

RETHINKING MULTIMODAL TIME-SERIES FORECASTING EVALUATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

We introduce a new context-enriched, multimodal time series forecasting benchmark TimesX. TimesX contains a wide selection of high-quality real-world time series with diverse domains and textual contexts obtained from an automated data generation pipeline, which helps address three main issues of existing multimodal forecasting benchmarks: (1) poor generalization due to the small scale and synthetic nature of benchmark data, (2) very limited types of textual contexts in the benchmarks, and (3) an inability to mitigate data leakage in evaluation. We conduct a thorough empirical study of zero-shot multimodal forecasting approaches on TimesX. Our results suggest that many approaches that perform well on existing benchmarks may fail on TimesX. In contrast, simple ensemble methods that leverage rich textual context accompanying time-series can outperform strong baselines on the TimesX benchmark.

1 INTRODUCTION

Time-series forecasting (TSF) is a ubiquitous task across numerous domains and is essential for informed decision-making. Motivated by the success in NLP, there has been significant work in recent years on time-series foundation models (TFM) for forecasting, ranging from re-purposing LLMs directly for forecasting (Gruver et al., 2023; Tan et al., 2024) to fine-tuning pretrained LLMs on time-series data (Zhou et al., 2023; Chang et al., 2023) to pretraining time-series foundation models from scratch (Das et al., 2024; Goswami et al., 2024; Woo et al., 2024; Ansari et al., 2024). These models have demonstrated promising zero-shot TSF capabilities, often outperforming traditional statistical and supervised methods, using only the historical context of the time-series at inference time. Although historical numerical data provide a fundamental basis for prediction, they often lack the complete context necessary for reliable and accurate forecasts. Human forecasters often integrate additional information such as background knowledge, events and constraints, which can usually be captured through natural language (Liu et al., 2024b) - we call these *textual contexts*. Improving the ability of time-series foundation models to effectively leverage and integrate diverse textual contexts remains an ongoing challenge. This highlights a crucial need for high-quality and comprehensive multimodal datasets and benchmarks to propel research in this area.

At the same time, existing context-enriched multimodal TSF evaluation benchmarks and their construction techniques present several limitations when benchmarking pretrained models on them. The first limitation is the unknown generalization gap between the benchmarking metrics and the real world performance. This is often caused by either the benchmark being restricted to a *small scale* with a narrow selection of domains, or it being fully *synthetic*.

The second significant challenge across existing benchmarks is *data leakage*. Pretrained TFMs and LLMs may have already ingested evaluation data, leading to unknown data contamination and unfair comparison between methods. The benchmark itself is also subject to short-lived validity as pretrained models will continuously update but their pretraining datasets, while expending over time, are often not released.

The third limitation comes from our observation that the types and granularities of textual contexts in previous benchmarks are often limited and vary wildly. Textual contexts derived from real data include metadata information about the time-series, timestamp-related information such as important dates and holidays, textual event data related to the time-series, and textual data capturing statistics

054 and trends of related exogenous variables correlated with the target time-series. The ability of multi-
 055 modal models to process these different types of contexts, and the availability and quality of these
 056 different contexts in the datasets have a significant effect on the model’s benchmark performance.
 057 When a multimodal model falls short on existing benchmarks, it is difficult to conclude whether the
 058 shortcoming is due to the fact that the method does not effectively utilize the provided information,
 059 or it is because the contexts provided in the benchmark are of a specific type, too vague, or lacking
 060 relevant details.

061 To address these fundamental limitations and establish an unbiased benchmark for context-enriched
 062 time series forecasting, we introduce **TimesX**, a novel multimodal benchmark designed to focus
 063 on (1) real, large-scale, cross-domain data, (2) a dataset generation pipeline providing continuous
 064 mitigation of data leakage, and (3) a collection of comprehensive, fine-grained textual contexts. We
 065 further introduce several promising baselines that combine TFM and LLMs to achieve non-trivial
 066 multimodal, context-enriched forecasting performance on our benchmark.

067 The primary contributions of this paper are threefold:

- 069 1. TimesX is, as far as we are aware, the first real-world, large-scale, and cross-domain
 070 context-enriched time series forecasting benchmark¹. It encompasses 19 diverse domains
 071 with a total of 190 variables, covers diverse global geographical regions and includes daily
 072 and weekly frequencies. It also links each target numeric series to multiple forms of de-
 073 tailed textual contexts. Unlike existing multimodal time-series benchmarks, all time series
 074 and textual data in TimesX are from real-world observations.
- 075 2. We propose two new mechanisms in the dataset generation pipeline of TimesX to help
 076 prevent data leakage and guarantee the validity of the textual context. The first one is
 077 an automated data collection pipeline that adopts strict timestamp alignment and isolation
 078 during each of its steps. The second one is a hypothesizer-verifier-enricher framework for
 079 fact-checking and enriching the textual contexts. These mechanisms combined ensures
 080 that TimesX is verifiable, leakage-free, and can be updated in the future for benchmarking
 081 methods with new pretraining cutoff dates.
- 082 3. We empirically verify that TimesX addresses the shortcomings of existing benchmarks. In
 083 addition, we conduct thorough empirical studies comparison of current (zero-shot²) multi-
 084 modal TSF approaches on TimesX, involving more than 312,000 independent LLM in-
 085 ferences and revealing new observations that were not discovered by existing benchmarks. In
 086 particular, we discover that earlier benchmarks like Williams et al. (2024a) tend to severely
 087 over-estimate the performance of LLMs over TSF models. At the same time, benchmarks
 088 like Liu et al. (2024a) under-report the importance of textual context information in fore-
 089 casting accuracy.

090 2 RELATED WORK

091 In addition to the time-series foundation models mentioned previously, recent work has started to
 092 adapt pre-trained LLMs to perform forecasting when textual contexts are available, often by aligning
 093 the modalities of time series and natural language. For example, Jin et al. (2023) uses a repro-
 094 gramming framework that keeps the LLM frozen, converting time series into fixed-format textual
 095 representations to align the modalities. Liu et al. (2024b) enhances zero-shot forecasting through
 096 advanced prompting strategies alone. It introduces a Chain-of-Thought style prompt to break the
 097 task into short-term (trend-focused) and long-term (stability-focused) sub-tasks, and prompts the
 098 model to periodically reassess its reasoning. ChatTime (Wang et al., 2025) tokenizes numerical data
 099 and fine-tunes an LLM to process both modalities within a unified framework.

100 The development of these models has been paralleled by new benchmarks designed to evaluate
 101 them. ChatTS (Xie et al., 2024), for instance, generates synthetic time series paired with detailed
 102 attribute descriptions to train a multimodal LLM for understanding and reasoning tasks. Similarly,
 103

104 ¹TimesX can currently be accessed for review purposes at https://anonymous.4open.science/r/TimesX_UnderReview-387D/. We intend to release the benchmark and code upon paper acceptance.

105 ²By Nov 2025, TimesX was extended to contain 190 variables spanning Jan 2018 to Oct 2025, supporting
 106 both training and evaluation, and considers 11 multilingual variables and 5 rare-disease variables.

108 the Time-MQA framework (Kong et al., 2025) introduces the TSQA dataset, which contains real-
 109 world time series with template-based meta information and turns time-series forecasting into a
 110 question-answer format. Benchmarks as those referenced in CiK (Williams et al., 2024a) contain
 111 real-world time series and manually crafted textual contexts that are critical for accurate forecasting.
 112 Time-MMD (Liu et al., 2024a) provides a context enriched benchmark constructed by keyword-
 113 based web searches of nine domains, one variable for each. MTBench (Chen et al., 2025) aligns
 114 stock prices with financial news and weather reports with temperature records, curating tasks that
 115 require reasoning about. MoTime (Zhou et al., 2025) dataset suite provides a collection of multi-
 116 modal datasets pairing time series with static modalities like text and images. Noticeably, these
 117 early efforts were often constrained by a scarcity of high-quality, large-scale, real-world datasets,
 118 leading some to rely on synthetic data and specific forms of textual contexts. We summarize several
 119 representative benchmarks compared to our proposed TimesX in Table 1.
 120

Benchmark	Real Data	Leakage-Free	Context Types	Datasets
MT-Bench	Yes	No	Meta+Event	2
ChatTime	Yes	No	Meta+Calendar+Covariates	3
MoTime	Yes	No	Meta	8
Time-MMD	Yes	No	Meta+Event	9
CiK	No	N/A	Meta+Event+Covariates	71
TimesX	Yes	Yes	Meta+Calendar+Covariates+Event	190

127 Table 1: Comparison of multi-modal TSF benchmarks. Leakage-Free indicates whether the bench-
 128 mark can guarantee no data leakage for the latest pretrained models, detailed in Section 3.1.2.
 129

131 3 THE TIMESX BENCHMARK

132 3.1 DESIGN PRINCIPLES OF TIMESX

135 We will first present the core principles that distinguish TimesX from other multimodal forecasting-
 136 ing benchmarks. We also provide empirical evidence that demonstrates the importance of these
 137 principles and where other benchmarks might fall short.

139 3.1.1 REAL-WORLD DATA

140 TSF is highly complex because it arises from real-world dynamics, complex processes, and diverse
 141 domains. On the other hand, many existing benchmarks use either synthetic time series, synthetic
 142 textual contexts, or both, without demonstrating how the conclusions on synthetic data can transfer
 143 to real-world scenarios (Williams et al., 2024b; Tan et al., 2024). TimesX differentiates itself from
 144 those benchmarks by strictly using real-world data for both the time series and the textual contexts.
 145

146 To test whether conclusions on synthetic data can transfer to real data, we evaluate three methods
 147 on a synthetic context dataset (CiK) and our real dataset (TimesX). We report the aggregated MASE
 148 (Mean Absolute Scaled Error) of the three methods which are: (i) TimesFM-2.5 (a TFM) using only
 149 the time series, (ii) Gemini-2.0-Flash (an LLM) using both the time series and the textual contexts,
 150 and (iii) CODEREV, Gemini-2.0-Flash writing and executing code to revise TimesFM-2.5 outputs
 151 based on the context. More details on the evaluation metric are in Appendix N.

152 As shown in Fig. 1, the rankings of the three methods on CiK and on TimesX are completely differ-
 153 ent. On CiK, directly feeding the time-series along with associated text context to Gemini has a huge
 154 lead over TimesFM-2.5. Moreover, asking Gemini to edit the output of TimesFM-2.5 via code does
 155 even better, significantly outperforming the other two methods. On the other hand on TimesX, we
 156 see that all the methods are much closer, and TimesFM-2.5 is actually better than Gemini. Further
 157 CODEREV degrades the performance of using both TimesFM-2.5 and Gemini directly. This shows
 158 that CiK has a strong bias that clouds its conclusions: in CiK, textual contexts are both synthetic and
 159 extremely specific - these specific contexts are then used to write code to modify an input time-series
 160 and generate the final forecasting task. Therefore, such tasks can be easily solved by instruction-
 161 following language models and even better by language models that generate code to accomplish a
 162 simple modification task. These conclusions, however, do not generalize to the real-world tasks in
 163 TimesX whose contexts are less specific and do not relate to the forecasting task via the coding path.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

We believe that carefully designed synthetic benchmarks can be useful for testing specific capabilities such as instruction following or different types of reasoning. We highly recommend using both synthetic and real-world benchmarks for a more complete and robust evaluation

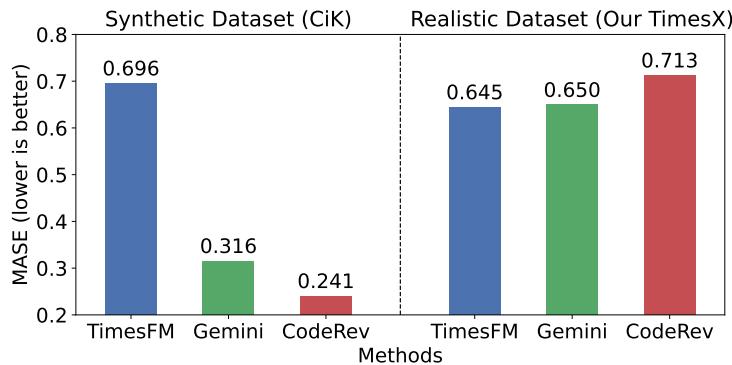


Figure 1: Synthetic (CiK) versus real-world (TimesX) performance under the same setup (lower MASE is better). The ordering of TimesFM-2.5, Gemini-2.0-Flash, and CODEREV flips between the two datasets, showing that synthetic generation can bias rankings toward instruction-following LLM and coding. [We show results on the Future subset of CiK here](#). Table 168 further reports the average performance across all five CiK subsets and shows the same conclusion.

3.1.2 MITIGATING DATA LEAKAGE

A fair benchmark dataset should be able to mitigate any potential leakage of benchmarks tasks into the pretraining datasets of the models being evaluated. Given that many pretrained models do not release their pretraining datasets, existing benchmarks that claim to use data from unused sources (data isolation) for evaluation have three drawbacks: (1) Potentially unidentifiable data contamination. (2) Limited number of clean tasks left for benchmarking multiple methods. (3) Short-lived validity i.e future versions of the models considered may unintentionally leak the benchmark into their pretraining data.

In contrast, TimesX adopts strict *time isolation* to prevent data contamination: we timestamp TimesX thoroughly, and recommend strictly using benchmark tasks that occur after a target model’s knowledge cutoff date. Moreover, the TimesX pipeline is designed for easy data refreshes i.e data collection, validation, alignment, and model evaluation can all be automated. To the best of our knowledge, TimesX is the first benchmark capable of being automatically refreshed for evaluating future pretrained methods.

To demonstrate how data contamination affects evaluation results, we evaluate on 120 variables from the Search Trend (see Section 3.2) subset of TimesX. We keep the numeric series, windowing, and prompts fixed, and split the test period by the public knowledge cutoff of Gemini-2.0-Flash and DeepSeek-V3 (June 2024). We report the MASE aggregated by Geometric Mean in Table 2.

Method	Model	MASE Before 2024.06	MASE After 2024.06	% Change
LLM	Gemini-2.0-Flash	0.514	0.594	14.81%
LLM	DeepSeek-V3	0.606	0.681	12.38%
TFM	TimesFM-2.5	0.563	0.573	1.78%
TFM	Moirai-2.0	0.691	0.696	0.72%

Table 2: Performance before and after the two LLMs’ knowledge cutoff (June 2024) on the Search Trend subset (120 variables). Lower MASE is better. Setup is detailed in Appendix A.

The pretraining data descriptions of the two TFM preclude any time-series data leakage in both time periods, and both TFM report stable results with less than 2% delta. In contrast both LLMs see an increase of error by about 13% after their knowledge cutoff.

216 3.1.3 HIGH QUALITY CONTEXT
217

218 Most multimodal forecasting benchmarks have a very limited set of text contexts - restricted to
219 either static metadata (Zhou et al., 2025), date and weather derived features (Wang et al., 2025)
220 or synthetically generated contexts (Williams et al., 2024b). In contrast, TimesX uses not only an
221 union of all these context types, but also a more careful generation of text events and corresponding
222 alignment of these contexts.

223 In particular, we categorize these various kinds of contexts into: (1) **Metadata**: descriptive high
224 level summaries of the forecasting variable in question (2) **Calendar**-derived features like holidays
225 (3) **Covariates** which cover textual information around other related time series (4) **Time-stamped**
226 **events**: Textual description of related events aligned with time-windows of the variable in question.
227 Section 3.2.1 contains more details about how we generate these textual contexts.

228 TimesX links each target time-series to all these available context types and aligns them with the
229 timestamps of the time series. The end result is a benchmark with diverse, high-quality textual
230 contexts. To quantify its effect on time-series forecasting accuracy, we run a controlled experiment
231 where we take the time-series in the Time-MMD benchmark and use our methodology to replace
232 the textual events using the construction rules in Appendix D. We keep the numeric series, the LLM
233 (Gemini-2.0-Flash), and the prompt fixed.

234 Table 13 compares the performance of
235 Gemini-2.0-Flash given these newly gen-
236 erated text events versus the original
237 context in the Time-MMD benchmark.
238 Across all nine datasets of Time-MMD,
239 this context swap reduces the geo-
240 metric-mean aggregated MASE from 0.906 to
241 0.840 (a relative drop of roughly 7.3%).
242 These results show that conclusions drawn
243 under low-quality context might be misleading; introducing high-quality, fine-grained context
244 changes the picture.

245 We further demonstrate the limitations of small-scale evaluation in Fig 33 and App T.

246 3.2 OVERVIEW OF TIMESX
247

248 We now provide a high level summary of our dataset and dataset construction methodology. TimesX
249 contains time-series obtained from 19 domains. Each domain has 10 variables, resulting in a total
250 of 190 *variables* (quantities evolving with time). Note that TimesX is constructed entirely from
251 scratch, rather than by merging existing datasets.

252 The variables make up the numerical time-series portion of the dataset and the core task is to forecast
253 the future time-points of these variables. They cover two different temporal granularities: **Weekly**
254 series consist of Google Search Trend signals³ across 12 domains. **Daily** series include (i) com-
255 modity prices⁴ covering raw materials, energy, metals, and agriculture, and (ii) major USD exchange
256 rates⁵. Appendix F contains more details about these domains and variables. All time series of each
257 frequency have the same timestamps. The missing values are handled according to Appendix D.

258 Note that we have a separate portion of the dataset that is derived from the time-series in Time-
259 MMD Liu et al. (2024a), where the text context is generated using our methodology. However this
260 portion of the dataset was only used for ablations in Section 3.1.3 and unless otherwise specified all
261 our main results are presented on the core 19 domains mentioned above.

262 The current data collection window spans from **2023-01-01** to **2025-06-30**, and covers different
263 geographical regions: North America (United States, Canada, Mexico), Asia (China, India among
264 others), Europe (United Kingdom, Norway among others), South America and Africa. We use PCA
265 and t-SNE to further visualize the diversity of TimesX in Appendix X.

Method	MASE
LLM (Our Context)	0.840
LLM (Time-MMD Context)	0.906

Table 3: Controlled replacement of textual context on *Time-MMD*. More detailed results are in Appendix K.

³<https://trends.google.com/trends/>

⁴<https://marketstack.com/>

⁵<https://frankfurter.dev/>

270 3.2.1 TEXT CONTEXT
271

272 Our core contribution is aligning comprehensive and diverse text context information with the vari-
273 ables that evolve over time. We will see that methods that capture both this context information
274 along with the past of the time-series can achieve superior performance compared to methods that
275 only use the past time-series component. As mentioned before we provide 4 kinds of text contexts
276 for all time-series variables: Metadata, Calendar features, Covariates and Time-Stamped Events.
277 Section 3.2.2 shows an example of a time series with each of these four types of textual contexts.

278 The Metadata and Calendar text contexts are easily constructed from the sources of the numerical
279 time-series themselves and Python Holidays library respectively, as described in Appendix B.

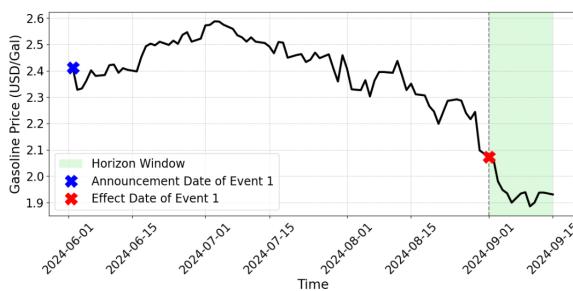
280 For each time-series in a given domain, we use the other time-series from that domain to extract
281 Covariate text contexts. Specifically, we calculate features of these covariates over the historical
282 window, including mean, median, max and min with the corresponding date, and overall trend di-
283 rection. These features are then transformed into natural language descriptions, detailed in App C.

284 Constructing and aligning textual events is the most challenging component. Following our design
285 principles in Section 3.1, we must satisfy three goals at once: *real-world* data, *leakage-free*, and
286 *high-quality*. A single LLM or a naive web search cannot reliably meet these goals. Therefore, we
287 adopt a multi-agent automated workflow with three agents: *Hypothesizer*, *Verifier*, and *Enricher*.
288 Each agent interacts with an LLM under constraints and has dedicated tools (time-bounded web
289 search and lightweight crawlers). Overall, the Hypothesizer and the Verifier act adversarially to
290 ensure event truthfulness and timestamp accuracy, which prevents information leakage; the Veri-
291 fier then guides the Enricher to supply missing details thus ensure quality. The whole workflow,
292 **illustrated in Figure 34**, is automated, enabling regular updates of the benchmark data.

293 Specifically, the *Hypothesizer* identifies points of interest in the time series (e.g., local maxima,
294 unexpected movements or peak in the corresponding search trend) and iteratively calls an LLM
295 agent with integrated web search to build an initial event set that are able to match these points.
296 The *Verifier* uses crawlers to fetch relevant URLs corresponding to each event window and conduct
297 fact checks, filtering out any hallucination or leakage, and preparing a checklist of missing details.
298 The *Enricher* resolves the checklist using strictly time-bounded web searches, merging multiple
299 sources to fill in the details. **Finally, a reasoning LLM, called the *Synthesizer*, aggregates all pieces**
300 **of evidence to finalize the event description, adjust timestamps, and discard events with unresolved**
301 **doubts.** Using this framework, TimesX automatically produces an event corpus that matches the
302 time window, contains verifiable facts (each claim has a supporting URL), accurate time stamps,
303 and rich detail. Details are provided in Appendix D. **An execution log demo is in App U. More**
304 **discussions and manual verification about date annotation accuracy are in App V.**

305 3.2.2 DATA EXAMPLE
306

307 We provide below an example from TimesX corresponding to the GAS_PRICE time-series.



318 Figure 2: The numerical time series of one example
319 from the variable GAS_PRICE.

320 **Time series:** See Figure 2.

321 **Metadata:** This time series records gaso-
322 line price (USD/GAL) in the Commodity
323 Price domain, with a collection frequency
324 of daily. Prediction target period: from
325 2024-09-01 to 2024-09-15.

326 **Date:** Upcoming holidays in the predic-
327 tion window: Labor Day (2024-09-02).

328 **Covariates:** from 2024-06-01 to 2024-08-
329 31: (1) Brent Crude Oil (USD/BBL): The
330 maximum value was 87.43, occurring on
331 July 4, the minimum was 76.05 on August
332 21, showing an overall downward trend.
(2)...

333 **Events:** (1) On June 2, 2024, OPEC+ agreed to extend deep oil output cuts [1,3], the cut of 2.2
334 million bpd would be extended until September 2024, after which it would be gradually phased out
335 [2,3]. Source: [1] [2] [3]; (2) ...

324

4 EMPIRICAL STUDY

325

4.1 EVALUATION SETTINGS

326 We consider the following three types of methods:

327 **Pretrained TFM**s: We select three SOTA TFM*s*, i.e., TimesFM-2.5, Moirai-2.0 and Sundial.⁶328 **Pretrained LLM**s: We consider three well-adopted LLM*s*: the closed-source Gemini-2.0-Flash
329 and GPT-4o, and the open-source DeepSeek-V3.330 **Composed Solutions**: We construct the following four combinations of TFM and LLM: (1)
331 AVGENS: An ensemble that averages the forecasts from two pretrained models. We simply set equal
332 weights.(2) TEXTREV: An LLM taking the forecast of a TFM as text and revising it according to
333 the context. (3) CODEREV: An LLM writing and executing code to revise the forecast of a TFM
334 according to the context. (4) FUNCREV: Similar to CODEREV, but the LLM is limited to a selection
335 of functions. Details are in Appendix I336 For each variable in TimesX and its context corpus, the look-back window and the forecast horizon
337 are set to 96 and 12, respectively. The rolling window is set to 4 for weekly data and 12 for daily
338 data to balance sample count and sample diversity. We then include all relevant metadata, calendar
339 info and covariates info. To avoid future information leakage and context redundancy, we select
340 the 10 most recent textual events whose announcement dates strictly precede the first timestamp of
341 the prediction horizon to add to the context. **Under this setup, we obtain 2,434 samples, as detailed**
342 **in the Appendix W**. To account for stochasticity, we repeat each evaluation 10 times with different
343 random seeds when applicable. **Our experiments involved more than 312,000 independent LLM**
344 **inferences**.345 To avoid pretraining data contamination, we construct evaluation examples whose forecast horizon
346 begins after the pretraining cutoff of all involved models, detailed in Appendix J. Unless stated
347 otherwise, we use **2024-07-01** as the cutoff. **The web access is restricted to the construction-time**
348 **agent while the benchmark itself is an offline evaluation suite**.349 Following the conventions in other popular forecasting benchmarks like GIFT-Eval (Aksu et al.,
350 2024) we use normalized MASE (mean absolute scaled error) as our main metric. Since the different
351 variables have very different scales, we calculate the average MASE over all rolling windows of a
352 variable and normalize that by the average MASE of a seasonal naive baseline. Then we take the
353 Geometric Mean (GM) of these normalized MASE ratios across all variables. More details are in
354 Appendix N. We also compute the average MASE rank of each method over the variables. For both
355 metrics, smaller numbers indicate better performance.

Method		MASE	Rank
Naive	SeasonalNaive	1.000	12.196
Unimodal Zero-Shot TFM	Sundial	0.771	9.556
	Moirai-2.0	0.722	7.968
	TimesFM-2.5	0.645	5.757
	AVGENS: TimesFM-2.5 + Moirai-2.0	0.668	6.45
Multimodal Zero-Shot LLM	DeepSeek-V3	0.708	7.73
	Gemini-2.0-Flash	0.650	6.603
	GPT-4o	0.643 (#3)	5.466 (#3)
Multimodal Composed Solution	FUNCREV: TimesFM-2.5 + Gemini-2.0-Flash	0.720	7.665
	CODEREV: TimesFM-2.5 + Gemini-2.0-Flash	0.713	6.968
	TEXTREV: TimesFM-2.5 + Gemini-2.0-Flash	0.653	5.63
	AVGENS: TimesFM-2.5 + GPT-4o	0.627 (#2)	4.735 (#2)
	AVGENS: TimesFM-2.5 + Gemini-2.0-Flash	0.619 (#1)	4.249 (#1)

374 Table 4: Overall benchmark results of the 13 selected methods. The top 3 methods per metric are
375 numbered in the parentheses.376 ⁶As of September 24, 2025, these three TFM models ranks 1st, 3rd, and 5th on the GIFT-Eval leaderboard
377 at <https://huggingface.co/spaces/Salesforce/GIFT-Eval>.

378
379

4.2 BENCHMARKING ALL METHODS

380
381

Table 4 shows the benchmark results of the chosen methods on TimesX.

382
383
384
385
386
387
388
389

As multimodal solutions, though the zero-shot LLMs have the edge over the unimodal zero-shot TFM, this edge is not as significant on TimesX as observed on other synthetic benchmarks. This points out the gap between synthetic contexts and real world contexts, that earlier synthetic benchmarks tend to severely over-estimate the performance of LLMs over TSF models because the synthetic contexts were providing the exact information required for bettering the forecast. Real world contexts are in contrast too nuanced to always deliver large performance boost even when guaranteed to be related. This conclusion is further confirmed by the observation that the composed CODEREV method is performing worse than its two components working alone, contradicting the claim of (Williams et al., 2024a).

390
391
392
393
394

In terms of the composed solutions, to our surprise the best performers on TimesX are the simple average ensembles of different pretrained models (i.e., AVGENS). We by no means want to suggest it as the optimal composition, but instead want to reiterate the stochastic and flexible nature of LLMs and the fact that it would take a great deal of effort to design the interaction with them in a composed solution to just outperform simple averaging ensembles.

395
396
397
398

We also use the continuous ranked probability score (CRPS) metrics to measure uncertainty, detailed in Appendix Y.1. We initially observe that all three LLMs achieve lower CRPS than the TFM. This suggests that our constructed context helps LLMs model future uncertainty better than TFM, which rely only on numeric series.

399
400
401
402
403

As an early experiment we further extend our benchmark to advanced reasoning LLMs, including GPT-5, Gemini-2.5-Flash, and DeepSeek-R1. To avoid data contamination, we use evaluation samples whose forecast horizons begin after January 2025. As shown in Table 12, we do not observe a clear advantage of reasoning models.

404
405

4.3 ABLATION: CONTEXT TYPES

406
407
408
409
410
411

Table 5 presents the MASE and MASE rank when different combinations of contexts are provided to a chosen multimodal method (Gemini-2.0-Flash). Comparing to only using the high level metadata, the inclusion of either calendar, calendar and covariates, or calendar and events brings significant improvement. Using all context types improves the accuracy further eventually being around 16% better than using only static metadata.

	Meta	Meta+Date	Meta+Date+Cov	Meta+Date+Event	Meta+Date+Event+Cov
MASE	0.787	0.670	0.674	0.674	0.650
Rank	3.704	3.048	3.079	2.968	2.635

Table 5: Gemini-2.0-Flash MASE and MASE rank when provided with different context types. Including all context types provides significant improvement over any other combinations.

420

It is worth noticing that we cannot observe the incremental gain from adding covariates or events alone. We speculate there is crucial interaction between those two context types, for instance the effect of an event on the target variable can be quantified by a similar leading effect on a covariate. Figure 3 suggests this speculation may generalize to other LLMs. This observation is aligned with our expectation that a multimodal method can compound the gains by composing the information in different context types.

421
422
423
424
425
426
427
428
429
430
431

4.4 WHY REVISION-BASED METHODS UNDERPERFORM?

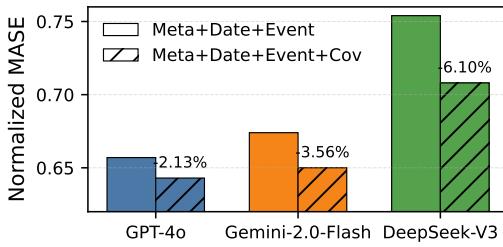


Figure 3: The compounded gains from all available context types are present for all LLMs.

432 None of the three revision methods FUNCREV,
 433 CODEREV and TEXTREV manage to outper-
 434 form the simple AVGENS on TimesX. Fig-
 435 ure 4 dives deeper into the distribution of
 436 their forecast errors, revealing that their errors
 437 spread wider with egregious outliers compared
 438 to TimesFM-2.5, resulting in worse geometric
 439 means. Using Gemini-2.0-Flash alone is simi-
 440 lar. We speculate it is because of the stochastic
 441 nature of a LLM and that LLM revision is not
 442 guaranteed to respect the temporal structures al-
 443 ready present in the initial forecast. Among the
 444 three, TEXTREV performs better than the other
 445 two coding variants, suggesting the proper re-
 446 vision via coding might require specific instruc-
 447 tion fine-tuning.

448 4.5 ABLATION: DOMAINS

450 Table 4.5 breaks down the ranking of the benchmark methods on each of the 19 domains (see Ap-
 451 pendix L for MASE). There is no dominance of one zero-shot method over others - in fact the or-
 452 derings of TimesFM-2.5 and Gemini-2.0-Flash are complementary. In terms of composed solutions,
 453 the observation is consistent with Table 4 that AVGENS performs well while other compositions can
 454 be worse than its components acting alone.

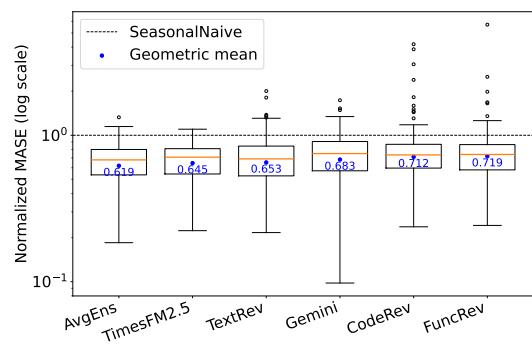
455 There are two domain groups where the multimodal solutions are showing a significant edge over
 456 the TFM. One is Shopping, for which we speculate that the calendar information provides multi-
 457 modal solutions with strong signals about when sales would happen, which is otherwise difficult to
 458 conclude from the time series alone. Similarly, for the domains of RMC (Raw Materials & Con-
 459 structions), SAM (Specialty & Advanced Materials), SHVM (Strategic & High-Value Materials)
 460 and Curr (Currency) these time series are heavily impacted by external policies, an essential part of
 461 the event context.

Method	Domain																		
	A&E	C&E	Econ	E. Tech	Fin	P&A	Pub. H.	PPG	Sci	Shop	SSG	Traf	Crops	Energy	Lysik.	RMC	SAM	SHVM	Curr
SeasonalNaive	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	12	13	12	13
Sundial	10	11	12	11	11	12	10	12	10	11	12	10	9	10	9	10	9	12	13
Moirai-2.0	12	12	10	10	10	10	11	11	11	12	10	9	1	4	4	5	5	5	7
TimesFM-2.5	2	4	4	6	4	1	3	2	3	7	1	4	8	8	2	8	8	10	10
AVGENS: TimesFM + Moirai	9	9	8	8	8	7	6	9	7	8	6	6	2	2	1	7	6	8	8
DeepSeek-V3	11	10	11	12	12	11	12	10	12	5	11	11	7	3	6	1	2	1	3
Gemini-2.0-Flash	6	6	5	7	9	9	8	8	8	1	8	8	6	6	8	3	4	3	4
GPT-4o	7	3	6	9	7	5	5	6	9	4	5	7	4	7	5	4	1	4	2
FUNCREV: TimesFM + Gemini	8	8	9	3	2	8	9	7	5	9	7	1	11	12	11	13	13	11	9
CODEREV: TimesFM + Gemini	5	7	7	5	3	6	7	5	6	10	9	12	13	11	12	11	12	9	11
TEXTREV: TimesFM + Gemini	3	5	3	4	5	4	2	4	4	6	3	3	10	9	10	9	10	7	1
AVGENS: TimesFM + GPT	4	1	2	2	6	3	4	3	2	2	4	5	3	1	3	6	7	6	6
AVGENS: TimesFM + Gemini	1	2	1	1	1	2	1	1	1	3	2	2	6	6	8	3	4	3	6

473 Table 6: Breakdown of the MASE ranks of all methods on each of the 19 domains. Acronyms are
 474 used to shorten domain names for clarity: see Appendix F.

477 5 CONCLUSIONS

479 We introduce a new multimodal time-series forecasting benchmark, TimesX, that contains real-
 480 world, cross-domain time-series with high-quality, detailed textual contexts. TimesX includes a
 481 dataset generation pipeline that ensures the benchmark is leakage-free and can be automatically
 482 refreshed. We conduct detailed empirical study of zero-shot multimodal TSF approaches on this
 483 benchmark and discover that earlier benchmarks either overestimate the performance of LLMs over
 484 TSF models, or underreport the importance of textual context information for forecasting accuracy.
 485 Our evaluation also shows that simple ensemble approaches outperform seemingly stronger base-
 486 lines on the TimesX benchmark. **We discuss the limitations and future plans in App Y.**



494 Figure 4: The boxplot of TimesFM-2.5, Gemini-
 495 2.0-Flash and their composed method’s per-
 496 formances.

486 REFERENCES
487

488 Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong,
489 and Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation.
490 *arXiv preprint arXiv:2410.10393*, 2024.

491 Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
492 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
493 Chronos: Learning the language of time series. *Transactions on Machine Learning Research*,
494 2024.

495 Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series
496 forecasting with pre-trained llms. *arXiv preprint arXiv:2308.08469*, 2023.

497

498 Jialin Chen, Aosong Feng, Ziyu Zhao, Juan Garza, Gaukhar Nurbek, Cheng Qin, Ali Maatouk,
499 Leandros Tassiulas, Yifeng Gao, and Rex Ying. Mtbench: A multimodal time series benchmark
500 for temporal reasoning and question answering. *arXiv preprint arXiv:2503.16858*, 2025.

501 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
502 time-series forecasting. *International conference on machine learning*, 2024.

503

504 Philip J Fleming and John J Wallace. How not to lie with statistics: the correct way to summarize
505 benchmark results. *Communications of the ACM*, 29(3):218–221, 1986.

506

507 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
508 Moment: A family of open time-series foundation models. *International conference on machine
509 learning*, 2024.

510 Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
511 zero-shot time series forecasters. *Advances in Neural Information Processing Systems*, 2023.

512 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
513 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reasoning
514 models. *arXiv preprint arXiv:2506.04178*, 2025.

515

516 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan
517 Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
518 large language models. *arXiv preprint arXiv:2310.01728*, 2023.

519

520 Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang, Ming
521 Jin, and Qingsong Wen. Time-mqa: Time series multi-task question answering with context
522 enhancement. *arXiv preprint arXiv:2503.01875*, 2025. Annual Meeting of the Association for
523 Computational Linguistics (ACL 2025, Main).

524

525 Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B.
526 Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash.
527 Time-mmd: Multi-domain multimodal dataset for time series analysis. In *Advances in Neural
528 Information Processing Systems*, 37 (NeurIPS 2024), 2024a.

529

530 Haoxin Liu, Zhiyuan Zhao, Jindong Wang, Harshavardhan Kamarthi, and B. Aditya Prakash. Lst-
531 prompt: Large language models as zero-shot time series forecasters by long-short-term prompt-
532 ing. *arXiv preprint arXiv:2402.16132*, 2024b.

533

534 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
535 the stationarity in time series forecasting. *Advances in neural information processing systems*, 35:
536 9881–9893, 2022.

537

538 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
539 Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and fair
540 benchmarking of time series forecasting methods. *Proc. VLDB Endow.*, 17(9):2363–2377, 2024.

541

542 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
543 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
544 mark. In *First Conference on Language Modeling*, 2024.

540 Mingtian Tan, Mike A. Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
 541 models actually useful for time series forecasting? *Advances in Neural Information Processing*
 542 *Systems*, 2024.

543

544 Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Lei Zhang, and
 545 Jianxin Liao. Chattime: A unified multimodal time series foundation model bridging numerical
 546 and textual data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 547 pp. 12694–12702, 2025.

548 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 549 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 550 *arXiv preprint arXiv:2411.04368*, 2024.

551 Andrew Robert Williams, Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Jithendaraa Sub-
 552 ramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Chapados,
 553 and Alexandre Drouin. Context is key: A benchmark for forecasting with essential textual infor-
 554 mation. *arXiv preprint arXiv:2410.18959*, 2024a. ICML 2025.

555

556 Andrew Robert Williams, Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Jithendaraa Sub-
 557 ramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Chapados,
 558 et al. Context is key: A benchmark for forecasting with essential textual information. *arXiv*
 559 *preprint arXiv:2410.18959*, 2024b.

560 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
 561 Unified training of universal time series forecasting transformers. *International conference on*
 562 *machine learning*, 2024.

563

564 Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang, Jianjun Chen, Rui Shi, and
 565 Dan Pei. Chatts: Aligning time series with llms via synthetic data for enhanced understanding
 566 and reasoning. *arXiv preprint arXiv:2412.03104*, 2024. accepted by VLDB' 25.

567 Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
 568 series analysis by pretrained lm. *Advances in Neural Information Processing Systems*, 2023.

569

570 Xin Zhou, Weiqing Wang, Francisco J. Baldán, Wray Buntine, and Christoph Bergmeir. Motime: A
 571 dataset suite for multimodal time series forecasting. *arXiv preprint arXiv:2505.15072*, 2025.

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 APPENDIX
595596 A DETAILED EXPERIMENT SETUP OF TABLE 2
597598 For evaluation cost cosideration, we conduct the data leakage validation only on the 121 variables
599 in *SearchTrend* subset of TimesX. All other experimental settings follow Section 4.1.
600601 B DETAILS ON METADATA AND CALENDAR CONTEXT CONSTRUCTION
602603 B.1 METADATA CONSTRUCTION
604605 For each variable in TimesX, we create a static metadata description that summarizes the essential
606 attributes of the time series. The metadata is generated using a fixed template with three components:
607 (1) the variable name and its measurement unit, (2) the domain the variable belongs to, and (3) the
608 collection frequency and the target prediction window.
609

610 The general template is as follows:

611 “Meta Info”: ”This time series records [variable name and unit] in the [domain]
612 domain, with a collection frequency of [frequency]. Prediction target period: from
613 [start date] to [end date].”
614615 For example, for the gasoline price series in the Commodity Price domain, the metadata is:
616617 “Meta Info”: ”This time series records gasoline price (USD/Gal) in the Commodity
618 Price domain, with a collection frequency of daily. Prediction target period:
619 from 2024-09-01 to 2024-09-15.”
620621 B.2 CALENDAR CONTEXT CONSTRUCTION
622623 We generate calendar-based context features by automatically identifying holidays and special dates
624 that fall within the forecasting horizon. Specifically, we use the Python `Holidays` library⁷ to
625 retrieve country- and region-specific holidays.
626

The construction process follows three steps:

627 1. Convert each time series into a sequence of (timestamp, value) pairs.
628 2. For each forecasting horizon, query the library to extract all holidays that overlap with the
629 horizon window.
630 3. Format the results into textual annotations describing the holiday names and dates, which
631 are then aligned with the corresponding timestamps.
632633 For example, if the prediction horizon is from 2024-09-01 to 2024-09-15, the generated calendar
634 context includes:
635636 “Upcoming holidays in the prediction window: Labor Day (2024-09-02).”
637638 C COVARIATE CONTEXT CONSTRUCTION
639641 To generate covariate-based textual contexts, we compute descriptive statistics for each covariate in
642 the same domain as the target series. Specifically, for each covariate we calculate:
643644 • The average and median value over the observation window.
645 • The maximum value and the corresponding date.
646 • The minimum value and the corresponding date.
647⁷<https://pypi.org/project/holidays/>

648 • The overall trend (upward or downward).
 649

650 These statistics are automatically extracted using simple Python scripts and converted into structured
 651 textual descriptions. For example, one covariate may be described as:

652 “from 2024-06-01 to 2024-08-31: The average value of Brent Crude Oil
 653 (USD/BBL) is 81.5. The maximum value of 87.4 occurred on 2024-07-04, and
 654 the minimum value of 76.0 occurred on 2024-08-21, showing an overall down-
 655 ward trend.”
 656

657 D DETAILS OF TEXTUAL EVENT CONSTRUCTION

659 **Stage 1: Time-Series-Aware Event Hypothesis Generation** **Input.** A target variable with its
 660 numeric series $y_{1:T}$ and a target period $[t_s, t_e]$. The period is partitioned into fixed-length time
 661 blocks $\mathcal{B} = \{B_1, \dots, B_M\}$ (e.g., week or month).

663 **Process.** For each block B , an LLM proposes an initial set of event hypotheses $H_B = \{h_1, \dots\}$.
 664 Each h contains a tentative title, a draft timestamp, involved entities, and at least one candidate
 665 source URL. We aim to ensure through multiple iterations that H_B sufficiently explains the promi-
 666 nent movements in y_t within B . Specifically, We define a peak set \mathcal{P}_B from y_t (by a standard peak
 667 detector with fixed hyperparameters). A peak $p \in \mathcal{P}_B$ is *covered* if at least one $h \in H_B$ is tem-
 668 porally aligned with p (within a small window) and topically relevant to the target variable. The
 669 coverage is

$$670 \quad \text{cov}(H_B) = \frac{|\{p \in \mathcal{P}_B : p \text{ is covered by } H_B\}|}{|\mathcal{P}_B|}.$$

671 We keep querying the LLM to add hypotheses iteratively and stop when $\text{cov}(H_B) \geq \theta$ or when a
 672 step limit K_{\max} is reached. This rule balances completeness and cost without relying on unrestricted
 673 search.

675 **Output.** For each block B , a hypothesis set H_B with draft timestamps, entities, and seed URLs. All
 676 retrieval during Stage 1 is time-bounded by $[t_s, t_e]$ to keep the search window consistent with the
 677 evaluation period and to avoid leakage.

678 **Leakage control.** All queries use an explicit upper bound t_e . Sources with edited or republished
 679 pages after t_e are kept only if the original publication date is within $[t_s, t_e]$ and the content is acces-
 680 sible in that state.

681 **Prompt.** The prompt for this role is detailed in Fig 5

683 **Stage 2: Rigorous Verification and Temporal Characterization** **Input.** Hypotheses $\{H_B\}$ from
 684 Stage 1.

