proprietary
alignment data (e.g., Claude 2, Gemini Pro, & Llama 3 8B Instruct). When applied to Llama 3
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Model MT-Bench
1st Turn 2nd Turn Average

Mistral-7B-Instruct-v0.2 7.78 7.25 7.51
Snorkel (Mistral-PairRM-DPO) 7.83 7.33 7.58

Mistral-7B-DPO Iter1 7.45 6.58 7.02
Mistral-7B-DPO Iter2 7.57 6.56 7.06
Mistral-7B-DPO Iter3 7.49 6.69 7.09

Mistral-7B-SPPO Iter1 7.63 6.79 7.21
Mistral-7B-SPPO Iter2 7.90 7.08 7.49
Mistral-7B-SPPO Iter3 7.84 7.34 7.59

Model Arena-Hard-Auto-v0.1

Mistral-7B-Instruct 12.6

Snorkel (Mistral-PairRM-DPO) 20.7

Mistral-7B-SPPO Iter1 18.7
Mistral-7B-SPPO Iter2 20.4
Mistral-7B-SPPO Iter3 23.3

Figure 2: MT-Bench & Arena-Hard Evaluation. Left: Mistral-7B-SPPO Iter3 outperforms all
baseline models by achieving an average score of 7.59 in MT-Bench. Despite initial drops in
performance in the first two iterations, SPPO Iter3 improves upon the base model by the final iteration.
Right: Mistral-7B-SPPO Iter3 outperforms the baseline model Snorkel(Mistral-PairRM-DPO) in
Arena-Hard. The improvement across different iterations is consistent.

Table 5: Open LLM Leaderboard Evaluation. SPPO fine-tuning improves the base model’s
performance on different tasks, reaching a state-of-the-art average score of 66.75 for Mistral-7B and
70.29 for Llama-3-8B. For Mistral-7B, subsequent iterations of DPO, IPO, and SPPO see a decline in
performance. It is possible that aligning with human preferences (simulated by the PairRM preference
model in our study) may not always enhance, and can even detract from, overall performance.

Models Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

Mistral-7B-Instruct-v0.2 63.65 66.85 77.98 41.93 84.89 59.15 65.74

Snorkel 66.04 70.86 77.74 36.77 85.64 60.83 66.31

Mistral-7B-DPO Iter1 63.14 68.39 77.19 40.33 85.25 59.41 65.62
Mistral-7B-DPO Iter2 64.16 67.84 76.09 39.95 85.23 59.03 65.38
Mistral-7B-DPO Iter3 65.19 67.89 77.27 32.30 85.49 59.00 64.52

Mistral-7B-IPO Iter1 64.68 68.60 77.98 43.75 85.08 59.04 66.52
Mistral-7B-IPO Iter2 62.12 66.30 77.51 39.20 83.15 59.70 64.66
Mistral-7B-IPO Iter3 62.97 67.12 77.51 37.45 83.69 59.57 64.72

Mistral-7B-SPPO Iter1 65.02 69.40 77.82 43.82 85.11 58.84 66.67
Mistral-7B-SPPO Iter2 65.53 69.55 77.03 44.35 85.29 58.72 66.75
Mistral-7B-SPPO Iter3 65.36 69.97 76.80 42.68 85.16 58.45 66.40

Llama-3-8B-Instruct 62.29 51.65 76.09 75.89 78.73 65.59 68.37

Llama-3-8B-SPPO Iter1 63.82 54.96 76.40 75.44 79.80 65.65 69.35
Llama-3-8B-SPPO Iter2 64.93 56.48 76.87 75.13 80.39 65.67 69.91
Llama-3-8B-SPPO Iter3 65.19 58.04 77.11 74.91 80.86 65.60 70.29

8B Instruct, our Llama-3-8B-SPPO exhibits an even higher win rate. With test-time reranking,
Mistral-7B-SPPO Iter3 (best-of-16) is even competitive to GPT-4 0613 and Llama 3 70B Instruct.
In Figure 2 (left), we evaluate the performance of SPPO on MT-Bench. We can see that Mistral-7B-
SPPO Iter3 outperforms all baseline models, achieving an average score of 7.59. While we are not
certain why the MT-Bench performance drops at the first two iterations, the performance of SPPO at
the final iteration still improves over the base model.
Arena-Hard (Li et al., 2024) contains 500 challenging user queries and follow the same evaluation
method as AlpacaEval 2.0. In Figure 2 (right), we evaluate the performance of SPPO on Arena-Hard.
We can see that Mistral-7B-SPPO exhibits a steady performance gain across iterations.Mistral-7B-
SPPO Iter 3 outperforms the baseline models, achieving an average score of 23.3.

