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ABSTRACT

We introduce a new context-enriched, multimodal time series forecasting bench-
mark TimesX. TimesX contains a wide selection of high-quality real-world time
series with diverse domains and textual contexts obtained from an automated data
generation pipeline, which helps address three main issues of existing multimodal
forecasting benchmarks: (1) poor generalization due to the small scale and syn-
thetic nature of benchmark data, (2) very limited types of textual contexts in the
benchmarks, and (3) an inability to mitigate data leakage in evaluation. We con-
duct a thorough empirical study of zero-shot multimodal forecasting approaches
on TimesX. Our results suggest that many approaches that perform well on ex-
isting benchmarks may fail on TimesX. In contrast, simple ensemble methods
that leverage rich textual context accompanying time-series can outperform strong
baselines on the TimesX benchmark.

1 INTRODUCTION

Time-series forecasting (TSF) is a ubiquitous task across numerous domains and is essential for in-
formed decision-making. Motivated by the success in NLP, there has been significant work in recent
years on time-series foundation models (TFM) for forecasting, ranging from re-purposing LLMs
directly for forecasting (Gruver et al., 2023; Tan et al., 2024) to fine-tuning pretrained LLMs on
time-series data (Zhou et al., 2023; Chang et al., 2023) to pretraining time-series foundation models
from scratch (Das et al., 2024; Goswami et al., 2024; Woo et al., 2024; Ansari et al., 2024). These
models have demonstrated promising zero-shot TSF capabilities, often outperforming traditional
statistical and supervised methods, using only the historical context of the time-series at inference
time. Although historical numerical data provide a fundamental basis for prediction, they often lack
the complete context necessary for reliable and accurate forecasts. Human forecasters often integrate
additional information such as background knowledge, events and constraints, which can usually be
captured through natural language (Liu et al., 2024b) - we call these textual contexts. Improving the
ability of time-series foundation models to effectively leverage and integrate diverse textual contexts
remains an ongoing challenge. This highlights a crucial need for high-quality and comprehensive
multimodal datasets and benchmarks to propel research in this area.

At the same time, existing context-enriched multimodal TSF evaluation benchmarks and their con-
struction techniques present several limitations when benchmarking pretrained models on them.
The first limitation is the unknown generalization gap between the benchmarking metrics and the
real world performance. This is often caused by either the benchmark being restricted to a small
scale with a narrow selection of domains, or it being fully synthetic.

The second significant challenge across existing benchmarks is data leakage. Pretrained TFMs
and LLMs may have already ingested evaluation data, leading to unknown data contamination and
unfair comparison between methods. The benchmark itself is also subject to short-lived validity
as pretrained models will continuously update but their pretraining datasets, while expending over
time, are often not released.

The third limitation comes from our observation that the types and granularities of textual contexts
in previous benchmarks are often limited and vary wildly. Textual contexts derived from real data in-
clude metadata information about the time-series, timestamp-related information such as important
dates and holidays, textual event data related to the time-series, and textual data capturing statistics
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and trends of related exogenous variables correlated with the target time-series. The ability of mul-
timodal models to process these different types of contexts, and the availability and quality of these
different contexts in the datasets have a significant effect on the model’s benchmark performance.
When a multimodal model falls short on existing benchmarks, it is difficult to conclude whether the
shortcoming is due to the fact that the method does not effectively utilize the provided information,
or it is because the contexts provided in the benchmark are of a specific type, too vague, or lacking
relevant details.

To address these fundamental limitations and establish an unbiased benchmark for context-enriched
time series forecasting, we introduce TimesX, a novel multimodal benchmark designed to focus
on (1) real, large-scale, cross-domain data, (2) a dataset generation pipeline providing continuous
mitigation of data leakage, and (3) a collection of comprehensive, fine-grained textual contexts. We
further introduce several promising baselines that combine TFMs and LLMs to achieve non-trivial
multimodal, context-enriched forecasting performance on our benchmark.

The primary contributions of this paper are threefold:

1. TimesX is, as far as we are aware, the first real-world, large-scale, and cross-domain
context-enriched time series forecasting benchmark1. It encompasses 19 diverse domains
with a total of 190 variables, covers diverse global geographical regions and includes daily
and weekly frequencies. It also links each target numeric series to multiple forms of de-
tailed textual contexts. Unlike existing multimodal time-series benchmarks, all time series
and textual data in TimesX are from real-world observations.