685 **Process.** A verification role call LLMs to re-fetch evidence under the same time bound $[t_s, t_e]$
 686 and constructs a structured temporal view for each hypothesis. The verifier normalizes titles, re-
 687 solves canonical entities, and extracts two dates: announcement_date and occurrence_date. It then
 688 assigns a temporal type from a closed set: *Scheduled* (announced in advance), *Contemporaneous*
 689 (announcement and occurrence are near in time), *Retrospective* (backward-looking report), *Predic-
 690 tive* (forward-looking signal), or *Mixed*. For each atomic claim, the verifier requires an accessible
 691 source URL (HTTP 200 at crawl time), stores the access date, and records a short quote that supports
 692 the extracted field. Multi-source cross-checking removes items with unresolved contradictions and
 693 de-duplicates near-duplicates by normalized title, entity set, and date tuple.

694 **Output.** A verified event set with (announcement_date, occurrence_date, type), consolidated
 695 sources, and a confidence score that reflects agreement across sources and the precision of dates
 696 (day-level preferred over month-level). The final timestamp and type come with a concise rationale
 697 that explains corrections to the Stage 1 draft.

698 **Leakage control.** Verification refuses any evidence whose first-publication date is after t_e . If a page
 699 is updated after t_e but preserves the original content and date within $[t_s, t_e]$, the verifier keeps the
 700 archived or cited original. Otherwise the evidence is discarded.

701 **Prompt.** The prompt for this role is detailed in Fig 6

702 **Stage 3: Conditional Enrichment for Narrative Depth** **Input.** Verified events from Stage 2.
 703

704 **Process.** An evaluation role checks information sufficiency for forecasting. If key fields are missing
 705 (e.g., actors, locations, magnitudes, explicit dates, or links to related variables), the pipeline runs an
 706 iterative but bounded deep search under the same time bound $[t_s, t_e]$. Each step adds at most one
 707 new high-value source. The process stops when all required fields are present or when a small step
 708 cap L_{\max} is reached. The reporting role then writes a concise narrative (a few sentences) that states
 709 what happened, when, who is involved, and why it likely relates to the target variable. Each factual
 710 sentence is grounded by one or more quotes with URLs.
 711

712 **Prompt.** The prompt for this role is detailed in Fig 7 and 8
 713

714 In our configuration, we empirically set $K_{\max} = 3$, $\theta = 90\%$, and $L_{\max} = 3$. Under this setting,
 715 the system can efficiently construct high-quality corpora with reasonable runtime and cost. We also
 716 conduct a small-scale sensitivity test: when we increase K_{\max} from 3 to 5 on a subset of variables,
 717 the total number of accepted events increases by only about 2%. Overall, we encourage users to
 718 adjust these hyperparameters according to their budget and domain, while using our configuration
 719 as a default recommendation.
 720

721 Under our current configuration (Gemini 2.5 Pro plus Gemini 2.5 Flash), the construction cost is
 722 about \$0.7 per variable per three-month time block, including reruns due to network errors. This
 723 cost can be further reduced by using open-source LLMs or by batching verification steps so that
 724 multiple candidate events share the same LLM calls.
 725

726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

```

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
prompt = """
You are a professional research analyst specializing in the {domain
} field.
Your task is to use your web search capabilities to identify and
structure
significant events related to '{keyword}' in {geography_str} that
occurred
between {start_date} and {end_date}.

Key Guidelines:
1. Source of Information: Please base your responses on the
information
retrieved from your web search and general common sense. It is
important
to avoid relying on internal knowledge or generating speculative
details
(hallucinations).
2. Date Extraction Principles: It is helpful to distinguish
between
two key types of dates. If a date cannot be found from the
sources,
please use 'null'.
* 'announcement_date': The date when the news about the event was
published or first announced. For example, if a news article
from **2024-01-10** announces an upcoming product launch.
* 'occurrence_date': The date when the event actually took
place
or is scheduled to take place. For example, if the product
launch
mentioned above happens on **2024-02-02**.
3. Event Type Classification: Please classify the event into
the
following types based on its certainty and timing.
* 'Scheduled Event': A high-certainty event that has been
officially
announced to occur at a future date.
* 'Predictive Information': A lower-certainty piece of
information
about the future, such as an analyst forecast, a target price
change,
or a credible rumor.
* 'Contemporaneous Event': An event that occurs at the same time
it
is announced, often unexpected.
* 'Retrospective Report': An analysis or report about an event or
period that has already passed.
4. Geographic Focus: Please focus on events within the {
geography_str
} region.
5. Source Verifiability: Each event should be supported by at
least
one verifiable, high-quality URL.

Output Format:
Please provide your response as a JSON array of event objects. Each
object
in the array should conform to the following structure. If any
field's value
cannot be determined from the sources, use 'null'.
```json
[
 {
 "event_summary": "A concise, factual description of the event
 ",
 "announcement_date": "YYYY-MM-DD or null",
 "occurrence_date": "YYYY-MM-DD or null",
 "event_type": "Scheduled Event|Predictive Information|
 Contemporaneous Event|Retrospective Report or Mixed or
 null",
 "source_urls": ["url1", "url2"],
 "confidence_score": 0.8
 }
]
```
Please ensure the entire response is only the valid JSON array,
without
any surrounding text or explanations.
"""

```

Figure 5: Prompt used for Hypothesizer Role: Initial Event Discovery via LLM with Web Search Integration.

```

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
prompt = """
You are a meticulous fact-checker. Your task is to verify claims
against
source content and identify invalid pages.

**CRITICAL: First determine if the source content is valid.**

**Important Definitions:**
- **content_date**: The date when the event itself occurred (e.g.,
  product
  launch, announcement)
- **publish_date**: The original publication date of the source (
  NOT "updated"
  or "last modified" dates)

**Few-Shot Learning Examples:**

**Example 1 - Valid Content:**
Event Claim: "Apple Vision Pro will be available on February 2,
2024"
Source Text:
```
<h2>Apple Vision Pro Available in the U.S. on February 2</h2>
POSTED ON JANUARY 8, 2024
<p>Apple today announced Apple Vision Pro will be available
beginning
Friday, February 2...</p>
<footer>Last updated: January 10, 2024</footer>
```
Expected Output:
```json
[{
 "page_status": "valid_content",
 "verified_statements": [
 {
 "statement": "Apple Vision Pro will be available on February 2,
2024",
 "status": "Confirmed",
 "supporting_quote": "Apple Vision Pro will be available
beginning Friday, February 2"
 }
],
 "overall_timing": {
 "content_date": "2024-02-02",
 "publish_date": "2024-01-08"
 },
 "reasoning": "Valid press release content. Used original publish
date (Jan 8), ignored 'last updated' footer."
}
]
```

**Example 2 - 404 Error Page:**
Event Claim: "iPhone 16 rumors surface in March 2024"
Source Text:
```
<title>Page Not Found - TechNews</title>
<h1>404 - Page Not Found</h1>
<p>The page you're looking for doesn't exist.</p>
<div class="sidebar">Today's Hot Topics: July 28, 2025</div>
```
Expected Output:
```json
[{
 "page_status": "error_page_404",
 "verified_statements": [],
 "overall_timing": {
 "content_date": null,
 "publish_date": null
 },
 "reasoning": "This is a 404 error page with no valid content.
Sidebar dates are irrelevant template content."
}
]
```

**Now analyze the actual content:**

**1. The Event Claim to Analyze:** {event_claim}

**2. The Evidence (Source Text):** {source_evidence}

**Instructions:**
1. First, determine page_status: valid_content, error_page_404,
   access_denied,
   or login_wall
2. If page_status is NOT "valid_content", return empty
   verified_statements
   and null dates
3. If valid_content, decompose claim into atomic facts and verify
   each one
4. For dates: Use ORIGINAL publish dates, ignore "updated",
   "modified",
   or sidebar dates
5. Classify fact status: Confirmed, Anticipated, Speculation, or
   Not_Found

**JSON Output format:** {
  "page_status": "<valid_content|error_page_404|access_denied|
  login_wall>",
  "verified_statements": [
    {
      "statement": "<atomic factual statement>",
      "status": "<Confirmed|Anticipated|Speculation|Not_Found>",
      "supporting_quote": "<exact quote from text or null>"
    }
  ],
  "overall_timing": {
    "content_date": "<YYYY-MM-DD when the event occurred or null>",
    "publish_date": "<YYYY-MM-DD when source was originally
published or null>"
  },
  "reasoning": "<Brief explanation of your analysis process>"
}

Respond with ONLY the JSON object, no additional text.
"""

```

Figure 6: Prompt used for Verifier Role: Atomic Fact Verification with Evidence Matching.

```
864
865 prompt = f"""
866 You are a research strategist analyzing information gaps and
867 planning next steps.
868
869 **IMPORTANT ACTION LIMIT**: Please limit your next_actions to a
870     maximum of
871 {max_actions} items. Focus on the most critical information gaps
872     that need
873 to be addressed. Each action should be high-quality and targeted.
874
875 **Original Event Claim:***
876 {original_claim}
877
878 **Currently Verified Information:***
879 {statements_summary}
880
881 **Your Task:***
882 1. **Analyze completeness**: Compare verified information against
883     the
884     original claim
885 2. **Identify information gaps**: List missing or unconfirmed facts
886 3. **Plan next actions**: For each gap, determine if it's common
887     knowledge
888     or requires search
889
890 For each information gap, classify as:
891 - **Common knowledge**: Facts that can be resolved internally (e.g
892     ,
893     "Apple's fiscal Q1 is Oct-Dec")
894 - **Requires search**: Facts needing external verification
895
896 **JSON Output format:***
897 {{ "is_sufficient": <true if all key facts are confirmed, false
898     otherwise>,
899     "next_actions": [
900         {
901             "info_gap": "<description of missing information>",
902             "is_common_knowledge": <true|false>,
903             "action_type": "<resolve_internally|search>",
904             "resolved_answer": "<answer if common knowledge, null otherwise
905                 >",
906             "query": "<search query if action_type is search, null
907                 otherwise>"
908         }
909     ]
910 }}}
911
912 Please respond with ONLY the JSON object.
913 """
914 """
```

Figure 7: Prompt used for Enricher Role (Phase 1): Information Sufficiency Evaluation and Action Planning.

918 E OVERVIEW OF TIMESX
919

920 TimesX contains 20 domains and 200 variables in total (balanced design: 20×10). The collec-
921 tion window spans from **2022-01-01** to **2025-06-30** for the daily subset, and from **2023-01-01** to
922 **2025-06-30** for the weekly subset.⁸ Geographical coverage includes North America (United States,
923 Canada, Mexico), Asia (for example, China, India), Europe (for example, United Kingdom, Nor-
924 way), South America (for example, Brazil), and Africa.

926
927 Table 7: Dataset summary.

| 928 Item | 929 Description |
|-----------------|---|
| 929 Domains | 930 20 |
| 930 Variables | 931 200 (balanced: about 10 per domain) |
| 931 Frequencies | 932 Weekly (Search Trend), Daily (Commodities, Exchange Rates) |
| 932 Time span | 933 2022-01-01 to 2025-06-30 ⁹ |
| 933 Geographies | 934 North America, Asia, Europe, South America, Africa (country and
subnational coverage where applicable) |

935 **Variables and Frequencies.** **Weekly** series consist of Google Search Trend signals¹⁰ across 12
936 domains. **Daily** series include (i) commodity prices¹¹ covering raw materials, energy, metals, and
937 agriculture, and (ii) major USD exchange rates¹². All series are aligned to a unified calendar per
938 frequency, with clear missing-value handling policies documented in the dataset card.

939
940 E.1 STRUCTURE OF TEXTUAL EVENTS
941

942 To maximize scientific utility and trust, we choose two complementary representations of the events:
943 a **structured event corpus** for modeling and the **complete verification logs** for audit. The former
944 provides clean, time-aligned annotations with compact narratives. The latter records the search
945 queries, source URLs, access timestamps, and short evidence quotes produced by the verifier.

946 Each event is organized into two layers that match modeling needs and evidence needs:
947

948 **Core semantics for modeling.** A short, fact-checked narrative, distinct *announcement* and *occur-
949 rence* dates, and a categorical *event type* (*Scheduled*, *Contemporaneous*, *Retrospective*, *Predictive*,
950 or *Mixed*).

951 **Evidence and provenance.** A small set of independent sources that support each claim, with ver-
952 batim text snippets and the corresponding access timestamps. For pages updated after the evaluation
953 cut-off, archived versions or original publication records are linked.

954
955 F BREAKDOWN OF TIMESX BY DOMAINS AND VARIABLES
956

957 Here are the acronyms we used for each domain when applicable:
958

- 959 • A&E: Arts & Entertainment;
- 960 • C&E: Climate & Environment;
- 961 • Econ: Economy;
- 962 • E. Tech: Electronic Technology;
- 963 • Fin: Finance;
- 964 • P&A: Pets & Animals;

965
966 ⁸Weekly Google Trends series are included from 2022-01-01 due to stable availability and consistent re-
967 trieval settings.

968
969 ¹⁰<https://trends.google.com/trends/>

970
971 ¹¹<https://marketstack.com/>

972
973 ¹²<https://frankfurter.dev/>

- 972 • Pub. H.: Public Health;
- 973 • PPG: Public Policy & Governance;
- 974 • Sci: Science;
- 975 • Shop: Shopping;
- 976 • SSSG: Society Security & Social Good;
- 977 • Traf: Traffic;
- 978 • Crops: Crops & Staples;
- 979 • Energy: Energy & Fuels;
- 980 • Lvstk.: Livestock & Food Products;
- 981 • RMC: Raw Materials & Construction;
- 982 • SAM: Specialty & Advanced Materials;
- 983 • SHVM: Strategic & High-Value Materials;
- 984 • Curr: Currency.

985 Table 8, 9 and 10 list the variables under each of the 19 domains in TimesX.

986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

| 1026 | |
|-------------------------------------|---|
| 1027 | |
| 1028 | |
| 1029 | |
| 1030 | |
| 1031 | |
| 1032 | |
| 1033 | |
| 1034 | |
| Domain | Variables (Search Keywords) |
| 1035 Arts & Entertainment | art_exhibitions; broadway_shows; comic_con; esports; film_festivals; food_&_wine_festivals; major_league_baseball; music_festivals; national_basketball_association; national_football_league |
| 1036 Climate & Environment | deforestation; drought; endangered_species; flooding; global_warming; heatwave; heavy_rainfall; marine_pollution; sustainable_fashion; water_scarcity |
| 1037 Economy | cost_of_living; federal_budget_deficit; government_spending; healthcare_costs; inflation; international_trade; minimum_wage; student_loans; taxes; unemployment_rate |
| 1038 Electronic Technology | alphabet; amazon; apple_inc.; artificial_intelligence; consumer_electronics; drones; meta_platforms; microsoft; nvidia; robotics |
| 1039 Finance | asset_management; cryptocurrency; financial_regulation; goldman_sachs; hedge_funds; investment_banking; mortgage_rates; private_equity; stock_market; venture_capital |
| 1040 Pets & Animals | animal_migration; animal_rescue; animal_welfare; beekeeping; biodiversity; invasive_species; marine_life; pest_control; pet_adoption; pet_health |
| 1041 Public Health | air_pollution; climate_change; diabetes; drug_overdose; food_safety; hiv_aids; infectious_disease; mental_health; obesity; opioid_crisis |
| 1042 Public Policy & Governance | carbon_emissions; federal_reserve; healthcare_policy; human_rights; immigration_reform; national_debt; presidential_election; refugee_support; renewable_energy; space_exploration; wildlife_conservation |
| 1043 Science | cancer_research; data_breach; earthquake; food_recall; gene_editing; meteor_shower; nobel_prize; quantum_computing; vaccine_research; volcanic_erection |
| 1044 Shopping | air_conditioner; back_to_school; black_friday_deals; christmas_gifts; fashion_week; flu_shot; halloween_costumes; organic_food; ski_gear; tax_software |
| 1045 Society Security & Social Good | affordable_housing; cybersecurity; data_privacy; domestic_violence; gender_equality; homelessness; income_inequality; infrastructure_spending; protest; wildfires |
| 1046 Traffic | air_travel; autonomous_driving; electric_vehicle; formula_1; gas_prices; rocket_launch; tesla; tour_de_france; traffic_insurance; used_car |

Table 8: Search Trend (weekly) coverage by domain and variables (2023-01-01–2025-06-30). Each domain lists ten representative keywords.

```

1080
1081
1082 prompt = f"""
1083     You are an Information Integration Specialist. Your task is to
1084         produce the
1085         final, authoritative version of an event by reviewing all provided
1086             evidence.
1087             Your summary must:
1088
1089             - Correct and enrich the original claim with additional verified
1090                 details.
1091             - For factual or scheduled events, prioritize the most
1092                 authoritative sources.
1093             - For subjective analyses or predictions, explicitly include
1094                 multiple credible
1095                 viewpoints, if available. Clearly acknowledging any conflicting or
1096                     uncertain
1097                     claims along with their sources, if available
1098             - Accurately adjudicate or revise the event's announcement date (
1099                 the date the
1100                     news was published) and occurrence date (the actual date of the
1101                         event),
1102                         using web search if necessary to ensure accuracy.
1103             - If you are unsure, use NA and avoid making up information.
1104
1105             **1. Original Event Claim:**  

1106             {event_summary}
1107
1108             **2. Detailed Factual Evidence:**  

1109             **Confirmed Facts:**  

1110             {confirmed_facts}
1111
1112             **Anticipated/Planned Facts:**  

1113             {anticipated_facts}
1114
1115             **Internal Knowledge Resolutions:**  

1116             {internal_facts}
1117
1118             **3. Detailed Timing Evidence from Sources:**  

1119             {timing_summary_detailed}
1120
1121             **4. Initial Date:**  

1122             The following dates are preliminary findings and do not represent
1123                 100% accuracy.
1124             Please select the most reasonable date based on the content and use
1125                 online
1126                 search tools if necessary.
1127             - **All Publish Dates Found:** {unique_publish_dates}
1128             - **All Content Dates Found:** {unique_content_dates}
1129
1130             **Your Final Task:**  

1131             Respond with ONLY a single JSON object. Do not add any text,
1132                 explanations,
1133                 or markdown formatting before or after the JSON block.
1134
1135             **JSON Output Format:**  

1136             {{  

1137                 "final_summary_text": "<Your comprehensive summary here. This text  

1138                     should be well-written, accurate, detailed and reflect your  

1139                     final decision on the dates.>",  

1140                 "authoritative_dates": {{  

1141                     "announcement_date": "<The single, most credible YYYY-MM-DD  

1142                         publish date of content. If none, use NA.>",  

1143                     "occurrence_date": "<The single, most credible YYYY-MM-DD date  

1144                         when the event actually took place. If none, use NA.>"  

1145                 }},  

1146                 "reasoning_for_date_choice": "<A brief, one-sentence explanation  

1147                     for your date selection. e.g., 'Chose the earliest publish  

1148                     date from a primary news source.'>"  

1149             }}  

1150             """
1151
1152
1153

```

Figure 8: Prompt used for Enricher Role (Phase 2): Final Information Synthesis with Authoritative Date Determination.

1134
1135
1136
1137
1138
1139

| 1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159 | 1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180 | 1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187 |
|--|--|--|
| Domain | Variables (Commodity Price) | |
| Crops & Staples | barley-INR-T; canola-CAD-T; cocoa-USD-T; cotton-USD-Lbs; diammonium-USD-T; oat-USD-Bu; potatoes-EUR-100KG; rice-USD-cwt; sugar-USD-Lbs; tea-INR-Kgs; urea-USD-T; wheat-USD-Bu | |
| Energy & Fuels | bitumen-CNY-T; brent-USD-Bbl; coal-USD-T; ethanol-USD-Gal; gasoline-USD-Gal; methanol-CNY-T; naphtha-USD-T; propane-USD-Gal; rapeseed-EUR-T; uranium-USD-Lbs | |
| Livestock & Food Products | beef-BRL-Kg; butter-EUR-T; cheese-USD-Lbs; coffee-USD-Lbs; corn-USD-BU; milk-USD-CWT; poultry-BRL-Kgs; salmon-NOK-KG; soybeans-USD-Bu; wool-AUD-100Kg | |
| Raw Materials & Construction | aluminum-USD-T; copper-USD-Lbs; lead-USD-T; lumber-USD-1000_board_feet; polyethylene-CNY-T; polypropylene-CNY-T; rubber-USD_CENTS_-Kg; steel-CNY-T; tin-USD-T; zinc-USD-T | |
| Specialty & Advanced Materials | gallium-CNY-Kg; germanium-CNY-Kg; indium-CNY-Kg; magnesium-CNY-T; manganese-CNY-T; molybdenum-CNY-Kg; molybdenum-USD-Kg; polyvinyl-CNY-T; tellurium-CNY-Kg; titanium-CNY-KG; titanium-USD-KG | |
| Strategic & High-Value Materials | cobalt-USD-T; gold-USD-t_oz; lithium-CNY-T; manganese-CNY-mtu; neodymium-CNY-T; nickel-USD-T; palladium-USD-t_oz; platinum-USD-t_oz; rhodium-USD-t_oz; silver-USD-t_oz | |

Table 9: Daily dataset coverage by domain and variables (2022-01-01–2025-06-30). Each domain lists ten representative instruments.

| 1175
1176
1177
1178
1179
1180 | 1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187 | 1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187 |
|--|--|--|
| Domain | Variables (Exchange Rate) | |
| Currency | USDtoAUD-ExchangeRate;
USDtoCAD-ExchangeRate;
USDtoGBP-ExchangeRate;
USDtoINR-ExchangeRate;
USDtoMXN-ExchangeRate; USDtoSGD-ExchangeRate | USDtoBRL-ExchangeRate;
USDtoCHF-ExchangeRate;
USDtoHKD-ExchangeRate;
USDtoKRW-ExchangeRate; |

Table 10: ExchangeRate: domains and variables

1188 **G FEATURE DEFINITION OF TIME SERIES**
11891190 Let a univariate series be $\{x_t\}_{t=1}^T$. We decompose it with STL into trend T_t , seasonal component
1191 S_t , and remainder R_t :

1192
$$x_t = T_t + S_t + R_t. \quad (1)$$

1193 Define the de-trended series $x_t^{\text{detr}} = x_t - T_t$ and the de-seasonalized series $x_t^{\text{deseas}} = x_t - S_t$.
11941195 **Seasonality**

1196
$$\text{Seasonality} = \max\left(0, 1 - \frac{\text{Var}(R_t)}{\text{Var}(x_t^{\text{detr}})}\right). \quad (2)$$

1197

1198 Higher values mean a clearer periodic pattern explains more variance in x_t .
11991200 **Trend**

1201
$$\text{Trend} = \max\left(0, 1 - \frac{\text{Var}(R_t)}{\text{Var}(x_t^{\text{deseas}})}\right). \quad (3)$$

1202

1203 Higher values mean a smoother long-term trend explains more variance in x_t .
12041205 **Nonstationarity** We report the Augmented Dickey–Fuller p -value Liu et al., 2022.
12061207 **Short-term distributional change (Short_term_jsd)** . Using a short window of length $w_s = 30$,
1208 for each window W form a histogram estimate \hat{p}_W on fixed bins and a Gaussian reference $\hat{q}_W =$
1209 $\mathcal{N}(\mu_W, \sigma_W^2)$ discretized on the same bins, where μ_W and σ_W are the window mean and standard
1210 deviation. The Jensen–Shannon divergence in window W is
1211

1212
$$\text{JSD}(\hat{p}_W, \hat{q}_W) = \frac{1}{2} \text{KL}\left(\hat{p}_W \parallel \frac{\hat{p}_W + \hat{q}_W}{2}\right) + \frac{1}{2} \text{KL}\left(\hat{q}_W \parallel \frac{\hat{p}_W + \hat{q}_W}{2}\right). \quad (4)$$

1213

1214 The metric is the average over all windows:
1215

1216
$$\text{Short_term_jsd} = \frac{1}{N_w} \sum_W \text{JSD}(\hat{p}_W, \hat{q}_W). \quad (5)$$

1217

1218 Larger values indicate that short-term empirical distributions deviate more from a Gaussian shape.
12191220 **Shifting** It summarizes typical level changes while retaining the influence of rare but large deviations.
12211222 **Transition** Discretize $\{x_t\}$ into three equiprobable states $s_t \in \{1, 2, 3\}$ (tertiles). Let $\pi_i =$
1223 $\Pr(s_t = i)$ and $T_{ij} = \Pr(s_{t+1} = j | s_t = i)$. The score is the sum of diagonal covariances
1224 between successive states:
1225

1226
$$\text{Transition} = \sum_{i=1}^3 [\Pr(s_t = i, s_{t+1} = i) - \Pr(s_t = i) \Pr(s_{t+1} = i)] = \sum_{i=1}^3 (\pi_i T_{ii} - \pi_i^2). \quad (6)$$

1227

1228 Higher values indicate that the process tends to stay in the same state more often than expected by
1229 chance.
12301231 Implementation details are in <https://github.com/decisionintelligence/TFB>.
12321233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **H DOMAIN-LEVEL FEATURE OF TIMESX**
1243

| 1244
Domain | Text features | | | Numeric features | | | | | |
|----------------------------------|------------------------|----------------------------|--------------------|------------------|---------------------|---------------|-------------------------|------------------------|--|
| | 1245
AvgEventsCount | 1246
AvgEventSummaryLen | 1247
Transition | 1248
Shifting | 1249
Seasonality | 1250
Trend | 1251
NonStationarity | 1252
Short_term_jsd | |
| Arts & Entertainment | 105.7000 | 711.2444 | 0.0190 | 0.0832 | 0.8596 | 0.4155 | 0.0048 | 0.1905 | |
| Climate & Environment | 98.1000 | 815.6727 | 0.0216 | 0.1514 | 0.8904 | 0.3970 | 0.0010 | 0.1463 | |
| Crops & Staples | 51.3333 | 590.8046 | 0.0857 | -0.3797 | 0.6621 | 0.9228 | 0.4201 | 0.2056 | |
| Currency | 111.0000 | 639.6416 | 0.0926 | 0.0923 | 0.5879 | 0.8801 | 0.3396 | 0.0595 | |
| Economy | 108.9000 | 733.3640 | 0.0310 | 0.0647 | 0.9030 | 0.5522 | 0.0557 | 0.1984 | |
| Electronic Technology | 115.7000 | 783.1571 | 0.0462 | 0.4609 | 0.8191 | 0.6149 | 0.2529 | 0.3264 | |
| Energy & Fuels | 53.7000 | 615.0142 | 0.1007 | -0.6639 | 0.6575 | 0.8752 | 0.3803 | 0.1231 | |
| Finance | 102.3000 | 777.7485 | 0.0773 | 0.5291 | 0.8193 | 0.6827 | 0.3351 | 0.2984 | |
| Livestock & Food Products | 55.4000 | 596.3044 | 0.0751 | -0.2187 | 0.6389 | 0.8821 | 0.4700 | 0.2769 | |
| Pets & Animals | 103.1000 | 815.8348 | 0.0418 | 0.2342 | 0.8459 | 0.5464 | 0.1143 | 0.2487 | |
| Public Health | 119.1000 | 848.1958 | 0.0184 | 0.0750 | 0.8370 | 0.3992 | 0.0016 | 0.2419 | |
| Public Policy & Governance | 96.4545 | 794.9547 | 0.0460 | 0.3298 | 0.8756 | 0.4869 | 0.0441 | 0.1710 | |
| Raw Materials & Construction | 49.8000 | 654.2472 | 0.0582 | -0.5388 | 0.6690 | 0.8925 | 0.2443 | 0.0805 | |
| Science | 98.2000 | 789.5100 | 0.0411 | 0.2402 | 0.7741 | 0.3854 | 0.1114 | 0.3549 | |
| Shopping | 58.4000 | 748.0253 | 0.0411 | 0.0815 | 0.9724 | 0.4336 | 0.0037 | 0.3374 | |
| Society Security & Social Good | 108.0000 | 841.8060 | 0.0499 | 0.4071 | 0.8296 | 0.4276 | 0.2003 | 0.2484 | |
| Specialty & Advanced Materials | 28.8182 | 672.6066 | 0.1002 | -0.1111 | 0.6388 | 0.9281 | 0.3969 | 0.4774 | |
| Strategic & High-Value Materials | 58.8000 | 683.1720 | 0.0918 | -0.1931 | 0.6468 | 0.8971 | 0.4695 | 0.2657 | |
| Traffic | 94.0000 | 766.4479 | 0.0517 | -0.1120 | 0.8239 | 0.4905 | 0.1612 | 0.3555 | |

1256
1257 Table 11: Domain-level textual and numeric features. "AvgEventSummaryLen" is the average num-
1258 ber of characters in the event summary text within each domain. The numeric feature set follows
1259 TFB (Qiu et al., 2024). The exact computation is detailed in Section G

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 I HYBRID FORECASTING METHODS: DETAILED IMPLEMENTATION

1297
 1298 These three methods demonstrate different strategies for integrating TFM with LLMs, ranging from
 1299 simple textual corrections to complex code generation, providing diverse approaches for context-
 1300 aware time series forecasting.

1302 I.1 TEXT REVISION METHOD (TEXTREV)

1303 I.1.1 METHOD OVERVIEW

1304 The Text Revision method employs a two-stage approach: first generating initial numerical forecasts
 1305 using TimesFM, then leveraging large language models to perform context-aware textual corrections
 1306 on these predictions. This method transforms time series forecasting into a text manipulation task,
 1307 enabling LLMs to understand and modify numerical predictions through natural language process-
 1308 ing.

1311 I.1.2 IMPLEMENTATION STEPS

- 1313 1. **Foundation Forecast Generation:** TimesFM generates point forecasts based on historical
 1314 time series data
- 1315 2. **Text-based Revision:** The TimesFM predictions are converted to timestamp-value pairs
 1316 and fed to the LLM along with contextual information
- 1317 3. **Result Parsing:** The corrected forecast values are extracted from the LLM response

1319 I.1.3 CORRECTION PROMPT TEMPLATE

1320 See Figure 9.

1323 I.2 FUNCTION CALL REVISION METHOD (FUNCREV)

1324 I.2.1 METHOD OVERVIEW

1325 The Function Call Revision method extends the text revision approach by providing LLMs with
 1326 a structured set of predefined functions for forecast adjustments. This method incorporates multi-
 1327 round conversation mechanisms with text/visual/hybrid critic feedback modes, offering systematic
 1328 and reproducible forecast modifications.

1331 I.2.2 IMPLEMENTATION STEPS

- 1332 1. **Initial Prediction:** TimesFM generates the baseline forecast
- 1333 2. **Multi-round Revision Loop:**
 - 1335 • Critic analyzes current forecast and provides feedback
 - 1336 • Forecaster calls predefined functions to adjust predictions based on feedback
 - 1337 • Process repeats until maximum rounds reached
- 1338 3. **Final Output:** Returns the forecast from the last revision round

1340 I.2.3 PREDEFINED FUNCTION SET

1341 The system provides 13 forecast adjustment functions organized into five categories:

- 1343 • **Basic Transformations:** `shift(offset)`, `scale(factor)`,
 1344 `linear_transform(slope, intercept)`
- 1345 • **Trend Adjustments:** `add_linear_trend(slope)`,
 1346 `add_exponential_trend(base, growth_rate)`,
 1347 `adjust_trend_strength(factor)`
- 1348 • **Smoothing Operations:** `moving_average_smooth(window)`,
 1349 `exponential_smooth(alpha)`

```

1350
1351     I have a time series forecasting correction task for you.
1352
1353     Here is some context about the task. Please consider this
1354         information when reviewing the forecast:
1355     <context>
1356     {background information, constraints, scenario descriptions,
1357         holiday information, etc.}
1358     </context>
1359
1360     Here is the historical time series in (timestamp, value) format:
1361     <history>
1362     {historical data points}
1363     </history>
1364
1365     An initial forecast has been generated using a deep model. Here it
1366         is:
1367     <initial_forecast>
1368     {TimesFM prediction results}
1369     </initial_forecast>
1370
1371     Please review the initial forecast and adjust the values
1372         considering the provided context. Make reasonable modifications
1373         where the context provides relevant information that could
1374         improve the forecast.
1375
1376     Return your corrected forecast in (timestamp, value) format between
1377         <forecast> and </forecast> tags.
1378     Do not include any other information (e.g., comments) in the
1379         forecast.
1380
1381     Example format:
1382     <forecast>
1383     (2024-01-01 12:00:00, 123.45)
1384     (2024-01-01 13:00:00, 124.67)
1385     </forecast>

```

Figure 9: Prompt template for Text Revision method (TextRev).

- **Seasonality Modifications:** add_seasonal_pattern(period, amplitude, phase), remove_seasonal_pattern(period)
- **Data Normalization:** standardize(), normalize_range(min_val, max_val), clip_outliers(lower_percentile, upper_percentile)

I.2.4 FUNCTION CALL PROMPT TEMPLATE

See Figure 10.

I.3 CODE REVISION METHOD (CODEREV)

I.3.1 METHOD OVERVIEW

The Code Revision method provides maximum adjustment flexibility by allowing LLMs to generate and execute free-form Python code for forecast modifications. This approach operates within a secure execution environment, supports multiple scientific computing libraries, and includes timeout and retry mechanisms for robust operation.

I.3.2 IMPLEMENTATION STEPS

1. **Initial Prediction:** TimesFM generates the baseline forecast

```

1404
1405 You are an expert time series forecaster with access to forecast
1406 adjustment tools.
1407
1408 Task context:
1409 <context>
1410 {contextual information}
1411 </context>
1412
1413 Critic feedback:
1414 <feedback>
1415 {critic analysis and suggestions}
1416 </feedback>
1417
1418 Current forecast:
1419 <current_forecast>
1420 {current prediction data}
1421 </current_forecast>
1422
1423 Available adjustment functions: {function list}
1424
1425 Please analyze the critic feedback and select appropriate functions
1426 to adjust the forecast. You can:
1. Call a single function for specific adjustments
1427 2. Call multiple functions for combined adjustments
1428 3. Choose not to call any functions if the current forecast is
1429 already reasonable
1430
1431
1432 Please explain your adjustment strategy and call the corresponding
1433 functions.
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```

Figure 10: Prompt template for Function Call Revision method (FuncRev).

2. Multi-round Revision Loop:

- Critic provides feedback on current forecast
- LLM generates Python code for forecast adjustments
- Code executes safely in restricted environment
- Retry mechanism activates if execution fails (maximum 3 attempts)

3. Code Execution Environment:

Pre-imported scientific libraries and forecast data variables are provided

I.3.3 SUPPORTED LIBRARIES

The execution environment includes the following pre-imported libraries: numpy, pandas, math, datetime, requests, sqlite3, csv, json, sympy, statsmodels, networkx.

I.3.4 CODE GENERATION PROMPT TEMPLATE

See Figure 11.

```

1458
1459     You are an expert time series forecaster with Python programming
1460     capabilities. Instead of using predefined functions, you should
1461     write Python code to adjust the forecast based on the critic's
1462     feedback.
1463
1464     Here is the context about the task:
1465     <context>
1466     {contextual information}
1467     </context>
1468
1469     The critic's feedback:
1470     <critic_feedback>
1471     {critic feedback}
1472     </critic_feedback>
1473
1474     PROGRAMMING ENVIRONMENT:
1475     You have access to a restricted Python environment with pre-
1476     imported libraries and variables.
1477
1478     Pre-imported libraries: numpy, pandas, math, datetime, requests,
1479     sqlite3, csv, json, sympy, statsmodels, networkx
1480
1481     Available variables in your code:
1482     - current_forecast: Dictionary mapping timestamps to forecast
1483         values
1484     - timestamps: List of prediction timestamps (strings in "YYYY-MM-DD
1485         HH:MM:SS" format)
1486     - forecast_values: List of forecast values corresponding to
1487         timestamps
1488
1489     INSTRUCTIONS:
1490     1. Write Python code to adjust the forecast based on the critic's
1491         feedback
1492     2. DO NOT include any import statements - all libraries are already
1493         imported
1494     3. Your code can perform any mathematical operations,
1495         transformations, or adjustments
1496     4. You must assign the final adjusted forecast to a variable called
1497         'adjusted_forecast'
1498     5. The 'adjusted_forecast' should be a dictionary mapping
1499         timestamps to adjusted values
1500     6. You can modify forecast_values list and then reconstruct the
1501         dictionary, or work directly with current_forecast
1502     7. Be creative with your adjustments - you're not limited to
1503         predefined functions
1504
1505     EXAMPLE CODE STRUCTURE:
1506     ````python
1507     # Your analysis and adjustment logic here
1508     # DO NOT include import statements - libraries are pre-imported
1509
1510     # Example: Apply some adjustment based on critic feedback
1511     for i, timestamp in enumerate(timestamps):
1512         # Your logic here
1513         forecast_values[i] = forecast_values[i] * some_factor # example
1514             adjustment
1515
1516     # Final result
1517     adjusted_forecast = {timestamp: value for timestamp, value in zip(
1518         timestamps, forecast_values)}
1519     ````