Open LLM Leaderboard We further evaluate the capabilities of SPPO models using Huggingface
Open LLM Leaderboard (Beeching et al., 2023b). This leaderboard encompasses 6 different datasets,
each focusing on a specific capability of LLMs: Arc (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), Winogrande (Sakaguchi et al., 2021), MMLU (Hendrycks et al., 2020), TruthfulQA (Lin
et al., 2021), and GSM8k (Cobbe et al., 2021). The models are prompted with zero or few-shot
exemplars. The results, presented in Table 5, demonstrate that SPPO can enhance the performance of
the base model on Arc, TruthfulQA, and GSM8k, and achieve the state-of-the-art performance with an
averagte score of 66.75. However, these improvements do not hold in subsequent alignment iterations:
DPO, IPO, and SPPO’s performance declines after the first or second iterations. This limitation may
be attributed to the “alignment tax” phenomenon (Askell et al., 2021), which suggests that aligning
with human preferences (simulated by PairRM preference in our study) might not improve or even
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Figure 3: Pairwise win rates among base model (Mistral-7B-Instruct-v0.2), DPO models, IPO models,
and SPPO models using PairRM-0.4B as a judge, which may favor models with longer outputs. On
benchmarks with more powerful judge models (e.g., GPT-4), such as AlpacaEval 2.0 and MT-Bench,
SPPO outperforms other baseline algorithms by a large margin.

hurt the general performance. Improving language model capabilities through alignment iterations
remains a topic for future research, and we posit that incorporating high-quality SFT annotations
(Chen et al., 2024) could play a significant role in this endeavor.

G.2 Evaluation Using PairRM as a Judge

As SPPO identifies the von Neumann winner (see (2.1)) in a two-player constant-sum game, we
examine the pairwise preferences among SPPO models and other baselines. The pairwise win
rates, measured by PairRM, are depicted in Figure 3. We observe that in all algorithms—namely
DPO, IPO, and SPPO—the newer model iterations surpass the previous ones. For example, SPPO
Iteration 3 outperforms SPPO Iteration 2. Both SPPO and IPO consistently outperform DPO across
all iterations. While SPPO is superior to IPO in the first two iterations, IPO exceeds SPPO in
performance during the final iteration. Considering the superior performance of SPPO in standard
benchmarks evaluated by GPT-4 or against ground-truth answers (e.g., AlpacaEval 2.0, MT-Bench,
and Open LLM Leaderboard), along with IPO’s tendency to produce longer sequence outputs (see
Avg. Len in Table 2), we believe this is due to IPO exploiting the length bias in PairRM that favors
longer sequences. Conversely, SPPO models benefit from a more robust regularization within a
multiplicative weight update framework.
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G.3 Ablation Study

Mini-Batch
Size Iteration

AlpacaEval 2.0
Win Rate Avg. Len

(chars)LC. Raw

K = 2
Iter1 23.85 23.53 1948
Iter2 26.91 27.24 1999
Iter3 28.26 28.22 1961

Iter1 24.79 23.51 1855
Iter2 26.89 27.62 2019K = 5
Iter3 28.53 31.02 2163
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Figure 4: AlpacaEval 2.0 evaluation on SPPO of different mini-batch size in terms of both normal
and length-controlled (LC) win rates in percentage (%). K = 2, 5 denote different mini-batch sizes
when estimating the win rate P(y ≻ πt|x).

H Response Examples in Different Iterations

Table 6: Generation example of our fine-tuned model by SPPO at different iterations.
Prompt You will be given a definition of a task first, then some input of the task. You are

given a dialog between 2 or more individuals. The dialog will include information
as to the relationship between 2 of the participants. At the end, you will be asked
to provide an answer as to the relationship of those 2 participants. In this scenario,
’0’ will represent a spousal relationship, ’1’ will represent siblings, and ’2’ will
represent a child/parent relationship. Speaker 1: I’ll be right with you. Okay?
Thanks, Wendy. Speaker 2: Oh my God! How cute is the on-call doctor? Speaker
3: Ooh, so cute, that I’m thinking about jamming this pen in my eye. Speaker 4:
Dr. Burke will see you know. Speaker 2: Oh no-no-no, not Dr. Burke. Dr. Burke
is out of town. The-the on-call doctor will see me now. Speaker 4: Dr. Richard
Burke is out of town. Dr. Timothy Burke, his son, will see you now. Speaker 5:
Ready? What is the relationship between Speaker 5 and Richard Burke? Output:

Mistral-7B The relationship between Speaker 5 and Richard Burke is that of a parent and
child, as Richard Burke is identified as the son of another character in the dialog.