2. We propose two new mechanisms in the dataset generation pipeline of TimesX to help
prevent data leakage and guarantee the validity of the textual context. The first one is
an automated data collection pipeline that adopts strict timestamp alignment and isolation
during each of its steps. The second one is a hypothesizer-verifier-enricher framework for
fact-checking and enriching the textual contexts. These mechanisms combined ensures
that TimesX is verifiable, leakage-free, and can be updated in the future for benchmarking
methods with new pretraining cutoff dates.

3. We empirically verify that TimesX addresses the shortcomings of existing benchmarks. In
addition, we conduct thorough empirical studies comparison of current (zero-shot2) multi-
modal TSF approaches on TimesX, involving more than 312,000 independent LLM infer-
ences and revealing new observations that were not discovered by existing benchmarks. In
particular, we discover that earlier benchmarks like Williams et al. (2024a) tend to severely
over-estimate the performance of LLMs over TSF models. At the same time, benchmarks
like Liu et al. (2024a) under-report the importance of textual context information in fore-
casting accuracy.

2 RELATED WORK

In addition to the time-series foundation models mentioned previously, recent work has started to
adapt pre-trained LLMs to perform forecasting when textual contexts are available, often by align-
ing the modalities of time series and natural language. For example, Jin et al. (2023) uses a repro-
gramming framework that keeps the LLM frozen, converting time series into fixed-format textual
representations to align the modalities. Liu et al. (2024b) enhances zero-shot forecasting through
advanced prompting strategies alone. It introduces a Chain-of-Thought style prompt to break the
task into short-term (trend-focused) and long-term (stability-focused) sub-tasks, and prompts the
model to periodically reassess its reasoning. ChatTime (Wang et al., 2025) tokenizes numerical data
and fine-tunes an LLM to process both modalities within a unified framework.

The development of these models has been paralleled by new benchmarks designed to evaluate
them. ChatTS (Xie et al., 2024), for instance, generates synthetic time series paired with detailed
attribute descriptions to train a multimodal LLM for understanding and reasoning tasks. Similarly,

1TimesX can currently be accessed for review purposes at https://anonymous.4open.science/
r/TimesX_UnderReview-387D/. We intend to release the benchmark and code upon paper acceptance.

2By Nov 2025, TimesX was extended to contain 190 variables spanning Jan 2018 to Oct 2025, supporting
both training and evaluation, and considers 11 multilingual variables and 5 rare-disease variables.
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the Time-MQA framework (Kong et al., 2025) introduces the TSQA dataset, which contains real-
world time series with template-based meta information and turns time-series forecasting into a
question-answer format. Benchmarks as those referenced in CiK (Williams et al., 2024a) contain
real-world time series and manually crafted textual contexts that are critical for accurate forecasting.
Time-MMD (Liu et al., 2024a) provides a context enriched benchmark constructed by keyword-
based web searches of nine domains, one variable for each. MTBench (Chen et al., 2025) aligns
stock prices with financial news and weather reports with temperature records, curating tasks that
require reasoning about. MoTime (Zhou et al., 2025) dataset suite provides a collection of mul-
timodal datasets pairing time series with static modalities like text and images. Noticeably, these
early efforts were often constrained by a scarcity of high-quality, large-scale, real-world datasets,
leading some to rely on synthetic data and specific forms of textual contexts. We summarize several
representative benchmarks compared to our proposed TimesX in Table 1.

Benchmark Real Data Leakage-Free Context Types Datasets
MT-Bench Yes No Meta+Event 2
ChatTime Yes No Meta+Calendar+Covariates 3
MoTime Yes No Meta 8

Time-MMD Yes No Meat+Event 9
CiK No N/A Meta+Event+Covariates 71

TimesX Yes Yes Meta+Calendar+Covariates+Event 190

Table 1: Comparison of multi-modal TSF benchmarks. Leakage-Free indicates whether the bench-
mark can guarantee no data leakage for the latest pretrained models, detailed in Section 3.1.2.

3 THE TIMESX BENCHMARK

3.1 DESIGN PRINCIPLES OF TIMESX

We will first present the core principles that distinguish TimesX from other multimodal forecast-
ing benchmarks. We also provide empirical evidence that demonstrates the importance of these
principles and where other benchmarks might fall short.