1520     CRITICAL REQUIREMENTS:
1521     - DO NOT include any import statements (libraries are pre-imported)
1522     - Is syntactically correct Python
1523     - Uses only the pre-imported libraries
1524     - Assigns the final result to 'adjusted_forecast' variable
1525     - Handles the forecast data appropriately
1526
1527     Your Python code (without any import statements):
1528

```

Figure 11: Prompt template for Code Revision method (CodeRev).

| 1512
1513
1514 | Capability
Benchmark | Multimodal TSF | Factuality | MM LongContext | Mathematics | Science |
|----------------------|-------------------------|----------------|--------------|----------------|--------------|--------------|
| | | Our TimesX (↓) | SimpleQA (↑) | MRCR (↑) | AIME2025 (↑) | GPQA2025 (↑) |
| 1515 | GPT-5 | 0.61 | 51.1 | 96.0 | 91.7 | 85.4 |
| 1516 | GPT-4o | 0.65 | 38.4 | 55.8 | 6.00 | 51.1 |
| 1517 | Gemini-2.0-Flash | 0.66 | 28.2 | 69.2 | 21.7 | 62.3 |
| 1518 | DeepSeek-V3 | 0.72 | 29.5 | 33.8 | 26.0 | 55.7 |
| 1519 | Gemini-2.5-Flash | 0.75 | 27.8 | 32.0 | 73.7 | 68.3 |
| 1520 | DeepSeek-R1 | 0.78 | 31.9 | 18.0 | 76.0 | 81.3 |

1521
1522 Table 12: Relationships between LLMs’ multimodal TSF performance and four core capabilities.
1523 We use data with sample start dates after January 2025 on TimesX. On TimesX, lower MASE
1524 indicates better performance, while on the other four benchmarks, higher scores indicate better
1525 performance.

1527 I.4 DETAILED EXPERIMENT RESULTS FOR ADVANCED REASONING MODELS

1529 We further extend our experiments to advanced reasoning LLMs. Specifically, for GPT-4o, Gemini-
1530 2.0-Flash, and DeepSeek-V3, we introduce their corresponding reasoning versions, GPT-5, Gemini-
1531 2.5-Flash, and DeepSeek-R1. To avoid data contamination, we select evaluation examples whose
1532 forecast horizons begin after January 2025. As shown in Table 12, we observe that while GPT-5
1533 outperforms GPT-4o, the reasoning models in the other two pairs perform significantly worse than
1534 their non-reasoning counterparts. To further understand the drivers of TSF performance, we cross
1535 reference the TSF performance with other four core LLM capabilities: factuality (SimpleQA (Wei
1536 et al., 2024)), multimodal long-context understanding (MRCR https://huggingface.co/datasets/openai/mrcr?utm_source=chatgpt.com), mathematics (AIME (Guha et al.,
1537 2025)), and science (GPQA (Rein et al., 2024)). The results suggest that multimodal TSF is unre-
1538 lated to the mathematics and science skills emphasized by current reasoning models. Instead, it
1539 depends more on factuality and multimodal long-context understanding, which are better captured
1540 by non-reasoning LLMs.

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 **J KNOWLEDGE CUTOFF OF EVALUATED MODELS**
15671568 Since pretrained models may have ingested training data only up to specific points in time, we
1569 explicitly document the knowledge cutoff date of each model considered in our experiments. This
1570 ensures a fair evaluation by avoiding potential data leakage from future information. The knowledge
1571 cutoffs are as follows:
15721573

- **GPT-5:** September 30, 2024
- **Gemini-2.5-Flash:** January 2025
- **Gemini-2.0-Flash:** June 2024
- **GPT-4o:** October 2023
- **DeepSeek-R1:** prior to June 2024
- **DeepSeek-V3:** prior to June 2024

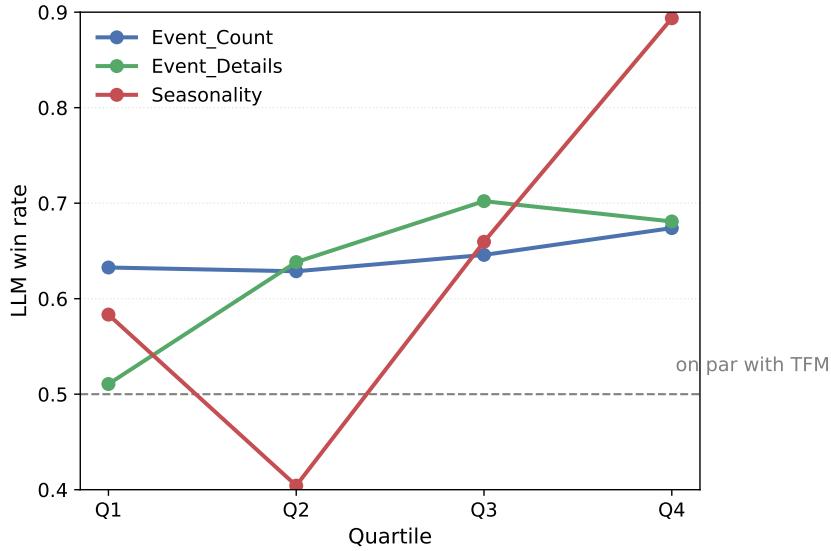
15781581 For all evaluations, we align the forecasting horizons such that the prediction targets fall strictly after
1582 each model’s knowledge cutoff date, thereby minimizing the risk of contamination.
15831584 **K ADDITIONAL RESULTS FOR CONTEXT–QUALITY STUDY ON TIME-MMD**
1585
1586 DATASET1587 **Setup.** We evaluate on all nine *Time-MMD* datasets. For LLM methods we fix the prompt tem-
1588 plate, the decoding settings, and the model **Gemini 2.0 Flash**; we *only* replace the textual context
1589 (ours vs. the original *Time-MMD* context). The numeric series remain unchanged. We use the pe-
1590 riod from **2021-06-30** to **2024-04-01**, which is the cutoff date of *Time-MMD* dataset. For **daily**
1591 datasets we set hist_window = 365, pred_window = 120, slide_window = 40. For **weekly** datasets
1592 we set hist_window = 96, pred_window = 12, slide_window = 4. For **monthly** datasets we set
1593 hist_window = 16, pred_window = 4, slide_window = 2. These choices balance sample count and
1594 sample diversity while keeping the same evaluation protocol across methods.
15951596 **Complete per-domain results.** Table 13 reports normalized performance (MASE \downarrow) for each do-
1597 main and the geometric mean across domains, together with the average rank. We use two decimals
1598 for all numbers and do not report the arithmetic mean.
15991600 Table 13: Per-dataset results on *Time-MMD* (MASE \downarrow). Rows are datasets and summary metrics;
1601 columns are methods. LLM settings (model/prompt/temperature) are fixed; only textual context
1602 differs.
1603

| Dataset / Metric | LLM with our context | LLM with Time-MMD context | Moirai2 | TimesFM2.5 | SeasonalNaive |
|-----------------------|----------------------|---------------------------|-------------|-------------|---------------|
| traffic | 0.76 | 0.70 | 3.74 | 2.95 | 1.00 |
| economy | 0.76 | 0.77 | 1.16 | 1.42 | 1.00 |
| health | 0.92 | 0.89 | 0.99 | 0.81 | 1.00 |
| social | 0.80 | 1.02 | 0.75 | 1.40 | 1.00 |
| environment | 0.82 | 0.82 | 0.75 | 0.71 | 1.00 |
| agriculture | 0.81 | 0.97 | 0.78 | 0.57 | 1.00 |
| energy | 0.68 | 0.95 | 0.86 | 0.80 | 1.00 |
| security | 0.96 | 0.91 | 0.81 | 1.10 | 1.00 |
| climate | 1.15 | 1.21 | 0.77 | 0.78 | 1.00 |
| Geometric Mean | 0.84 | 0.91 | 1.02 | 1.04 | 1.00 |
| Average Rank | 2.50 | 3.06 | 2.56 | 2.89 | 4.00 |

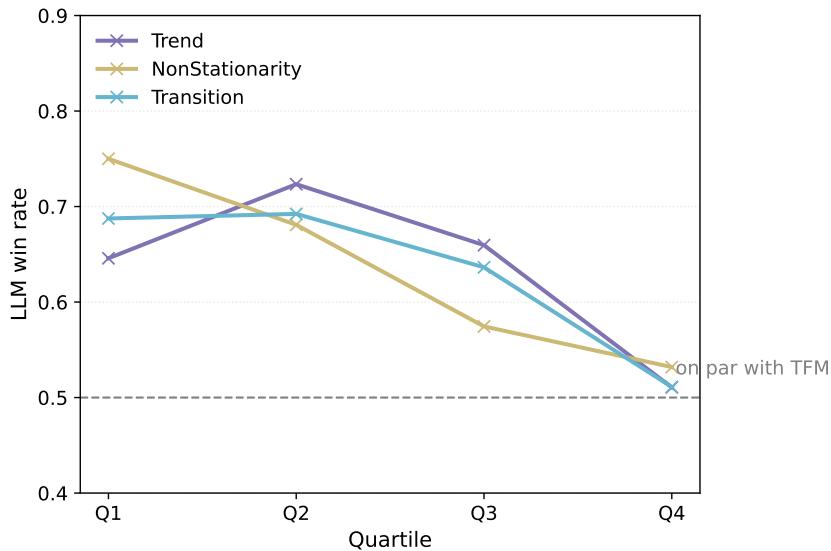
1613 **L MASE TABLE FOR ABLATION: DOMAINS**
16141615 **M ABLATION: EFFECTS OF VARIOUS VARIABLE CHARACTERISTICS**
16161617 In this section we investigate what variable level features can impact the ordering of LLM based
1618 multimodal solutions vs TFMNs.
1619

1620
 1621 In Fig. 12, we plot the win rate of Gemini-2.0-Flash against TimesFM-2.5 as we climb the quartiles
 1622 of event counts, length of event details and seasonality. We can see that with increasing event infor-
 1623 mation the multimodal solutions that leverage these become better than TFM which are time-series
 1624 only. In the case of seasonality, extremely seasonal series are easy to predict and therefore that edge
 1625 that TFM have over LLMs in pure forecasting tasks reduces.

1626
 1627 In Fig. 13, we plot the same while varying various time-series characteristics like trend, non-
 1628 stationarity and transition/ change-points. Increasing quartiles of these indicate the hardness of the
 1629 pure time-series forecasting task irrespective of the text context, and therefore TFM can perform
 1630 better on these time-series tasks. Consequently, very strong trends and high non-stationarity reduce
 1631 Gemini’s edge over TFM.



1649
 1650 Figure 12: We plot the aggregated MASE (lower is better) as a function of variable level features
 1651 like event count, length of event details and seasonality.



1672
 1673 Figure 13: We plot the aggregated MASE (lower is better) as a function of variable level time-series
 1674 features like trend, non-stationarity and transitions.

1674 N EVALUATION METRICS

1675

1676 **Principle** We use the Mean Absolute Scaled Error (MASE) as the core metric and normalize it
 1677 by a seasonal naive baseline. This choice of MASE is following GIFT-EVAL (Aksu et al., 2024)
 1678 and Chronos Benchmark 2 (Ansari et al., 2024). We aggregate performance across datasets using
 1679 the *geometric mean* of normalized scores rather than the arithmetic mean, since prior work proved
 1680 that the geometric mean is more robust to the choice of normalization baseline (Fleming & Wallace,
 1681 1986).

1682

1683 **Per-window MASE.** Let dataset $i \in \{1, \dots, D\}$ be a single variable. Its full series is $\{y_t^{(i)}\}_{t=1}^{T_i}$.
 1684 Window $w \in \{1, \dots, W_i\}$ has forecast origin $\tau_{i,w}$ and horizon $H_{i,w}$, so the history is $\{y_t^{(i)}\}_{t=1}^{\tau_{i,w}}$.
 1685 Given a seasonality m , the in-history seasonal scale is

$$1686 Q_{i,w} = \frac{1}{\tau_{i,w} - m} \sum_{t=m+1}^{\tau_{i,w}} |y_t^{(i)} - y_{t-m}^{(i)}|. \quad (7)$$

1687 For a model with forecasts $\{\hat{y}_{\tau_{i,w}+h}^{(i)}\}_{h=1}^{H_{i,w}}$, the per-window MASE is

$$1688 \text{MASE}_{i,w}(\text{model}) = \frac{1}{H_{i,w}} \sum_{h=1}^{H_{i,w}} \frac{|y_{\tau_{i,w}+h}^{(i)} - \hat{y}_{\tau_{i,w}+h}^{(i)}|}{Q_{i,w}}. \quad (8)$$

1689 This follows the GIFT-EVAL scaling but replaces a separate training split with the history up to the
 1690 forecast origin.

1691

1692 **Seasonal naive baseline.** The seasonal naive forecast repeats the last observed seasonal cycle from
 1693 the history. Let $\mathbf{s}^{(i,w)} = (y_{\tau_{i,w}-m+1}^{(i)}, \dots, y_{\tau_{i,w}}^{(i)})$. Then

$$1694 \hat{y}_{\tau_{i,w}+h}^{(i),\text{SNAIVE}} = \mathbf{s}_{1+(h-1) \bmod m}^{(i,w)}, \quad h = 1, \dots, H_{i,w}. \quad (9)$$

1695 We compute $\text{MASE}_{i,w}(\text{SNAIVE})$ by substituting equation 9 into equation 8.

1696

1697 **Per-dataset normalization.** For each dataset i , we aggregate across its windows and form a nor-
 1698 malized *MASE ratio*:

$$1699 R_i(\text{model}) = \frac{\sum_{w=1}^{W_i} \text{MASE}_{i,w}(\text{model})}{\sum_{w=1}^{W_i} \text{MASE}_{i,w}(\text{SNAIVE})}. \quad (10)$$

1700 Values $R_i < 1$ indicate improvement over the seasonal naive baseline on dataset i .

1701

1702 **Primary aggregate: geometric mean of ratios.** We report the geometric mean across all datasets
 1703 as the primary summary:

$$1704 \text{GM}(\text{model}) = \left(\prod_{i=1}^D R_i(\text{model}) \right)^{\frac{1}{D}}. \quad (11)$$

1705 In our release, $D = 200$.

1706

1707 **Secondary aggregate: average rank.** As a complementary, scale-free indicator, we rank models
 1708 on each dataset by R_i (lower is better). Let $\text{rank}_i(\text{model}) \in \{1, 2, \dots\}$ be the rank of a model on
 1709 dataset i . We report the average rank

$$1710 \text{AvgRank}(\text{model}) = \frac{1}{D} \sum_{i=1}^D \text{rank}_i(\text{model}). \quad (12)$$

1711

1712 **More Details.** Unless otherwise specified, we set the seasonality to $m = 12$ for monthly data,
 1713 $m = 4$ for weekly data, and $m = 7$ for daily data, which matches the construction of our series and
 1714 the seasonal naive baseline used for normalization.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750

| Data Source | Numeric features | | | | | |
|----------------|------------------|----------|-------------|-------|-----------------|----------------|
| | Transition | Shifting | Seasonality | Trend | NonStationarity | Short_term_jsd |
| CommodityPrice | 0.09 | -0.35 | 0.65 | 0.90 | 0.40 | 0.24 |
| ExchangeRate | 0.09 | 0.09 | 0.59 | 0.88 | 0.34 | 0.06 |
| SearchTrend | 0.04 | 0.21 | 0.85 | 0.49 | 0.11 | 0.26 |

1757
 1758 Table 15: Data-source-level mean of numeric characteristics (Transition, Shifting, Seasonality,
 1759 Trend, NonStationarity (ADF p-value), Short_term_jsd).
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782 **O VISUALIZATION OF NUMERIC DATASET IN TIMESX BY DOMAIN**

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

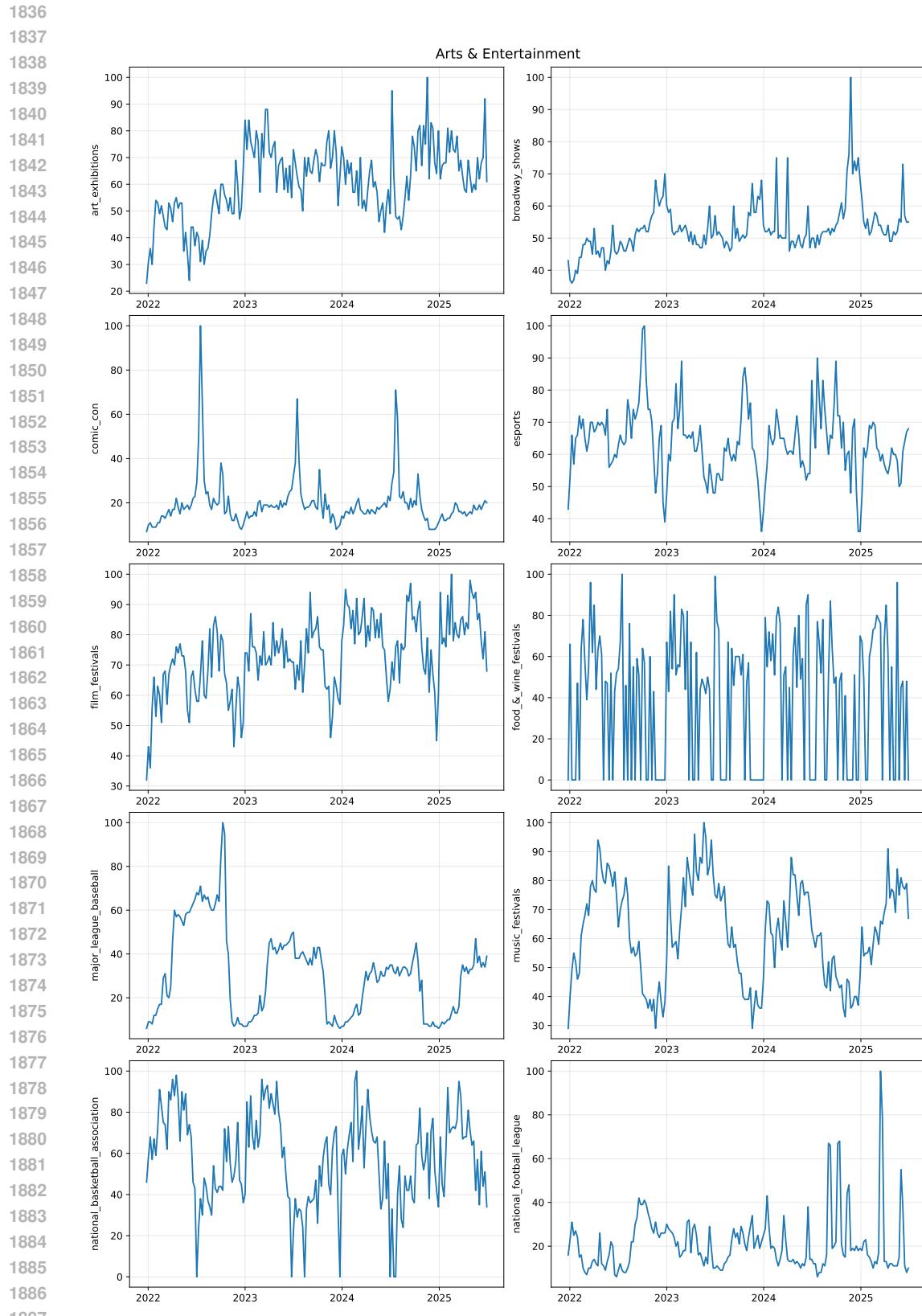


Figure 14: Numeric series visualization for the Arts and Entertainment domain .

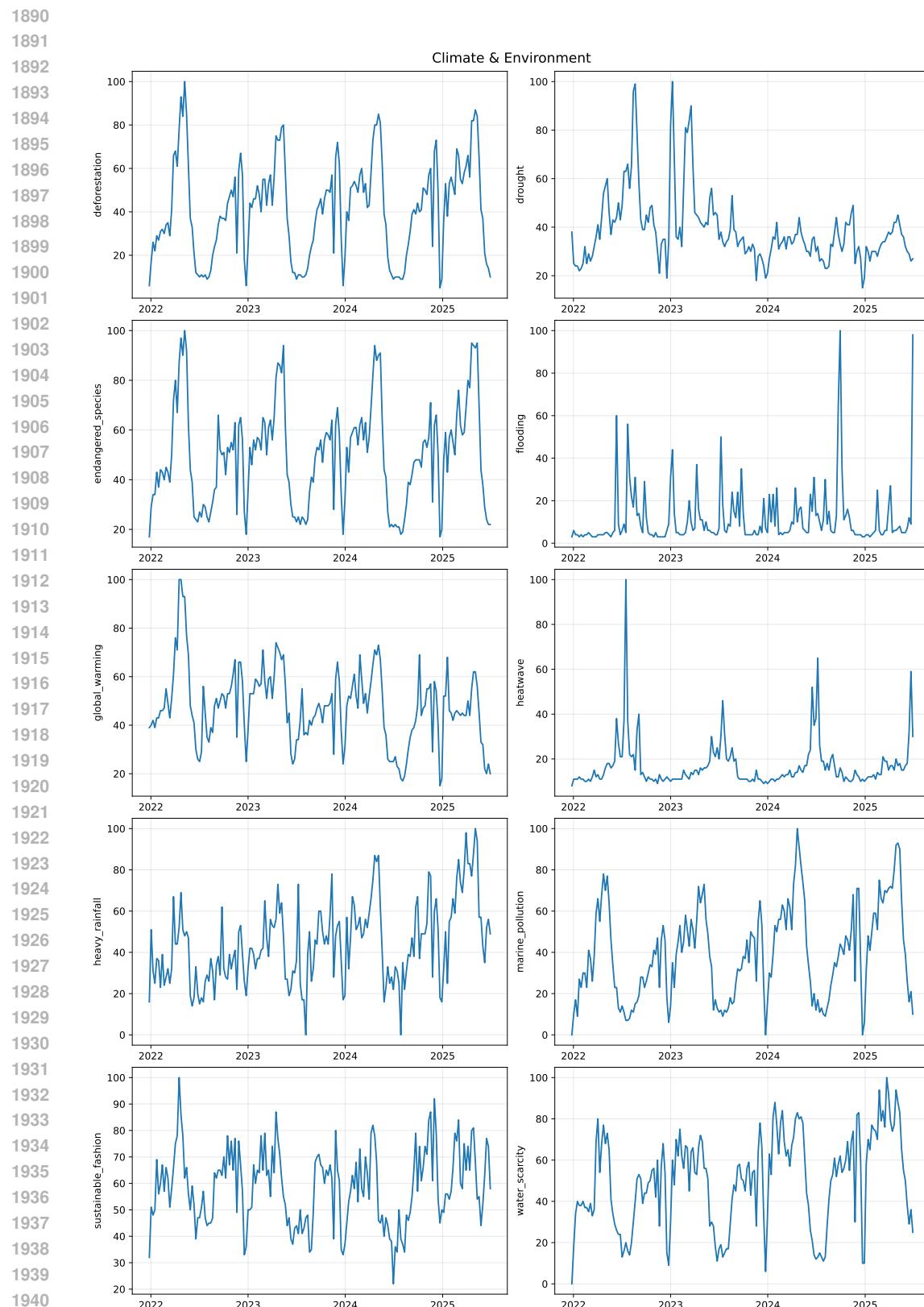


Figure 15: Numeric series visualization for the Climate and Environment domain .

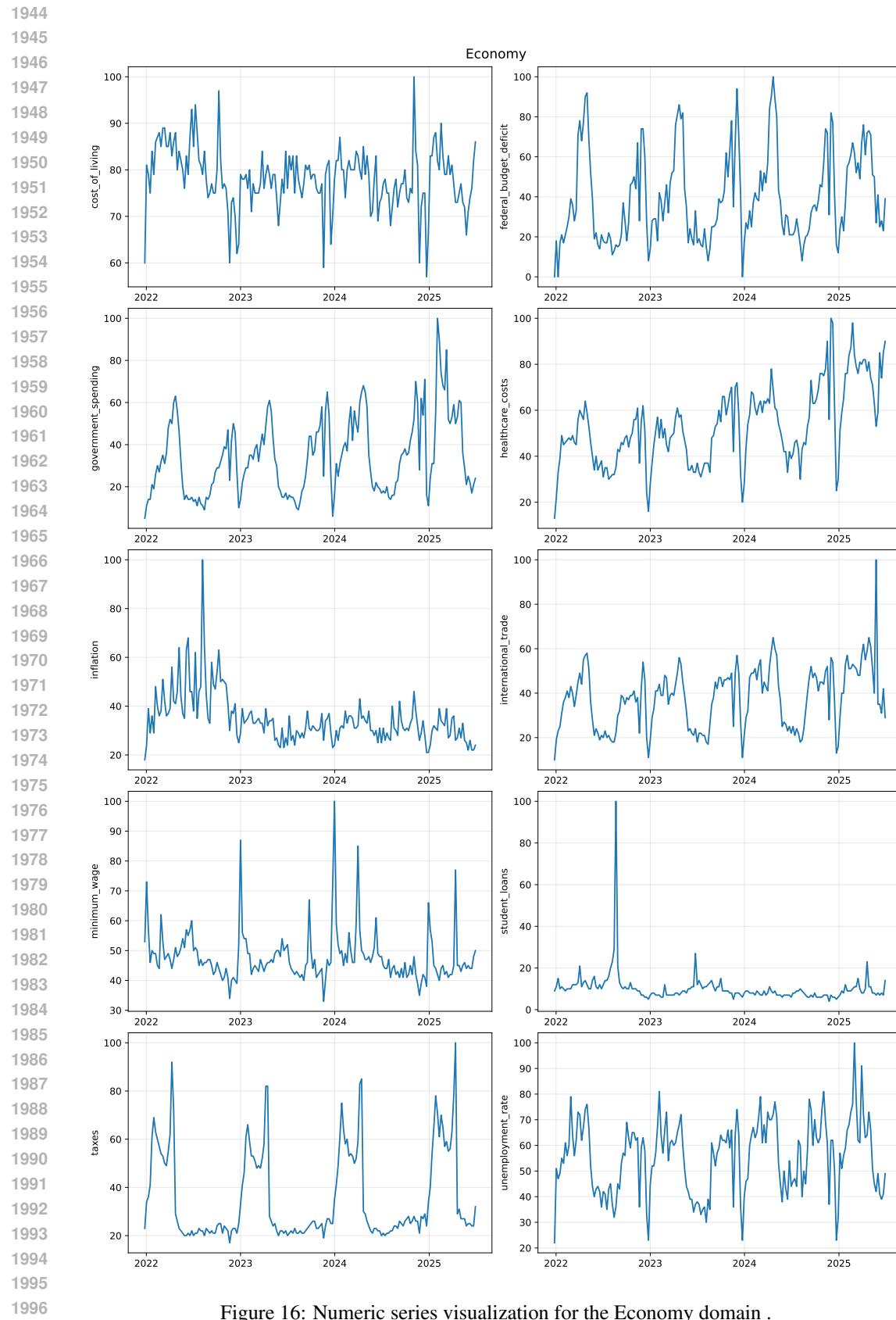


Figure 16: Numeric series visualization for the Economy domain .

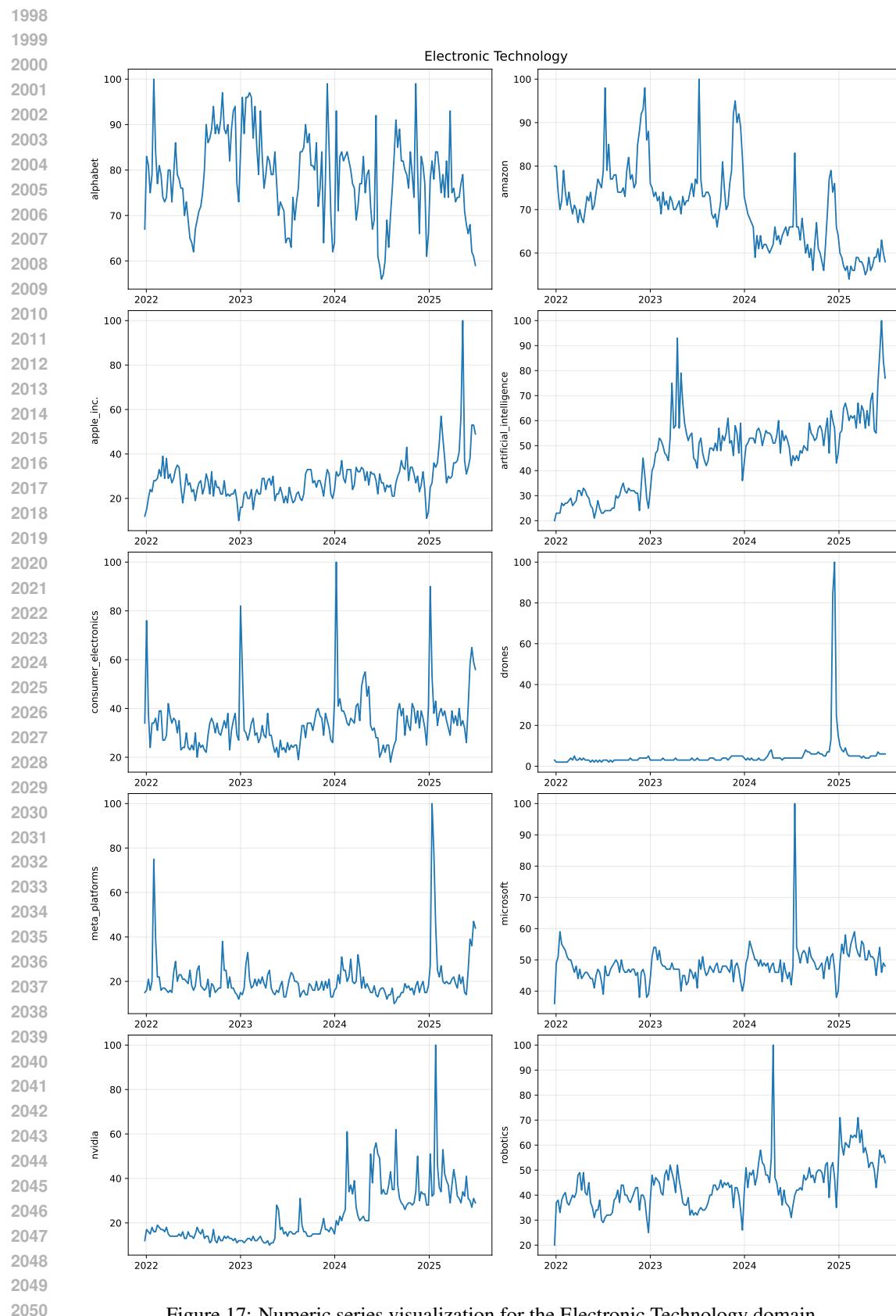


Figure 17: Numeric series visualization for the Electronic Technology domain .

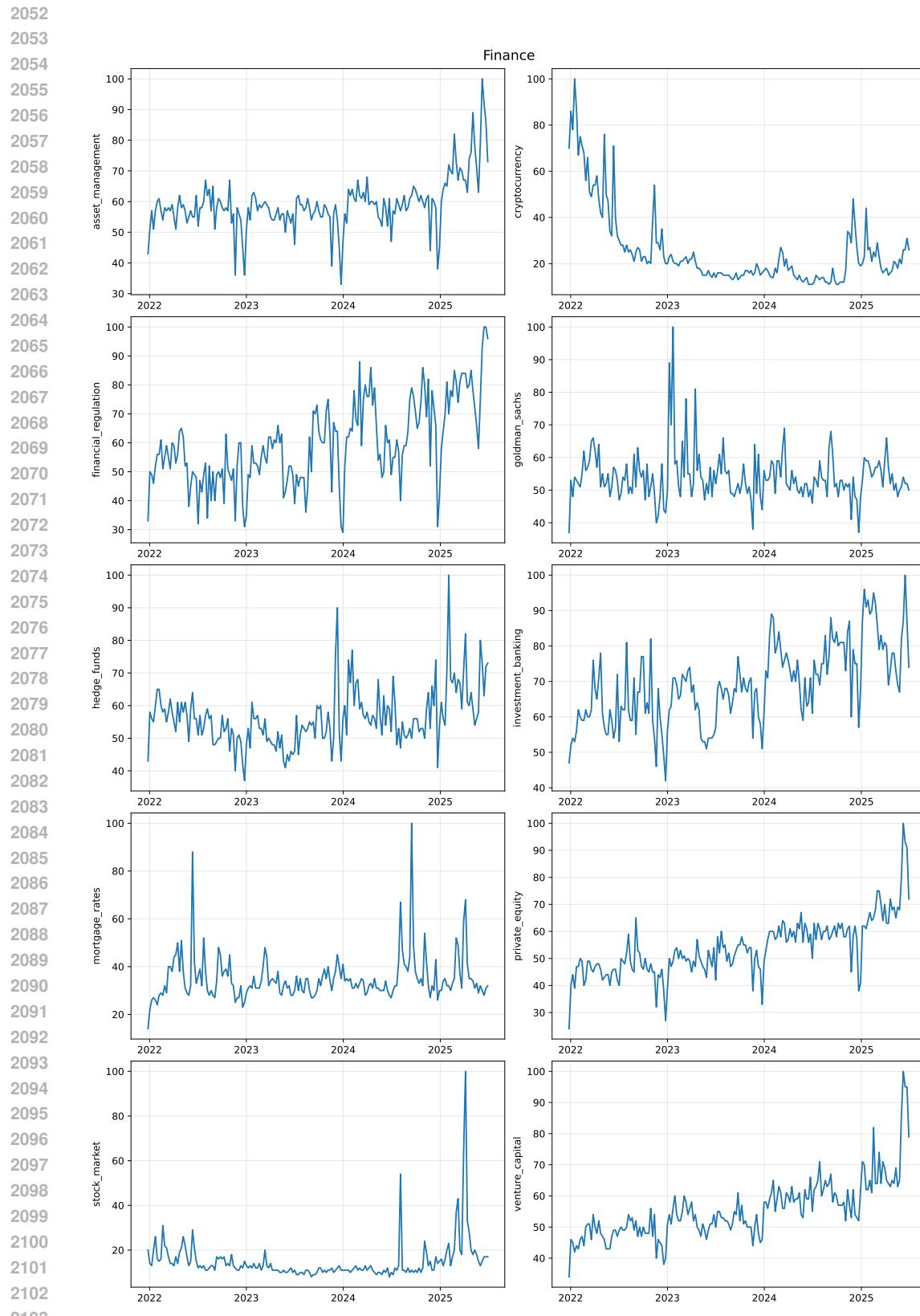


Figure 18: Numeric series visualization for the Finance domain .

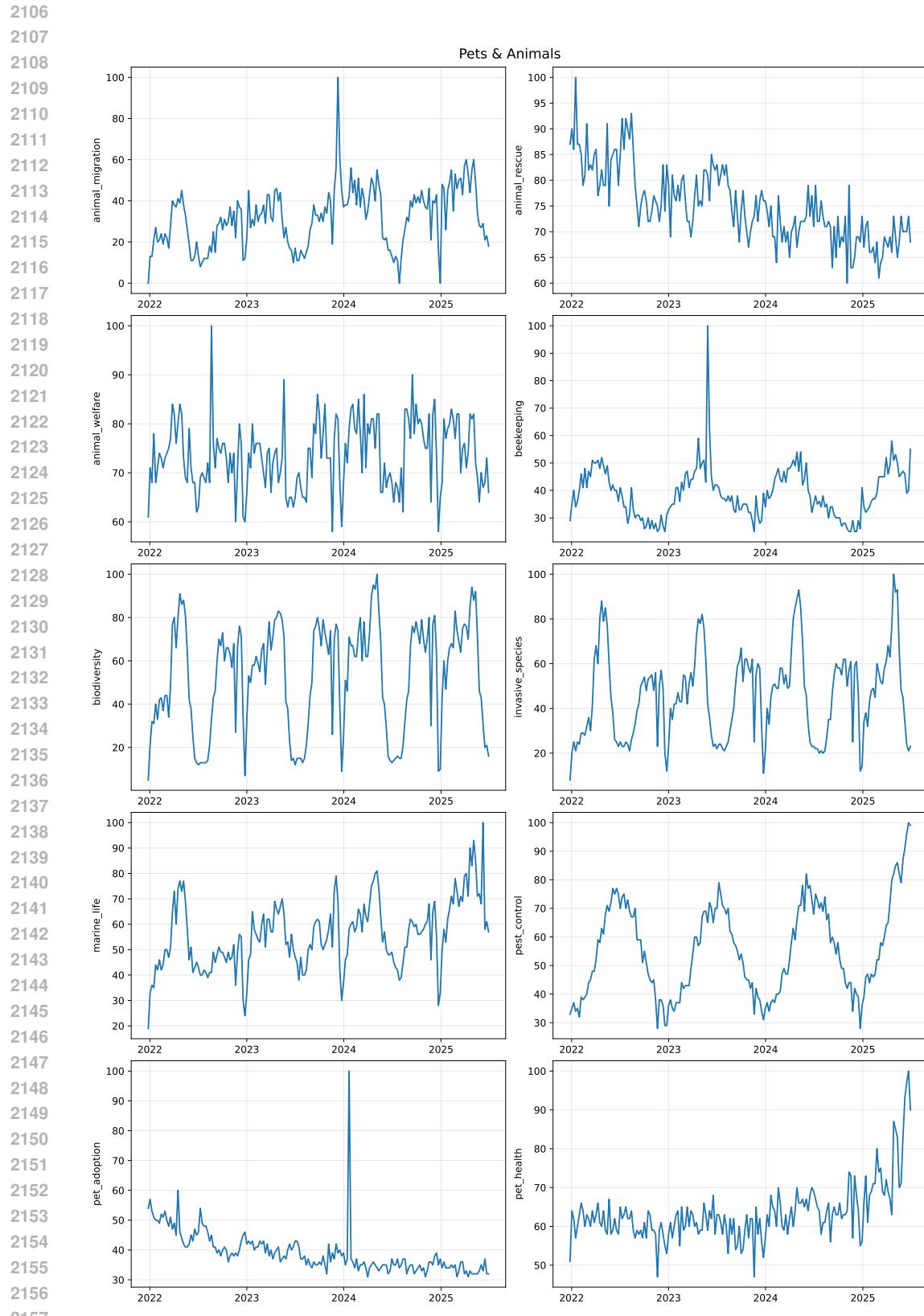


Figure 19: Numeric series visualization for the Pets and Animals domain .

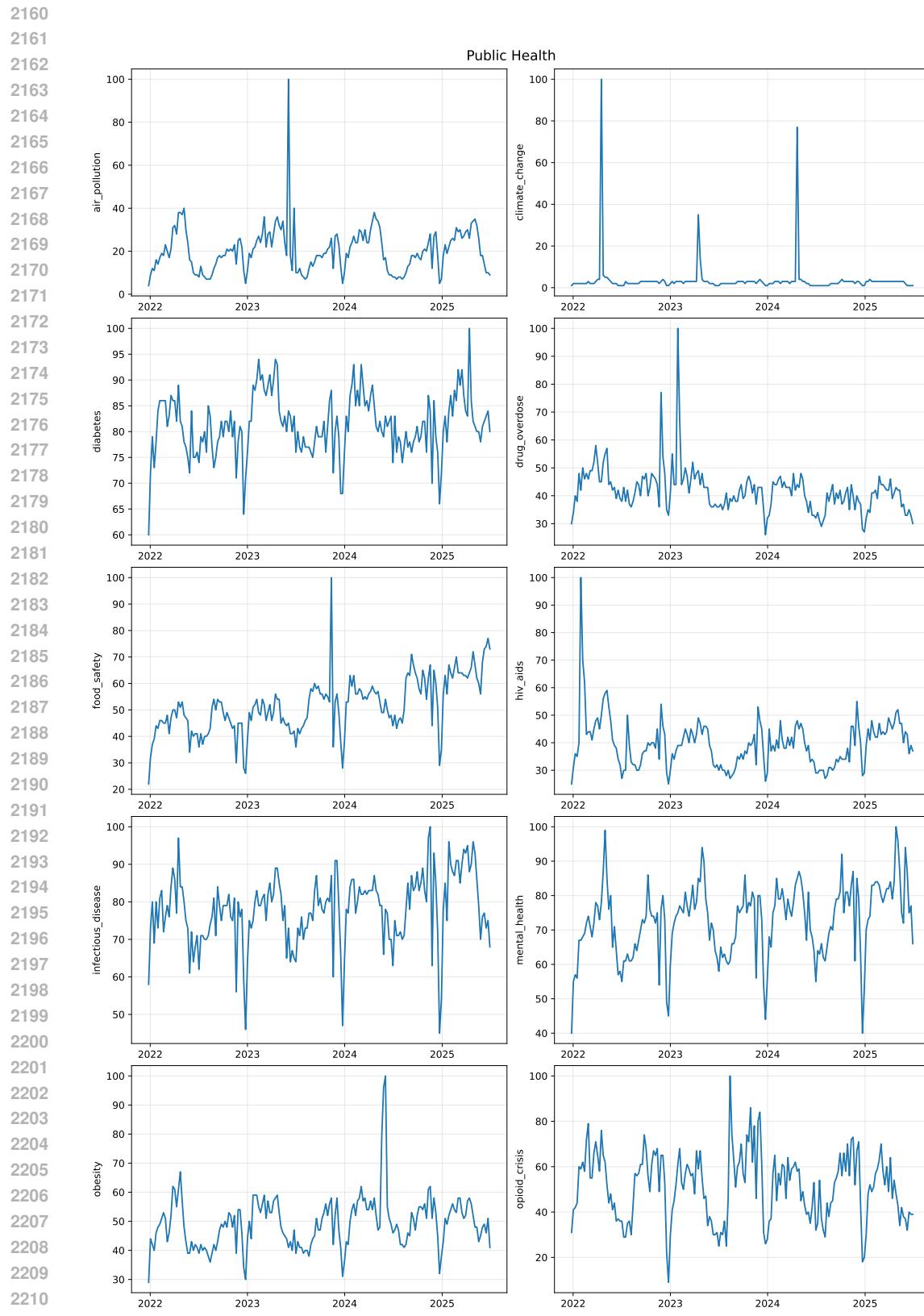


Figure 20: Numeric series visualization for the Public Health domain .

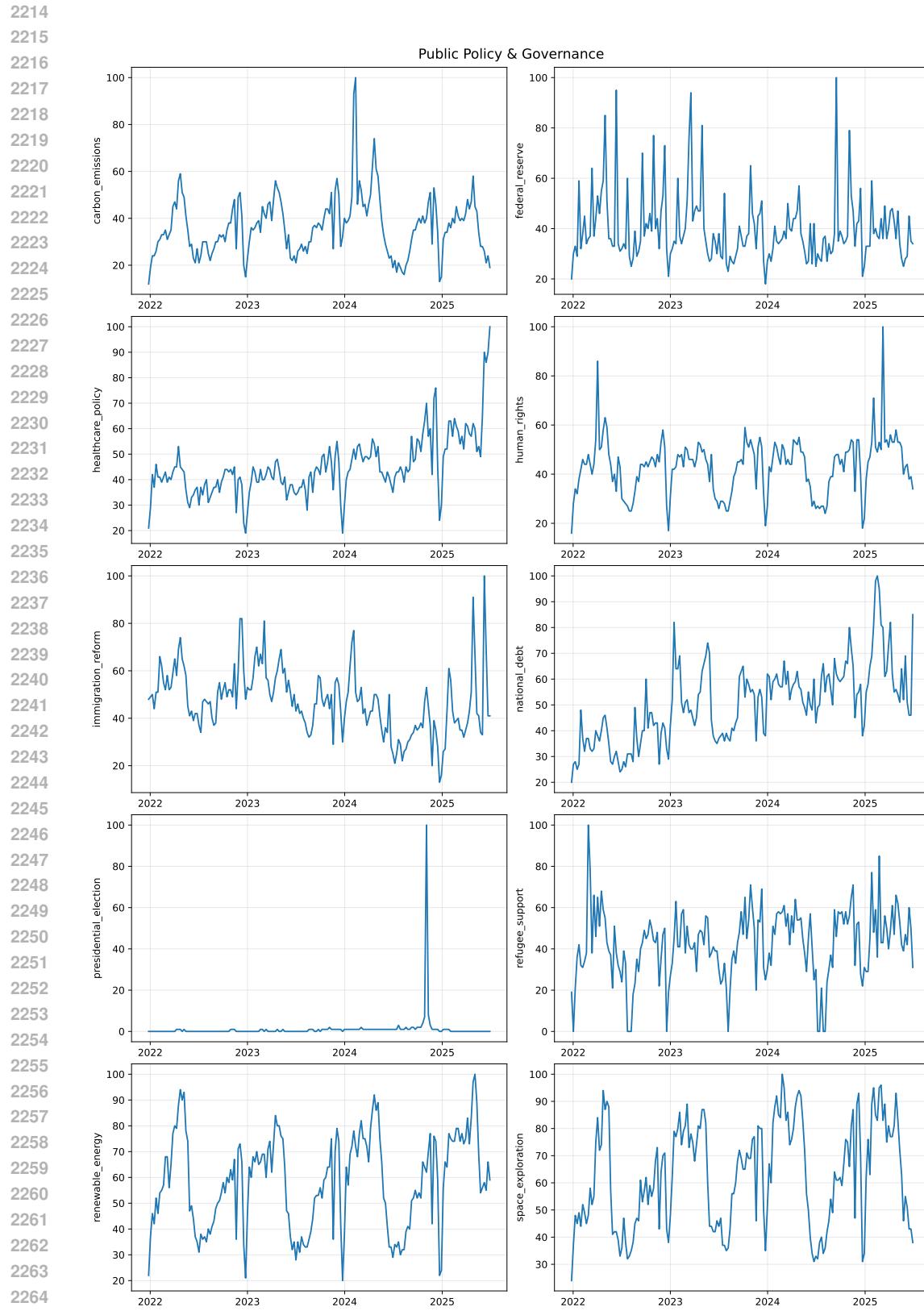


Figure 21: Numeric series visualization for the Public Policy and Governance domain .

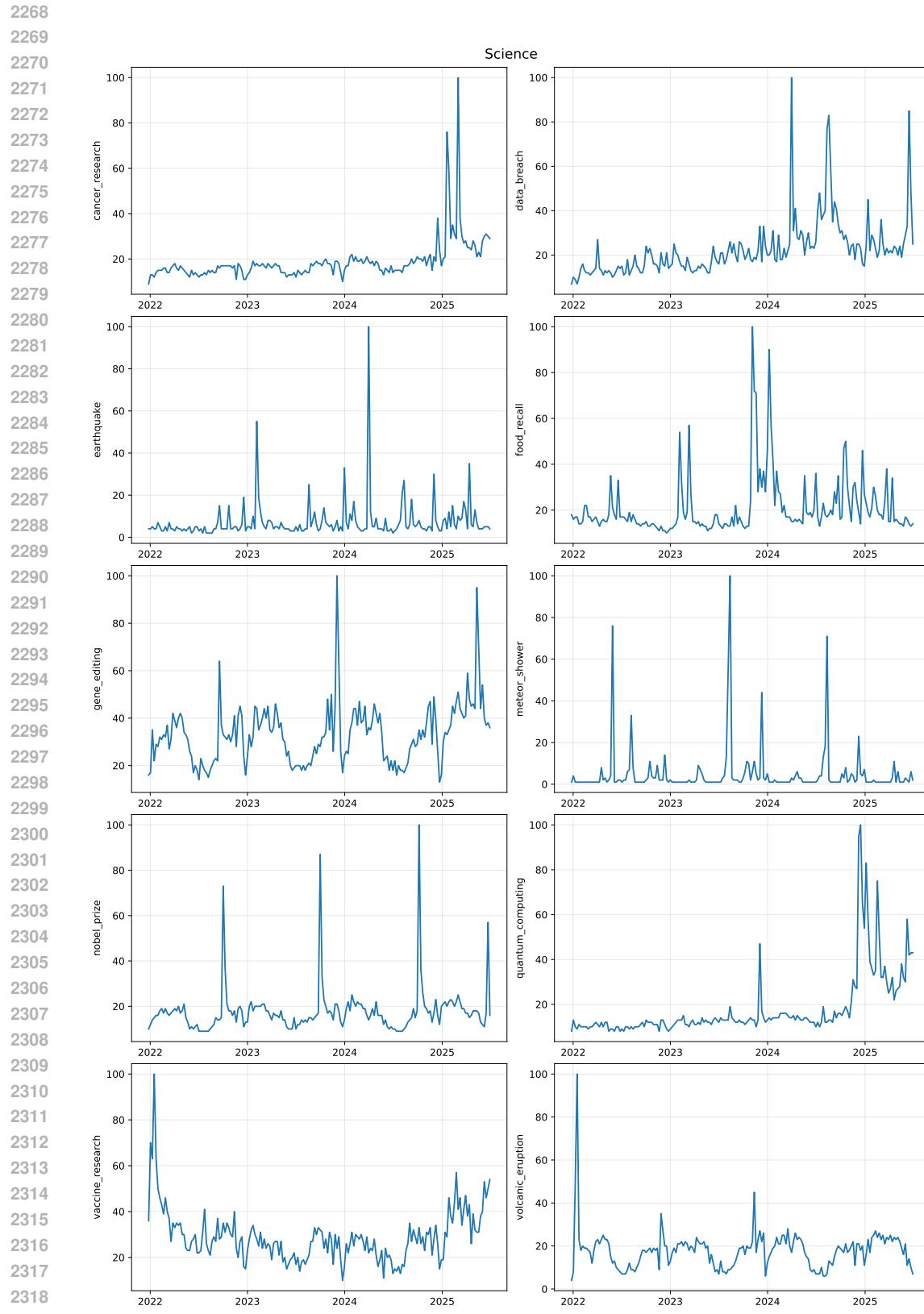


Figure 22: Numeric series visualization for the Science domain .

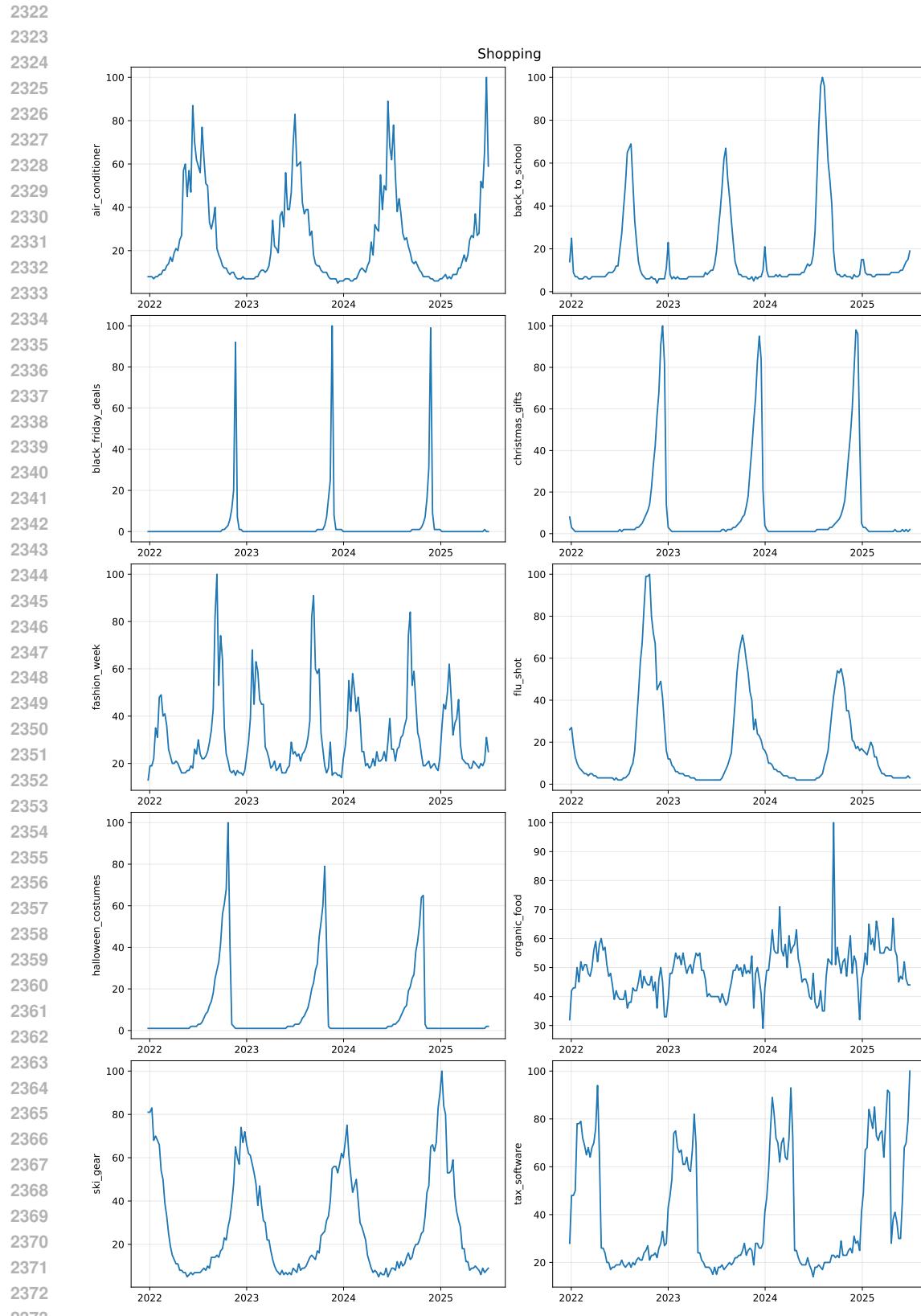


Figure 23: Numeric series visualization for the Shopping domain .

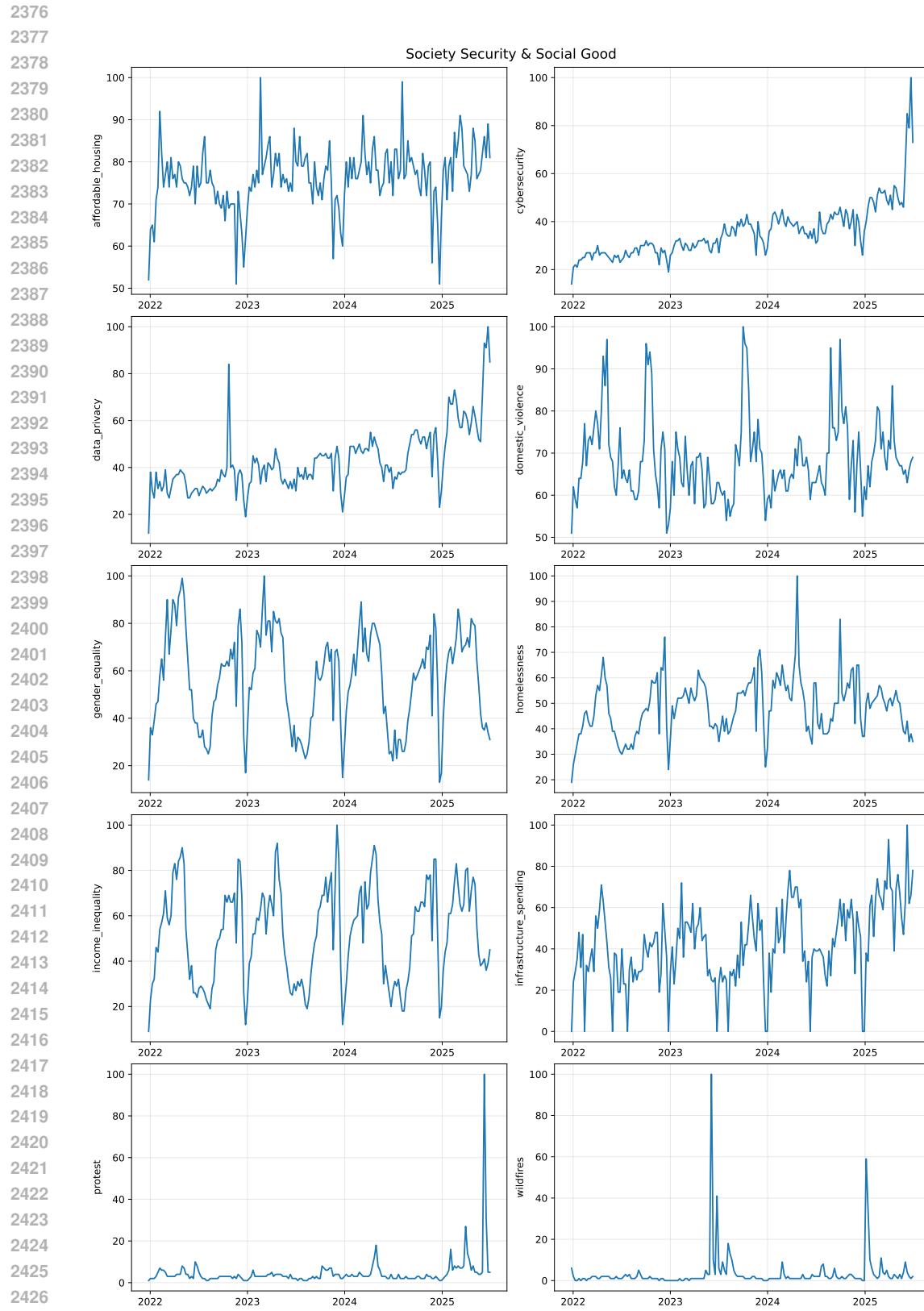


Figure 24: Numeric series visualization for the Society, Security, and Social Good domain .

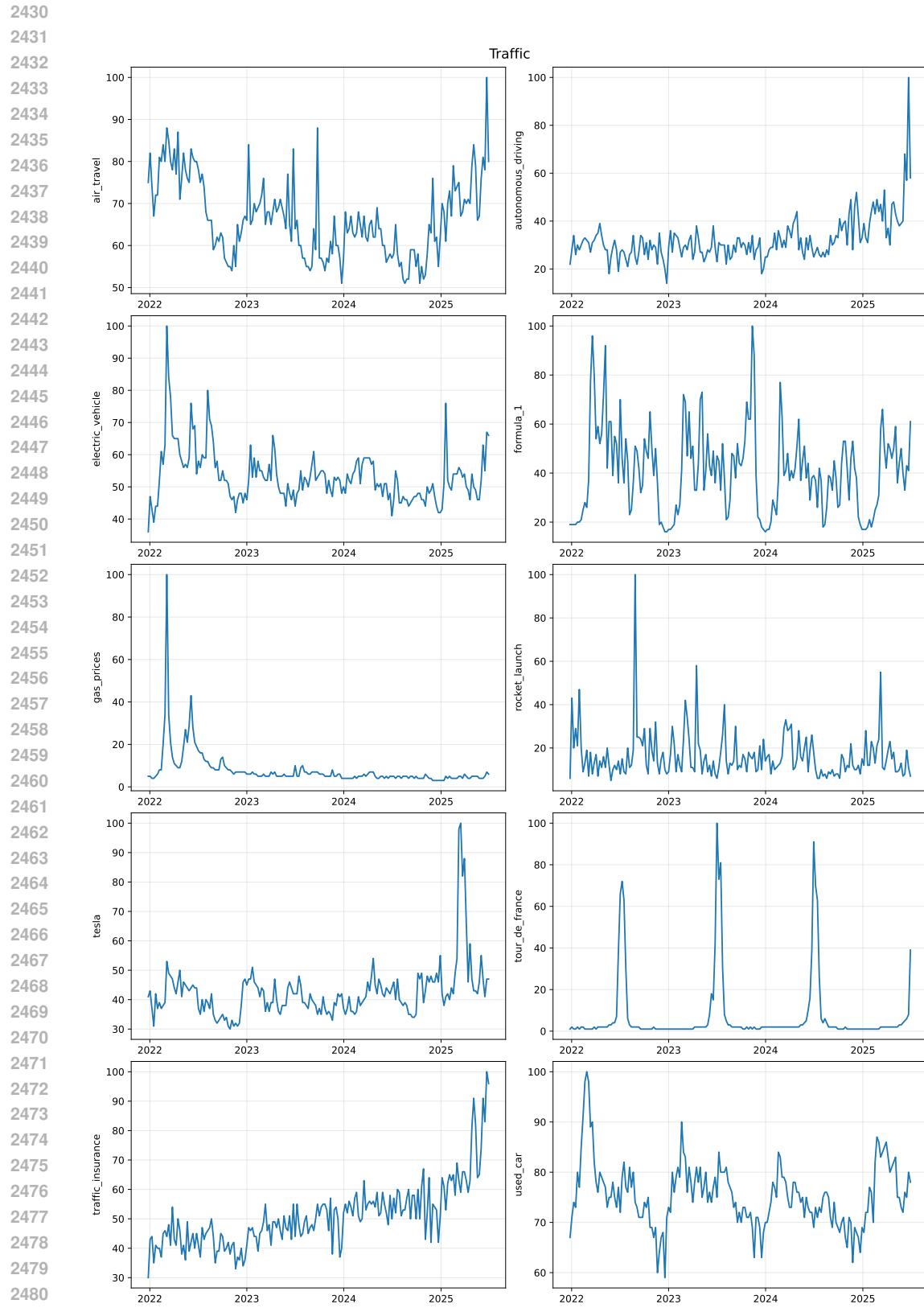


Figure 25: Numeric series visualization for the Traffic domain .

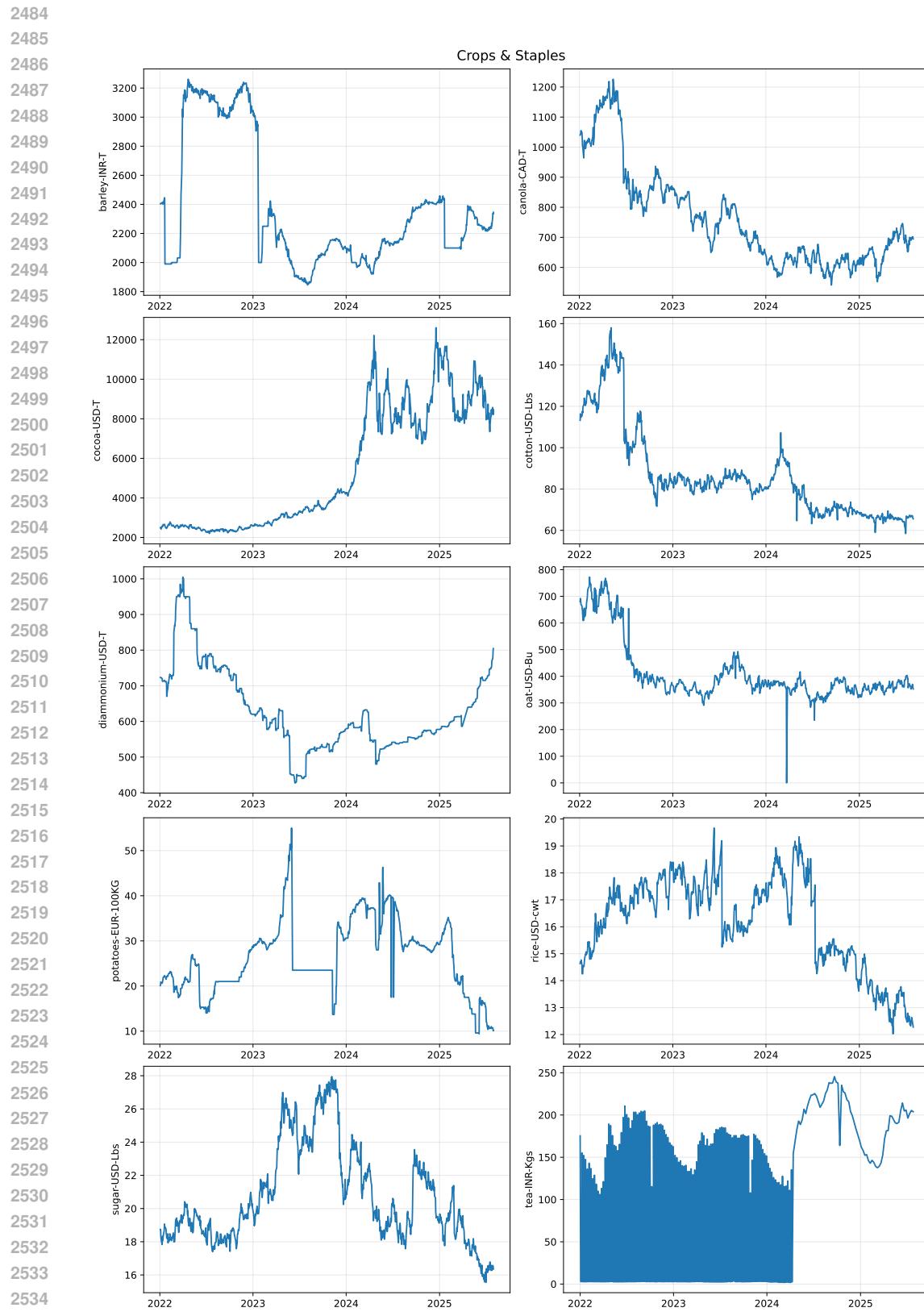


Figure 26: Numeric series visualization for the Crops and Staples domain .

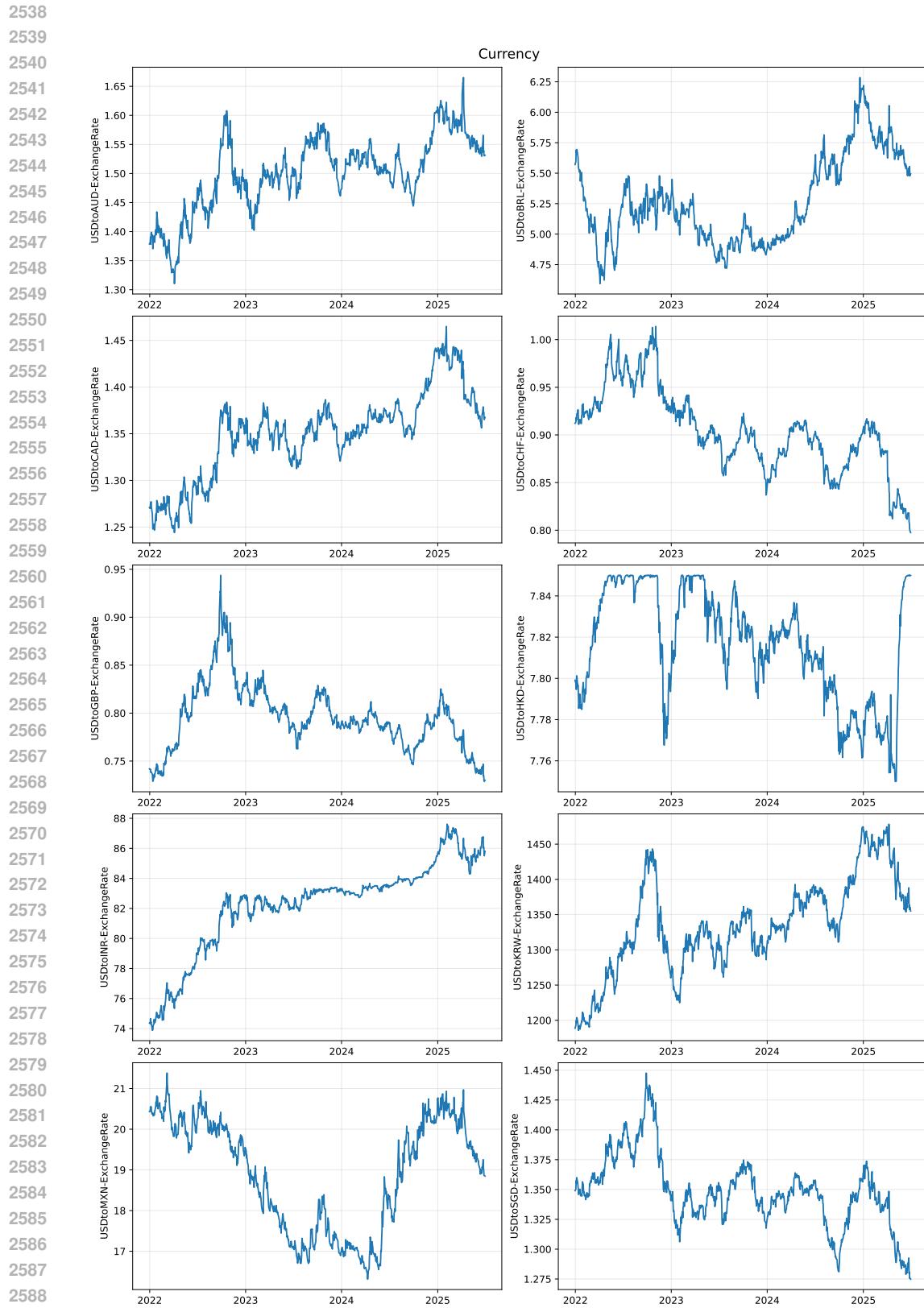


Figure 27: Numeric series visualization for the Currency domain .

Figure 28: Numeric series visualization for the Energy and Fuels domain .

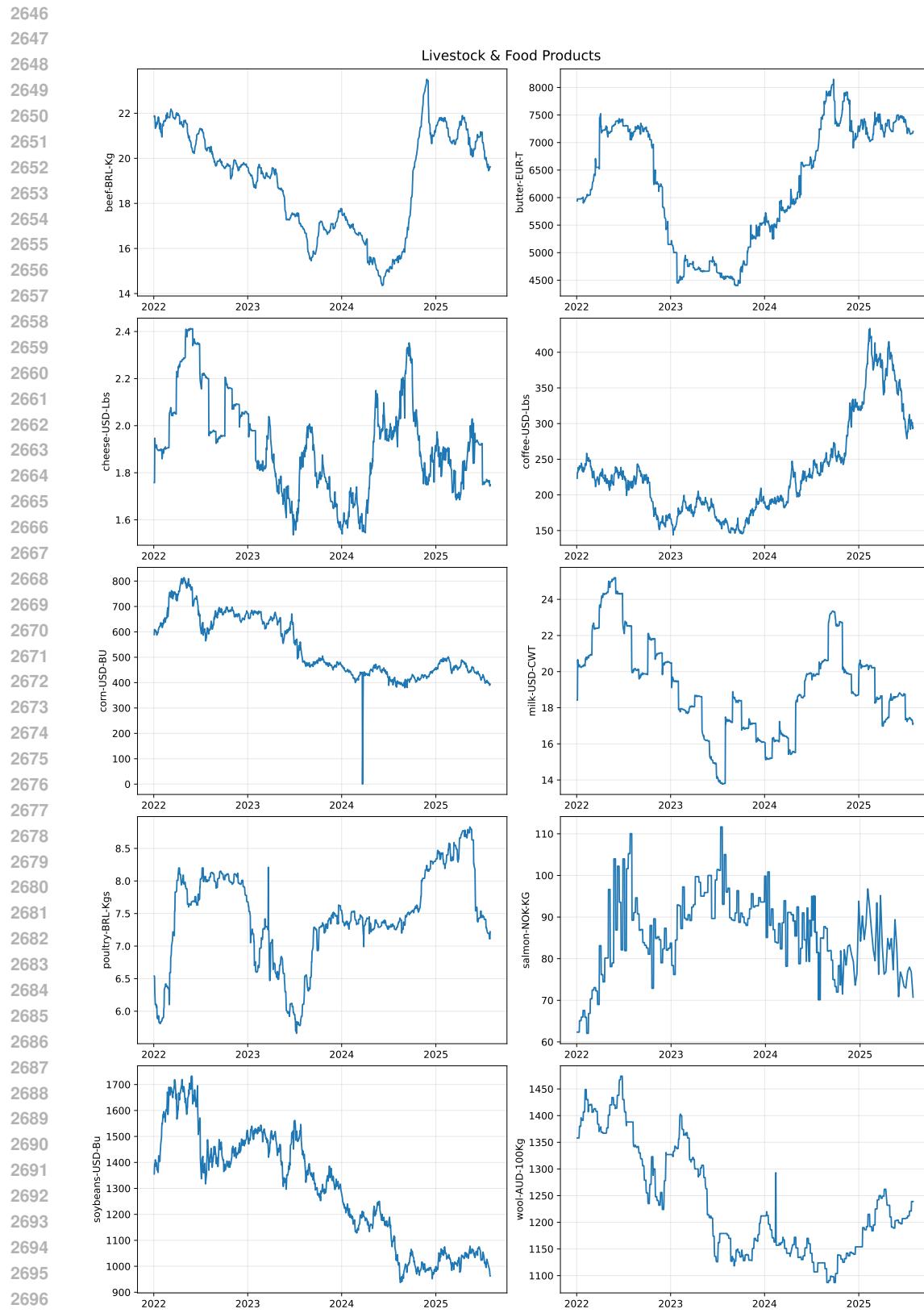


Figure 29: Numeric series visualization for the Livestock and Food Products domain .

Figure 30: Numeric series visualization for the Raw Materials and Construction domain .

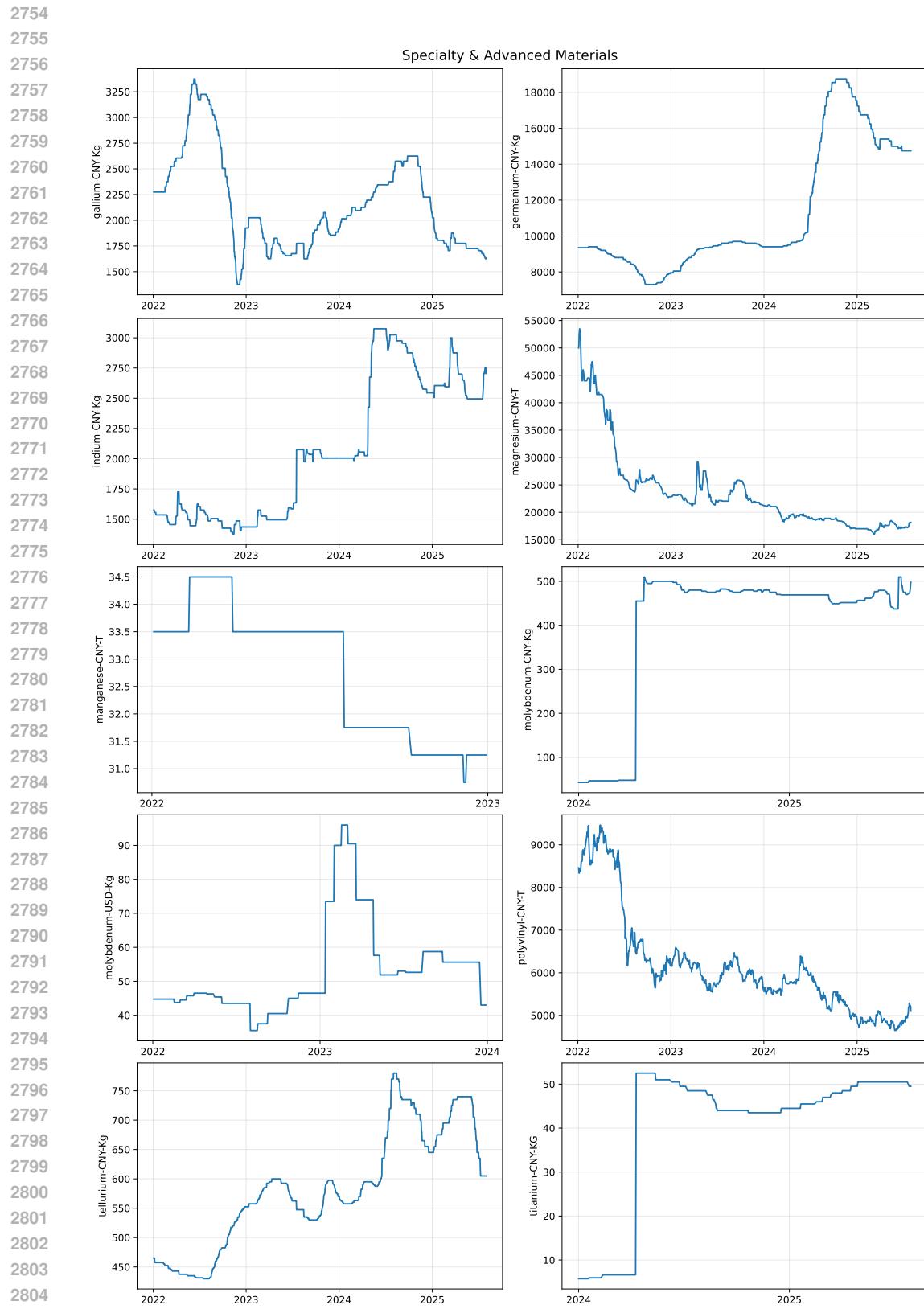


Figure 31: Numeric series visualization for the Specialty and Advanced Materials domain .

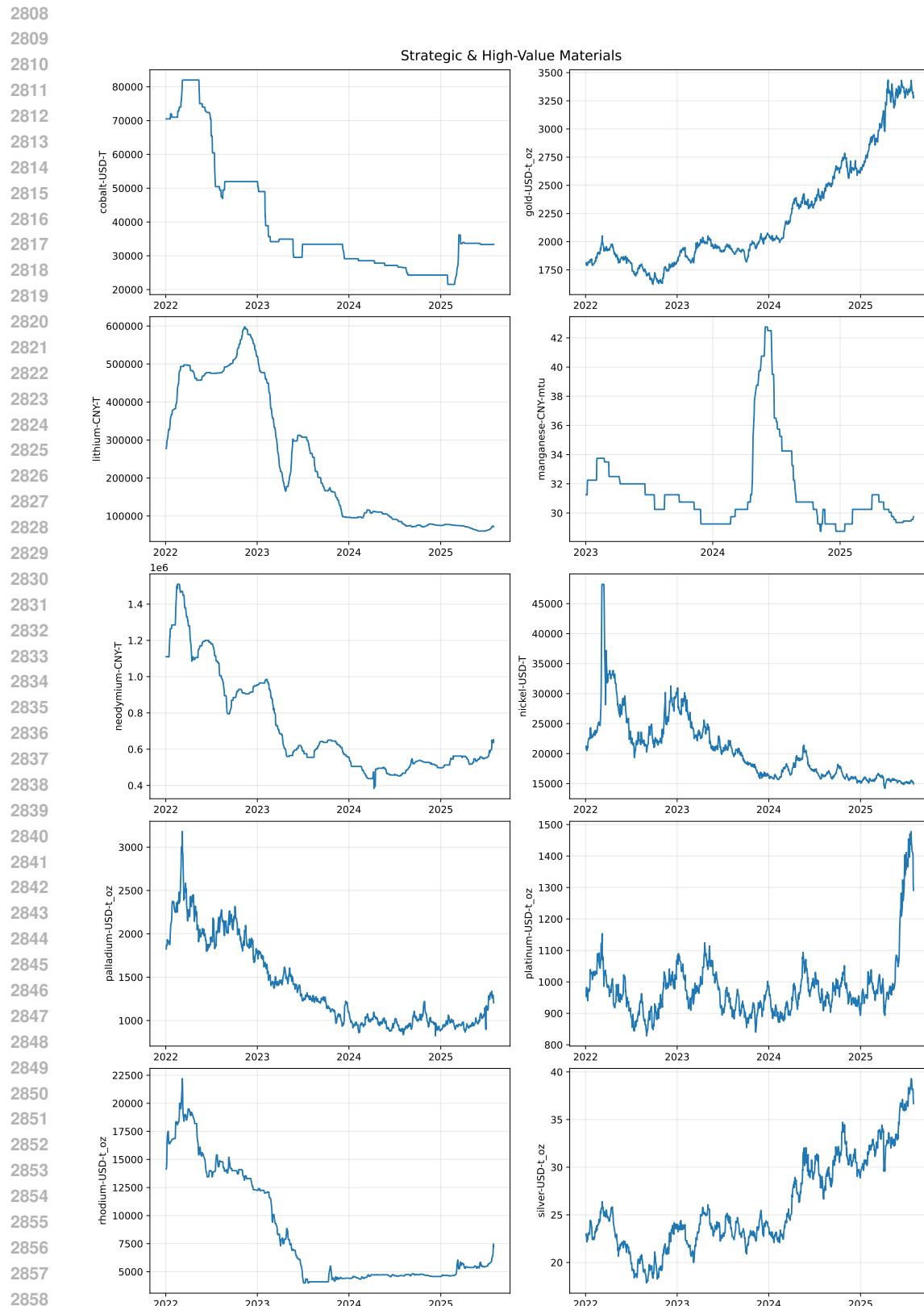


Figure 32: Numeric series visualization for the Strategic and High-Value Materials domain .

| Method | affordable_housing | air_conditioner | air_pollution | air_travel | alphabet |
|-----------------------------|--------------------|-----------------|---------------|------------|----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.708 | 0.230 | 0.656 | 0.965 | 0.581 |
| Moirai2.0 | 0.705 | 0.391 | 0.642 | 0.969 | 0.645 |
| TimesFM2.5 | 0.662 | 0.227 | 0.436 | 0.858 | 0.476 |
| AvgEnsemble(TimesFM,Moirai) | 0.678 | 0.249 | 0.466 | 0.907 | 0.530 |
| DeepSeek-V3 | 0.701 | 0.495 | 0.523 | 0.950 | 0.586 |
| Gemini-2.0-Flash | 0.688 | 0.274 | 0.356 | 0.917 | 0.513 |
| GPT-4o | 0.659 | 0.339 | 0.367 | 0.829 | 0.567 |
| FuncRev(TimesFM,Gemini) | 0.730 | 0.398 | 0.416 | 0.895 | 0.483 |
| CodeRev(TimesFM,Gemini) | 0.646 | 0.243 | 0.521 | 0.947 | 0.479 |
| TextRev(TimesFM,Gemini) | 0.666 | 0.230 | 0.421 | 0.842 | 0.465 |
| AvgEnsemble(TimesFM,GPT) | 0.644 | 0.238 | 0.343 | 0.851 | 0.463 |
| AvgEnsemble(TimesFM,Gemini) | 0.641 | 0.243 | 0.340 | 0.844 | 0.495 |

Table 16: Detailed MASE results of Table 1. (part 1/38)

| Method | aluminum_usd.t | amazon | animal_migration | animal_rescue | animal_welfare |
|-----------------------------|----------------|--------|------------------|---------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 1.014 | 1.051 | 0.634 | 0.830 | 0.709 |
| Moirai2.0 | 0.785 | 0.875 | 0.628 | 0.820 | 0.739 |
| TimesFM2.5 | 0.873 | 0.635 | 0.617 | 0.713 | 0.516 |
| AvgEnsemble(TimesFM,Moirai) | 0.810 | 0.747 | 0.599 | 0.752 | 0.599 |
| DeepSeek-V3 | 0.782 | 1.241 | 0.794 | 1.166 | 0.695 |
| Gemini-2.0-Flash | 0.795 | 0.570 | 0.696 | 0.956 | 0.647 |
| GPT-4o | 0.784 | 0.996 | 0.664 | 1.048 | 0.618 |
| FuncRev(TimesFM,Gemini) | 1.259 | 0.828 | 0.687 | 0.873 | 0.583 |
| CodeRev(TimesFM,Gemini) | 1.821 | 0.661 | 0.589 | 0.786 | 0.566 |
| TextRev(TimesFM,Gemini) | 0.528 | 0.683 | 0.612 | 0.814 | 0.537 |
| AvgEnsemble(TimesFM,GPT) | 0.805 | 0.544 | 0.644 | 0.797 | 0.549 |
| AvgEnsemble(TimesFM,Gemini) | 0.795 | 0.492 | 0.649 | 0.778 | 0.560 |

Table 17: Detailed MASE results of Table 1. (cont'd, part 2/38)

P DETAILED PERFORMANCE COMPARISON RESULTS

| 2916 | Method | apple_inc | art_exhibitions | artificial_intelligence | asset_management | autonomous_driving |
|------|-----------------------------|-----------|-----------------|-------------------------|------------------|--------------------|
| 2917 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 2918 | Sundial | 0.791 | 0.727 | 1.050 | 1.026 | 1.099 |
| 2919 | Moirai2.0 | 0.772 | 0.806 | 0.921 | 0.827 | 0.949 |
| 2920 | TimesFM2.5 | 0.732 | 0.816 | 0.902 | 0.830 | 0.888 |
| 2921 | AvgEnsemble(TimesFM,Moirai) | 0.749 | 0.801 | 0.908 | 0.825 | 0.915 |
| 2922 | DeepSeek-V3 | 0.714 | 0.752 | 0.825 | 0.877 | 0.980 |
| 2923 | Gemini-2.0-Flash | 0.690 | 0.767 | 0.967 | 0.887 | 1.056 |
| 2924 | GPT-4o | 0.656 | 0.674 | 0.761 | 0.759 | 0.855 |
| 2925 | FuncRev(TimesFM,Gemini) | 0.666 | 0.738 | 1.020 | 0.866 | 0.781 |
| 2926 | CodeRev(TimesFM,Gemini) | 0.731 | 0.846 | 0.884 | 0.815 | 0.841 |
| 2927 | TextRev(TimesFM,Gemini) | 0.735 | 0.816 | 0.894 | 0.844 | 0.891 |
| 2928 | AvgEnsemble(TimesFM,GPT) | 0.679 | 0.822 | 0.891 | 0.830 | 0.935 |
| 2929 | AvgEnsemble(TimesFM,Gemini) | 0.675 | 0.725 | 0.861 | 0.816 | 0.918 |

Table 18: Detailed MASE results of Table 1. (cont'd, part 3/38)

| 2929 | Method | back_to_school | barley_inr_t | beef_brl_kg | beekeeping | biodiversity |
|------|-----------------------------|----------------|--------------|-------------|------------|--------------|
| 2930 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 2931 | Sundial | 0.544 | 0.939 | 0.522 | 0.477 | 0.687 |
| 2932 | Moirai2.0 | 0.522 | 0.925 | 0.499 | 0.656 | 0.610 |
| 2933 | TimesFM2.5 | 0.339 | 0.936 | 0.437 | 0.526 | 0.291 |
| 2934 | AvgEnsemble(TimesFM,Moirai) | 0.423 | 0.917 | 0.450 | 0.584 | 0.414 |
| 2935 | DeepSeek-V3 | 0.292 | 0.954 | 0.567 | 0.585 | 0.367 |
| 2936 | Gemini-2.0-Flash | 0.306 | 0.950 | 0.574 | 0.596 | 0.314 |
| 2937 | GPT-4o | 0.257 | 0.956 | 0.559 | 0.517 | 0.281 |
| 2938 | FuncRev(TimesFM,Gemini) | 0.431 | 1.653 | 0.696 | 1.019 | 0.329 |
| 2939 | CodeRev(TimesFM,Gemini) | 0.341 | 1.180 | 0.617 | 0.658 | 0.327 |
| 2940 | TextRev(TimesFM,Gemini) | 0.248 | 2.005 | 0.406 | 0.596 | 0.296 |
| 2941 | AvgEnsemble(TimesFM,GPT) | 0.314 | 0.938 | 0.463 | 0.519 | 0.274 |
| 2942 | AvgEnsemble(TimesFM,Gemini) | 0.311 | 0.950 | 0.574 | 0.533 | 0.271 |

Table 19: Detailed MASE results of Table 1. (cont'd, part 4/38)

| 2944 | Method | bitumen_cny_t | black_friday_deals | brent_usd_bbl | broadway_shows | butter_eur_t |
|------|-----------------------------|---------------|--------------------|---------------|----------------|--------------|
| 2945 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 2946 | Sundial | 0.852 | 0.622 | 0.825 | 0.593 | 0.701 |
| 2947 | Moirai2.0 | 0.748 | 0.584 | 0.851 | 0.653 | 0.694 |
| 2948 | TimesFM2.5 | 0.744 | 0.552 | 0.767 | 0.561 | 0.777 |
| 2949 | AvgEnsemble(TimesFM,Moirai) | 0.733 | 0.557 | 0.802 | 0.599 | 0.726 |
| 2950 | DeepSeek-V3 | 0.727 | 0.129 | 0.820 | 0.732 | 0.762 |
| 2951 | Gemini-2.0-Flash | 0.733 | 0.571 | 0.818 | 0.666 | 0.773 |
| 2952 | GPT-4o | 0.728 | 0.457 | 0.830 | 0.649 | 0.763 |
| 2953 | FuncRev(TimesFM,Gemini) | 1.209 | 1.222 | 0.789 | 0.750 | 0.805 |
| 2954 | CodeRev(TimesFM,Gemini) | 0.968 | 1.594 | 0.771 | 0.554 | 0.777 |
| 2955 | TextRev(TimesFM,Gemini) | 0.938 | 0.374 | 0.641 | 0.588 | 0.916 |
| 2956 | AvgEnsemble(TimesFM,GPT) | 0.729 | 0.433 | 0.783 | 0.561 | 0.753 |
| 2957 | AvgEnsemble(TimesFM,Gemini) | 0.733 | 0.435 | 0.818 | 0.577 | 0.773 |

Table 20: Detailed MASE results of Table 1. (cont'd, part 5/38)

| 2958 | Method | cancer_research | canola_cad_t | carbon_emissions | cheese_usd_lbs | christmas_gifts |
|------|-----------------------------|-----------------|--------------|------------------|----------------|-----------------|
| 2959 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 2960 | Sundial | 0.846 | 0.994 | 0.693 | 0.873 | 0.535 |
| 2961 | Moirai2.0 | 0.845 | 0.845 | 0.671 | 0.850 | 0.499 |
| 2962 | TimesFM2.5 | 0.779 | 0.883 | 0.513 | 0.855 | 0.306 |
| 2963 | AvgEnsemble(TimesFM,Moirai) | 0.802 | 0.859 | 0.568 | 0.845 | 0.383 |
| 2964 | DeepSeek-V3 | 0.856 | 0.827 | 0.633 | 0.810 | 0.120 |
| 2965 | Gemini-2.0-Flash | 0.829 | 0.846 | 0.718 | 0.787 | 0.098 |
| 2966 | GPT-4o | 0.718 | 0.817 | 0.665 | 0.789 | 0.119 |
| 2967 | FuncRev(TimesFM,Gemini) | 0.935 | 1.048 | 0.583 | 0.877 | 0.445 |
| 2968 | CodeRev(TimesFM,Gemini) | 0.736 | 0.880 | 0.501 | 0.908 | 0.426 |
| 2969 | TextRev(TimesFM,Gemini) | 0.766 | 1.055 | 0.530 | 0.792 | 0.285 |
| 2970 | AvgEnsemble(TimesFM,GPT) | 0.802 | 0.858 | 0.565 | 0.816 | 0.187 |
| 2971 | AvgEnsemble(TimesFM,Gemini) | 0.792 | 0.846 | 0.594 | 0.787 | 0.188 |

Table 21: Detailed MASE results of Table 1. (cont'd, part 6/38)

2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023

| Method | climate_change | coal_usd_t | cocoa_usd_t | coffee_usd_lbs | comic_con |
|-----------------------------|----------------|------------|-------------|----------------|-----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.795 | 0.900 | 0.984 | 0.957 | 0.551 |
| Moirai2.0 | 0.858 | 0.638 | 0.822 | 0.775 | 0.663 |
| TimesFM2.5 | 0.878 | 0.625 | 0.864 | 0.775 | 0.498 |
| AvgEnsemble(TimesFM,Moirai) | 0.822 | 0.605 | 0.834 | 0.751 | 0.561 |
| DeepSeek-V3 | 1.475 | 0.653 | 0.812 | 0.750 | 0.445 |
| Gemini-2.0-Flash | 1.485 | 0.661 | 0.827 | 0.757 | 0.450 |
| GPT-4o | 1.359 | 0.655 | 0.768 | 0.757 | 0.507 |
| FuncRev(TimesFM,Gemini) | 0.797 | 0.674 | 0.849 | 0.870 | 0.426 |
| CodeRev(TimesFM,Gemini) | 0.952 | 0.617 | 0.750 | 0.819 | 0.439 |
| TextRev(TimesFM,Gemini) | 0.871 | 0.436 | 0.768 | 1.067 | 0.467 |
| AvgEnsemble(TimesFM,GPT) | 1.163 | 0.634 | 0.838 | 0.743 | 0.498 |
| AvgEnsemble(TimesFM,Gemini) | 0.762 | 0.661 | 0.827 | 0.757 | 0.479 |

Table 22: Detailed MASE results of Table 1. (cont'd, part 7/38)

| Method | consumer_electronics | copper_usd_lbs | corn_usd_bu | cost_of_living | cotton_usd_lbs |
|-----------------------------|----------------------|----------------|-------------|----------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.727 | 0.757 | 0.985 | 0.676 | 0.891 |
| Moirai2.0 | 0.786 | 0.640 | 0.832 | 0.723 | 0.955 |
| TimesFM2.5 | 0.638 | 0.711 | 0.850 | 0.725 | 0.834 |
| AvgEnsemble(TimesFM,Moirai) | 0.676 | 0.655 | 0.826 | 0.722 | 0.872 |
| DeepSeek-V3 | 0.795 | 0.620 | 0.857 | 0.763 | 1.147 |
| Gemini-2.0-Flash | 0.621 | 0.635 | 0.855 | 0.799 | 1.148 |
| GPT-4o | 0.716 | 0.625 | 0.850 | 0.732 | 1.141 |
| FuncRev(TimesFM,Gemini) | 0.661 | 1.191 | 0.954 | 0.733 | 1.029 |
| CodeRev(TimesFM,Gemini) | 0.648 | 1.004 | 0.871 | 0.734 | 1.164 |
| TextRev(TimesFM,Gemini) | 0.644 | 1.177 | 1.043 | 0.720 | 0.965 |
| AvgEnsemble(TimesFM,GPT) | 0.600 | 0.652 | 0.849 | 0.746 | 0.963 |
| AvgEnsemble(TimesFM,Gemini) | 0.610 | 0.635 | 0.855 | 0.753 | 1.148 |

Table 23: Detailed MASE results of Table 1. (cont'd, part 8/38)

| Method | cryptocurrency | cybersecurity | data_breach | data_privacy | deforestation |
|-----------------------------|----------------|---------------|-------------|--------------|---------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.811 | 1.102 | 0.762 | 0.948 | 0.739 |
| Moirai2.0 | 0.814 | 0.916 | 0.727 | 0.774 | 0.621 |
| TimesFM2.5 | 0.772 | 0.879 | 0.706 | 0.709 | 0.376 |
| AvgEnsemble(TimesFM,Moirai) | 0.786 | 0.887 | 0.711 | 0.726 | 0.472 |
| DeepSeek-V3 | 0.864 | 0.837 | 0.958 | 0.770 | 0.466 |
| Gemini-2.0-Flash | 0.750 | 0.994 | 0.828 | 0.760 | 0.298 |
| GPT-4o | 0.711 | 0.687 | 1.054 | 0.635 | 0.269 |
| FuncRev(TimesFM,Gemini) | 0.819 | 0.693 | 0.829 | 0.787 | 0.390 |
| CodeRev(TimesFM,Gemini) | 0.775 | 0.867 | 0.825 | 0.706 | 0.374 |
| TextRev(TimesFM,Gemini) | 0.769 | 0.787 | 0.784 | 0.718 | 0.363 |
| AvgEnsemble(TimesFM,GPT) | 0.753 | 0.929 | 0.745 | 0.721 | 0.323 |
| AvgEnsemble(TimesFM,Gemini) | 0.761 | 0.904 | 0.740 | 0.724 | 0.330 |

Table 24: Detailed MASE results of Table 1. (cont'd, part 9/38)

3024

3025

3026

3027

| Method | diabetes | diammonium_usd_t | domestic_violence | drones | drought |
|-----------------------------|----------|------------------|-------------------|--------|---------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.611 | 0.934 | 0.631 | 0.924 | 0.753 |
| Moirai2.0 | 0.647 | 0.768 | 0.693 | 0.861 | 0.884 |
| TimesFM2.5 | 0.570 | 0.818 | 0.605 | 0.917 | 0.757 |
| AvgEnsemble(TimesFM,Moirai) | 0.592 | 0.790 | 0.625 | 0.888 | 0.819 |
| DeepSeek-V3 | 0.637 | 0.794 | 0.644 | 0.993 | 0.905 |
| Gemini-2.0-Flash | 0.572 | 0.711 | 0.725 | 0.850 | 0.670 |
| GPT-4o | 0.575 | 0.799 | 0.738 | 0.988 | 0.655 |
| FuncRev(TimesFM,Gemini) | 0.689 | 1.681 | 0.666 | 0.817 | 0.844 |
| CodeRev(TimesFM,Gemini) | 0.599 | 3.869 | 0.622 | 0.911 | 0.849 |
| TextRev(TimesFM,Gemini) | 0.578 | 0.609 | 0.605 | 0.914 | 0.751 |
| AvgEnsemble(TimesFM,GPT) | 0.555 | 0.764 | 0.628 | 0.877 | 0.685 |
| AvgEnsemble(TimesFM,Gemini) | 0.568 | 0.711 | 0.632 | 0.881 | 0.719 |

3039

Table 25: Detailed MASE results of Table 1. (cont'd, part 10/38)

3040

3041

3042

3043

3044

3045

| Method | drug_overdose | earthquake | electric_vehicle | endangered_species | esports |
|-----------------------------|---------------|------------|------------------|--------------------|---------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.561 | 0.705 | 0.924 | 0.598 | 0.599 |
| Moirai2.0 | 0.573 | 0.716 | 0.956 | 0.600 | 0.588 |
| TimesFM2.5 | 0.444 | 0.687 | 0.811 | 0.395 | 0.600 |
| AvgEnsemble(TimesFM,Moirai) | 0.471 | 0.694 | 0.875 | 0.462 | 0.572 |
| DeepSeek-V3 | 0.618 | 0.765 | 1.071 | 0.520 | 0.823 |
| Gemini-2.0-Flash | 0.514 | 0.854 | 0.829 | 0.332 | 0.621 |
| GPT-4o | 0.531 | 0.894 | 0.881 | 0.322 | 0.727 |
| FuncRev(TimesFM,Gemini) | 0.628 | 0.728 | 0.759 | 0.449 | 0.685 |
| CodeRev(TimesFM,Gemini) | 0.596 | 0.696 | 0.796 | 0.416 | 0.618 |
| TextRev(TimesFM,Gemini) | 0.432 | 0.726 | 0.805 | 0.411 | 0.615 |
| AvgEnsemble(TimesFM,GPT) | 0.459 | 0.752 | 0.793 | 0.338 | 0.600 |
| AvgEnsemble(TimesFM,Gemini) | 0.461 | 0.727 | 0.789 | 0.337 | 0.576 |

3057

3058

Table 26: Detailed MASE results of Table 1. (cont'd, part 11/38)

3059

3060

3061

3062

3063

| Method | ethanol_usd_gal | fashion_week | federal_budget_deficit | federal_reserve | film_festivals |
|-----------------------------|-----------------|--------------|------------------------|-----------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.861 | 0.532 | 0.566 | 0.646 | 0.701 |
| Moirai2.0 | 0.778 | 0.604 | 0.710 | 0.675 | 0.661 |
| TimesFM2.5 | 0.808 | 0.322 | 0.433 | 0.581 | 0.610 |
| AvgEnsemble(TimesFM,Moirai) | 0.778 | 0.442 | 0.539 | 0.611 | 0.623 |
| DeepSeek-V3 | 0.799 | 0.399 | 0.625 | 0.671 | 0.522 |
| Gemini-2.0-Flash | 0.805 | 0.250 | 0.473 | 0.646 | 0.689 |
| GPT-4o | 0.808 | 0.331 | 0.455 | 0.606 | 0.577 |
| FuncRev(TimesFM,Gemini) | 0.746 | 0.277 | 0.446 | 0.582 | 0.628 |
| CodeRev(TimesFM,Gemini) | 0.846 | 0.279 | 0.500 | 0.583 | 0.600 |
| TextRev(TimesFM,Gemini) | 0.995 | 0.302 | 0.425 | 0.583 | 0.599 |
| AvgEnsemble(TimesFM,GPT) | 0.789 | 0.236 | 0.400 | 0.580 | 0.610 |
| AvgEnsemble(TimesFM,Gemini) | 0.805 | 0.237 | 0.398 | 0.582 | 0.624 |

3075

3076

3077

Table 27: Detailed MASE results of Table 1. (cont'd, part 12/38)

| Method | financial_regulation | flooding | flu_shot | food_recall | food_safety |