Iteration 1 The relationship between Speaker 5 and Richard Burke is that of a father and
child. Based on the dialogue, it was revealed that Dr. Timothy Burke is the on-call
doctor and the son of Dr. Richard Burke.

Iteration 2 The relationship between Speaker 5 and Richard Burke is that of a father and
child. The conversation reveals that Dr. Timothy Burke is the on-call doctor and
he is identified as the son of Dr. Richard Burke.

Iteration 3 Speaker 5 is the individual asking about the relationship, so they are not directly
related to Dr. Richard Burke. The information provided in the dialog reveals
that Dr. Timothy Burke is the on-call doctor and the son of Dr. Richard Burke.
Therefore, the answer is: The relationship between Speaker 5 and Dr. Richard
Burke is that of a child (Dr. Timothy Burke) and parent. Speaker 5 is inquiring
about the relationship, but they are not themselves a part of it. The specified
relationship codes (0 for spousal, 1 for sibling, 2 for child/parent) align with
this description: Speaker 5 (0, 1, or 2) and Dr. Richard Burke (2) connect as a
parent-child duo. Output: 2 (child/parent relationship) In this scenario, Speaker
5’s role is to determine the relationship between herself and Dr. Richard Burke,
but since they are not related (she is an outside inquirer), the correct answer
pertains only to the relationship identified within the dialog: Dr. Richard Burke
(father) and Dr. Timothy Burke (son).
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Table 7: Another generation example of our fine-tuned model by SPPO at different iterations.
Prompt Q: Context: Roman Brady is a fictional character from the long running NBC soap

opera, Days of Our Lives. The role was originated in 1981 by Wayne Northrop
who played the role until 1984, was filled by Drake Hogestyn from 1986 – 1991,
again by Northrop from 1991 – 1994, and is currently being portrayed by series
veteran Josh Taylor, who stepped into the role in 1997. Question: who is roman
brady on days of our lives? Let’s give stream of consciousness below

Mistral-7B Roman Brady is a fictional character on the NBC soap opera "Days of Our Lives."
He was first portrayed by Wayne Northrop from 1981 to 1984. Later, Drake
Hogestyn took over the role from 1986 to 1991. Northrop returned to the role
from 1991 to 1994. Since 1997, the character is being portrayed by Josh Taylor.
Roman Brady is a significant character in the show’s long-running storylines.

Iteration 1 Roman Brady is a fictional character on the NBC soap opera "Days of Our Lives."
He was first portrayed by Wayne Northrop from 1981 to 1984. Drake Hogestyn
took over the role from 1986 to 1991. Northrop returned to play Roman again
from 1991 to 1994. Since 1997, the character has been portrayed by Josh Taylor.
So, in summary, Roman Brady is a long-standing character on "Days of Our
Lives" who has been played by three different actors over the years: Wayne
Northrop (1981-1984, 1991-1994), Drake Hogestyn (1986-1991), and currently
by Josh Taylor (1997-present).

Iteration 2 Roman Brady is a fictional character on the NBC soap opera "Days of Our Lives."
He was first portrayed by Wayne Northrop from 1981 to 1984. Drake Hogestyn
took over the role from 1986 to 1991. Northrop returned to play Roman again
from 1991 to 1994. Since 1997, the character has been portrayed by Josh Taylor.
Overall, Roman Brady is a long-standing and complex figure in the show’s history,
with multiple actors bringing their unique interpretations to the role.

Iteration 3 Roman Brady is a fictional character on the NBC soap opera "Days of Our Lives."
He was originally played by Wayne Northrop from 1981 to 1984. Drake Hogestyn
took over the role from 1986 to 1991. Northrop returned to portray Roman
once more from 1991 to 1994. Since 1997, the character has been portrayed
by Josh Taylor.Roman Brady is a complex and prominent figure in the long-
running daytime drama. Initially played by Northrop in the early 1980s, his tenure
included involvement in various storylines, such as romantic relationships and
business dealings. Hogestyn’s portrayal during the late 1980s and early 1990s
introduced new dimensions to the character. Northrop’s second stint, from 1991 to
1994, further developed Roman’s narrative. Since 1997, Josh Taylor has assumed
the role, continuing to contribute to the evolving story of Roman Brady on "Days
of Our Lives." Throughout these different portrayals, Roman has remained a
central character, known for his intricate relationships, business ventures, and
personal struggles.
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