3.1.1 REAL-WORLD DATA

TSF is highly complex because it arises from real-world dynamics, complex processes, and diverse
domains. On the other hand, many existing benchmarks use either synthetic time series, synthetic
textual contexts, or both, without demonstrating how the conclusions on synthetic data can transfer
to real-world scenarios (Williams et al., 2024b; Tan et al., 2024). TimesX differentiates itself from
those benchmarks by strictly using real-world data for both the time series and the textual contexts.

To test whether conclusions on synthetic data can transfer to real data, we evaluate three methods
on a synthetic context dataset (CiK) and our real dataset (TimesX). We report the aggregated MASE
(Mean Absolute Scaled Error) of the three methods which are: (i) TimesFM-2.5 (a TFM) using only
the time series, (ii) Gemini-2.0-Flash (an LLM) using both the time series and the textual contexts,
and (iii) CODEREV, Gemini-2.0-Flash writing and executing code to revise TimesFM-2.5 outputs
based on the context. More details on the evaluation metric are in Appendix N.

As shown in Fig. 1, the rankings of the three methods on CiK and on TimesX are completely differ-
ent. On CiK, directly feeding the time-series along with associated text context to Gemini has a huge
lead over TimesFM-2.5. Moreover, asking Gemini to edit the output of TimesFM-2.5 via code does
even better, significantly outperforming the other two methods. On the other hand on TimesX, we
see that all the methods are much closer, and TimesFM-2.5 is actually better than Gemini. Further
CODEREV degrades the performance of using both TimesFM-2.5 and Gemini directly. This shows
that CiK has a strong bias that clouds its conclusions: in CiK, textual contexts are both synthetic and
extremely specific - these specific contexts are then used to write code to modify an input time-series
and generate the final forecasting task. Therefore, such tasks can be easily solved by instruction-
following language models and even better by language models that generate code to accomplish a
simple modification task. These conclusions, however, do not generalize to the real-world tasks in
TimesX whose contexts are less specific and do not relate to the forecasting task via the coding path.

3
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We believe that carefully designed synthetic benchmarks can be useful for testing specific capabili-
ties such as instruction following or different types of reasoning. We highly recommend using both
synthetic and real-world benchmarks for a more complete and robust evaluation
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Figure 1: Synthetic (CiK) versus real-world (TimesX) performance under the same setup (lower
MASE is better). The ordering of TimesFM-2.5, Gemini-2.0-Flash, and CODEREV flips between
the two datasets, showing that synthetic generation can bias rankings toward instruction-following
LLM and coding. We show results on the Future subset of CiK here. Table 168 further reports the
average performance across all five CiK subsets and shows the same conclusion.

3.1.2 MITIGATING DATA LEAKAGE

A fair benchmark dataset should be able to mitigate any potential leakage of benchmarks tasks into
the pretraining datasets of the models being evaluated. Given that many pretrained models do not
release their pretraining datasets, existing benchmarks that claim to use data from unused sources
(data isolation) for evaluation have three drawbacks: (1) Potentially unidentifiable data contamina-
tion. (2) Limited number of clean tasks left for benchmarking multiple methods. (3) Short-lived
validity i.e future versions of the models considered may unintentionally leak the benchmark into
their pretraining data.

In contrast, TimesX adopts strict time isolation to prevent data contamination: we timestamp
TimesX thoroughly, and recommend strictly using benchmark tasks that occur after a target model’s
knowledge cutoff date. Moreover, the TimesX pipeline is designed for easy data refreshes i.e data
collection, validation, alignment, and model evaluation can all be automated. To the best of our
knowledge, TimesX is the first benchmark capable of being automatically refreshed for evaluating
future pretrained methods.

To demonstrate how data contamination affects evaluation results, we evaluate on 120 variables
from the Search Trend (see Section 3.2) subset of TimesX. We keep the numeric series, windowing,
and prompts fixed, and split the test period by the public knowledge cutoff of Gemini-2.0-Flash and
DeepSeek-V3 (June 2024). We report the MASE aggregated by Geometric Mean in Table 2.

Method Model MASE Before 2024.06 MASE After 2024.06 % Change
LLM Gemini-2.0-Flash 0.514 0.594 14.81%
LLM DeepSeek-V3 0.606 0.681 12.38%
TFM TimesFM-2.5 0.563 0.573 1.78%
TFM Moirai-2.0 0.691 0.696 0.72%

Table 2: Performance before and after the two LLMs’ knowledge cutoff (June 2024) on the Search
Trend subset (120 variables). Lower MASE is better. Setup is detailed in Appendix A.