|-----------------------------|----------------------|----------|----------|-------------|-------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.940 | 0.693 | 0.341 | 0.761 | 0.950 |
| Moirai2.0 | 0.792 | 0.659 | 0.362 | 0.727 | 0.787 |
| TimesFM2.5 | 0.626 | 0.664 | 0.223 | 0.698 | 0.774 |
| AvgEnsemble(TimesFM,Moirai) | 0.668 | 0.657 | 0.274 | 0.701 | 0.772 |
| DeepSeek-V3 | 0.677 | 0.696 | 0.365 | 1.138 | 0.812 |
| Gemini-2.0-Flash | 0.741 | 0.772 | 0.272 | 1.118 | 0.757 |
| GPT-4o | 0.531 | 0.783 | 0.315 | 1.287 | 0.565 |
| FuncRev(TimesFM,Gemini) | 0.551 | 0.844 | 0.325 | 0.640 | 1.014 |
| CodeRev(TimesFM,Gemini) | 0.616 | 0.780 | 0.287 | 0.776 | 0.762 |
| TextRev(TimesFM,Gemini) | 0.651 | 0.687 | 0.218 | 0.754 | 0.744 |
| AvgEnsemble(TimesFM,GPT) | 0.652 | 0.699 | 0.212 | 0.852 | 0.756 |
| AvgEnsemble(TimesFM,Gemini) | 0.637 | 0.695 | 0.199 | 0.816 | 0.728 |

Table 28: Detailed MASE results of Table 1. (cont'd, part 13/38)

| Method | food_wine_festivals | formula_1 | gallium_cny_kg | gas_prices | gasoline_usd_gal |
|-----------------------------|---------------------|-----------|----------------|------------|------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.811 | 0.678 | 0.875 | 1.006 | 0.840 |
| Moirai2.0 | 0.882 | 0.823 | 0.673 | 0.912 | 0.693 |
| TimesFM2.5 | 0.782 | 0.575 | 0.731 | 0.966 | 0.773 |
| AvgEnsemble(TimesFM,Moirai) | 0.830 | 0.647 | 0.668 | 0.939 | 0.717 |
| DeepSeek-V3 | 0.949 | 0.767 | 0.577 | 1.250 | 0.691 |
| Gemini-2.0-Flash | 0.935 | 0.717 | 0.581 | 1.217 | 0.698 |
| GPT-4o | 0.860 | 0.717 | 0.574 | 1.352 | 0.679 |
| FuncRev(TimesFM,Gemini) | 0.738 | 0.560 | 2.508 | 0.847 | 1.983 |
| CodeRev(TimesFM,Gemini) | 0.765 | 0.621 | 3.055 | 1.072 | 2.390 |
| TextRev(TimesFM,Gemini) | 0.798 | 0.566 | 1.809 | 0.954 | 0.727 |
| AvgEnsemble(TimesFM,GPT) | 0.782 | 0.620 | 0.650 | 1.050 | 0.715 |
| AvgEnsemble(TimesFM,Gemini) | 0.806 | 0.604 | 0.581 | 0.924 | 0.698 |

Table 29: Detailed MASE results of Table 1. (cont'd, part 14/38)

| Method | gender_equality | gene_editing | germanium_cny_kg | global_warming | gold_usd_t_oz |
|-----------------------------|-----------------|--------------|------------------|----------------|---------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.483 | 0.772 | 0.991 | 0.673 | 1.127 |
| Moirai2.0 | 0.508 | 0.866 | 0.655 | 0.772 | 0.846 |
| TimesFM2.5 | 0.314 | 0.610 | 0.795 | 0.526 | 1.058 |
| AvgEnsemble(TimesFM,Moirai) | 0.377 | 0.708 | 0.660 | 0.633 | 0.944 |
| DeepSeek-V3 | 0.477 | 0.870 | 0.622 | 0.967 | 0.917 |
| Gemini-2.0-Flash | 0.333 | 0.692 | 0.732 | 0.576 | 0.927 |
| GPT-4o | 0.332 | 0.601 | 0.619 | 0.663 | 0.921 |
| FuncRev(TimesFM,Gemini) | 0.446 | 0.685 | 5.698 | 0.547 | 1.239 |
| CodeRev(TimesFM,Gemini) | 0.335 | 0.644 | 4.188 | 0.635 | 1.058 |
| TextRev(TimesFM,Gemini) | 0.327 | 0.639 | 1.322 | 0.534 | 1.172 |
| AvgEnsemble(TimesFM,GPT) | 0.299 | 0.630 | 0.730 | 0.515 | 0.986 |
| AvgEnsemble(TimesFM,Gemini) | 0.299 | 0.609 | 0.732 | 0.530 | 0.927 |

Table 30: Detailed MASE results of Table 1. (cont'd, part 15/38)

| Method | goldman_sachs | government_spending | halloween_costumes | healthcare_costs | healthcare_policy |
|-----------------------------|---------------|---------------------|--------------------|------------------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.592 | 0.723 | 0.564 | 0.897 | 0.972 |
| Moirai2.0 | 0.661 | 0.663 | 0.542 | 0.768 | 0.860 |
| TimesFM2.5 | 0.595 | 0.525 | 0.321 | 0.544 | 0.704 |
| AvgEnsemble(TimesFM,Moirai) | 0.624 | 0.557 | 0.412 | 0.620 | 0.760 |
| DeepSeek-V3 | 0.651 | 0.652 | 0.131 | 0.628 | 0.753 |
| Gemini-2.0-Flash | 0.667 | 0.505 | 0.112 | 0.613 | 0.841 |
| GPT-4o | 0.683 | 0.547 | 0.131 | 0.513 | 0.593 |
| FuncRev(TimesFM,Gemini) | 0.585 | 0.637 | 0.349 | 0.541 | 0.688 |
| CodeRev(TimesFM,Gemini) | 0.597 | 0.539 | 0.770 | 0.517 | 0.659 |
| TextRev(TimesFM,Gemini) | 0.586 | 0.518 | 0.220 | 0.541 | 0.699 |
| AvgEnsemble(TimesFM,GPT) | 0.605 | 0.493 | 0.173 | 0.562 | 0.738 |
| AvgEnsemble(TimesFM,Gemini) | 0.581 | 0.486 | 0.185 | 0.545 | 0.700 |

Table 31: Detailed MASE results of Table 1. (cont'd, part 16/38)

| Method | heatwave | heavy_rainfall | hedge_funds | hiv_aids | homelessness |
|-----------------------------|----------|----------------|-------------|----------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.465 | 0.813 | 0.845 | 0.688 | 0.673 |
| Moirai2.0 | 0.527 | 0.736 | 0.818 | 0.776 | 0.746 |
| TimesFM2.5 | 0.494 | 0.590 | 0.838 | 0.638 | 0.499 |
| AvgEnsemble(TimesFM,Moirai) | 0.477 | 0.648 | 0.821 | 0.693 | 0.584 |
| DeepSeek-V3 | 0.727 | 0.640 | 0.928 | 0.815 | 1.035 |
| Gemini-2.0-Flash | 0.543 | 0.626 | 0.842 | 0.674 | 0.630 |
| GPT-4o | 0.695 | 0.525 | 0.844 | 0.593 | 0.647 |
| FuncRev(TimesFM,Gemini) | 0.627 | 0.672 | 0.824 | 0.581 | 0.497 |
| CodeRev(TimesFM,Gemini) | 0.516 | 0.597 | 0.815 | 0.652 | 0.622 |
| TextRev(TimesFM,Gemini) | 0.518 | 0.594 | 0.818 | 0.628 | 0.494 |
| AvgEnsemble(TimesFM,GPT) | 0.512 | 0.587 | 0.798 | 0.628 | 0.527 |
| AvgEnsemble(TimesFM,Gemini) | 0.517 | 0.580 | 0.796 | 0.621 | 0.536 |

Table 32: Detailed MASE results of Table 1. (cont'd, part 17/38)

| Method | human_rights | immigration_reform | income_inequality | indium_cny_kg | infectious_disease |
|-----------------------------|--------------|--------------------|-------------------|---------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.632 | 0.844 | 0.686 | 0.826 | 0.676 |
| Moirai2.0 | 0.627 | 0.824 | 0.549 | 0.846 | 0.780 |
| TimesFM2.5 | 0.429 | 0.670 | 0.285 | 0.787 | 0.588 |
| AvgEnsemble(TimesFM,Moirai) | 0.498 | 0.712 | 0.384 | 0.807 | 0.674 |
| DeepSeek-V3 | 0.705 | 0.901 | 0.593 | 0.804 | 0.738 |
| Gemini-2.0-Flash | 0.433 | 0.734 | 0.311 | 0.812 | 0.558 |
| GPT-4o | 0.527 | 0.779 | 0.324 | 0.786 | 0.515 |
| FuncRev(TimesFM,Gemini) | 0.485 | 0.753 | 0.350 | 1.224 | 0.728 |
| CodeRev(TimesFM,Gemini) | 0.428 | 0.816 | 0.298 | 0.852 | 0.594 |
| TextRev(TimesFM,Gemini) | 0.416 | 0.709 | 0.278 | 0.441 | 0.584 |
| AvgEnsemble(TimesFM,GPT) | 0.407 | 0.682 | 0.283 | 0.769 | 0.557 |
| AvgEnsemble(TimesFM,Gemini) | 0.407 | 0.676 | 0.279 | 0.812 | 0.571 |

Table 33: Detailed MASE results of Table 1. (cont'd, part 18/38)

| Method | inflation | infrastructure_spending | international_trade | invasive_species | investment_banking |
|-----------------------------|-----------|-------------------------|---------------------|------------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.664 | 0.833 | 0.827 | 0.667 | 0.907 |
| Moirai2.0 | 0.682 | 0.692 | 0.706 | 0.527 | 0.779 |
| TimesFM2.5 | 0.667 | 0.652 | 0.422 | 0.321 | 0.648 |
| AvgEnsemble(TimesFM,Moirai) | 0.668 | 0.665 | 0.529 | 0.392 | 0.704 |
| DeepSeek-V3 | 0.718 | 0.661 | 0.657 | 0.367 | 0.841 |
| Gemini-2.0-Flash | 0.600 | 0.759 | 0.441 | 0.298 | 0.741 |
| GPT-4o | 0.661 | 0.526 | 0.390 | 0.275 | 0.684 |
| FuncRev(TimesFM,Gemini) | 0.838 | 0.671 | 0.510 | 0.368 | 0.710 |
| CodeRev(TimesFM,Gemini) | 0.688 | 0.735 | 0.428 | 0.334 | 0.629 |
| TextRev(TimesFM,Gemini) | 0.689 | 0.690 | 0.461 | 0.317 | 0.654 |
| AvgEnsemble(TimesFM,GPT) | 0.603 | 0.684 | 0.407 | 0.287 | 0.659 |
| AvgEnsemble(TimesFM,Gemini) | 0.610 | 0.687 | 0.401 | 0.279 | 0.651 |

Table 34: Detailed MASE results of Table 1. (cont'd, part 19/38)

| Method | lead_usd_t | lithium_cny_t | lumber_usd_1000_board_feet | magnesium_cny_t | major_league_baseball |
|-----------------------------|------------|---------------|----------------------------|-----------------|-----------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.775 | 0.815 | 1.015 | 0.960 | 0.536 |
| Moirai2.0 | 0.793 | 0.554 | 0.907 | 0.756 | 0.562 |
| TimesFM2.5 | 0.859 | 0.584 | 1.059 | 0.821 | 0.332 |
| AvgEnsemble(TimesFM,Moirai) | 0.808 | 0.564 | 0.980 | 0.781 | 0.431 |
| DeepSeek-V3 | 0.834 | 0.589 | 0.886 | 0.771 | 0.421 |
| Gemini-2.0-Flash | 0.838 | 0.578 | 0.882 | 0.781 | 0.241 |
| GPT-4o | 0.829 | 0.589 | 0.888 | 0.764 | 0.278 |
| FuncRev(TimesFM,Gemini) | 1.144 | 0.518 | 1.083 | 1.201 | 0.345 |
| CodeRev(TimesFM,Gemini) | 0.916 | 0.482 | 0.987 | 1.023 | 0.366 |
| TextRev(TimesFM,Gemini) | 1.105 | 0.368 | 1.040 | 1.355 | 0.338 |
| AvgEnsemble(TimesFM,GPT) | 0.832 | 0.576 | 0.968 | 0.797 | 0.332 |
| AvgEnsemble(TimesFM,Gemini) | 0.838 | 0.578 | 0.882 | 0.781 | 0.274 |

Table 35: Detailed MASE results of Table 1. (cont'd, part 20/38)

| 3186 | Method | manganese_cny_mtu | marine_life | marine_pollution | mental_health | meta_platforms |
|------|-----------------------------|-------------------|-------------|------------------|---------------|----------------|
| 3187 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3188 | Sundial | 0.724 | 0.866 | 0.529 | 0.651 | 0.638 |
| 3189 | Moirai2.0 | 0.574 | 0.693 | 0.535 | 0.586 | 0.696 |
| 3190 | TimesFM2.5 | 0.658 | 0.564 | 0.359 | 0.444 | 0.647 |
| 3191 | AvgEnsemble(TimesFM,Moirai) | 0.598 | 0.592 | 0.397 | 0.491 | 0.669 |
| 3192 | DeepSeek-V3 | 0.499 | 0.749 | 0.397 | 0.584 | 0.944 |
| 3193 | Gemini-2.0-Flash | 0.519 | 0.569 | 0.337 | 0.459 | 0.652 |
| 3194 | GPT-4o | 0.519 | 0.443 | 0.315 | 0.423 | 0.823 |
| 3195 | FuncRev(TimesFM,Gemini) | 0.442 | 0.497 | 0.343 | 0.457 | 0.311 |
| 3196 | CodeRev(TimesFM,Gemini) | 0.765 | 0.486 | 0.347 | 0.448 | 0.645 |
| 3197 | TextRev(TimesFM,Gemini) | 1.089 | 0.537 | 0.353 | 0.425 | 0.651 |
| 3198 | AvgEnsemble(TimesFM,GPT) | 0.589 | 0.555 | 0.328 | 0.431 | 0.631 |
| 3199 | AvgEnsemble(TimesFM,Gemini) | 0.519 | 0.537 | 0.326 | 0.440 | 0.640 |

Table 36: Detailed MASE results of Table 1. (cont'd, part 21/38)

| 3200 | Method | meteor_shower | methanol_cny_t | microsoft | milk_usd_cwt | minimum_wage |
|------|-----------------------------|---------------|----------------|-----------|--------------|--------------|
| 3201 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3202 | Sundial | 0.666 | 1.060 | 0.689 | 0.681 | 0.817 |
| 3203 | Moirai2.0 | 0.597 | 0.941 | 0.668 | 0.605 | 0.716 |
| 3204 | TimesFM2.5 | 0.533 | 0.898 | 0.607 | 0.607 | 0.660 |
| 3205 | AvgEnsemble(TimesFM,Moirai) | 0.555 | 0.914 | 0.629 | 0.598 | 0.673 |
| 3206 | DeepSeek-V3 | 0.532 | 0.892 | 0.802 | 0.577 | 0.987 |
| 3207 | Gemini-2.0-Flash | 0.329 | 0.877 | 0.649 | 0.585 | 1.051 |
| 3208 | GPT-4o | 0.514 | 0.902 | 0.650 | 0.575 | 1.249 |
| 3209 | FuncRev(TimesFM,Gemini) | 0.863 | 0.743 | 0.667 | 1.120 | 0.819 |
| 3210 | CodeRev(TimesFM,Gemini) | 0.677 | 0.861 | 0.615 | 1.508 | 0.885 |
| 3211 | TextRev(TimesFM,Gemini) | 0.560 | 0.969 | 0.599 | 0.609 | 0.750 |
| 3212 | AvgEnsemble(TimesFM,GPT) | 0.346 | 0.882 | 0.621 | 0.591 | 0.747 |
| 3213 | AvgEnsemble(TimesFM,Gemini) | 0.350 | 0.877 | 0.607 | 0.585 | 0.723 |

Table 37: Detailed MASE results of Table 1. (cont'd, part 22/38)

| 3215 | Method | molybdenum_cny_kg | mortgage_rates | music_festivals | naphtha_usd_t | national_basketball_association |
|------|-----------------------------|-------------------|----------------|-----------------|---------------|---------------------------------|
| 3216 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3217 | Sundial | 0.853 | 0.685 | 0.532 | 1.118 | 0.589 |
| 3218 | Moirai2.0 | 0.613 | 0.691 | 0.593 | 0.845 | 0.573 |
| 3219 | TimesFM2.5 | 0.724 | 0.685 | 0.467 | 0.800 | 0.521 |
| 3220 | AvgEnsemble(TimesFM,Moirai) | 0.602 | 0.688 | 0.488 | 0.817 | 0.535 |
| 3221 | DeepSeek-V3 | 0.544 | 0.848 | 0.633 | 0.815 | 0.619 |
| 3222 | Gemini-2.0-Flash | 0.560 | 0.716 | 0.460 | 0.827 | 0.687 |
| 3223 | GPT-4o | 0.558 | 0.809 | 0.572 | 0.822 | 0.594 |
| 3224 | FuncRev(TimesFM,Gemini) | 0.769 | 0.810 | 0.503 | 1.062 | 0.578 |
| 3225 | CodeRev(TimesFM,Gemini) | 0.685 | 0.700 | 0.453 | 0.933 | 0.546 |
| 3226 | TextRev(TimesFM,Gemini) | 1.183 | 0.682 | 0.447 | 1.061 | 0.519 |
| 3227 | AvgEnsemble(TimesFM,GPT) | 0.627 | 0.695 | 0.467 | 0.787 | 0.521 |
| 3228 | AvgEnsemble(TimesFM,Gemini) | 0.560 | 0.694 | 0.426 | 0.827 | 0.565 |

Table 38: Detailed MASE results of Table 1. (cont'd, part 23/38)

| 3228 | Method | national_debt | national_football_league | neodymium_cny_t | nickel_usd_t | nobel_prize |
|------|-----------------------------|---------------|--------------------------|-----------------|--------------|-------------|
| 3229 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3230 | Sundial | 0.809 | 0.672 | 0.534 | 0.810 | 0.663 |
| 3231 | Moirai2.0 | 0.815 | 0.657 | 0.614 | 0.775 | 0.634 |
| 3232 | TimesFM2.5 | 0.841 | 0.610 | 0.549 | 0.741 | 0.573 |
| 3233 | AvgEnsemble(TimesFM,Moirai) | 0.821 | 0.625 | 0.519 | 0.751 | 0.592 |
| 3234 | DeepSeek-V3 | 0.801 | 0.710 | 0.542 | 0.778 | 0.609 |
| 3235 | Gemini-2.0-Flash | 0.804 | 0.561 | 0.552 | 0.773 | 0.499 |
| 3236 | GPT-4o | 0.812 | 0.648 | 0.543 | 0.779 | 0.475 |
| 3237 | FuncRev(TimesFM,Gemini) | 0.850 | 0.694 | 0.803 | 0.806 | 0.562 |
| 3238 | CodeRev(TimesFM,Gemini) | 0.856 | 0.620 | 0.661 | 0.692 | 0.500 |
| 3239 | TextRev(TimesFM,Gemini) | 0.824 | 0.626 | 0.457 | 0.689 | 0.489 |
| 3240 | AvgEnsemble(TimesFM,GPT) | 0.806 | 0.610 | 0.548 | 0.739 | 0.519 |
| 3241 | AvgEnsemble(TimesFM,Gemini) | 0.803 | 0.572 | 0.552 | 0.773 | 0.479 |

Table 39: Detailed MASE results of Table 1. (cont'd, part 24/38)

| Method | nvidia | oat_usd_bu | obesity | opioid_crisis | organic_food |
|-----------------------------|--------|------------|---------|---------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.694 | 0.840 | 0.574 | 0.554 | 0.669 |
| Moirai2.0 | 0.849 | 0.861 | 0.728 | 0.665 | 0.639 |
| TimesFM2.5 | 0.761 | 0.810 | 0.453 | 0.543 | 0.564 |
| AvgEnsemble(TimesFM,Moirai) | 0.803 | 0.827 | 0.577 | 0.562 | 0.565 |
| DeepSeek-V3 | 1.121 | 0.888 | 1.111 | 0.570 | 0.627 |
| Gemini-2.0-Flash | 0.691 | 0.877 | 0.701 | 0.554 | 0.469 |
| GPT-4o | 0.854 | 0.880 | 0.728 | 0.611 | 0.471 |
| FuncRev(TimesFM,Gemini) | 0.769 | 0.811 | 0.883 | 0.563 | 0.548 |
| CodeRev(TimesFM,Gemini) | 0.701 | 0.805 | 0.577 | 0.526 | 0.561 |
| TextRev(TimesFM,Gemini) | 0.649 | 0.715 | 0.461 | 0.533 | 0.547 |
| AvgEnsemble(TimesFM,GPT) | 0.684 | 0.837 | 0.544 | 0.504 | 0.480 |
| AvgEnsemble(TimesFM,Gemini) | 0.685 | 0.877 | 0.456 | 0.495 | 0.479 |

Table 40: Detailed MASE results of Table 1. (cont'd, part 25/38)

| Method | palladium_usd_t_oz | pest_control | pet_adoption | pet_health | platinum_usd_t_oz |
|-----------------------------|--------------------|--------------|--------------|------------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.812 | 0.435 | 0.815 | 1.123 | 0.865 |
| Moirai2.0 | 0.749 | 0.394 | 0.780 | 0.887 | 0.703 |
| TimesFM2.5 | 0.800 | 0.349 | 0.730 | 0.870 | 0.766 |
| AvgEnsemble(TimesFM,Moirai) | 0.761 | 0.367 | 0.752 | 0.874 | 0.729 |
| DeepSeek-V3 | 0.773 | 0.438 | 0.965 | 1.039 | 0.667 |
| Gemini-2.0-Flash | 0.759 | 0.387 | 0.862 | 1.111 | 0.673 |
| GPT-4o | 0.763 | 0.320 | 1.256 | 0.794 | 0.671 |
| FuncRev(TimesFM,Gemini) | 0.711 | 0.242 | 1.051 | 0.813 | 0.782 |
| CodeRev(TimesFM,Gemini) | 0.911 | 0.337 | 0.904 | 0.898 | 0.734 |
| TextRev(TimesFM,Gemini) | 0.732 | 0.316 | 0.791 | 0.862 | 0.840 |
| AvgEnsemble(TimesFM,GPT) | 0.739 | 0.364 | 0.753 | 0.964 | 0.700 |
| AvgEnsemble(TimesFM,Gemini) | 0.759 | 0.351 | 0.748 | 0.951 | 0.673 |

Table 41: Detailed MASE results of Table 1. (cont'd, part 26/38)

| Method | polyethylene_cny_t | polypropylene_cny_t | polyvinyl_cny_t | potatoes_eur_100kg | poultry_brl_kgs |
|-----------------------------|--------------------|---------------------|-----------------|--------------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.810 | 1.122 | 0.869 | 0.823 | 1.052 |
| Moirai2.0 | 0.746 | 0.945 | 0.600 | 0.677 | 0.834 |
| TimesFM2.5 | 0.793 | 0.880 | 0.749 | 0.752 | 0.928 |
| AvgEnsemble(TimesFM,Moirai) | 0.765 | 0.907 | 0.669 | 0.708 | 0.877 |
| DeepSeek-V3 | 0.677 | 0.950 | 0.606 | 0.672 | 0.771 |
| Gemini-2.0-Flash | 0.673 | 0.936 | 0.586 | 0.679 | 0.783 |
| GPT-4o | 0.680 | 0.930 | 0.584 | 0.667 | 0.783 |
| FuncRev(TimesFM,Gemini) | 0.749 | 0.852 | 0.734 | 0.779 | 1.041 |
| CodeRev(TimesFM,Gemini) | 0.786 | 0.879 | 0.698 | 0.749 | 0.943 |
| TextRev(TimesFM,Gemini) | 0.699 | 0.866 | 0.927 | 0.781 | 1.307 |
| AvgEnsemble(TimesFM,GPT) | 0.727 | 0.897 | 0.649 | 0.693 | 0.847 |
| AvgEnsemble(TimesFM,Gemini) | 0.673 | 0.936 | 0.586 | 0.679 | 0.783 |

Table 42: Detailed MASE results of Table 1. (cont'd, part 27/38)

| Method | presidential_election | private_equity | propane_usd_gal | protest | quantum_computing |
|-----------------------------|-----------------------|----------------|-----------------|---------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.847 | 1.059 | 0.840 | 0.910 | 0.870 |
| Moirai2.0 | 0.839 | 0.820 | 0.712 | 0.907 | 0.888 |
| TimesFM2.5 | 0.847 | 0.809 | 0.732 | 0.859 | 0.908 |
| AvgEnsemble(TimesFM,Moirai) | 0.843 | 0.807 | 0.717 | 0.878 | 0.898 |
| DeepSeek-V3 | 0.824 | 0.932 | 0.756 | 0.879 | 0.787 |
| Gemini-2.0-Flash | 0.827 | 0.878 | 0.756 | 0.985 | 0.930 |
| GPT-4o | 0.831 | 0.698 | 0.759 | 1.025 | 0.843 |
| FuncRev(TimesFM,Gemini) | 0.733 | 0.690 | 0.842 | 1.132 | 0.693 |
| CodeRev(TimesFM,Gemini) | 0.857 | 0.787 | 0.751 | 0.977 | 0.863 |
| TextRev(TimesFM,Gemini) | 0.847 | 0.817 | 1.014 | 0.878 | 0.881 |
| AvgEnsemble(TimesFM,GPT) | 0.837 | 0.835 | 0.728 | 0.886 | 0.907 |
| AvgEnsemble(TimesFM,Gemini) | 0.838 | 0.800 | 0.756 | 0.857 | 0.899 |

Table 43: Detailed MASE results of Table 1. (cont'd, part 28/38)

| Method | rapeseed_eur_t | refugee_support | renewable_energy | rhodium_usd_t.oz | rice_usd_cwt |
|-----------------------------|----------------|-----------------|------------------|------------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.856 | 0.629 | 0.638 | 1.052 | 0.792 |
| Moirai2.0 | 0.664 | 0.707 | 0.674 | 0.979 | 0.715 |
| TimesFM2.5 | 0.722 | 0.491 | 0.436 | 0.987 | 0.740 |
| AvgEnsemble(TimesFM,Moirai) | 0.674 | 0.591 | 0.515 | 0.973 | 0.723 |
| DeepSeek-V3 | 0.777 | 0.665 | 0.499 | 0.917 | 0.653 |
| Gemini-2.0-Flash | 0.773 | 0.531 | 0.420 | 0.914 | 0.671 |
| GPT-4o | 0.778 | 0.575 | 0.346 | 0.907 | 0.647 |
| FuncRev(TimesFM,Gemini) | 0.683 | 0.644 | 0.464 | 1.070 | 0.941 |
| CodeRev(TimesFM,Gemini) | 0.710 | 0.624 | 0.391 | 0.786 | 0.868 |
| TextRev(TimesFM,Gemini) | 0.862 | 0.584 | 0.435 | 0.876 | 0.923 |
| AvgEnsemble(TimesFM,GPT) | 0.686 | 0.498 | 0.404 | 0.945 | 0.688 |
| AvgEnsemble(TimesFM,Gemini) | 0.773 | 0.488 | 0.385 | 0.914 | 0.671 |

Table 44: Detailed MASE results of Table 1. (cont'd, part 29/38)

| Method | robotics | rocket_launch | rubber_usd_cents_kg | salmon_nok_kg | silver_usd_t.oz |
|-----------------------------|----------|---------------|---------------------|---------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 1.014 | 0.834 | 1.010 | 0.786 | 0.946 |
| Moirai2.0 | 0.832 | 0.768 | 0.818 | 1.013 | 0.847 |
| TimesFM2.5 | 0.786 | 0.797 | 0.904 | 0.841 | 0.954 |
| AvgEnsemble(TimesFM,Moirai) | 0.796 | 0.778 | 0.855 | 0.919 | 0.887 |
| DeepSeek-V3 | 1.014 | 1.087 | 0.814 | 1.357 | 0.822 |
| Gemini-2.0-Flash | 0.962 | 1.030 | 0.806 | 1.326 | 0.818 |
| GPT-4o | 0.788 | 1.210 | 0.822 | 1.317 | 0.828 |
| FuncRev(TimesFM,Gemini) | 0.810 | 0.852 | 0.955 | – | 0.981 |
| CodeRev(TimesFM,Gemini) | 0.760 | 0.899 | 0.944 | 0.860 | 0.941 |
| TextRev(TimesFM,Gemini) | 0.744 | 0.848 | 1.126 | 0.790 | 0.729 |
| AvgEnsemble(TimesFM,GPT) | 0.850 | 0.891 | 0.849 | 1.059 | 0.862 |
| AvgEnsemble(TimesFM,Gemini) | 0.868 | 0.858 | 0.806 | 1.326 | 0.818 |

Table 45: Detailed MASE results of Table 1. (cont'd, part 30/38)

| Method | ski_gear | soybeans_usd_bu | space_exploration | steel_cny_t | stock_market |
|-----------------------------|----------|-----------------|-------------------|-------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.293 | 0.900 | 0.642 | 1.025 | 0.747 |
| Moirai2.0 | 0.344 | 0.850 | 0.577 | 0.918 | 0.750 |
| TimesFM2.5 | 0.231 | 0.801 | 0.405 | 0.958 | 0.729 |
| AvgEnsemble(TimesFM,Moirai) | 0.275 | 0.803 | 0.453 | 0.932 | 0.738 |
| DeepSeek-V3 | 0.247 | 0.866 | 0.499 | 0.877 | 1.045 |
| Gemini-2.0-Flash | 0.225 | 0.908 | 0.418 | 0.866 | 0.758 |
| GPT-4o | 0.245 | 0.864 | 0.455 | 0.873 | 0.832 |
| FuncRev(TimesFM,Gemini) | 0.276 | 0.846 | 0.409 | 1.113 | 0.651 |
| CodeRev(TimesFM,Gemini) | 0.237 | 0.876 | 0.399 | 0.964 | 0.729 |
| TextRev(TimesFM,Gemini) | 0.216 | 0.821 | 0.409 | 1.056 | 0.721 |
| AvgEnsemble(TimesFM,GPT) | 0.223 | 0.822 | 0.397 | 0.892 | 0.739 |
| AvgEnsemble(TimesFM,Gemini) | 0.225 | 0.908 | 0.393 | 0.866 | 0.730 |

Table 46: Detailed MASE results of Table 1. (cont'd, part 31/38)

| Method | student_loans | sugar_usd_lbs | sustainable_fashion | tax_software | taxes |
|-----------------------------|---------------|---------------|---------------------|--------------|-------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.831 | 1.218 | 0.621 | 0.805 | 0.696 |
| Moirai2.0 | 0.847 | 1.056 | 0.632 | 0.659 | 0.545 |
| TimesFM2.5 | 0.854 | 0.934 | 0.537 | 0.487 | 0.346 |
| AvgEnsemble(TimesFM,Moirai) | 0.846 | 0.986 | 0.568 | 0.538 | 0.423 |
| DeepSeek-V3 | 0.908 | 0.943 | 0.622 | 0.437 | 0.526 |
| Gemini-2.0-Flash | 0.844 | 0.946 | 0.648 | 0.379 | 0.191 |
| GPT-4o | 0.982 | 0.953 | 0.526 | 0.363 | 0.180 |
| FuncRev(TimesFM,Gemini) | 1.052 | 0.959 | 0.567 | 0.462 | 0.375 |
| CodeRev(TimesFM,Gemini) | 0.864 | 1.043 | 0.529 | 0.484 | 0.376 |
| TextRev(TimesFM,Gemini) | 0.852 | 1.085 | 0.515 | 0.466 | 0.274 |
| AvgEnsemble(TimesFM,GPT) | 0.830 | 0.901 | 0.559 | 0.404 | 0.250 |
| AvgEnsemble(TimesFM,Gemini) | 0.819 | 0.946 | 0.563 | 0.396 | 0.245 |

Table 47: Detailed MASE results of Table 1. (cont'd, part 32/38)

3348

3349

| Method | tellurium_cny_kg | tesla | tin_usd_t | titanium_cny_kg | tour_de_france |
|-----------------------------|------------------|-------|-----------|-----------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.765 | 0.714 | 0.835 | 0.781 | 0.557 |
| Moirai2.0 | 0.647 | 0.720 | 0.791 | 0.692 | 0.395 |
| TimesFM2.5 | 0.675 | 0.720 | 0.783 | 0.718 | 0.372 |
| AvgEnsemble(TimesFM,Moirai) | 0.652 | 0.717 | 0.779 | 0.694 | 0.355 |
| DeepSeek-V3 | 0.709 | 0.679 | 0.738 | 0.614 | 0.354 |
| Gemini-2.0-Flash | 0.711 | 0.743 | 0.740 | 0.604 | 0.285 |
| GPT-4o | 0.699 | 0.652 | 0.747 | 0.610 | 0.257 |
| FuncRev(TimesFM,Gemini) | 1.352 | 0.591 | 1.029 | 0.795 | 0.536 |
| CodeRev(TimesFM,Gemini) | 0.680 | 0.709 | 0.757 | 0.745 | 1.438 |
| TextRev(TimesFM,Gemini) | 1.379 | 0.695 | 0.765 | 0.319 | 0.358 |
| AvgEnsemble(TimesFM,GPT) | 0.692 | 0.723 | 0.744 | 0.659 | 0.284 |
| AvgEnsemble(TimesFM,Gemini) | 0.711 | 0.703 | 0.740 | 0.604 | 0.299 |

3361

3362

Table 48: Detailed MASE results of Table 1. (cont'd, part 33/38)

3363

3364

| Method | traffic_insurance | unemployment_rate | uranium_usd_lbs | urea_usd_t | usdtoaud_exchangerate |
|-----------------------------|-------------------|-------------------|-----------------|------------|-----------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 1.056 | 0.651 | 1.050 | 0.729 | 1.019 |
| Moirai2.0 | 0.935 | 0.621 | 0.992 | 0.500 | 0.869 |
| TimesFM2.5 | 0.950 | 0.497 | 1.100 | 0.646 | 0.866 |
| AvgEnsemble(TimesFM,Moirai) | 0.942 | 0.527 | 1.037 | 0.559 | 0.858 |
| DeepSeek-V3 | 0.887 | 0.731 | 0.863 | 0.492 | 0.841 |
| Gemini-2.0-Flash | 1.048 | 0.529 | 0.869 | 0.507 | 0.807 |
| GPT-4o | 0.774 | 0.625 | 0.871 | 0.495 | 0.833 |
| FuncRev(TimesFM,Gemini) | 0.729 | 0.835 | 1.074 | 0.601 | 0.764 |
| CodeRev(TimesFM,Gemini) | 0.904 | 0.505 | 1.119 | 0.610 | 0.815 |
| TextRev(TimesFM,Gemini) | 0.947 | 0.504 | 0.937 | 0.626 | 0.742 |
| AvgEnsemble(TimesFM,GPT) | 0.970 | 0.488 | 0.975 | 0.571 | 0.828 |
| AvgEnsemble(TimesFM,Gemini) | 0.952 | 0.495 | 0.869 | 0.507 | 0.828 |

3375

3376

Table 49: Detailed MASE results of Table 1. (cont'd, part 34/38)

3377

3378

| Method | usdtobrl_exchangerate | usdtoncad_exchangerate | usdtochf_exchangerate | usdtogbp_exchangerate | usdthk_exchangerate |
|-----------------------------|-----------------------|------------------------|-----------------------|-----------------------|---------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.955 | 1.013 | 1.135 | 1.321 | 0.820 |
| Moirai2.0 | 0.774 | 0.726 | 0.900 | 0.828 | 0.778 |
| TimesFM2.5 | 0.703 | 0.714 | 1.028 | 0.801 | 0.748 |
| AvgEnsemble(TimesFM,Moirai) | 0.727 | 0.701 | 0.962 | 0.812 | 0.761 |
| DeepSeek-V3 | 0.695 | 0.629 | 0.852 | 0.773 | 0.781 |
| Gemini-2.0-Flash | 0.697 | 0.636 | 0.878 | 0.778 | 0.810 |
| GPT-4o | 0.696 | 0.612 | 0.852 | 0.779 | 0.784 |
| FuncRev(TimesFM,Gemini) | 0.772 | 0.692 | 1.125 | 0.689 | 0.754 |
| CodeRev(TimesFM,Gemini) | 0.727 | 0.708 | 1.020 | 0.817 | 0.750 |
| TextRev(TimesFM,Gemini) | 0.892 | 0.761 | 0.588 | 0.687 | 0.797 |
| AvgEnsemble(TimesFM,GPT) | 0.676 | 0.654 | 0.970 | 0.781 | 0.776 |
| AvgEnsemble(TimesFM,Gemini) | 0.676 | 0.654 | 0.970 | 0.781 | 0.776 |

3387

3388

Table 50: Detailed MASE results of Table 1. (cont'd, part 35/38)

3389

3390

| Method | usdtonr_exchangerate | usdtonkr_exchangerate | usdtonxn_exchangerate | usdtonsgd_exchangerate | used_car |
|-----------------------------|----------------------|-----------------------|-----------------------|------------------------|----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.906 | 1.198 | 1.123 | 1.337 | 0.719 |
| Moirai2.0 | 0.736 | 0.922 | 0.804 | 0.983 | 0.775 |
| TimesFM2.5 | 0.828 | 0.954 | 0.914 | 0.975 | 0.663 |
| AvgEnsemble(TimesFM,Moirai) | 0.779 | 0.929 | 0.852 | 0.970 | 0.703 |
| DeepSeek-V3 | 0.720 | 0.858 | 0.767 | 0.933 | 0.797 |
| Gemini-2.0-Flash | 0.737 | 0.866 | 0.766 | 0.910 | 0.644 |
| GPT-4o | 0.733 | 0.859 | 0.749 | 0.909 | 0.738 |
| FuncRev(TimesFM,Gemini) | 0.790 | 0.941 | 1.073 | 0.836 | 0.741 |
| CodeRev(TimesFM,Gemini) | 0.843 | 0.947 | 1.305 | 0.950 | 0.642 |
| TextRev(TimesFM,Gemini) | 0.641 | 1.028 | 0.824 | 0.886 | 0.635 |
| AvgEnsemble(TimesFM,GPT) | 0.780 | 0.898 | 0.822 | 0.938 | 0.644 |
| AvgEnsemble(TimesFM,Gemini) | 0.780 | 0.898 | 0.822 | 0.938 | 0.658 |

3400

3401

Table 51: Detailed MASE results of Table 1. (cont'd, part 36/38)

3402

3403

3404

3405

3406

3407

3408

3409

| Method | vaccine_research | venture_capital | volcanic_eruption | water_scarcity | wheat_usd_bu |
|-----------------------------|------------------|-----------------|-------------------|----------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.855 | 0.966 | 0.592 | 0.688 | 0.832 |
| Moirai2.0 | 0.832 | 0.876 | 0.716 | 0.672 | 0.824 |
| TimesFM2.5 | 0.716 | 0.769 | 0.532 | 0.414 | 0.884 |
| AvgEnsemble(TimesFM,Moirai) | 0.762 | 0.816 | 0.583 | 0.518 | 0.844 |
| DeepSeek-V3 | 0.831 | 0.868 | 0.749 | 0.589 | 0.991 |
| Gemini-2.0-Flash | 0.838 | 0.823 | 0.642 | 0.437 | 0.966 |
| GPT-4o | 0.691 | 0.811 | 0.594 | 0.434 | 0.972 |
| FuncRev(TimesFM,Gemini) | 0.490 | 0.757 | 0.527 | 0.390 | 1.053 |
| CodeRev(TimesFM,Gemini) | 0.677 | 0.797 | 0.600 | 0.440 | 1.010 |
| TextRev(TimesFM,Gemini) | 0.706 | 0.791 | 0.523 | 0.413 | 0.946 |
| AvgEnsemble(TimesFM,GPT) | 0.761 | 0.764 | 0.549 | 0.412 | 0.895 |
| AvgEnsemble(TimesFM,Gemini) | 0.746 | 0.755 | 0.486 | 0.415 | 0.966 |

3410

Table 52: Detailed MASE results of Table 1. (cont'd, part 37/38)

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

| Method | wildfires | wildlife_conservation | wool_aud_100kg | zinc_usd_t |
|-----------------------------|-----------|-----------------------|----------------|------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 |
| Sundial | 0.622 | 0.911 | 0.864 | 0.987 |
| Moirai2.0 | 0.618 | 0.809 | 0.767 | 0.681 |
| TimesFM2.5 | 0.617 | 0.690 | 0.794 | 0.724 |
| AvgEnsemble(TimesFM,Moirai) | 0.613 | 0.736 | 0.772 | 0.692 |
| DeepSeek-V3 | 0.665 | 0.863 | 0.744 | 0.691 |
| Gemini-2.0-Flash | 0.650 | 0.830 | 0.742 | 0.695 |
| GPT-4o | 0.752 | 0.614 | 0.742 | 0.697 |
| FuncRev(TimesFM,Gemini) | 0.738 | 0.640 | 0.571 | 0.939 |
| CodeRev(TimesFM,Gemini) | 1.458 | 0.664 | 0.809 | 0.789 |
| TextRev(TimesFM,Gemini) | 0.700 | 0.666 | 0.831 | 0.641 |
| AvgEnsemble(TimesFM,GPT) | 0.630 | 0.741 | 0.764 | 0.698 |
| AvgEnsemble(TimesFM,Gemini) | 0.610 | 0.724 | 0.742 | 0.695 |

3448

3449

Table 53: Detailed MASE results of Table 1. (cont'd, part 38/38)

3450

3451

3452

3453

3454

3455

| Method | affordable_housing | air_conditioner | air_pollution | air_travel | alphabet |
|-------------------------------|--------------------|-----------------|---------------|------------|----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.613 | 0.480 | 0.489 | 0.986 | 0.650 |
| DeepSeek-V3 (AllContext) | 0.701 | 0.495 | 0.523 | 0.950 | 0.586 |
| Gemini-2.0-Flash (Event) | 0.668 | 0.287 | 0.349 | 0.909 | 0.570 |
| Gemini-2.0-Flash (AllContext) | 0.688 | 0.274 | 0.356 | 0.917 | 0.513 |
| GPT-4o (Event) | 0.634 | 0.326 | 0.337 | 0.852 | 0.521 |
| GPT-4o (AllContext) | 0.659 | 0.339 | 0.367 | 0.829 | 0.567 |

Table 54: Detailed MASE Results of Event Type Attribution Analysis. (part 1/38)

| Method | aluminum_usd_t | amazon | animal_migration | animal_rescue | animal_welfare |
|-------------------------------|----------------|--------|------------------|---------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.924 | 1.213 | 0.764 | 1.072 | 0.734 |
| DeepSeek-V3 (AllContext) | 0.782 | 1.241 | 0.794 | 1.166 | 0.695 |
| Gemini-2.0-Flash (Event) | 1.095 | 0.521 | 0.708 | 0.924 | 0.666 |
| Gemini-2.0-Flash (AllContext) | 0.795 | 0.570 | 0.696 | 0.956 | 0.647 |
| GPT-4o (Event) | 0.881 | 0.922 | 0.662 | 0.965 | 0.595 |
| GPT-4o (AllContext) | 0.784 | 0.996 | 0.664 | 1.048 | 0.618 |

Table 55: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 2/38)

Q DETAILED MASE RESULTS OF EVENT TYPE ATTRIBUTION ANALYSIS

3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509

| Method | apple_inc | art_exhibitions | artificial_intelligence | asset_management | autonomous_driving |
|-------------------------------|-----------|-----------------|-------------------------|------------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.710 | 0.769 | 0.906 | 0.815 | 0.941 |
| DeepSeek-V3 (AllContext) | 0.714 | 0.752 | 0.825 | 0.877 | 0.980 |
| Gemini-2.0-Flash (Event) | 0.682 | 0.769 | 0.872 | 0.841 | 0.985 |
| Gemini-2.0-Flash (AllContext) | 0.690 | 0.767 | 0.967 | 0.887 | 1.056 |
| GPT-4o (Event) | 0.626 | 0.668 | 0.759 | 0.803 | 0.821 |
| GPT-4o (AllContext) | 0.656 | 0.674 | 0.761 | 0.759 | 0.855 |

Table 56: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 3/38)

| Method | back_to_school | barley_inr_t | beef_brl_kg | beekeeping | biodiversity |
|-------------------------------|----------------|--------------|-------------|------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.291 | 0.976 | 0.576 | 0.620 | 0.406 |
| DeepSeek-V3 (AllContext) | 0.292 | 0.954 | 0.567 | 0.585 | 0.367 |
| Gemini-2.0-Flash (Event) | 0.300 | 0.889 | 0.649 | 0.629 | 0.310 |
| Gemini-2.0-Flash (AllContext) | 0.306 | 0.950 | 0.574 | 0.596 | 0.314 |
| GPT-4o (Event) | 0.263 | 0.912 | 0.457 | 0.533 | 0.239 |
| GPT-4o (AllContext) | 0.257 | 0.956 | 0.559 | 0.517 | 0.281 |

Table 57: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 4/38)

| Method | bitumen_cny_t | black_friday_deals | brent_usd_bbl | broadway_shows | butter_eur_t |
|-------------------------------|---------------|--------------------|---------------|----------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.896 | 0.343 | 0.823 | 0.727 | 0.758 |
| DeepSeek-V3 (AllContext) | 0.727 | 0.129 | 0.820 | 0.732 | 0.762 |
| Gemini-2.0-Flash (Event) | 0.841 | 0.552 | 0.824 | 0.627 | 0.894 |
| Gemini-2.0-Flash (AllContext) | 0.733 | 0.571 | 0.818 | 0.666 | 0.773 |
| GPT-4o (Event) | 0.977 | 0.449 | 0.853 | 0.715 | 0.745 |
| GPT-4o (AllContext) | 0.728 | 0.457 | 0.830 | 0.649 | 0.763 |

Table 58: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 5/38)

| Method | cancer_research | canola_cad_t | carbon_emissions | cheese_usd_lbs | christmas_gifts |
|-------------------------------|-----------------|--------------|------------------|----------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.815 | 0.794 | 0.916 | 1.055 | 0.116 |
| DeepSeek-V3 (AllContext) | 0.856 | 0.827 | 0.633 | 0.810 | 0.120 |
| Gemini-2.0-Flash (Event) | 0.815 | 0.998 | 0.760 | 0.868 | 0.094 |
| Gemini-2.0-Flash (AllContext) | 0.829 | 0.846 | 0.718 | 0.787 | 0.098 |
| GPT-4o (Event) | 0.756 | 0.850 | 0.669 | 0.867 | 0.088 |
| GPT-4o (AllContext) | 0.718 | 0.817 | 0.665 | 0.789 | 0.119 |

Table 59: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 6/38)

| Method | climate_change | coal_usd_t | cocoa_usd_t | coffee_usd_lbs | comic_con |
|-------------------------------|----------------|------------|-------------|----------------|-----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 1.771 | 0.625 | 0.797 | 0.819 | 0.408 |
| DeepSeek-V3 (AllContext) | 1.475 | 0.653 | 0.812 | 0.750 | 0.445 |
| Gemini-2.0-Flash (Event) | 0.696 | 0.704 | 0.935 | 0.955 | 0.492 |
| Gemini-2.0-Flash (AllContext) | 1.485 | 0.661 | 0.827 | 0.757 | 0.450 |
| GPT-4o (Event) | 1.950 | 0.731 | 0.767 | 0.895 | 0.518 |
| GPT-4o (AllContext) | 1.359 | 0.655 | 0.768 | 0.757 | 0.507 |

Table 60: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 7/38)

| Method | consumer_electronics | copper_usd_lbs | corn_usd_bu | cost_of_living | cotton_usd_lbs |
|-------------------------------|----------------------|----------------|-------------|----------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.753 | 0.732 | 0.865 | 0.778 | 1.311 |
| DeepSeek-V3 (AllContext) | 0.795 | 0.620 | 0.857 | 0.763 | 1.147 |
| Gemini-2.0-Flash (Event) | 0.640 | 0.856 | 0.899 | 0.809 | 1.347 |
| Gemini-2.0-Flash (AllContext) | 0.621 | 0.635 | 0.855 | 0.799 | 1.148 |
| GPT-4o (Event) | 0.649 | 0.740 | 0.911 | 0.712 | 1.196 |
| GPT-4o (AllContext) | 0.716 | 0.625 | 0.850 | 0.732 | 1.141 |

Table 61: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 8/38)

| Method | cryptocurrency | cybersecurity | data_breach | data_privacy | deforestation |
|-------------------------------|----------------|---------------|-------------|--------------|---------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.815 | 0.896 | 1.236 | 0.680 | 0.407 |
| DeepSeek-V3 (AllContext) | 0.864 | 0.837 | 0.958 | 0.770 | 0.466 |
| Gemini-2.0-Flash (Event) | 0.764 | 0.942 | 0.800 | 0.764 | 0.302 |
| Gemini-2.0-Flash (AllContext) | 0.750 | 0.994 | 0.828 | 0.760 | 0.298 |
| GPT-4o (Event) | 0.742 | 0.695 | 1.057 | 0.648 | 0.267 |
| GPT-4o (AllContext) | 0.711 | 0.687 | 1.054 | 0.635 | 0.269 |

Table 62: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 9/38)

| Method | diabetes | diammonium_usd_t | domestic_violence | drones | drought |
|-------------------------------|----------|------------------|-------------------|--------|---------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.663 | 0.782 | 0.593 | 0.999 | 0.754 |
| DeepSeek-V3 (AllContext) | 0.637 | 0.794 | 0.644 | 0.993 | 0.905 |
| Gemini-2.0-Flash (Event) | 0.591 | 0.743 | 0.737 | 0.854 | 0.726 |
| Gemini-2.0-Flash (AllContext) | 0.572 | 0.711 | 0.725 | 0.850 | 0.670 |
| GPT-4o (Event) | 0.551 | 0.754 | 0.684 | 0.900 | 0.701 |
| GPT-4o (AllContext) | 0.575 | 0.799 | 0.738 | 0.988 | 0.655 |

Table 63: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 10/38)

| Method | drug_overdose | earthquake | electric_vehicle | endangered_species | esports |
|-------------------------------|---------------|------------|------------------|--------------------|---------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.543 | 0.751 | 1.136 | 0.412 | 0.825 |
| DeepSeek-V3 (AllContext) | 0.618 | 0.765 | 1.071 | 0.520 | 0.823 |
| Gemini-2.0-Flash (Event) | 0.521 | 0.806 | 0.820 | 0.328 | 0.609 |
| Gemini-2.0-Flash (AllContext) | 0.514 | 0.854 | 0.829 | 0.332 | 0.621 |
| GPT-4o (Event) | 0.532 | 0.893 | 0.854 | 0.323 | 0.806 |
| GPT-4o (AllContext) | 0.531 | 0.894 | 0.881 | 0.322 | 0.727 |

Table 64: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 11/38)

| Method | ethanol_usd_gal | fashion_week | federal_budget_deficit | federal_reserve | film_festivals |
|-------------------------------|-----------------|--------------|------------------------|-----------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 1.068 | 0.382 | 0.585 | 0.699 | 0.564 |
| DeepSeek-V3 (AllContext) | 0.799 | 0.399 | 0.625 | 0.671 | 0.522 |
| Gemini-2.0-Flash (Event) | 0.989 | 0.248 | 0.463 | 0.640 | 0.700 |
| Gemini-2.0-Flash (AllContext) | 0.805 | 0.250 | 0.473 | 0.646 | 0.689 |
| GPT-4o (Event) | 0.985 | 0.332 | 0.441 | 0.603 | 0.541 |
| GPT-4o (AllContext) | 0.808 | 0.331 | 0.455 | 0.606 | 0.577 |

Table 65: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 12/38)

| Method | financial_regulation | flooding | flu_shot | food_recall | food_safety |
|-------------------------------|----------------------|----------|----------|-------------|-------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.691 | 0.732 | 0.369 | 1.442 | 0.819 |
| DeepSeek-V3 (AllContext) | 0.677 | 0.696 | 0.365 | 1.138 | 0.812 |
| Gemini-2.0-Flash (Event) | 0.721 | 0.752 | 0.237 | 1.032 | 0.698 |
| Gemini-2.0-Flash (AllContext) | 0.741 | 0.772 | 0.272 | 1.118 | 0.757 |
| GPT-4o (Event) | 0.556 | 0.761 | 0.292 | 1.308 | 0.609 |
| GPT-4o (AllContext) | 0.531 | 0.783 | 0.315 | 1.287 | 0.565 |

Table 66: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 13/38)

| Method | food_wine_festivals | formula_1 | gallium_cny_kg | gas_prices | gasoline_usd_gal |
|-------------------------------|---------------------|-----------|----------------|------------|------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.941 | 0.678 | 0.710 | 1.145 | 0.929 |
| DeepSeek-V3 (AllContext) | 0.949 | 0.767 | 0.577 | 1.250 | 0.691 |
| Gemini-2.0-Flash (Event) | 0.912 | 0.674 | 0.864 | 0.956 | 0.884 |
| Gemini-2.0-Flash (AllContext) | 0.935 | 0.717 | 0.581 | 1.217 | 0.698 |
| GPT-4o (Event) | 0.885 | 0.733 | 0.651 | 1.408 | 0.718 |
| GPT-4o (AllContext) | 0.860 | 0.717 | 0.574 | 1.352 | 0.679 |

Table 67: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 14/38)

| Method | gender_equality | gene_editing | germanium_cny_kg | global_warming | gold_usd_t_oz |
|-------------------------------|-----------------|--------------|------------------|----------------|---------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.538 | 0.988 | 0.677 | 0.843 | 0.979 |
| DeepSeek-V3 (AllContext) | 0.477 | 0.870 | 0.622 | 0.967 | 0.917 |
| Gemini-2.0-Flash (Event) | 0.329 | 0.637 | 1.466 | 0.597 | 0.812 |
| Gemini-2.0-Flash (AllContext) | 0.333 | 0.692 | 0.732 | 0.576 | 0.927 |
| GPT-4o (Event) | 0.306 | 0.623 | 0.541 | 0.579 | 1.066 |
| GPT-4o (AllContext) | 0.332 | 0.601 | 0.619 | 0.663 | 0.921 |

Table 68: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 15/38)

| Method | goldman_sachs | government_spending | halloween_costumes | healthcare_costs | healthcare_policy |
|-------------------------------|---------------|---------------------|--------------------|------------------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.664 | 0.640 | 0.144 | 0.726 | 0.880 |
| DeepSeek-V3 (AllContext) | 0.651 | 0.652 | 0.131 | 0.628 | 0.753 |
| Gemini-2.0-Flash (Event) | 0.658 | 0.495 | 0.131 | 0.577 | 0.759 |
| Gemini-2.0-Flash (AllContext) | 0.667 | 0.505 | 0.112 | 0.613 | 0.841 |
| GPT-4o (Event) | 0.610 | 0.509 | 0.123 | 0.529 | 0.617 |
| GPT-4o (AllContext) | 0.683 | 0.547 | 0.131 | 0.513 | 0.593 |

Table 69: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 16/38)

| Method | heatwave | heavy_rainfall | hedge_funds | hiv_aids | homelessness |
|-------------------------------|----------|----------------|-------------|----------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.703 | 0.679 | 0.878 | 0.681 | 0.953 |
| DeepSeek-V3 (AllContext) | 0.727 | 0.640 | 0.928 | 0.815 | 1.035 |
| Gemini-2.0-Flash (Event) | 0.559 | 0.614 | 0.834 | 0.674 | 0.654 |
| Gemini-2.0-Flash (AllContext) | 0.543 | 0.626 | 0.842 | 0.674 | 0.630 |
| GPT-4o (Event) | 0.654 | 0.545 | 0.851 | 0.526 | 0.604 |
| GPT-4o (AllContext) | 0.695 | 0.525 | 0.844 | 0.593 | 0.647 |

Table 70: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 17/38)

| Method | human_rights | immigration_reform | income_inequality | indium_cny_kg | infectious_disease |
|-------------------------------|--------------|--------------------|-------------------|---------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.675 | 1.008 | 0.642 | 1.056 | 0.835 |
| DeepSeek-V3 (AllContext) | 0.705 | 0.901 | 0.593 | 0.804 | 0.738 |
| Gemini-2.0-Flash (Event) | 0.424 | 0.750 | 0.311 | 1.259 | 0.581 |
| Gemini-2.0-Flash (AllContext) | 0.433 | 0.734 | 0.311 | 0.812 | 0.558 |
| GPT-4o (Event) | 0.445 | 0.778 | 0.303 | 1.204 | 0.518 |
| GPT-4o (AllContext) | 0.527 | 0.779 | 0.324 | 0.786 | 0.515 |

Table 71: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 18/38)

| Method | inflation | infrastructure_spending | international_trade | invasive_species | investment_banking |
|-------------------------------|-----------|-------------------------|---------------------|------------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.781 | 0.723 | 0.605 | 0.375 | 0.697 |
| DeepSeek-V3 (AllContext) | 0.718 | 0.661 | 0.657 | 0.367 | 0.841 |
| Gemini-2.0-Flash (Event) | 0.622 | 0.767 | 0.434 | 0.287 | 0.731 |
| Gemini-2.0-Flash (AllContext) | 0.600 | 0.759 | 0.441 | 0.298 | 0.741 |
| GPT-4o (Event) | 0.658 | 0.570 | 0.371 | 0.259 | 0.636 |
| GPT-4o (AllContext) | 0.661 | 0.526 | 0.390 | 0.275 | 0.684 |

Table 72: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 19/38)

| Method | lead_usd_t | lithium_cny_t | lumber_usd_1000_board_feet | magnesium_cny_t | major_league_baseball |
|-------------------------------|------------|---------------|----------------------------|-----------------|-----------------------|
| SeasonalNaive | 1.000 | 1.000 | | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 1.120 | 0.468 | | 1.075 | 0.903 |
| DeepSeek-V3 (AllContext) | 0.834 | 0.589 | | 0.886 | 0.771 |
| Gemini-2.0-Flash (Event) | 1.129 | 0.415 | | 0.850 | 0.939 |
| Gemini-2.0-Flash (AllContext) | 0.838 | 0.578 | | 0.882 | 0.781 |
| GPT-4o (Event) | 1.041 | 0.470 | | 0.933 | 0.821 |
| GPT-4o (AllContext) | 0.829 | 0.589 | | 0.888 | 0.764 |

Table 73: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 20/38)

| Method | manganese_cny_mtu | marine_life | marine_pollution | mental_health | meta_platforms |
|-------------------------------|-------------------|-------------|------------------|---------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.533 | 0.615 | | 0.538 | 0.553 |
| DeepSeek-V3 (AllContext) | 0.499 | 0.749 | | 0.397 | 0.584 |
| Gemini-2.0-Flash (Event) | 0.498 | 0.536 | | 0.337 | 0.476 |
| Gemini-2.0-Flash (AllContext) | 0.519 | 0.569 | | 0.337 | 0.459 |
| GPT-4o (Event) | 0.608 | 0.470 | | 0.308 | 0.441 |
| GPT-4o (AllContext) | 0.519 | 0.443 | | 0.315 | 0.423 |

Table 74: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 21/38)

| Method | meteor_shower | methanol_cny_t | microsoft | milk_usd_cwt | minimum_wage |
|-------------------------------|---------------|----------------|-----------|--------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.528 | 0.998 | | 0.689 | 1.005 |
| DeepSeek-V3 (AllContext) | 0.532 | 0.892 | | 0.802 | 0.577 |
| Gemini-2.0-Flash (Event) | 0.336 | 0.816 | | 0.616 | 0.686 |
| Gemini-2.0-Flash (AllContext) | 0.329 | 0.877 | | 0.649 | 0.585 |
| GPT-4o (Event) | 0.562 | 1.028 | | 0.649 | 0.630 |
| GPT-4o (AllContext) | 0.514 | 0.902 | | 0.650 | 0.575 |

Table 75: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 22/38)

| Method | molybdenum_cny_kg | mortgage_rates | music_festivals | naphtha_usd_t | national_basketball_association |
|-------------------------------|-------------------|----------------|-----------------|---------------|---------------------------------|
| SeasonalNaive | 1.000 | 1.000 | | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.706 | 0.787 | | 0.743 | 0.997 |
| DeepSeek-V3 (AllContext) | 0.544 | 0.848 | | 0.633 | 0.815 |
| Gemini-2.0-Flash (Event) | 0.684 | 0.716 | | 0.460 | 1.097 |
| Gemini-2.0-Flash (AllContext) | 0.560 | 0.716 | | 0.460 | 0.827 |
| GPT-4o (Event) | 0.696 | 0.788 | | 0.524 | 1.014 |
| GPT-4o (AllContext) | 0.558 | 0.809 | | 0.572 | 0.822 |

Table 76: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 23/38)

| Method | national_debt | national_football_league | neodymium_cny_t | nickel_usd_t | nobel_prize |
|-------------------------------|---------------|--------------------------|-----------------|--------------|-------------|
| SeasonalNaive | 1.000 | | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.808 | | 0.759 | 0.704 | 0.821 |
| DeepSeek-V3 (AllContext) | 0.801 | | 0.710 | 0.542 | 0.778 |
| Gemini-2.0-Flash (Event) | 0.791 | | 0.554 | 0.513 | 0.910 |
| Gemini-2.0-Flash (AllContext) | 0.804 | | 0.561 | 0.552 | 0.773 |
| GPT-4o (Event) | 0.818 | | 0.632 | 0.535 | 0.801 |
| GPT-4o (AllContext) | 0.812 | | 0.648 | 0.543 | 0.779 |

Table 77: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 24/38)

| Method | nvidia | oat_usd_bu | obesity | opioid_crisis | organic_food |
|-------------------------------|--------|------------|---------|---------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 1.052 | 1.024 | | 1.026 | 0.567 |
| DeepSeek-V3 (AllContext) | 1.121 | 0.888 | | 1.111 | 0.570 |
| Gemini-2.0-Flash (Event) | 0.730 | 1.027 | | 0.520 | 0.557 |
| Gemini-2.0-Flash (AllContext) | 0.691 | 0.877 | | 0.701 | 0.554 |
| GPT-4o (Event) | 0.872 | 0.999 | | 0.684 | 0.541 |
| GPT-4o (AllContext) | 0.854 | 0.880 | | 0.728 | 0.611 |

Table 78: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 25/38)

| Method | palladium_usd_t_oz | pest_control | pet_adoption | pet_health | platinum_usd_t_oz |
|-------------------------------|--------------------|--------------|--------------|------------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.916 | 0.407 | 0.991 | 0.953 | 0.752 |
| DeepSeek-V3 (AllContext) | 0.773 | 0.438 | 0.965 | 1.039 | 0.667 |
| Gemini-2.0-Flash (Event) | 0.975 | 0.368 | 0.866 | 1.064 | 0.772 |
| Gemini-2.0-Flash (AllContext) | 0.759 | 0.387 | 0.862 | 1.111 | 0.673 |
| GPT-4o (Event) | 0.869 | 0.303 | 1.039 | 0.820 | 0.701 |
| GPT-4o (AllContext) | 0.763 | 0.320 | 1.256 | 0.794 | 0.671 |

Table 79: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 26/38)

| Method | polyethylene_cny.t | polypropylene_cny.t | polyvinyl_cny.t | potatoes_eur_100kg | poultry_brl_kgs |
|-------------------------------|--------------------|---------------------|-----------------|--------------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.769 | 1.059 | 0.708 | 0.731 | 0.828 |
| DeepSeek-V3 (AllContext) | 0.677 | 0.950 | 0.606 | 0.672 | 0.771 |
| Gemini-2.0-Flash (Event) | 0.730 | 0.848 | 0.853 | 0.742 | 0.921 |
| Gemini-2.0-Flash (AllContext) | 0.673 | 0.936 | 0.586 | 0.679 | 0.783 |
| GPT-4o (Event) | 0.817 | 0.892 | 0.658 | 0.612 | 0.888 |
| GPT-4o (AllContext) | 0.680 | 0.930 | 0.584 | 0.667 | 0.783 |

Table 80: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 27/38)

| Method | presidential_election | private_equity | propane_usd_gal | protest | quantum_computing |
|-------------------------------|-----------------------|----------------|-----------------|---------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.829 | 0.721 | 0.950 | 0.922 | 0.908 |
| DeepSeek-V3 (AllContext) | 0.824 | 0.932 | 0.756 | 0.879 | 0.787 |
| Gemini-2.0-Flash (Event) | 0.829 | 0.829 | 0.844 | 0.933 | 0.895 |
| Gemini-2.0-Flash (AllContext) | 0.827 | 0.878 | 0.756 | 0.985 | 0.930 |
| GPT-4o (Event) | 0.817 | 0.702 | 0.937 | 1.024 | 0.858 |
| GPT-4o (AllContext) | 0.831 | 0.698 | 0.759 | 1.025 | 0.843 |

Table 81: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 28/38)

| Method | rapeseed_eur.t | refugee_support | renewable_energy | rhodium_usd_t_oz | rice_usd_cwt |
|-------------------------------|----------------|-----------------|------------------|------------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 1.070 | 0.696 | 0.504 | 0.835 | 0.872 |
| DeepSeek-V3 (AllContext) | 0.777 | 0.665 | 0.499 | 0.917 | 0.653 |
| Gemini-2.0-Flash (Event) | 0.853 | 0.522 | 0.388 | 0.779 | 0.736 |
| Gemini-2.0-Flash (AllContext) | 0.773 | 0.531 | 0.420 | 0.914 | 0.671 |
| GPT-4o (Event) | 1.095 | 0.541 | 0.352 | 0.723 | 0.775 |
| GPT-4o (AllContext) | 0.778 | 0.575 | 0.346 | 0.907 | 0.647 |

Table 82: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 29/38)

| Method | robotics | rocket_launch | rubber_usd_cents_kg | salmon_nok_kg | silver_usd_t_oz |
|-------------------------------|----------|---------------|---------------------|---------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.937 | 1.125 | 1.243 | 1.326 | 1.105 |
| DeepSeek-V3 (AllContext) | 1.014 | 1.087 | 0.814 | 1.357 | 0.822 |
| Gemini-2.0-Flash (Event) | 1.001 | 0.971 | 0.974 | 1.329 | 0.936 |
| Gemini-2.0-Flash (AllContext) | 0.962 | 1.030 | 0.806 | 1.326 | 0.818 |
| GPT-4o (Event) | 0.826 | 1.160 | 1.151 | 1.182 | 0.984 |
| GPT-4o (AllContext) | 0.788 | 1.210 | 0.822 | 1.317 | 0.828 |

Table 83: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 30/38)

| Method | ski_gear | soybeans_usd_bu | space_exploration | steel_cny_t | stock_market |
|-------------------------------|----------|-----------------|-------------------|-------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.275 | 1.035 | 0.471 | 1.215 | 1.059 |
| DeepSeek-V3 (AllContext) | 0.247 | 0.866 | 0.499 | 0.877 | 1.045 |
| Gemini-2.0-Flash (Event) | 0.233 | 1.260 | 0.417 | 1.023 | 0.735 |
| Gemini-2.0-Flash (AllContext) | 0.225 | 0.908 | 0.418 | 0.866 | 0.758 |
| GPT-4o (Event) | 0.240 | 1.086 | 0.393 | 1.004 | 0.813 |
| GPT-4o (AllContext) | 0.245 | 0.864 | 0.455 | 0.873 | 0.832 |

Table 84: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 31/38)

| Method | student_loans | sugar_usd_lbs | sustainable_fashion | tax_software | taxes |
|-------------------------------|---------------|---------------|---------------------|--------------|-------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.940 | 1.188 | 0.606 | 0.404 | 0.336 |
| DeepSeek-V3 (AllContext) | 0.908 | 0.943 | 0.622 | 0.437 | 0.526 |
| Gemini-2.0-Flash (Event) | 0.823 | 1.129 | 0.649 | 0.365 | 0.182 |
| Gemini-2.0-Flash (AllContext) | 0.844 | 0.946 | 0.648 | 0.379 | 0.191 |
| GPT-4o (Event) | 0.968 | 1.145 | 0.534 | 0.362 | 0.170 |
| GPT-4o (AllContext) | 0.982 | 0.953 | 0.526 | 0.363 | 0.180 |

Table 85: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 32/38)

| Method | tellurium_cny_kg | tesla | tin_usd_t | titanium_cny_kg | tour_de_france |
|-------------------------------|------------------|-------|-----------|-----------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 1.479 | 0.667 | 0.855 | 0.675 | 0.305 |
| DeepSeek-V3 (AllContext) | 0.709 | 0.679 | 0.738 | 0.614 | 0.354 |
| Gemini-2.0-Flash (Event) | 0.787 | 0.711 | 1.080 | 0.628 | 0.321 |
| Gemini-2.0-Flash (AllContext) | 0.711 | 0.743 | 0.740 | 0.604 | 0.285 |
| GPT-4o (Event) | 0.704 | 0.629 | 0.686 | 0.703 | 0.198 |
| GPT-4o (AllContext) | 0.699 | 0.652 | 0.747 | 0.610 | 0.257 |

Table 86: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 33/38)

| Method | traffic_insurance | unemployment_rate | uranium_usd_lbs | urea_usd_t | usdtoaud_exchangerate |
|-------------------------------|-------------------|-------------------|-----------------|------------|-----------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.947 | 0.714 | 1.036 | 0.418 | 1.275 |
| DeepSeek-V3 (AllContext) | 0.887 | 0.731 | 0.863 | 0.492 | 0.841 |
| Gemini-2.0-Flash (Event) | 0.997 | 0.544 | 1.142 | 0.593 | 1.072 |
| Gemini-2.0-Flash (AllContext) | 1.048 | 0.529 | 0.869 | 0.507 | 0.807 |
| GPT-4o (Event) | 0.765 | 0.557 | 0.993 | 0.428 | 1.195 |
| GPT-4o (AllContext) | 0.774 | 0.625 | 0.871 | 0.495 | 0.833 |

Table 87: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 34/38)

| Method | usdtobrl_exchangerate | usdtocad_exchangerate | usdtochf_exchangerate | usdtogbp_exchangerate | usdthk_exchangerate |
|-------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 1.065 | 0.999 | 1.110 | 1.178 | 0.919 |
| DeepSeek-V3 (AllContext) | 0.695 | 0.629 | 0.852 | 0.773 | 0.781 |
| Gemini-2.0-Flash (Event) | 1.099 | 0.795 | 0.890 | 0.964 | 0.970 |
| Gemini-2.0-Flash (AllContext) | 0.697 | 0.636 | 0.878 | 0.778 | 0.810 |
| GPT-4o (Event) | 1.004 | 0.835 | 0.932 | 0.860 | 0.881 |
| GPT-4o (AllContext) | 0.696 | 0.612 | 0.852 | 0.779 | 0.784 |

Table 88: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 35/38)

| Method | usdtoiinr_exchangerate | usdtokrw_exchangerate | usdtonxn_exchangerate | usdtosgd_exchangerate | used_car |
|-------------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.658 | 0.927 | 1.166 | 1.282 | 0.805 |
| DeepSeek-V3 (AllContext) | 0.720 | 0.858 | 0.767 | 0.933 | 0.797 |
| Gemini-2.0-Flash (Event) | 0.734 | 0.920 | 0.927 | 1.041 | 0.673 |
| Gemini-2.0-Flash (AllContext) | 0.737 | 0.866 | 0.766 | 0.910 | 0.644 |
| GPT-4o (Event) | 0.647 | 0.855 | 0.920 | 0.943 | 0.760 |
| GPT-4o (AllContext) | 0.733 | 0.859 | 0.749 | 0.909 | 0.738 |

Table 89: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 36/38)

| Method | vaccine_research | venture_capital | volcanic_eruption | water_scarcity | wheat_usd_bu |
|-------------------------------|------------------|-----------------|-------------------|----------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.893 | 1.073 | 0.905 | 0.553 | 1.251 |
| DeepSeek-V3 (AllContext) | 0.831 | 0.868 | 0.749 | 0.589 | 0.991 |
| Gemini-2.0-Flash (Event) | 0.803 | 0.803 | 0.502 | 0.442 | 1.087 |
| Gemini-2.0-Flash (AllContext) | 0.838 | 0.823 | 0.642 | 0.437 | 0.966 |
| GPT-4o (Event) | 0.688 | 0.790 | 0.552 | 0.418 | 1.194 |
| GPT-4o (AllContext) | 0.691 | 0.811 | 0.594 | 0.434 | 0.972 |

Table 90: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 37/38)

3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857

| Method | wildfires | wildlife_conservation | wool_aud_100kg | zinc_usd_t |
|-------------------------------|-----------|-----------------------|----------------|------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 |
| DeepSeek-V3 (Event) | 0.699 | 0.764 | 0.765 | 1.013 |
| DeepSeek-V3 (AllContext) | 0.665 | 0.863 | 0.744 | 0.691 |
| Gemini-2.0-Flash (Event) | 0.626 | 0.799 | 0.728 | 0.927 |
| Gemini-2.0-Flash (AllContext) | 0.650 | 0.830 | 0.742 | 0.695 |