The pretraining data descriptions of the two TFMs preclude any time-series data leakage in both
time periods, and both TFMs report stable results with less than 2% delta. In contrast both LLMs
see an increase of error by about 13% after their knowledge cutoff.
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3.1.3 HIGH QUALITY CONTEXT

Most multimodal forecasting benchmarks have a very limited set of text contexts - restricted to
either static metadata (Zhou et al., 2025), date and weather derived features (Wang et al., 2025)
or synthetically generated contexts (Williams et al., 2024b). In contrast, TimesX uses not only an
union of all these context types, but also a more careful generation of text events and corresponding
alignment of these contexts.

In particular, we categorize these various kinds of contexts into: (1) Metadata: descriptive high
level summaries of the forecasting variable in question (2) Calendar-derived features like holidays
(3) Covariates which cover textual information around other related time series (4) Time-stamped
events: Textual description of related events aligned with time-windows of the variable in question.
Section 3.2.1 contains more details about how we generate these textual contexts.

TimesX links each target time-series to all these available context types and aligns them with the
timestamps of the time series. The end result is a benchmark with diverse, high-quality textual
contexts. To quantify its effect on time–series forecasting accuracy, we run a controlled experiment
where we take the time-series in the Time-MMD benchmark and use our methodology to replace
the textual events using the construction rules in Appendix D. We keep the numeric series, the LLM
(Gemini-2.0-Flash), and the prompt fixed.

Method MASE
LLM (Our Context) 0.840

LLM (Time-MMD Context) 0.906

Table 3: Controlled replacement of textual context on
Time-MMD. More detailed results are in Appendix K.

Table 13 compares the performance of
Gemini-2.0-Flash given these newly gen-
erated text events versus the original
context in the Time-MMD benchmark.
Across all nine datasets of Time-MMD,
this context swap reduces the geomet-
ric–mean aggregated MASE from 0.906 to
0.840 (a relative drop of roughly 7.3%).
These results show that conclusions drawn
under low–quality context might be misleading; introducing high–quality, fine–grained context
changes the picture.

We further demonstrate the limitations of small-scale evaluation in Fig 33 and App T.

3.2 OVERVIEW OF TIMESX

We now provide a high level summary of our dataset and dataset construction methodology. TimesX
contains time-series obtained from 19 domains. Each domain has 10 variables, resulting in a total
of 190 variables (quantities evolving with time). Note that TimesX is constructed entirely from
scratch, rather than by merging existing datasets.

The variables make up the numerical time-series portion of the dataset and the core task is to forecast
the future time-points of these variables. They cover two different temporal granularities: Weekly
series consist of Google Search Trend signals3 across 12 domains. Daily series include (i) commod-
ity prices4 covering raw materials, energy, metals, and agriculture, and (ii) major USD exchange
rates5. Appendix F contains more details about these domains and variables. All time series of each
frequency have the same timestamps. The missing values are handled according to Appendix D.

Note that we have a separate portion of the dataset that is derived from the time-series in Time-
MMD Liu et al. (2024a), where the text context is generated using our methodology. However this
portion of the dataset was only used for ablations in Section 3.1.3 and unless otherwise specified all
our main results are presented on the core 19 domains mentioned above.

The current data collection window spans from 2023-01-01 to 2025-06-30, and covers different
geographical regions: North America (United States, Canada, Mexico), Asia (China, India among
others), Europe (United Kingdom, Norway among others), South America and Africa. We use PCA
and t-SNE to further visualize the diversity of TimesX in Appendix X.

3https://trends.google.com/trends/
4https://marketstack.com/
5https://frankfurter.dev/
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3.2.1 TEXT CONTEXT

Our core contribution is aligning comprehensive and diverse text context information with the vari-
ables that evolve over time. We will see that methods that capture both this context information
along with the past of the time-series can achieve superior performance compared to methods that
only use the past time-series component. As mentioned before we provide 4 kinds of text contexts
for all time-series variables: Metadata, Calendar features, Covariates and Time-Stamped Events.
Section 3.2.2 shows an example of a time series with each of these four types of textual contexts.