| GPT-4o (Event) | 0.750 | 0.653 | 0.768 | 0.899 |
| GPT-4o (AllContext) | 0.752 | 0.614 | 0.742 | 0.697 |

3864
 3865 Table 91: Detailed MASE Results of Event Type Attribution Analysis. (cont'd, part 38/38)
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887

3888
 3889 **R DETAILED MASE RESULTS OF EVENT TYPE DEEP ANALYSIS USING**
 3890 **GEMINI**

3891

| Method | affordable_housing | air_conditioner | air_pollution | air_travel | alphabet |
|-----------------|--------------------|-----------------|---------------|------------|----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.740 | 0.504 | 0.827 | 1.086 | 0.747 |
| Meta+Date | 0.701 | 0.287 | 0.362 | 0.950 | 0.616 |
| Meta+Date+Cov | 0.673 | 0.271 | 0.355 | 0.943 | 0.514 |
| Meta+Date+Event | 0.668 | 0.287 | 0.349 | 0.909 | 0.570 |
| AllContext | 0.688 | 0.274 | 0.356 | 0.917 | 0.513 |

3892
 3893 Table 92: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (part 1/38)
 3894
 3895
 3896
 3897
 3898

3899

| Method | aluminum_usd_t | amazon | animal_migration | animal_rescue | animal_welfare |
|-----------------|----------------|--------|------------------|---------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.876 | 0.836 | 0.977 | 0.753 | 0.808 |
| Meta+Date | 0.921 | 0.581 | 0.718 | 0.921 | 0.641 |
| Meta+Date+Cov | 1.191 | 0.597 | 0.727 | 0.871 | 0.633 |
| Meta+Date+Event | 1.095 | 0.521 | 0.708 | 0.924 | 0.666 |
| AllContext | 0.795 | 0.570 | 0.696 | 0.956 | 0.647 |

3900
 3901 Table 93: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
 3902 part 2/38)

3903

| Method | apple_inc | art_exhibitions | artificial_intelligence | asset_management | autonomous_driving |
|-----------------|-----------|-----------------|-------------------------|------------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.826 | 0.832 | 1.017 | 0.846 | 0.873 |
| Meta+Date | 0.680 | 0.813 | 0.904 | 0.838 | 1.027 |
| Meta+Date+Cov | 0.684 | 0.775 | 0.946 | 0.874 | 1.035 |
| Meta+Date+Event | 0.682 | 0.769 | 0.872 | 0.841 | 0.985 |
| AllContext | 0.690 | 0.767 | 0.967 | 0.887 | 1.056 |

3904
 3905 Table 94: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
 3906 part 3/38)

3942

3943

| Method | back_to_school | barley_inr_t | beef_brl_kg | beekeeping | biodiversity |
|-----------------|----------------|--------------|-------------|------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.570 | 0.969 | 0.524 | 1.019 | 0.648 |
| Meta+Date | 0.288 | 0.944 | 0.494 | 0.625 | 0.324 |
| Meta+Date+Cov | 0.302 | 1.018 | 0.659 | 0.531 | 0.300 |
| Meta+Date+Event | 0.300 | 0.889 | 0.649 | 0.629 | 0.310 |
| AllContext | 0.306 | 0.950 | 0.574 | 0.596 | 0.314 |

3944

3945

3946

3947

3948

3949

3950

3951 Table 95: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 4/38)

3952

3953

3954

3955

| Method | bitumen_cny_t | black_friday_deals | brent_usd_bbl | broadway_shows | butter_eur_t |
|-----------------|---------------|--------------------|---------------|----------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.737 | 1.262 | 0.931 | 0.748 | 0.768 |
| Meta+Date | 0.734 | 0.563 | 0.830 | 0.637 | 0.837 |
| Meta+Date+Cov | 0.846 | 0.543 | 0.785 | 0.692 | 0.873 |
| Meta+Date+Event | 0.841 | 0.552 | 0.824 | 0.627 | 0.894 |
| AllContext | 0.733 | 0.571 | 0.818 | 0.666 | 0.773 |

3956

3957

3958

3959

3960

3961

3962 Table 96: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 5/38)

3963

3964

3965

3966

| Method | cancer_research | canola_cad_t | carbon_emissions | cheese_usd_lbs | christmas_gifts |
|-----------------|-----------------|--------------|------------------|----------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.883 | 0.772 | 0.838 | 0.771 | 0.225 |
| Meta+Date | 0.832 | 0.868 | 0.774 | 0.861 | 0.093 |
| Meta+Date+Cov | 0.857 | 0.940 | 0.687 | 0.932 | 0.090 |
| Meta+Date+Event | 0.815 | 0.998 | 0.760 | 0.868 | 0.094 |
| AllContext | 0.829 | 0.846 | 0.718 | 0.787 | 0.098 |

3971

3972

3973 Table 97: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 6/38)

3974

3975

3976

3977

| Method | climate_change | coal_usd_t | cocoa_usd_t | coffee_usd_lbs | comic_con |
|-----------------|----------------|------------|-------------|----------------|-----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.893 | 0.736 | 0.884 | 0.788 | 0.812 |
| Meta+Date | 1.213 | 0.712 | 0.885 | 0.745 | 0.465 |
| Meta+Date+Cov | 1.262 | 0.610 | 1.000 | 0.850 | 0.490 |
| Meta+Date+Event | 0.696 | 0.704 | 0.935 | 0.955 | 0.492 |
| AllContext | 1.485 | 0.661 | 0.827 | 0.757 | 0.450 |

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

| Method | consumer_electronics | copper_usd_lbs | corn_usd_bu | cost_of_living | cotton_usd_lbs |
|-----------------|----------------------|----------------|-------------|----------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.857 | 0.733 | 0.822 | 0.699 | 0.844 |
| Meta+Date | 0.634 | 0.816 | 0.966 | 0.801 | 1.274 |
| Meta+Date+Cov | 0.583 | 0.794 | 1.037 | 0.710 | 1.263 |
| Meta+Date+Event | 0.640 | 0.856 | 0.899 | 0.809 | 1.347 |
| AllContext | 0.621 | 0.635 | 0.855 | 0.799 | 1.148 |

Table 99: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 8/38)

| 3996 | Method | cryptocurrency | cybersecurity | data_breach | data_privacy | deforestation |
|------|-----------------|----------------|---------------|-------------|--------------|---------------|
| 3997 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3998 | Meta | 0.809 | 0.946 | 0.922 | 0.879 | 0.634 |
| 3999 | Meta+Date | 0.793 | 0.878 | 0.873 | 0.754 | 0.304 |
| 4000 | Meta+Date+Cov | 0.769 | 0.956 | 0.798 | 0.756 | 0.315 |
| 4001 | Meta+Date+Event | 0.764 | 0.942 | 0.800 | 0.764 | 0.302 |
| 4002 | AllContext | 0.750 | 0.994 | 0.828 | 0.760 | 0.298 |
| 4003 | | | | | | |

4004
4005 Table 100: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
4006 part 9/38)

| 4007 | Method | diabetes | diammonium_usd_t | domestic_violence | drones | drought |
|------|-----------------|----------|------------------|-------------------|--------|---------|
| 4008 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4009 | Meta | 0.789 | 0.797 | 0.749 | 0.827 | 0.789 |
| 4010 | Meta+Date | 0.611 | 0.799 | 0.742 | 0.879 | 0.676 |
| 4011 | Meta+Date+Cov | 0.568 | 0.785 | 0.710 | 0.853 | 0.651 |
| 4012 | Meta+Date+Event | 0.591 | 0.743 | 0.737 | 0.854 | 0.726 |
| 4013 | AllContext | 0.572 | 0.711 | 0.725 | 0.850 | 0.670 |
| 4014 | | | | | | |

4015
4016 Table 101: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
4017 part 10/38)

| 4018 | Method | drug_overdose | earthquake | electric_vehicle | endangered_species | esports |
|------|-----------------|---------------|------------|------------------|--------------------|---------|
| 4019 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4020 | Meta | 0.815 | 0.689 | 0.843 | 0.703 | 0.671 |
| 4021 | Meta+Date | 0.514 | 0.942 | 0.818 | 0.329 | 0.642 |
| 4022 | Meta+Date+Cov | 0.527 | 0.899 | 0.861 | 0.320 | 0.646 |
| 4023 | Meta+Date+Event | 0.521 | 0.806 | 0.820 | 0.328 | 0.609 |
| 4024 | AllContext | 0.514 | 0.854 | 0.829 | 0.332 | 0.621 |
| 4025 | | | | | | |

4026
4027 Table 102: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
4028 part 11/38)

| 4029 | Method | ethanol_usd_gal | fashion_week | federal_budget_deficit | federal_reserve | film_festivals |
|------|-----------------|-----------------|--------------|------------------------|-----------------|----------------|
| 4030 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4031 | Meta | 0.838 | 0.636 | 0.809 | 0.710 | 0.758 |
| 4032 | Meta+Date | 0.913 | 0.276 | 0.454 | 0.627 | 0.667 |
| 4033 | Meta+Date+Cov | 1.134 | 0.248 | 0.425 | 0.610 | 0.663 |
| 4034 | Meta+Date+Event | 0.989 | 0.248 | 0.463 | 0.640 | 0.700 |
| 4035 | AllContext | 0.805 | 0.250 | 0.473 | 0.646 | 0.689 |
| 4036 | | | | | | |

4037
4038 Table 103: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
4039 part 12/38)

| 4040 | Method | financial_regulation | flooding | flu_shot | food_recall | food_safety |
|------|-----------------|----------------------|----------|----------|-------------|-------------|
| 4041 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4042 | Meta | 0.900 | 0.703 | 0.622 | 0.740 | 0.845 |
| 4043 | Meta+Date | 0.731 | 0.758 | 0.237 | 1.211 | 0.751 |
| 4044 | Meta+Date+Cov | 0.713 | 0.753 | 0.261 | 1.100 | 0.716 |
| 4045 | Meta+Date+Event | — | 0.752 | 0.237 | 1.032 | 0.698 |
| 4046 | AllContext | 0.741 | 0.772 | 0.272 | 1.118 | 0.757 |
| 4047 | | | | | | |

4048
4049 Table 104: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
4050 part 13/38)

4050

4051

| Method | food_wine_festivals | formula_1 | gallium_cny_kg | gas_prices | gasoline_usd_gal |
|-----------------|---------------------|-----------|----------------|------------|------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.851 | 0.908 | 0.579 | 0.908 | 0.686 |
| Meta+Date | 0.929 | 0.664 | 0.579 | 1.276 | 1.172 |
| Meta+Date+Cov | 0.925 | 0.685 | 0.638 | 1.180 | 0.910 |
| Meta+Date+Event | 0.912 | 0.674 | 0.864 | 0.956 | 0.884 |
| AllContext | 0.935 | 0.717 | 0.581 | 1.217 | 0.698 |

4052

4053

4054

4055

4056

4057

4058 Table 105: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
 4059 part 14/38)

4060

4061

| Method | gender_equality | gene_editing | germanium_cny_kg | global_warming | gold_usd_t_oz |
|-----------------|-----------------|--------------|------------------|----------------|---------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.814 | 0.894 | 0.606 | 0.814 | 0.797 |
| Meta+Date | 0.340 | 0.692 | 0.620 | 0.569 | 1.005 |
| Meta+Date+Cov | 0.319 | 0.637 | 0.615 | 0.578 | 1.076 |
| Meta+Date+Event | 0.329 | 0.637 | 1.466 | 0.597 | 0.812 |
| AllContext | 0.333 | 0.692 | 0.732 | 0.576 | 0.927 |

4062

4063

4064

4065

4066

4067

4068

4069 Table 106: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
 4070 part 15/38)

4071

4072

| Method | goldman_sachs | government_spending | halloween_costumes | healthcare_costs | healthcare_policy |
|-----------------|---------------|---------------------|--------------------|------------------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.686 | 0.905 | 0.322 | 0.869 | 0.846 |
| Meta+Date | 0.714 | 0.555 | 0.144 | 0.605 | 0.777 |
| Meta+Date+Cov | 0.646 | 0.505 | 0.127 | 0.621 | 0.778 |
| Meta+Date+Event | 0.658 | 0.495 | 0.131 | 0.577 | 0.759 |
| AllContext | 0.667 | 0.505 | 0.112 | 0.613 | 0.841 |

4073

4074

4075

4076

4077

4078

4079 Table 107: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
 4080 part 16/38)

4081

4082

| Method | heatwave | heavy_rainfall | hedge_funds | hiv_aids | homelessness |
|-----------------|----------|----------------|-------------|----------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.667 | 0.928 | 0.820 | 1.220 | 0.721 |
| Meta+Date | 0.548 | 0.634 | 0.848 | 0.645 | 0.709 |
| Meta+Date+Cov | 0.529 | 0.615 | 0.824 | 0.626 | 0.649 |
| Meta+Date+Event | 0.559 | 0.614 | 0.834 | 0.674 | 0.654 |
| AllContext | 0.543 | 0.626 | 0.842 | 0.674 | 0.630 |

4083

4084

4085

4086

4087

4088

4089

4090

4091 Table 108: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
 4092 part 17/38)

4093

4094

| Method | human_rights | immigration_reform | income_inequality | indium_cny_kg | infectious_disease |
|-----------------|--------------|--------------------|-------------------|---------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.825 | 0.879 | 0.734 | 0.792 | 0.794 |
| Meta+Date | 0.441 | 0.773 | 0.323 | 0.815 | 0.558 |
| Meta+Date+Cov | 0.427 | 0.724 | 0.290 | 0.785 | 0.555 |
| Meta+Date+Event | 0.424 | 0.750 | 0.311 | 1.259 | 0.581 |
| AllContext | 0.433 | 0.734 | 0.311 | 0.812 | 0.558 |

4095

4096

4097

4098

4099

4100

4101

4102 Table 109: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd,
 4103 part 18/38)

4104

4104

4105

| Method | inflation | infrastructure_spending | international_trade | invasive_species | investment_banking |
|-----------------|-----------|-------------------------|---------------------|------------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.783 | 0.879 | 0.882 | 0.569 | 0.849 |
| Meta+Date | 0.642 | 0.766 | 0.424 | 0.277 | 0.717 |
| Meta+Date+Cov | 0.596 | 0.766 | 0.410 | 0.273 | 0.743 |
| Meta+Date+Event | 0.622 | 0.767 | 0.434 | 0.287 | 0.731 |
| AllContext | 0.600 | 0.759 | 0.441 | 0.298 | 0.741 |

4111

4112

4113

Table 110: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 19/38)

4114

4115

| Method | lead_usd_t | lithium_cny_t | lumber_usd_1000_board_feet | magnesium_cny_t | major_league_baseball |
|-----------------|------------|---------------|----------------------------|-----------------|-----------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.883 | 0.731 | 0.987 | 0.748 | 0.612 |
| Meta+Date | 1.036 | 0.504 | 0.996 | 0.846 | 0.248 |
| Meta+Date+Cov | 1.121 | 0.407 | 0.952 | 0.860 | 0.250 |
| Meta+Date+Event | 1.129 | 0.415 | 0.850 | 0.939 | 0.235 |
| AllContext | 0.838 | 0.578 | 0.882 | 0.781 | 0.241 |

4122

4123

Table 111: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 20/38)

4124

4125

| Method | manganese_cny_mtu | marine_life | marine_pollution | mental_health | meta_platforms |
|-----------------|-------------------|-------------|------------------|---------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.542 | 0.892 | 0.805 | 0.736 | 0.820 |
| Meta+Date | 0.553 | 0.523 | 0.332 | 0.461 | 0.665 |
| Meta+Date+Cov | 0.625 | 0.545 | 0.348 | 0.469 | 0.663 |
| Meta+Date+Event | 0.498 | 0.536 | 0.337 | 0.476 | 0.666 |
| AllContext | 0.519 | 0.569 | 0.337 | 0.459 | 0.652 |

4133

4134

Table 112: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 21/38)

4135

| Method | meteor_shower | methanol_cny_t | microsoft | milk_usd_cwt | minimum_wage |
|-----------------|---------------|----------------|-----------|--------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.592 | 0.925 | 0.683 | 0.564 | 0.992 |
| Meta+Date | 0.417 | 0.861 | 0.641 | 0.626 | 1.117 |
| Meta+Date+Cov | 0.297 | 1.012 | 0.667 | 0.702 | 0.991 |
| Meta+Date+Event | 0.336 | 0.816 | 0.616 | 0.686 | 1.017 |
| AllContext | 0.329 | 0.877 | 0.649 | 0.585 | 1.051 |

4145

4146

Table 113: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 22/38)

4147

4148

4149

| Method | molybdenum_cny_kg | mortgage_rates | music_festivals | naphtha_usd_t | national_basketball_association |
|-----------------|-------------------|----------------|-----------------|---------------|---------------------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.570 | 0.747 | 0.935 | 0.776 | 0.766 |
| Meta+Date | 0.558 | 0.747 | 0.490 | 0.984 | 0.688 |
| Meta+Date+Cov | 0.670 | 0.735 | 0.483 | 1.039 | 0.687 |
| Meta+Date+Event | 0.684 | 0.716 | 0.460 | 1.097 | 0.665 |
| AllContext | 0.560 | 0.716 | 0.460 | 0.827 | 0.687 |

4155

4156

4157

Table 114: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 23/38)

| Method | national_debt | national_football_league | neodymium_cny_t | nickel_usd_t | nobel_prize |
|-----------------|---------------|--------------------------|-----------------|--------------|-------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.837 | 0.775 | 0.562 | 0.761 | 0.826 |
| Meta+Date | 0.855 | 0.557 | 0.590 | 0.923 | 0.456 |
| Meta+Date+Cov | 0.816 | 0.557 | 0.695 | 1.110 | 0.500 |
| Meta+Date+Event | 0.791 | 0.554 | 0.513 | 0.910 | 0.414 |
| AllContext | 0.804 | 0.561 | 0.552 | 0.773 | 0.499 |

Table 115: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 24/38)

| Method | nvidia | oat_usd_bu | obesity | opioid_crisis | organic_food |
|-----------------|--------|------------|---------|---------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.772 | 0.851 | 0.745 | 0.726 | 0.787 |
| Meta+Date | 0.815 | 0.952 | 0.490 | 0.603 | 0.474 |
| Meta+Date+Cov | 0.734 | 1.106 | 0.546 | 0.541 | 0.463 |
| Meta+Date+Event | 0.730 | 1.027 | 0.520 | 0.557 | 0.476 |
| AllContext | 0.691 | 0.877 | 0.701 | 0.554 | 0.469 |

Table 116: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 25/38)

| Method | palladium_usd_t_oz | pest_control | pet_adoption | pet_health | platinum_usd_t_oz |
|-----------------|--------------------|--------------|--------------|------------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.730 | 0.711 | 0.786 | 0.844 | 0.754 |
| Meta+Date | 0.817 | 0.382 | 1.373 | 1.030 | 0.747 |
| Meta+Date+Cov | 0.884 | 0.360 | 0.770 | 1.124 | 0.919 |
| Meta+Date+Event | 0.975 | 0.368 | 0.866 | 1.064 | 0.772 |
| AllContext | 0.759 | 0.387 | 0.862 | 1.111 | 0.673 |

Table 117: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 26/38)

| Method | polyethylene_cny_t | polypropylene_cny_t | polyvinyl_cny_t | potatoes_eur_100kg | poultry_brl_kgs |
|-----------------|--------------------|---------------------|-----------------|--------------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.804 | 1.014 | 0.689 | 0.804 | 0.761 |
| Meta+Date | 0.790 | 0.884 | 0.644 | 0.742 | 0.804 |
| Meta+Date+Cov | 0.818 | 0.898 | 0.865 | 0.760 | 0.832 |
| Meta+Date+Event | 0.730 | 0.848 | 0.853 | 0.742 | 0.921 |
| AllContext | 0.673 | 0.936 | 0.586 | 0.679 | 0.783 |

Table 118: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 27/38)

| Method | presidential_election | private_equity | propane_usd_gal | protest | quantum_computing |
|-----------------|-----------------------|----------------|-----------------|---------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.855 | 0.844 | 0.743 | 0.931 | 0.900 |
| Meta+Date | 0.823 | 0.899 | 0.864 | 0.914 | 0.961 |
| Meta+Date+Cov | 0.818 | 0.906 | 1.001 | 0.933 | 0.939 |
| Meta+Date+Event | 0.829 | 0.829 | 0.844 | 0.933 | 0.895 |
| AllContext | 0.827 | 0.878 | 0.756 | 0.985 | 0.930 |

Table 119: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 28/38)

| Method | rapeseed_eur_t | refugee_support | renewable_energy | rhodium_usd_t_oz | rice_usd_cwt |
|-----------------|----------------|-----------------|------------------|------------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.814 | 0.762 | 0.930 | 0.915 | 0.747 |
| Meta+Date | 0.856 | 0.541 | 0.413 | 0.945 | 0.714 |
| Meta+Date+Cov | 0.951 | 0.517 | 0.402 | 0.891 | 0.793 |
| Meta+Date+Event | 0.853 | 0.522 | 0.388 | 0.779 | 0.736 |
| AllContext | 0.773 | 0.531 | 0.420 | 0.914 | 0.671 |

Table 120: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 29/38)

| Method | robotics | rocket_launch | rubber_usd_cents_kg | salmon_nok_kg | silver_usd_t_oz |
|-----------------|----------|---------------|---------------------|---------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 1.019 | 0.837 | 0.877 | 1.109 | 0.887 |
| Meta+Date | 0.961 | 1.051 | 1.008 | 1.174 | 0.846 |
| Meta+Date+Cov | 0.958 | 1.012 | 1.162 | 0.975 | 0.886 |
| Meta+Date+Event | 1.001 | 0.971 | 0.974 | 1.329 | 0.936 |
| AllContext | 0.962 | 1.030 | 0.806 | 1.326 | 0.818 |

Table 121: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 30/38)

| Method | ski_gear | soybeans_usd_bu | space_exploration | steel_cny_t | stock_market |
|-----------------|----------|-----------------|-------------------|-------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.643 | 0.819 | 0.898 | 0.904 | 0.789 |
| Meta+Date | 0.215 | 1.183 | 0.407 | 0.926 | 0.749 |
| Meta+Date+Cov | 0.215 | 1.294 | 0.420 | 0.804 | 0.781 |
| Meta+Date+Event | 0.233 | 1.260 | 0.417 | 1.023 | 0.735 |
| AllContext | 0.225 | 0.908 | 0.418 | 0.866 | 0.758 |

Table 122: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 31/38)

| Method | student_loans | sugar_usd_lbs | sustainable_fashion | tax_software | taxes |
|-----------------|---------------|---------------|---------------------|--------------|-------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.827 | 0.922 | 0.802 | 0.764 | 0.713 |
| Meta+Date | 0.792 | 0.939 | 0.658 | 0.368 | 0.189 |
| Meta+Date+Cov | 0.850 | 1.129 | 0.633 | 0.364 | 0.240 |
| Meta+Date+Event | 0.823 | 1.129 | 0.649 | 0.365 | 0.182 |
| AllContext | 0.844 | 0.946 | 0.648 | 0.379 | 0.191 |

Table 123: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 32/38)

| Method | tellurium_cny_kg | tesla | tin_usd_t | titanium_cny_kg | tour_de_france |
|-----------------|------------------|-------|-----------|-----------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.722 | 0.707 | 0.802 | 0.588 | 0.380 |
| Meta+Date | 0.687 | 0.776 | 0.933 | 0.618 | 0.287 |
| Meta+Date+Cov | 0.656 | 0.747 | 0.871 | 0.600 | 0.198 |
| Meta+Date+Event | 0.787 | 0.711 | 1.080 | 0.628 | 0.321 |
| AllContext | 0.711 | 0.743 | 0.740 | 0.604 | 0.285 |

Table 124: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 33/38)

4266

4267

| Method | traffic_insurance | unemployment_rate | uranium_usd_lbs | urea_usd_t | usdtoaud_exchangerate |
|-----------------|-------------------|-------------------|-----------------|------------|-----------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.905 | 0.798 | 0.936 | 0.613 | 0.925 |
| Meta+Date | 0.964 | 0.533 | 0.944 | 0.496 | 0.827 |
| Meta+Date+Cov | 0.997 | 0.535 | 1.105 | 0.494 | 0.929 |
| Meta+Date+Event | 0.997 | 0.544 | 1.142 | 0.593 | 1.072 |
| AllContext | 1.048 | 0.529 | 0.869 | 0.507 | 0.807 |

4273

4274

Table 125: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 34/38)

4276

4277

| Method | usdtobrl_exchangerate | usdtocad_exchangerate | usdtochf_exchangerate | usdtogbp_exchangerate | usdtohkd_exchangerate |
|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.795 | 0.716 | 0.978 | 0.766 | 0.810 |
| Meta+Date | 0.674 | 0.711 | 0.968 | 0.856 | 0.856 |
| Meta+Date+Cov | 0.822 | 0.915 | 1.139 | 0.897 | 0.985 |
| Meta+Date+Event | 1.099 | 0.795 | 0.890 | 0.964 | 0.970 |
| AllContext | 0.697 | 0.636 | 0.878 | 0.778 | 0.810 |

4283

4284

Table 126: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 35/38)

4285

4286

4287

| Method | usdtonr_exchangerate | usdtokrw_exchangerate | usdtonxn_exchangerate | usdtosgd_exchangerate | used_car |
|-----------------|----------------------|-----------------------|-----------------------|-----------------------|----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.783 | 0.927 | 0.775 | 1.038 | 0.935 |
| Meta+Date | 0.719 | 0.845 | 0.927 | 0.916 | 0.711 |
| Meta+Date+Cov | 0.705 | 0.911 | 0.915 | 1.017 | 0.682 |
| Meta+Date+Event | 0.734 | 0.920 | 0.927 | 1.041 | 0.673 |
| AllContext | 0.737 | 0.866 | 0.766 | 0.910 | 0.644 |

4293

4294

Table 127: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 36/38)

4295

4296

4297

| Method | vaccine_research | venture_capital | volcanic_eruption | water_scarcity | wheat_usd_bu |
|-----------------|------------------|-----------------|-------------------|----------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.918 | 0.834 | 1.009 | 0.930 | 0.895 |
| Meta+Date | 0.810 | 0.822 | 0.661 | 0.441 | 1.023 |
| Meta+Date+Cov | 0.846 | 0.848 | 0.591 | 0.443 | 1.048 |
| Meta+Date+Event | 0.803 | 0.803 | 0.502 | 0.442 | 1.087 |
| AllContext | 0.838 | 0.823 | 0.642 | 0.437 | 0.966 |

4304

4305

Table 128: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 37/38)

4306

4307

4308

| Method | wildfires | wildlife_conservation | wool_aud_100kg | zinc_usd_t |
|-----------------|-----------|-----------------------|----------------|------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 |
| Meta | 0.630 | 0.897 | 0.755 | 0.779 |
| Meta+Date | 0.626 | 0.785 | 0.749 | 0.963 |
| Meta+Date+Cov | 0.649 | 0.807 | 0.770 | 0.967 |
| Meta+Date+Event | 0.626 | 0.799 | 0.728 | 0.927 |
| AllContext | 0.650 | 0.830 | 0.742 | 0.695 |

4317

4318

Table 129: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont'd, part 38/38)

4319

4320 **S DETAILED MASE RESULTS OF REASONING MODELS WITH DATA AFTER**
 4321 **2025 JAN**

| Method | affordable_housing | air_conditioner | air_pollution | air_travel | alphabet |
|------------------|--------------------|-----------------|---------------|------------|----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.625 | 0.498 | 0.311 | 0.822 | 0.738 |
| GPT-5 | 0.500 | 0.448 | 0.321 | 0.864 | 0.677 |
| Gemini-2.0-Flash | 0.549 | 0.456 | 0.366 | 0.969 | 0.653 |
| Gemini-2.5-Flash | 0.583 | 0.328 | 0.356 | 0.932 | 0.635 |
| DeepSeek-V3 | 0.516 | 0.351 | 0.297 | 1.068 | 0.628 |
| DeepSeek-R1 | 0.603 | 0.616 | 0.440 | 0.699 | 0.886 |

Table 130: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (part 1/38)

| Method | aluminum_usd_t | amazon | animal_migration | animal_rescue | animal_welfare |
|------------------|----------------|--------|------------------|---------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.727 | 0.887 | 0.777 | 0.807 | 0.666 |
| GPT-5 | 0.618 | 0.674 | 0.777 | 0.911 | 0.658 |
| Gemini-2.0-Flash | 1.164 | 0.408 | 0.844 | 0.773 | 0.711 |
| Gemini-2.5-Flash | 1.525 | 0.418 | 0.750 | 0.884 | 0.687 |
| DeepSeek-V3 | 0.997 | 1.191 | 0.840 | 0.914 | 0.688 |
| DeepSeek-R1 | 1.296 | 1.309 | 0.751 | 1.231 | 0.767 |

Table 131: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 2/38)

| Method | apple_inc | art_exhibitions | artificial_intelligence | asset_management | autonomous_driving |
|------------------|-----------|-----------------|-------------------------|------------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.775 | 0.728 | 0.992 | 0.744 | 0.862 |
| GPT-5 | 0.712 | 0.794 | 0.823 | 0.755 | 1.055 |
| Gemini-2.0-Flash | 0.750 | 0.922 | 0.965 | 0.841 | 1.171 |
| Gemini-2.5-Flash | 0.722 | 1.529 | 1.082 | 0.663 | 1.148 |
| DeepSeek-V3 | 0.824 | 0.809 | 1.056 | 0.840 | 0.946 |
| DeepSeek-R1 | 0.863 | 1.181 | 0.942 | 0.745 | 1.099 |

Table 132: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 3/38)

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

| Method | back_to_school | barley_inr_t | beef_brl_kg | beekeeping | biodiversity |
|------------------|----------------|--------------|-------------|------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.353 | 0.659 | 0.646 | 0.439 | 0.297 |
| GPT-5 | 0.475 | 0.877 | 0.706 | 0.477 | 0.396 |
| Gemini-2.0-Flash | 0.445 | 0.741 | 0.693 | 0.465 | 0.423 |
| Gemini-2.5-Flash | 0.492 | 0.780 | 0.934 | 1.660 | 0.414 |
| DeepSeek-V3 | 0.406 | 0.836 | 0.751 | 0.395 | 0.397 |
| DeepSeek-R1 | 0.655 | 0.922 | 0.945 | 0.420 | 0.522 |

4384

Table 133: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 4/38)

4385

4386

4387

4388

4389

4390

| Method | bitumen_cny_t | black_friday_deals | brent_usd_bbl | broadway_shows | butter_eur_t |
|------------------|---------------|--------------------|---------------|----------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.901 | 0.007 | 1.085 | 0.600 | 1.126 |
| GPT-5 | 0.898 | 0.004 | 0.966 | 0.666 | 1.149 |
| Gemini-2.0-Flash | 0.857 | 0.004 | 1.108 | 0.451 | 1.051 |
| Gemini-2.5-Flash | 1.304 | 0.004 | 1.016 | 1.635 | 1.135 |
| DeepSeek-V3 | 0.925 | 0.003 | 0.977 | 0.802 | 1.351 |
| DeepSeek-R1 | 1.465 | 0.002 | 1.094 | 1.391 | 1.204 |

4391

Table 134: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 5/38)

4392

4393

4394

4395

4396

4397

| Method | cancer_research | canola_cad_t | carbon_emissions | cheese_usd_lbs | christmas_gifts |
|------------------|-----------------|--------------|------------------|----------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.710 | 0.789 | 0.702 | 0.727 | 0.063 |
| GPT-5 | 0.893 | 0.696 | 0.991 | 0.631 | 0.045 |
| Gemini-2.0-Flash | 0.739 | 0.758 | 0.778 | 0.712 | 0.037 |
| Gemini-2.5-Flash | 0.764 | 0.930 | 1.027 | 0.741 | 0.006 |
| DeepSeek-V3 | 0.749 | 0.634 | 0.680 | 0.692 | 0.063 |
| DeepSeek-R1 | 0.653 | 0.847 | 0.820 | 0.623 | 0.028 |

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

| Method | climate_change | coal_usd_t | cobalt_usd_t | cocoa_usd_t | coffee_usd_lbs |
|------------------|----------------|------------|--------------|-------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 6.545 | 0.931 | 1.378 | 0.983 | 1.173 |
| GPT-5 | 9.371 | 1.015 | 0.932 | 0.895 | 0.770 |
| Gemini-2.0-Flash | 6.639 | 1.105 | 1.007 | 1.029 | 1.220 |
| Gemini-2.5-Flash | 18.592 | 1.086 | 0.736 | 0.994 | 1.680 |
| DeepSeek-V3 | 9.381 | 0.762 | 0.783 | 0.994 | 1.116 |
| DeepSeek-R1 | 7.727 | 1.139 | 0.946 | 1.022 | 1.094 |

4411

4412

4413

4414

4415

4416

4417

Table 136: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 7/38)

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

| Method | comic_con | consumer_electronics | copper_usd_lbs | corn_usd_bu | cost_of_living |
|------------------|-----------|----------------------|----------------|-------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.551 | 0.775 | 0.749 | 1.013 | 0.693 |
| GPT-5 | 0.468 | 0.675 | 0.784 | 0.941 | 0.536 |
| Gemini-2.0-Flash | 0.484 | 0.704 | 0.730 | 1.004 | 0.597 |
| Gemini-2.5-Flash | 0.762 | 0.887 | 0.876 | 1.070 | 0.636 |
| DeepSeek-V3 | 0.562 | 0.749 | 0.723 | 0.905 | 0.554 |
| DeepSeek-R1 | 0.745 | 1.144 | 0.966 | 1.206 | 0.847 |

4437

Table 137: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 8/38)

4440

4441

4442

| Method | cotton_usd_lbs | cryptocurrency | cybersecurity | data_breach | data_privacy |
|------------------|----------------|----------------|---------------|-------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 1.049 | 0.775 | 0.748 | 1.299 | 0.721 |
| GPT-5 | 1.177 | 0.614 | 0.718 | 1.114 | 0.713 |
| Gemini-2.0-Flash | 1.216 | 0.563 | 0.854 | 1.058 | 0.714 |
| Gemini-2.5-Flash | 1.467 | 1.630 | 0.642 | 2.352 | 0.719 |
| DeepSeek-V3 | 1.141 | 0.697 | 0.891 | 1.207 | 0.925 |
| DeepSeek-R1 | 1.469 | 1.314 | 0.792 | 1.434 | 0.721 |

4451

Table 138: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 9/38)

4454

4455

4456

| Method | deforestation | diabetes | diammonium_usd_t | domestic_violence | drones |
|------------------|---------------|----------|------------------|-------------------|--------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.327 | 0.472 | 0.483 | 0.758 | 0.619 |
| GPT-5 | 0.262 | 0.382 | 0.512 | 0.764 | 0.668 |
| Gemini-2.0-Flash | 0.364 | 0.485 | 0.950 | 0.860 | 0.568 |
| Gemini-2.5-Flash | 0.428 | 0.564 | 0.340 | 0.601 | 0.811 |
| DeepSeek-V3 | 0.465 | 0.550 | 0.382 | 0.584 | 0.515 |
| DeepSeek-R1 | 0.527 | 0.409 | 0.372 | 0.515 | 0.740 |

4465

Table 139: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 10/38)

4468

4469

4470

| Method | drought | drug_overdose | earthquake | electric_vehicle | endangered_species |
|------------------|---------|---------------|------------|------------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.400 | 0.462 | 0.888 | 0.686 | 0.313 |
| GPT-5 | 0.393 | 0.473 | 0.776 | 0.691 | 0.270 |
| Gemini-2.0-Flash | 0.513 | 0.442 | 0.816 | 0.649 | 0.326 |
| Gemini-2.5-Flash | 1.187 | 0.455 | 0.969 | 0.733 | 0.462 |
| DeepSeek-V3 | 0.708 | 0.491 | 0.977 | 0.943 | 0.355 |
| DeepSeek-R1 | 1.225 | 0.797 | 0.884 | 0.990 | 0.618 |

4479

Table 140: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 11/38)

4480

4481

| Method | esports | ethanol_usd_gal | fashion_week | federal_budget_deficit | federal_reserve |
|------------------|---------|-----------------|--------------|------------------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.712 | 1.081 | 0.373 | 0.483 | 0.555 |
| GPT-5 | 0.781 | 1.019 | 0.304 | 0.579 | 0.475 |
| Gemini-2.0-Flash | 0.418 | 0.982 | 0.298 | 0.529 | 0.445 |
| Gemini-2.5-Flash | 1.607 | 1.017 | 0.367 | 0.569 | 0.599 |
| DeepSeek-V3 | 0.667 | 1.248 | 0.411 | 0.537 | 0.519 |
| DeepSeek-R1 | 1.164 | 1.065 | 0.411 | 0.677 | 0.678 |

Table 141: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 12/38)

| Method | film_festivals | financial_regulation | flooding | flu_shot | food_recall |
|------------------|----------------|----------------------|----------|----------|-------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.694 | 0.436 | 1.156 | 0.379 | 1.053 |
| GPT-5 | 0.744 | 0.457 | 1.016 | 0.424 | 0.746 |
| Gemini-2.0-Flash | 0.720 | 0.576 | 1.060 | 0.378 | 0.731 |
| Gemini-2.5-Flash | 0.797 | 0.546 | 1.439 | 0.436 | 1.242 |
| DeepSeek-V3 | 0.600 | 0.806 | 1.094 | 0.324 | 1.073 |
| DeepSeek-R1 | 0.646 | 0.637 | 1.379 | 0.436 | 1.019 |

Table 142: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 13/38)

| Method | food_safety | food_wine_festivals | formula_1 | gallium_cny_kg | gas_prices |
|------------------|-------------|---------------------|-----------|----------------|------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.648 | 0.768 | 0.513 | 0.876 | 0.830 |
| GPT-5 | 0.677 | 0.772 | 0.465 | 0.902 | 0.982 |
| Gemini-2.0-Flash | 0.770 | 1.026 | 0.531 | 2.649 | 0.795 |
| Gemini-2.5-Flash | 0.732 | 0.775 | 0.586 | 0.932 | 1.579 |
| DeepSeek-V3 | 0.749 | 0.836 | 0.465 | 1.398 | 0.725 |
| DeepSeek-R1 | 0.499 | 0.808 | 0.635 | 3.772 | 1.169 |

Table 143: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 14/38)

| Method | gasoline_usd_gal | gender_equality | gene_editing | germanium_cny_kg | global_warming |
|------------------|------------------|-----------------|--------------|------------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.672 | 0.300 | 0.708 | 0.964 | 0.792 |
| GPT-5 | 0.596 | 0.242 | 0.696 | 0.910 | 0.795 |
| Gemini-2.0-Flash | 0.808 | 0.351 | 0.798 | 1.290 | 0.614 |
| Gemini-2.5-Flash | 0.803 | 0.501 | 1.021 | 3.568 | 0.981 |
| DeepSeek-V3 | 0.677 | 0.587 | 0.884 | 1.534 | 0.963 |
| DeepSeek-R1 | 1.046 | 0.531 | 1.249 | 4.826 | 1.196 |

Table 144: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 15/38)

| Method | gold_usd_t_oz | goldman_sachs | government_spending | healthcare_costs | healthcare_policy |
|------------------|---------------|---------------|---------------------|------------------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 1.181 | 0.717 | 0.586 | 0.557 | 0.604 |
| GPT-5 | 0.872 | 0.663 | 0.515 | 0.537 | 0.542 |
| Gemini-2.0-Flash | 1.156 | 0.687 | 0.551 | 0.591 | 0.544 |
| Gemini-2.5-Flash | 1.399 | 0.749 | 0.454 | 0.669 | 0.828 |
| DeepSeek-V3 | 1.077 | 0.672 | 0.591 | 0.670 | 0.704 |
| DeepSeek-R1 | 1.668 | 0.862 | 0.561 | 0.726 | 0.558 |

Table 145: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 16/38)

| Method | heatwave | heavy_rainfall | hedge_funds | hiv_aids | homelessness |
|------------------|----------|----------------|-------------|----------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.895 | 0.494 | 0.668 | 0.656 | 0.772 |
| GPT-5 | 0.900 | 0.563 | 0.583 | 0.694 | 0.844 |
| Gemini-2.0-Flash | 0.782 | 0.637 | 0.782 | 0.814 | 0.936 |
| Gemini-2.5-Flash | 2.677 | 0.678 | 0.646 | 0.784 | 1.657 |
| DeepSeek-V3 | 0.934 | 0.526 | 0.734 | 0.914 | 0.991 |
| DeepSeek-R1 | 2.180 | 0.456 | 0.689 | 0.776 | 1.210 |

Table 146: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 17/38)

| Method | human_rights | immigration_reform | income_inequality | indium_cny_kg | infectious_disease |
|------------------|--------------|--------------------|-------------------|---------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.472 | 0.857 | 0.369 | 0.641 | 0.452 |
| GPT-5 | 0.453 | 0.903 | 0.404 | 0.551 | 0.450 |
| Gemini-2.0-Flash | 0.482 | 0.673 | 0.359 | 0.790 | 0.504 |
| Gemini-2.5-Flash | 0.464 | 1.558 | 0.442 | 0.882 | 0.502 |
| DeepSeek-V3 | 0.678 | 0.947 | 0.493 | 0.771 | 0.602 |
| DeepSeek-R1 | 0.567 | 0.812 | 0.414 | 1.200 | 0.780 |

Table 147: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 18/38)

| Method | inflation | infrastructure_spending | international_trade | invasive_species | investment_banking |
|------------------|-----------|-------------------------|---------------------|------------------|--------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.640 | 0.428 | 0.456 | 0.266 | 0.647 |
| GPT-5 | 0.732 | 0.614 | 0.406 | 0.268 | 0.453 |
| Gemini-2.0-Flash | 0.566 | 0.693 | 0.478 | 0.286 | 0.640 |
| Gemini-2.5-Flash | 0.613 | 0.847 | 1.113 | 0.546 | 0.384 |
| DeepSeek-V3 | 0.824 | 0.579 | 0.596 | 0.385 | 0.759 |
| DeepSeek-R1 | 0.860 | 0.780 | 1.036 | 0.451 | 0.616 |

Table 148: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 19/38)

| Method | lead_usd_t | lithium_cny_t | lumber_usd_1000_board_feet | magnesium_cny_t | major_league_baseball |
|------------------|------------|---------------|----------------------------|-----------------|-----------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.766 | 0.238 | 0.979 | 0.810 | 0.223 |
| GPT-5 | 0.735 | 0.372 | 0.997 | 0.806 | 0.222 |
| Gemini-2.0-Flash | 0.705 | 0.221 | 0.891 | 0.967 | 0.228 |
| Gemini-2.5-Flash | 0.911 | 0.223 | 1.539 | 0.819 | 0.347 |
| DeepSeek-V3 | 1.024 | 0.372 | 0.983 | 0.776 | 0.264 |
| DeepSeek-R1 | 1.054 | 0.257 | 1.298 | 0.701 | 0.580 |

Table 149: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 20/38)

| Method | manganese_cny_mtu | marine_life | marine_pollution | mental_health | meta_platforms |
|------------------|-------------------|-------------|------------------|---------------|----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.832 | 0.521 | 0.303 | 0.443 | 0.730 |
| GPT-5 | 0.724 | 0.541 | 0.300 | 0.380 | 0.670 |
| Gemini-2.0-Flash | 0.718 | 0.585 | 0.374 | 0.441 | 0.656 |
| Gemini-2.5-Flash | 1.109 | 0.383 | 0.366 | 0.340 | 0.866 |
| DeepSeek-V3 | 0.782 | 0.626 | 0.401 | 0.618 | 0.691 |
| DeepSeek-R1 | 0.718 | 0.486 | 0.490 | 0.517 | 0.928 |

Table 150: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 21/38)

| 4590 | Method | meteor_shower | methanol_cny_t | microsoft | milk_usd_cwt | minimum_wage |
|------|------------------|---------------|----------------|-----------|--------------|--------------|
| 4591 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4592 | GPT-4o | 0.665 | 0.809 | 0.721 | 0.903 | 1.096 |
| 4593 | GPT-5 | 0.275 | 0.842 | 0.595 | 0.958 | 0.918 |
| 4594 | Gemini-2.0-Flash | 0.311 | 0.812 | 0.709 | 0.857 | 1.009 |
| 4595 | Gemini-2.5-Flash | 0.573 | 0.702 | 1.163 | 1.067 | 1.308 |
| 4596 | DeepSeek-V3 | 0.363 | 0.922 | 0.872 | 0.848 | 0.882 |
| 4597 | DeepSeek-R1 | 0.979 | 0.623 | 1.069 | 0.926 | 0.958 |

Table 151: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 22/38)

| 4601 | Method | molybdenum_cny_kg | mortgage_rates | music_festivals | naphtha_usd_t | national_basketball_association |
|------|------------------|-------------------|----------------|-----------------|---------------|---------------------------------|
| 4602 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4603 | GPT-4o | 0.794 | 0.770 | 0.349 | 1.235 | 0.587 |
| 4604 | GPT-5 | 0.803 | 0.740 | 0.305 | 0.942 | 0.681 |
| 4605 | Gemini-2.0-Flash | 0.747 | 0.839 | 0.331 | 1.142 | 0.629 |
| 4606 | Gemini-2.5-Flash | 0.850 | 0.827 | 0.738 | 1.110 | 0.729 |
| 4607 | DeepSeek-V3 | 1.007 | 0.781 | 0.443 | 1.027 | 0.503 |
| | DeepSeek-R1 | 1.003 | 0.920 | 0.557 | 1.154 | 0.641 |

Table 152: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 23/38)

| 4611 | Method | national_debt | national_football_league | neodymium_cny_t | nickel_usd_t | nobel_prize |
|------|------------------|---------------|--------------------------|-----------------|--------------|-------------|
| 4612 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4613 | GPT-4o | 0.737 | 0.615 | 0.942 | 0.913 | 0.566 |
| 4614 | GPT-5 | 0.610 | 0.586 | 0.956 | 0.763 | 0.385 |
| 4615 | Gemini-2.0-Flash | 0.663 | 0.542 | 0.908 | 0.980 | 0.511 |
| 4616 | Gemini-2.5-Flash | 0.620 | 0.829 | 1.080 | 0.866 | 0.526 |
| 4617 | DeepSeek-V3 | 0.736 | 0.724 | 1.041 | 0.736 | 0.507 |
| | DeepSeek-R1 | 0.697 | 1.121 | 0.963 | 0.672 | 0.729 |

Table 153: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 24/38)

| 4621 | Method | nvidia | oat_usd_bu | obesity | opioid_crisis | organic_food |
|------|------------------|--------|------------|---------|---------------|--------------|
| 4622 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4623 | GPT-4o | 1.315 | 0.944 | 0.608 | 0.729 | 0.407 |
| 4624 | GPT-5 | 1.130 | 0.872 | 0.422 | 0.383 | 0.317 |
| 4625 | Gemini-2.0-Flash | 0.826 | 0.894 | 0.669 | 0.449 | 0.426 |
| 4626 | Gemini-2.5-Flash | 1.692 | 1.033 | 1.499 | 0.387 | 0.369 |
| 4627 | DeepSeek-V3 | 1.678 | 1.108 | 0.768 | 0.597 | 0.479 |
| 4628 | DeepSeek-R1 | 1.663 | 1.187 | 0.886 | 0.641 | 0.722 |

Table 154: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 25/38)

| 4634 | Method | palladium_usd_t_oz | pest_control | pet_adoption | pet_health | platinum_usd_t_oz |
|------|------------------|--------------------|--------------|--------------|------------|-------------------|
| 4635 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4636 | GPT-4o | 0.838 | 0.362 | 1.028 | 0.747 | 0.556 |
| 4637 | GPT-5 | 1.021 | 0.311 | 0.881 | 0.836 | 0.572 |
| 4638 | Gemini-2.0-Flash | 1.002 | 0.436 | 0.809 | 0.933 | 0.493 |
| 4639 | Gemini-2.5-Flash | 1.080 | 0.259 | 1.345 | 0.813 | 0.717 |
| 4640 | DeepSeek-V3 | 1.036 | 0.394 | 0.994 | 0.883 | 0.611 |
| 4641 | DeepSeek-R1 | 1.250 | 0.250 | 1.848 | 0.857 | 0.717 |

Table 155: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 26/38)

4644

| Method | polyethylene_cny_t | polypropylene_cny_t | polyvinyl_cny_t | potatoes_eur_100kg | poultry_brl_kgs |
|------------------|--------------------|---------------------|-----------------|--------------------|-----------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.711 | 0.718 | 0.878 | 0.706 | 0.654 |
| GPT-5 | 0.776 | 0.610 | 0.954 | 0.730 | 0.399 |
| Gemini-2.0-Flash | 0.724 | 0.711 | 0.833 | 0.738 | 0.565 |
| Gemini-2.5-Flash | 0.818 | 0.765 | 0.974 | 0.760 | 0.447 |
| DeepSeek-V3 | 0.759 | 0.863 | 0.993 | 0.757 | 0.923 |
| DeepSeek-R1 | 0.687 | 0.798 | 0.943 | 1.034 | 0.534 |

4651

Table 156: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 27/38)

4654

| Method | presidential_election | private_equity | propane_usd_gal | protest | quantum_computing |
|------------------|-----------------------|----------------|-----------------|---------|-------------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.952 | 0.619 | 1.246 | 0.974 | 0.702 |
| GPT-5 | 0.407 | 0.691 | 0.869 | 0.989 | 0.902 |
| Gemini-2.0-Flash | 0.522 | 0.818 | 1.140 | 1.043 | 0.843 |
| Gemini-2.5-Flash | 0.387 | 0.671 | 0.794 | 0.999 | 0.800 |
| DeepSeek-V3 | 0.406 | 0.817 | 1.330 | 1.017 | 0.750 |
| DeepSeek-R1 | 0.384 | 0.823 | 1.035 | 0.994 | 0.197 |

4662

Table 157: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 28/38)

4665

| Method | rapeseed_eur_t | refugee_support | renewable_energy | rhodium_usd_t_oz | rice_usd_cwt |
|------------------|----------------|-----------------|------------------|------------------|--------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.807 | 0.576 | 0.365 | 0.875 | 1.084 |
| GPT-5 | 0.761 | 0.599 | 0.368 | 0.570 | 1.061 |
| Gemini-2.0-Flash | 0.858 | 0.549 | 0.476 | 0.776 | 1.482 |
| Gemini-2.5-Flash | 0.817 | 0.667 | 0.554 | 0.535 | 1.070 |
| DeepSeek-V3 | 0.808 | 0.689 | 0.499 | 1.087 | 1.139 |
| DeepSeek-R1 | 0.900 | 0.751 | 0.537 | 0.630 | 1.474 |

4673

Table 158: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 29/38)

4675

| Method | robotics | rocket_launch | rubber_usd_cents_kg | silver_usd_t_oz | ski_gear |
|------------------|----------|---------------|---------------------|-----------------|----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 1.049 | 0.870 | 1.063 | 1.049 | 0.205 |
| GPT-5 | 0.893 | 0.769 | 0.445 | 1.023 | 0.216 |
| Gemini-2.0-Flash | 1.058 | 0.889 | 1.012 | 1.043 | 0.150 |
| Gemini-2.5-Flash | 1.093 | 0.711 | 0.965 | 1.297 | 0.150 |
| DeepSeek-V3 | 1.110 | 0.815 | 1.017 | 1.035 | 0.248 |
| DeepSeek-R1 | 1.157 | 0.680 | 1.126 | 1.426 | 0.218 |

4684

Table 159: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 30/38)

4687

| Method | soybeans_usd_bu | space_exploration | steel_cny_t | stock_market | student_loans |
|------------------|-----------------|-------------------|-------------|--------------|---------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 1.198 | 0.433 | 0.883 | 0.925 | 0.879 |
| GPT-5 | 1.121 | 0.440 | 0.898 | 1.041 | 0.759 |
| Gemini-2.0-Flash | 1.569 | 0.393 | 1.097 | 1.027 | 0.872 |
| Gemini-2.5-Flash | 1.470 | 0.334 | 0.966 | 0.848 | 0.897 |
| DeepSeek-V3 | 1.195 | 0.612 | 1.005 | 0.910 | 0.909 |
| DeepSeek-R1 | 1.610 | 0.434 | 1.592 | 0.779 | 0.820 |

4696

Table 160: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 31/38)

| 4698 | Method | sugar_usd_lbs | sustainable_fashion | tax_software | taxes | tellurium_cny_kg |
|------|------------------|---------------|---------------------|--------------|-------|------------------|
| 4699 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4700 | GPT-4o | 0.613 | 0.514 | 0.290 | 0.168 | 1.085 |
| 4701 | GPT-5 | 0.640 | 0.549 | 0.324 | 0.168 | 0.975 |
| 4702 | Gemini-2.0-Flash | 0.722 | 0.581 | 0.327 | 0.170 | 0.893 |
| 4703 | Gemini-2.5-Flash | 0.603 | 0.635 | 0.347 | 0.170 | 1.240 |
| 4704 | DeepSeek-V3 | 0.933 | 0.632 | 0.362 | 0.628 | 1.343 |
| 4705 | DeepSeek-R1 | 0.682 | 0.732 | 0.359 | 0.346 | 2.312 |
| 4706 | | | | | | |

Table 161: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 32/38)

| 4711 | Method | tesla | tin_usd_t | titanium_cny_kg | tour_de_france | traffic_insurance |
|------|------------------|-------|-----------|-----------------|----------------|-------------------|
| 4712 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4713 | GPT-4o | 0.706 | 0.665 | 1.184 | 1.729 | 0.777 |
| 4714 | GPT-5 | 0.642 | 0.504 | 0.520 | 0.949 | 0.757 |
| 4715 | Gemini-2.0-Flash | 0.751 | 0.697 | 0.831 | 1.438 | 1.079 |
| 4716 | Gemini-2.5-Flash | 0.627 | 0.501 | 1.094 | 0.891 | 0.758 |
| 4717 | DeepSeek-V3 | 0.738 | 0.576 | 0.884 | 1.483 | 0.850 |
| 4718 | DeepSeek-R1 | 0.700 | 0.601 | 0.852 | 2.873 | 0.700 |
| 4719 | | | | | | |

Table 162: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 33/38)

| 4723 | Method | unemployment_rate | uranium_usd_lbs | urea_usd_t | usdtaud_exchangerate | usdtobrl_exchangerate |
|------|------------------|-------------------|-----------------|------------|----------------------|-----------------------|
| 4724 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4725 | GPT-4o | 0.572 | 0.723 | 0.492 | 1.076 | 0.658 |
| 4726 | GPT-5 | 0.356 | 0.904 | 0.393 | 1.116 | 0.659 |
| 4727 | Gemini-2.0-Flash | 0.406 | 0.807 | 0.495 | 1.084 | 0.691 |
| 4728 | Gemini-2.5-Flash | 0.383 | 1.300 | 0.858 | 1.124 | 0.660 |
| 4729 | DeepSeek-V3 | 0.838 | 0.904 | 0.497 | 1.161 | 0.663 |
| 4730 | DeepSeek-R1 | 0.720 | 1.091 | 0.669 | 1.360 | 0.620 |
| 4731 | | | | | | |

Table 163: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 34/38)

| 4733 | Method | usdtocad_exchangerate | usdtochf_exchangerate | usdtopgbp_exchangerate | usdthkd_exchangerate | usdtoinr_exchangerate |
|------|------------------|-----------------------|-----------------------|------------------------|----------------------|-----------------------|
| 4734 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4735 | GPT-4o | 0.873 | 0.615 | 0.981 | 0.621 | 0.601 |
| 4736 | GPT-5 | 0.861 | 0.663 | 1.003 | 0.629 | 0.608 |
| 4737 | Gemini-2.0-Flash | 0.868 | 0.643 | 1.012 | 0.632 | 0.626 |
| 4738 | Gemini-2.5-Flash | 0.886 | 0.636 | 1.019 | 0.623 | 0.615 |
| 4739 | DeepSeek-V3 | 0.906 | 0.633 | 1.041 | 0.595 | 0.570 |
| 4740 | DeepSeek-R1 | 0.912 | 0.614 | 0.929 | 0.439 | 0.666 |
| 4741 | | | | | | |

Table 164: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 35/38)

| 4742 | Method | usdtokrw_exchangerate | usdtomxn_exchangerate | usdotosgd_exchangerate | used_car | vaccine_research |
|------|------------------|-----------------------|-----------------------|------------------------|----------|------------------|
| 4743 | SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 4744 | GPT-4o | 1.175 | 0.939 | 1.057 | 0.545 | 0.715 |
| 4745 | GPT-5 | 1.163 | 0.940 | 1.082 | 0.271 | 0.815 |
| 4746 | Gemini-2.0-Flash | 1.152 | 0.956 | 1.063 | 0.475 | 0.942 |
| 4747 | Gemini-2.5-Flash | 1.193 | 0.989 | 1.088 | 0.414 | 0.784 |
| 4748 | DeepSeek-V3 | 1.201 | 0.996 | 1.117 | 0.565 | 0.876 |
| 4749 | DeepSeek-R1 | 1.257 | 1.001 | 1.000 | 0.618 | 0.923 |
| 4750 | | | | | | |

Table 165: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part 36/38)

4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760

| Method | venture_capital | volcanic_eruption | water_scarcity | wheat_usd_bu | wildfires |
|------------------|-----------------|-------------------|----------------|--------------|-----------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.634 | 0.490 | 0.401 | 1.080 | 0.557 |
| GPT-5 | 0.357 | 0.519 | 0.469 | 1.195 | 0.568 |
| Gemini-2.0-Flash | 0.835 | 0.683 | 0.522 | 1.106 | 0.546 |
| Gemini-2.5-Flash | 0.759 | 0.921 | 0.439 | 1.362 | 0.989 |
| DeepSeek-V3 | 0.782 | 1.044 | 0.512 | 1.099 | 0.555 |
| DeepSeek-R1 | 0.874 | 0.827 | 0.515 | 1.525 | 0.834 |

4768 Table 166: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part
 4769 37/38)

4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785

| Method | wildlife_conservation | wool_aud_100kg | zinc_usd_t |
|------------------|-----------------------|----------------|------------|
| SeasonalNaive | 1.000 | 1.000 | 1.000 |
| GPT-4o | 0.631 | 0.441 | 0.911 |
| GPT-5 | 0.686 | 0.468 | 0.803 |
| Gemini-2.0-Flash | 0.911 | 0.426 | 0.989 |
| Gemini-2.5-Flash | 0.481 | 0.484 | 1.214 |
| DeepSeek-V3 | 0.865 | 0.693 | 1.072 |
| DeepSeek-R1 | 0.514 | 0.846 | 1.158 |

4797 Table 167: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont'd, part
 4798 38/38)

4799
 4800
 4801
 4802
 4803
 4804
 4805

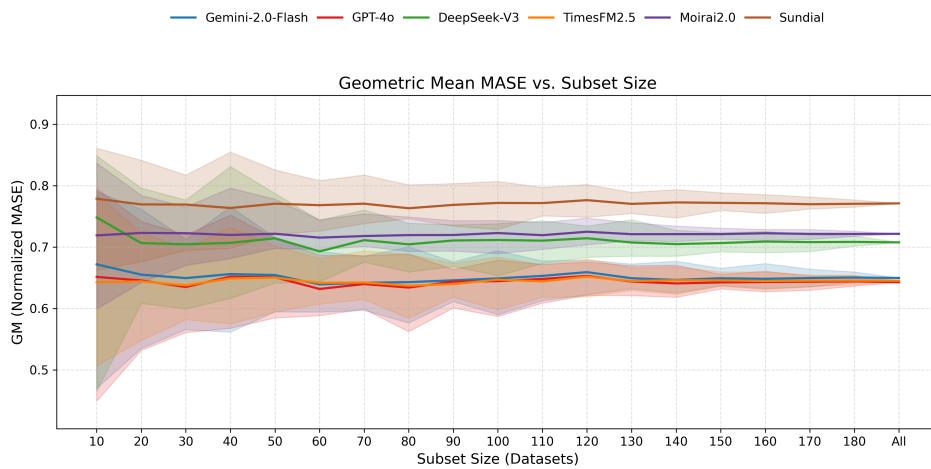
4806 T MODEL RANKINGS ROBUSTNESS TO BENCHMARK SIZE

4808 We study how the size of the evaluation benchmark affects the stability of model performance.
 4809 Starting from the 190 in-distribution variables in TimesX, we construct smaller benchmark variants
 4810 by randomly sampling subsets of variables without replacement.

4811 For a target subset size $K \in \{10, 20, \dots, 190\}$, we draw 20 subsets of K distinct variables. For
 4812 each subset and each forecasting model, we compute the geometric-mean normalized MASE over
 4813 the variables in that subset. This gives, for every (K, model) pair, a distribution of MASE values
 4814 across random subsets.

4815 Figure 33 summarizes these results. The horizontal axis is the number of variables K , and for
 4816 each model we plot the mean MASE over the 20 subsets (solid line) together with the 5th–95th
 4817 percentile band (shaded area). When K is between 10 and 40—which is similar to the sizes of most
 4818 existing multimodal TSF benchmarks listed in Table 1—the percentile bands are very wide and
 4819 strongly overlap across models. This means that, in this small-scale regime, the apparent ranking of
 4820 models can change substantially depending on which variables are included in the benchmark. As
 4821 K increases, the bands shrink and the relative ordering becomes more stable.

4822 These observations support our motivation of designing a large-scale benchmark for more stable and
 4823 reliable comparisons.



4844 Figure 33: Effect of benchmark size on the geometric-mean normalized MASE. For each subset size
 4845 K , we sample 20 subsets of K variables from TimesX, compute the metric for each model on each
 4846 subset, and plot the mean (solid line) and the 5th–95th percentile band (shaded area). When K is at
 4847 existing benchmark scale (10–40), the bands are wide and strongly overlapping, indicating unstable
 4848 rankings; at larger K the bands narrow and the ordering becomes more stable.

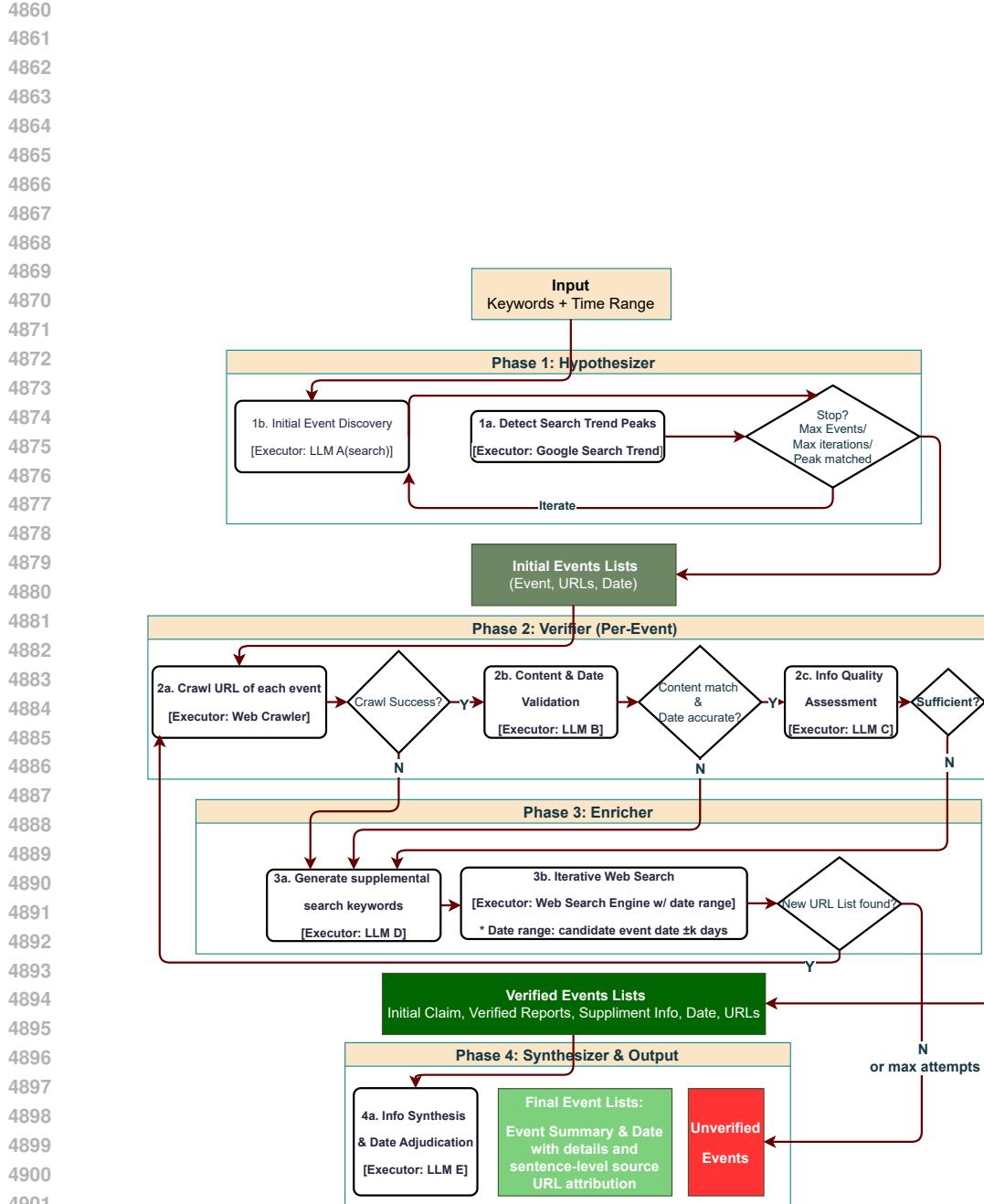


Figure 34: The complete workflow of the Hypothesizer-Verifier-Enricher framework. This multi-agent pipeline incorporates explicit loops for verification and iterative enrichment, with strict API-level time constraints in Phase 3 to ensure timestamp accuracy and prevent data leakage.

4914 U DETAILED EXECUTION LOG: COTTON PRICE CASE STUDY 4915

4916 To further elucidate the leakage prevention and verification mechanisms of the Hypothesizer-
 4917 Verifier-Enricher (H-V-E) framework, we present a detailed step-by-step execution log for the vari-
 4918 able “cotton price” over the historical window from 2024-01-01 to 2024-03-31.
 4919

4920 PHASE 1: HYPOTHESIZER
 4921

- 4922 • **Input:** Keyword: “cotton price”; Time Range: 2024-01-01 to 2024-03-31.
 4923
- 4924 • **Action 1 (Peak Discovery):** The system analyzed the time-series data and identified 10
 4925 significant peaks requiring explanation (e.g., 2024-01-08, 2024-02-19, etc.).
 4926
- 4927 • **Action 2 (Event Discovery):** The LLM (Gemini-2.5-Pro) performed an initial search and
 4928 generated 14 candidate events. Examples include:
 4929
 - 4930 – Event 66e0: “The USDA’s January 2024 WASDE report...” (Source: cotton-
 4931 grower.com/...)
 - 4932 – Event 57e9: “The USDA’s weekly export sales report...” (Source: ccf-
 4933 group.com/...)
 - 4934 – Event a7a7: “An early 2024 report highlighted... Panama Canal...” (Source: ter-
 4935 rain.sc.eg/...)

4936 PHASE 2 & 3: VERIFIER & ENRICHER (PARALLEL STREAMS)

4937 The system spawned 14 independent verification tasks for the candidate events. We illustrate the
 4938 robustness of the pipeline using three representative tasks:
 4939

4940 **Task 1: Successful Verification (Event 66e0 - USDA WASDE Report)**
 4941

- 4942 • **Verify:** Crawler accessed `cottongrower.com/...` (Status: **Success**).
 4943
- 4944 • **Verify:** The `claim_verifier` agent (Gemini-2.5-Flash) cross-referenced the crawled
 4945 content with the claim and confirmed consistency.
 4946
- 4947 • **Enrich (Evaluate):** The `info_sufficiency_evaluator` deemed the information
 4948 sufficient.
 4949
- 4950 • **Finalize:** The `final_synthesis` agent generated the final summary.
 4951
- 4952 • **Output:** Status **VERIFIED**.
 4953

4954 **Task 2: Verification Failure and Discard (Event 57e9 - USDA Weekly Sales)**
 4955

- 4956 • **Verify:** Crawler attempted to access `ccfgroup.com/...` (Status: **Failed, er-
 4957 ror_page.404**).
 4958
- 4959 • **Enrich (Evaluate):** Evaluator deemed information insufficient, triggering an Action Plan.
 4960
- 4961 • **Enrich (Act):** Agent generated a new query: “cotton price official announcement”.
 4962
- 4963 • **Enrich (Act - Leakage Prevention):** The system executed a time-bounded search.
 4964