The Metadata and Calendar text contexts are easily constructed from the sources of the numerical
time-series themselves and Python Holidays library respectively, as described in Appendix B.

For each time-series in a given domain, we use the other time-series from that domain to extract
Covariate text contexts. Specifically, we calculate features of these covariates over the historical
window, including mean, median, max and min with the corresponding date, and overall trend di-
rection. These features are then transformed into natural language descriptions, detailed in App C.

Constructing and aligning textual events is the most challenging component. Following our design
principles in Section 3.1, we must satisfy three goals at once: real-world data, leakage-free, and
high-quality. A single LLM or a naive web search cannot reliably meet these goals. Therefore, we
adopt a multi-agent automated workflow with three agents: Hypothesizer, Verifier, and Enricher.
Each agent interacts with an LLM under constraints and has dedicated tools (time-bounded web
search and lightweight crawlers). Overall, the Hypothesizer and the Verifier act adversarially to
ensure event truthfulness and timestamp accuracy, which prevents information leakage; the Veri-
fier then guides the Enricher to supply missing details thus ensure quality. The whole workflow,
illustrated in Figure 34 , is automated, enabling regular updates of the benchmark data.

Specifically, the Hypothesizer identifies points of interest in the time series (e.g., local maxima,
unexpected movements or peak in the corresponding search trend) and iteratively calls an LLM
agent with integrated web search to build an initial event set that are able to match these points.
The Verifier uses crawlers to fetch relevant URLs corresponding to each event window and conduct
fact checks, filtering out any hallucination or leakage, and preparing a checklist of missing details.
The Enricher resolves the checklist using strictly time-bounded web searches, merging multiple
sources to fill in the details. Finally, a reasoning LLM, called the Synthesizer, aggregates all pieces
of evidence to finalize the event description, adjust timestamps, and discard events with unresolved
doubts. Using this framework, TimesX automatically produces an event corpus that matches the
time window, contains verifiable facts (each claim has a supporting URL), accurate time stamps,
and rich detail. Details are provided in Appendix D. An execution log demo is in App U. More
discussions and manual verification about date annotation accuracy are in App V.
3.2.2 DATA EXAMPLE

We provide below an example from TimesX corresponding to the GAS PRICE time-series.

Figure 2: The numerical time series of one example
from the variable GAS PRICE.

Time series: See Figure 2.

Metadata: This time series records gaso-
line price (USD/GAL) in the Commodity
Price domain, with a collection frequency
of daily. Prediction target period: from
2024-09-01 to 2024-09-15.

Date: Upcoming holidays in the predic-
tion window: Labor Day (2024-09-02).

Covariates: from 2024-06-01 to 2024-08-
31: (1) Brent Crude Oil (USD/BBL): The
maximum value was 87.43, occurring on
July 4, the minimum was 76.05 on August
21, showing an overall downward trend.
(2)...

Events: (1) On June 2, 2024, OPEC+ agreed to extend deep oil output cuts [1,3], the cut of 2.2
million bpd would be extended until September 2024, after which it would be gradually phased out
[2,3]. Source: [1] [2] [3]; (2) ...
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4 EMPIRICAL STUDY

4.1 EVALUATION SETTINGS

We consider the following three types of methods:

Pretrained TFMs: We select three SOTA TFMs,i.e., TimesFM-2.5, Moirai-2.0 and Sundial.6

Pretrained LLMs: We consider three well-adopted LLMs: the closed-source Gemini-2.0-Flash
and GPT-4o, and the open-source DeepSeek-V3.

Composed Solutions: We construct the following four combinations of TFM and LLM: (1)
AVGENS: An ensemble that averages the forecasts from two pretrained models. We simply set equal
weights.(2) TEXTREV: An LLM taking the forecast of a TFM as text and revising it according to
the context. (3) CODEREV: An LLM writing and executing code to revise the forecast of a TFM
according to the context. (4) FUNCREV: Similar to CODEREV, but the LLM is limited to a selection
of functions. Details are in Appendix I

For each variable in TimesX and its context corpus, the look-back window and the forecast horizon
are set to 96 and 12, respectively. The rolling window is set to 4 for weekly data and 12 for daily
data to balance sample count and sample diversity. We then include all relevant metadata, calendar
info and covariates info. To avoid future information leakage and context redundancy, we select
the 10 most recent textual events whose announcement dates strictly precede the first timestamp of
the prediction horizon to add to the context. Under this setup, we obtain 2,434 samples, as detailed
in the Appendix W. To account for stochasticity, we repeat each evaluation 10 times with different
random seeds when applicable. Our experiments involved more than 312,000 independent LLM
inferences.