```
INFO - Executing Date-Restricted Search: 2024-01-05 to
2024-01-19
INFO - [SEARCH DEBUG] tbs: cdr:1,cd_min:01/05/2024,cd_max:01/19/2024
```
- 4965 • **Verify (Loop 2):** System crawled new URLs (e.g., `usda.gov`), but the `claim_verifier`
 4966 could not verify the specific statistics (“262,500 running bales”) from the new sources.
 4967
- 4968 • **Finalize:** Verification failed after max attempts.
 4969
- 4970 • **Output:** Status **UNVERIFIED**. The event was discarded.
 4971

4968
4969**Task 3: Recovery via Enrichment (Event a7a7 - Panama Canal)**4970
4971

- **Verify:** Crawler attempted to access `terrain.sc.eg/...` (Status: **Failed**, `net::ERR_NAME_NOT_RESOLVED`).
- **Enrich (Evaluate):** Evaluator deemed information insufficient.
- **Enrich (Act):** Agent generated a new query: “cotton price... Panama Canal... details”.
- **Enrich (Act - Leakage Prevention):** The system executed a time-bounded search to find alternative sources.

4977
4978
4979

```
INFO - Executing Date-Restricted Search: 2024-01-03 to
2024-01-17
INFO - [SEARCH DEBUG] tbs: cdr:1,cd_min:01/03/2024,cd_max:01/17/2024
```

4980
4981

- **Enrich (Act):** Search successfully retrieved valid new URLs (e.g., `windward.ai/...` and `porttechnology.org/...`).
- **Verify (Loop 2):** Crawler accessed `windward.ai/...` (Status: **Success**).
- **Verify (Loop 2):** The `claim_verifier` successfully verified the facts regarding the Panama Canal drought impact.
- **Finalize:** The `final_synthesis` agent generated the final summary using the verified facts from the new source.
- **Output:** Status **VERIFIED**.

4988

4989

4990

4991

4992

4993

4994

4995

4996

4997

4998

4999

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022 **V DETAILS ON TIME ISOLATION AND EVENT TIMESTAMP VERIFICATION**

5024 Addressing the risk of sample-level information leakage—specifically, the inclusion of future events
 5025 within the historical window—is a critical challenge in constructing time-series datasets. As stated in
 5026 Section 4.1, our evaluation protocol strictly incorporates textual events with timestamps that precede
 5027 the prediction window. Consequently, the integrity of our benchmark hinges on the Dataset Agent’s
 5028 capability to accurately annotate event timestamps.

5029 Our Dataset Agent does not operate as a simple, unrestricted web search tool, but rather as a rig-
 5030 orous, multi-stage verification pipeline governed by the Hypothesizer-Verifier-Enricher framework
 5031 (see Figure 34). To mitigate hallucinations and prevent timestamp errors, we design a three-tier
 5032 correction mechanism:

- 5034 • **Verifier (Phase 2a-2b):** Following the initial event list generation by LLM A in the Hy-
 5035 pothesizer phase, the Verifier employs a web crawler to fetch content from specific URLs.
 5036 It then utilizes LLM B to strictly validate whether the dates within the webpage content
 5037 align with the proposed event, thereby filtering out discrepancies.
- 5038 • **Enricher (Phase 3):** For details that the Verifier cannot conclusively confirm, the Enricher
 5039 formulates search queries. Crucially, in Phase 3b, we enforce hard constraints on the search
 5040 engine API (e.g., the `tbs` parameter in the Google Search API), restricting results to a time
 5041 window of $\pm k$ days around the candidate event date. This API-level constraint provides a
 5042 strong guarantee for timestamp validity.
- 5043 • **Synthesizer (Phase 4):** LLM E aggregates all verified evidence to make a final adjudica-
 5044 tion. Any event that fails to achieve cross-source verification regarding its date is rejected.

5045 **V.1 MANUAL AUDIT OF TIMESTAMP ACCURACY**

5046 To empirically validate this mechanism, we conducted a manual audit on 50 randomly sampled
 5047 events generated by the pipeline.¹³

- 5048 • In 47 cases (94%), the automatically annotated timestamps matched the human annotation
 5049 exactly.
- 5050 • In 2 cases (4%), the agent’s timestamp was 1–2 days later than the human annotation. This
 5051 represents a conservative error that does not constitute leakage.
- 5052 • Only 1 case (2%) was dated 1 day earlier than the human annotation. Upon inspection,
 5053 this discrepancy arose from ambiguity in defining the date for a complex event involving
 5054 multiple sequential developments.

5058 **V.2 CASE STUDY: CORRECTING REPORTING LAG**

5059 We observe that the agent is capable of reducing reporting lag while maintaining strict leakage
 5060 prevention. We present a representative case study regarding Medicare drug costs to demonstrate
 5061 this capability:

- 5062 • **Initial Signal:** A news article reports on a study regarding rising drug costs on February
 5063 18 (Source: USC News¹⁴).
- 5064 • **Agent Action:** The agent traces the primary source cited within the news report.
- 5065 • **Correction:** The agent successfully retrieves the original JAMA Health Forum article pub-
 5066 lished on February 14 and corrects the event timestamp from February 18 to February 14.

5067 This precision ensures that the event is correctly aligned with the historical window, capturing the
 5068 earliest valid signal without violating temporal causality.

5069
 5070 ¹³The full validation results are available at https://anonymous.4open.science/r/TimesX_UnderReview-387D/Supp/timestamps-eval.csv

5071 ¹⁴<https://hscnews.usc.edu/medicare-beneficiaries-face-much-higher-drug-costs-as-plans-shift->

5076
 5077 Table 168: Results on all the five CiK subsets (MASE \downarrow). The geometric-mean column shows that
 5078 **CODEREV** performs best, followed by Gemini-2.0-Flash, and then TimesFM-2.5. This ordering is
 5079 the opposite of what we observe on real-world data (TimesX), illustrating that synthetic generation
 5080 can flip model rankings. While, carefully designed synthetic benchmarks like CiK are very useful
 5081 for testing specific capabilities such as instruction following and different types of reasoning over
 5082 controlled contexts. We highly recommend using both synthetic and real-world benchmarks for a
 5083 more complete and robust evaluation

| Method | CiK_Causal | CiK_Covariates | CiK_History | CiK_Intemporal | CiK_Future | Geom. mean MASE |
|------------------|------------|----------------|-------------|----------------|------------|------------------|
| CODEREV | 0.76 | 0.58 | 0.67 | 0.66 | 0.24 | 0.38 (#1) |
| Gemini-2.0-Flash | 0.77 | 0.57 | 0.76 | 0.61 | 0.32 | 0.43 (#1) |
| TimesFM-2.5 | 0.73 | 0.73 | 0.69 | 0.71 | 0.70 | 0.58 (#3) |

W EVALUATION SAMPLES STATISTICS

5087
 5088 Under our rolling-window evaluation setup, we obtain a total of 2,434 forecasting samples on
 5089 TimesX. These samples cover 19 domains and 190 variables. On average, each domain contributes
 5090 about 128.1 samples, and each variable contributes about 12.8 samples.

X PCA AND t-SNE VISUALIZATIONS

5091 In this section we visualize the diversity of TimesX in both the textual and numeric spaces. For
 5092 textual features, we compute embeddings for each variable’s context and then apply PCA and t-SNE
 5093 to obtain two-dimensional representations. For numeric features, we extract summary statistics or
 5094 learned representations of each time series and apply the same dimensionality-reduction procedures.
 5095 We color the points either by domain or by data source.

5096 Across all plots we make two consistent observations. First, there is clear diversity in both the textual
 5097 and numeric spaces, with points spread over the two-dimensional maps rather than concentrating in
 5098 a few tight clusters. Second, the three data sources form distinct clusters in feature space, which
 5099 supports the value of integrating multiple sources to achieve broad coverage and diversity.

5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183

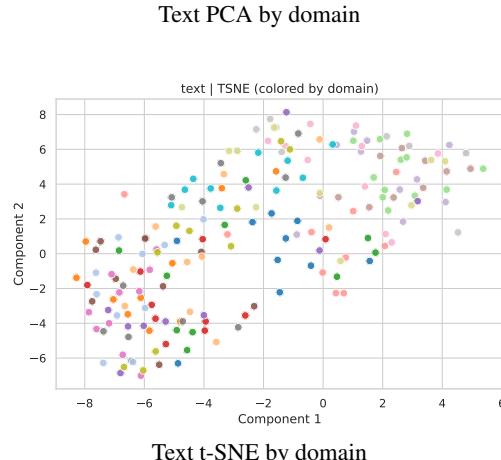
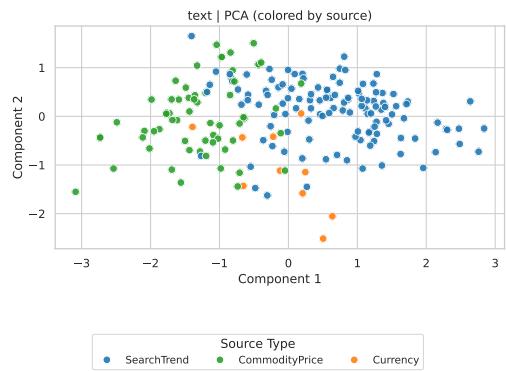
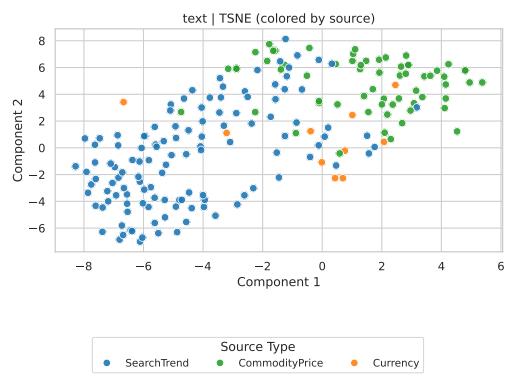


Figure 35: PCA and t-SNE visualizations of textual features in TimesX. Each point corresponds to a variable, colored either by domain or by data source.

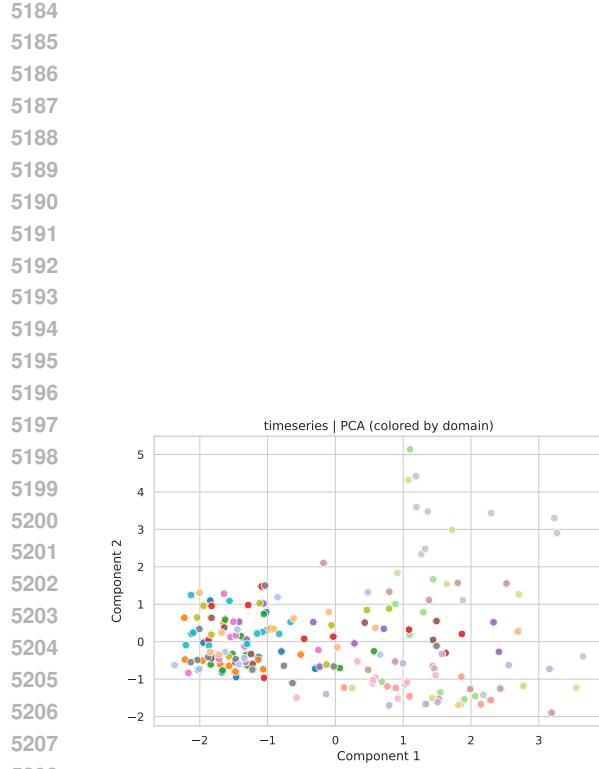
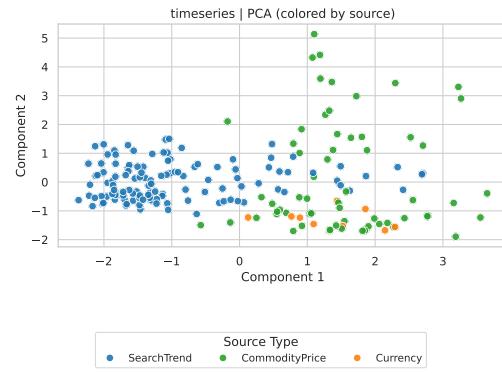
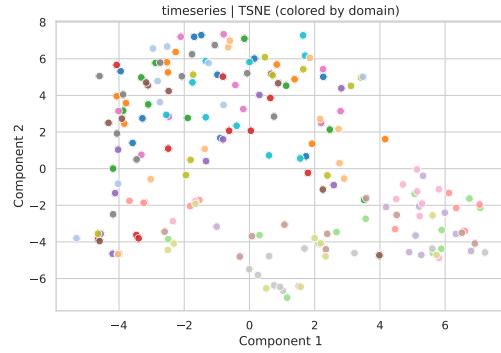
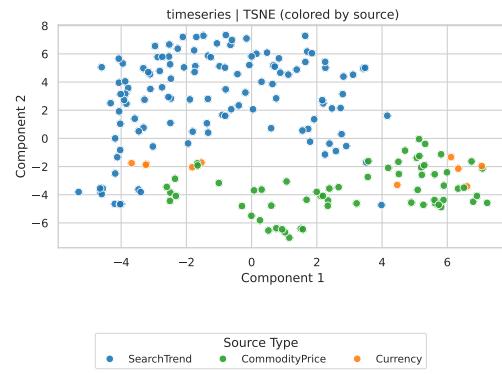


Figure 36: **PCA and t-SNE visualizations of numeric time-series features in TimesX.** Each point corresponds to a variable, colored either by domain or by data source.

5238 Y LIMITATIONS AND FUTURE DIRECTIONS

5240 Y.1 CRPS-BASED PROBABILISTIC EVALUATION

5242 In the main text we focus on the (normalized) MASE because most LLM-based methods in our
 5243 study output point forecasts rather than full predictive distributions. Here we complement this view
 5244 with a probabilistic evaluation based on the continuous ranked probability score (CRPS).

5245 For a predictive distribution F over a scalar outcome y , the CRPS is defined as

$$5247 \quad \text{CRPS}(F, y) = \int_{-\infty}^{+\infty} (F(z) - \mathbf{1}\{z \geq y\})^2 dz. \quad (13)$$

5249 When we only have samples x_1, \dots, x_M from the predictive distribution, we estimate the CRPS
 5250 follow CiK (Williams et al., 2024b). Let $x_1 \leq \dots \leq x_M$ denote the samples sorted in ascending
 5251 order. An efficient estimator is

$$5253 \quad \widehat{\text{CRPS}}(\tilde{X}, y) \approx \frac{1}{M} \sum_{n=1}^M |x_n - y| + \frac{1}{M} \sum_{n=1}^M x_n - \frac{2}{M(M-1)} \sum_{n=1}^M (n-1) x_n, \quad (14)$$

5256 where $\tilde{X} = \{x_1, \dots, x_M\}$ and the x_n are sorted. This estimator has $\mathcal{O}(M \log M)$ time complexity
 5257 due to the sorting step and is numerically equivalent to the standard unbiased estimator based on
 5258 pairwise distances.

5259 In our experiments we treat each stochastic run of a method as one sample from its predictive distri-
 5260 bution. For every method and every evaluation instance on TimesX, we produce $M = 10$ stochastic
 5261 forecasts, compute the CRPS using Equation equation 14, and then aggregate CRPS across variables
 5262 using geometric mean. Table 169 reports the resulting aggregated CRPS values (lower is better).

5264 Table 169: Geometric-mean CRPS on TimesX when estimating predictive uncertainty with 10
 5266 stochastic samples per instance. Lower is better.

| 5267 Method | Geometric-mean CRPS |
|-----------------------|---------------------|
| 5268 GPT-4o | 0.258 |
| 5269 Gemini-2.0-Flash | 0.276 |
| 5270 DeepSeek-V3 | 0.277 |
| 5271 Sundial | 0.278 |
| 5272 TimesFM-2.5 | 0.293 |
| 5273 Moirai-2.0 | 0.327 |

5274 All three LLMs achieve lower geometric-mean CRPS than the three TFM. This is consistent with
 5275 our MASE results and suggests that LLMs can use the rich textual context in TimesX to assign
 5276 probability mass to multiple plausible futures, while TFM rely only on numeric series. We view
 5277 this CRPS study as an initial step toward more systematic probabilistic evaluation on TimesX; future
 5278 work may explore improved uncertainty estimation and training objectives that directly optimize
 5279 probabilistic scores such as CRPS.

5281 Y.2 COVERAGE OF LOW-FREQUENCY TIME SERIES

5283 The current release of TimesX focuses on daily and weekly frequencies. There are two main rea-
 5284 sons for this choice. First, our goal is to perform leakage-free evaluation using data strictly after the
 5285 knowledge cutoffs of mainstream LLMs (around June 2024). Under this constraint, even if we col-
 5286 lect monthly or quarterly data from July 2024 to August 2025 (submission deadline), there would be
 5287 only about 13 monthly points or 4 quarterly points per variable, which is too short for a meaningful
 5288 forecasting evaluation.

5289 Second, many real-world monthly or quarterly indicators can be constructed by aggregating higher-
 5290 frequency series. Users of TimesX can aggregate our daily or weekly variables into monthly or
 5291 quarterly indicators when they wish to study lower-frequency behavior. This provides a practical
 5292 way to analyze coarser temporal patterns on top of TimesX.

5292 We fully agree that native monthly and quarterly series would further improve coverage. We are ac-
 5293 tively searching for real-world, regularly updated low-frequency series that satisfy the same leakage-
 5294 free constraint, and we plan to add such variables in future versions of TimesX.
 5295

5296 Y.3 GEOGRAPHIC AND MEDIA BIAS

5297 Event texts in the current version of TimesX are written in English. We adopt English as a starting
 5298 point, in line with common practice in NLP where a robust English setup is built first and then
 5299 extended to multilingual settings. At the same time, the numeric variables themselves already cover
 5300 multiple regions, including North America (United States, Canada), Asia (China, India), Europe
 5301 (United Kingdom, Norway, Germany), South America, and Africa.
 5302

5303 We are aware that geographic and media biases can still arise. As shown in the workflow diagram
 5304 in Figure 34, our dataset construction agent already takes several steps to mitigate these biases. In
 5305 Steps 1b and 3b, the web search is configured with a global scope rather than a single country or
 5306 region. In Step 3b, the search engine retrieves information from multiple sources. In Step 4a, the
 5307 Synthesizer LLM is instructed to cross-check evidence across sources and to give higher weight to
 5308 authoritative outlets when producing the final event description. These design choices help, but they
 5309 cannot completely remove bias.
 5310

5311 In future versions of TimesX, we plan to make biases more transparent and more controllable by
 5312 explicitly disentangling each stored event description into two parts: an “Objective Facts” segment
 5313 that records dates, numbers, and events that have already occurred, and a “Subjective Analysis”
 5314 segment that records market sentiment and speculative commentary. This structured separation will
 5315 allow users to focus on objective information when needed and to design more targeted robustness
 5316 analyses.
 5317

5318 Y.4 OUT-OF-DISTRIBUTION EVALUATION: MULTILINGUAL AND SPARSE-EVENT VARIABLES

5319 To explore out-of-distribution (OOD) generalization, we extend TimesX with two types of additional
 5320 variables that are not part of the main in-distribution set: multilingual variables and sparse-event
 5321 rare-disease variables.
 5322

5323 **Multilingual variables.** The main release of TimesX uses English event texts, but we agree that
 5324 multilingual and region-specific events are important. To this end, we construct 11 new non-English
 5325 variables that span five continents and cover the following languages: Afrikaans, French, German,
 5326 Hindi, Japanese, Korean, Portuguese, Simplified Chinese, Spanish, Swahili, and Turkish. Each vari-
 5327 able focuses on region-specific topics in the corresponding language. These multilingual variables
 5328 are available in an extended split of TimesX.¹⁵ We reserve them for OOD evaluation rather than
 5329 including them in the main in-distribution benchmark.
 5330

5331 **Sparse-event rare-disease variables.** We also construct five rare-disease variables to study
 5332 sparse-event settings: Chagas disease, Huntington’s disease, Guinea worm disease, Marburg virus
 5333 disease, and Nipah virus.¹⁶ For these variables, the numeric component currently uses search-trend
 5334 signals; we are actively looking for stable, regularly updated sources of case counts or incidence
 5335 rates.
 5336

5337 Figure 37 visualizes the search-trend signals for these five rare-disease variables. Even though the
 5338 events are sparse, the series still show noticeable spikes around news or outbreak-related periods.
 5339

5340 We further compute statistics over the constructed events for these rare-disease variables. Table 170
 5341 reports the number of events, the average event summary length, and several time-series character-
 5342 istics. Compared with typical variables in TimesX (see Tables 11 and 15), the rare-disease variables
 5343 indeed have fewer events, but still more than 30 events per disease between 2023 and mid-2025 on
 5344 average. This suggests that our dataset agent remains effective even in sparse-event domains and
 5345 can recover a reasonable amount of external context.
 5346

¹⁵https://anonymous.4open.science/r/TimesX_UnderReview-387D/Datasets_Extended/Explore_MultiLangAndRareDisease/Multilanguage-2023-2025/

¹⁶https://anonymous.4open.science/r/TimesX_UnderReview-387D/Datasets_Extended/Explore_MultiLangAndRareDisease/RareDisease-2023-2025

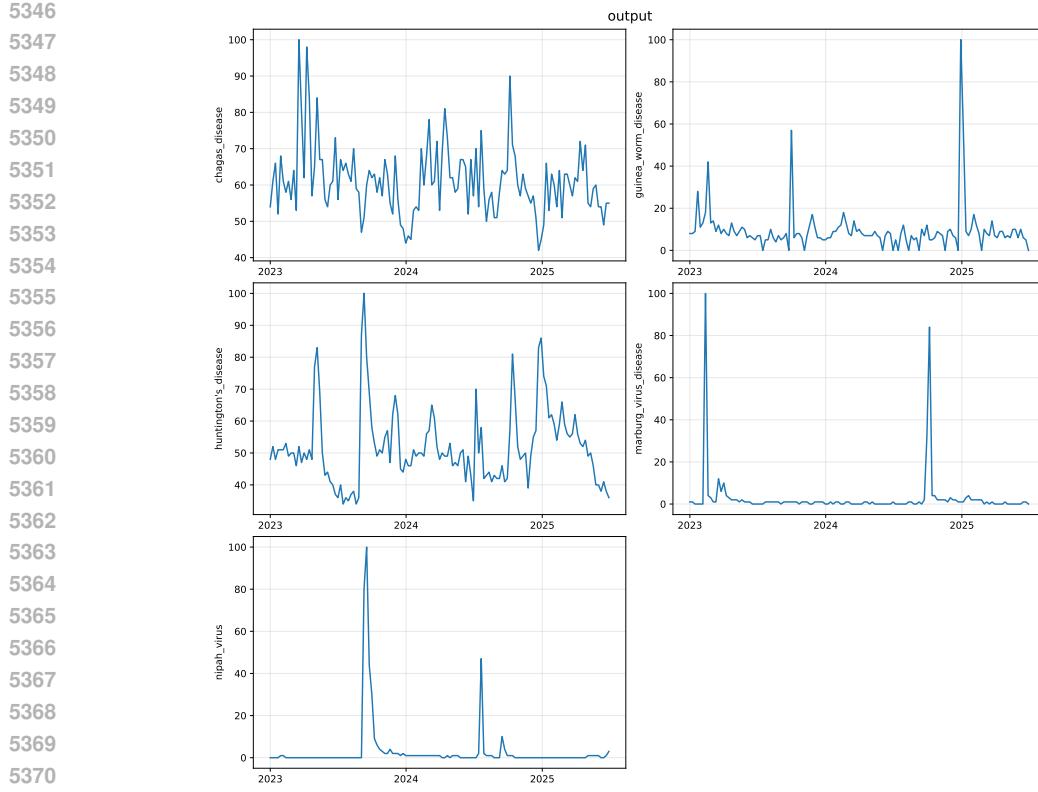


Figure 37: Search-trend signals for the five rare-disease variables in TimesX. Each panel shows a normalized trend series for one disease, where spikes often align with news or outbreak-related events.

Table 170: Statistics of sparse-event rare-disease variables in TimesX. “Events” is the number of constructed events per variable between 2023 and mid-2025; “Avg. summary len” is the average length of event descriptions; the remaining columns are time-series characteristics computed as in Tables 11 and 15.

| Variable | Events | Avg. summary len | Transition | Shifting | Seasonality | Trend | Stationarity |
|-----------------------|--------|------------------|------------|----------|-------------|-------|------------------------|
| Chagas disease | 29 | 443.28 | 0.00651 | -0.733 | 0.555 | 0.239 | 2.49×10^{-3} |
| Guinea worm disease | 18 | 423.17 | 0.00536 | 0.107 | 0.724 | 0.134 | 4.48×10^{-14} |
| Huntington’s disease | 56 | 437.13 | 0.00690 | -0.145 | 0.550 | 0.167 | 7.38×10^{-6} |
| Marburg virus disease | 30 | 569.47 | 0.01316 | -0.237 | 0.590 | 0.395 | 1.93×10^{-16} |
| Nipah virus | 24 | 478.67 | 0.03846 | -0.412 | 0.372 | 0.403 | 4.77×10^{-7} |
| Average | 31.4 | 470.34 | 0.01408 | -0.284 | 0.558 | 0.268 | 4.99×10^{-4} |

Y.5 SUPPORT FOR FINETUNING AND FUTURE EXPLORATION

The main focus of this paper is to address the lack of an appropriate multimodal TSF evaluation benchmark. We see this as a key bottleneck before fully exploring finetuning strategies. At the same time, we aim to make TimesX a useful testbed for future work on finetuning TFM and LLMs.

To support finetuning, we construct an additional dataset that covers the years 2018–2022 for the same 190 in-distribution variables, including both numeric series and textual contexts.¹⁷ This split is intended as a training resource, while the 2023–2025 split serves as the main evaluation period.

As a first step toward using TimesX for finetuning-style studies, we run a simple one-shot in-context learning (ICL) experiment with Gemini 2.0 Flash. For each of the 190 variables, we select the last three evaluation instances and compare four methods: a simple ensemble of Gemini 2.0 Flash

¹⁷https://anonymous.4open.science/r/TimesX_UnderReview-387D/Datasets_Extended/Finetune_2018-2022/

5400
 5401 **Table 171: Geometric-mean normalized MASE on the last three evaluation instances per variable**
 5402 **when adding a one-shot ICL example for Gemini 2.0 Flash. Lower is better.**

| 5403 Method | 5404 Geometric-mean MASE |
|--|--------------------------|
| 5404 AvgEns (Gemini-2.0-Flash + TimesFM-2.5) | 0.712 |
| 5405 Gemini-2.0-Flash 1-shot ICL | 0.727 |
| 5406 Gemini-2.0-Flash | 0.748 |
| 5407 TimesFM-2.5 | 0.750 |

5408
 5409 and TimesFM-2.5 (AvgEns), Gemini 2.0 Flash with one ICL example, Gemini 2.0 Flash without
 5410 ICL, and TimesFM-2.5 alone. Table 171 reports the geometric-mean normalized MASE over all
 5411 variables.

5412 We observe that adding a single ICL example already improves Gemini 2.0 Flash compared with the
 5413 zero-shot setting, although it does not yet surpass the simple ensemble. This suggests that finetuning
 5414 or more advanced adaptation schemes on TimesX could be promising. A thorough study of finetuning
 5415 TFM and LLMs on TimesX would, however, require substantial additional effort in terms of
 5416 computation and method design (including tokenization, alignment strategies, and loss functions),
 5417 which is beyond the scope of this dataset-and-benchmark paper. We hope that the finetuning split,
 5418 the refreshable leakage-free evaluation set, and our empirical findings can serve as a solid foundation
 5419 for future work on finetuning models for multimodal time-series forecasting.

5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453