To avoid pretraining data contamination, we construct evaluation examples whose forecast horizon
begins after the pretraining cutoff of all involved models, detailed in Appendix J. Unless stated
otherwise, we use 2024-07-01 as the cutoff. The web access is restricted to the construction-time
agent while the benchmark itself is an offline evaluation suite.

Following the conventions in other popular forecasting benchmarks like GIFT-Eval (Aksu et al.,
2024) we use normalized MASE (mean absolute scaled error) as our main metric. Since the different
variables have very different scales, we calculate the average MASE over all rolling windows of a
variable and normalize that by the average MASE of a seaosnal naive baseline. Then we take the
Geometric Mean (GM) of these normalized MASE ratios across all variables. More details are in
Appendix N. We also compute the average MASE rank of each method over the variables. For both
metrics, smaller numbers indicate better performance.

Method MASE Rank
Naive SeasonalNaive 1.000 12.196

Unimodal
Zero-Shot

TFM

Sundial 0.771 9.556
Moirai-2.0 0.722 7.968

TimesFM-2.5 0.645 5.757
AVGENS: TimesFM-2.5 + Moirai-2.0 0.668 6.45

Multimodal
Zero-Shot

LLM

DeepSeek-V3 0.708 7.73
Gemini-2.0-Flash 0.650 6.603

GPT-4o 0.643 (#3) 5.466 (#3)

Multimodal
Composed
Solution

FUNCREV: TimesFM-2.5 + Gemini-2.0-Flash 0.720 7.665
CODEREV: TimesFM-2.5 + Gemini-2.0-Flash 0.713 6.968
TEXTREV: TimesFM-2.5 + Gemini-2.0-Flash 0.653 5.63

AVGENS: TimesFM-2.5 + GPT-4o 0.627 (#2) 4.735 (#2)
AVGENS: TimesFM-2.5 + Gemini-2.0-Flash 0.619 (#1) 4.249 (#1)

Table 4: Overall benchmark results of the 13 selected methods.The top 3 methods per metric are
numbered in the parentheses.

6As of September 24, 2025, these three TFM models ranks 1st, 3rd, and 5th on the GITF-Eval leaderboard
at https://huggingface.co/spaces/Salesforce/GIFT-Eval.
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4.2 BENCHMARKING ALL METHODS

Table 4 shows the benchmark results of the chosen methods on TimesX.

As multimodal solutions, though the zero-shot LLMs have the edge over the unimodal zero-shot
TFMs, this edge is not as significant on TimesX as observed on other synthetic benchmarks. This
points out the gap between synthetic contexts and real world contexts, that earlier synthetic bench-
marks tend to severely over-estimate the performance of LLMs over TSF models because the syn-
thetic contexts were providing the exact information required for bettering the forecast. Real world
contexts are in contrast too nuanced to always deliver large performance boost even when guar-
anteed to be related. This conclusion is further confirmed by the observation that the composed
CODEREV method is performing worse than its two components working alone, contradicting the
claim of (Williams et al., 2024a).

In terms of the composed solutions, to our surprise the best performers on TimesX are the simple
average ensembles of different pretrained models (i.e., AVGENS). We by no means want to suggest
it as the optimal composition, but instead want to reiterate the stochastic and flexible nature of LLMs
and the fact that it would take a great deal of effort to design the interaction with them in a composed
solution to just outperform simple averaging ensembles.

We also use the continuous ranked probability score (CRPS) metrics to measure uncertainty, detailed
in Appendix Y.1. We initially observe that all three LLMs achieve lower CRPS than the TFMs. This
suggests that our constructed context helps LLMs model future uncertainty better than TFMs, which
rely only on numeric series.

As an early experiment we further extend our benchmark to advanced reasoning LLMs, including
GPT-5, Gemini-2.5-Flash, and DeepSeek-R1. To avoid data contamination, we use evaluation sam-
ples whose forecast horizons begin after January 2025. As shown in Table 12, we do not observe a
clear advantage of reasoning models.

4.3 ABLATION: CONTEXT TYPES

Table 5 presents the MASE and MASE rank when different combinations of contexts are provided to
a chosen multimodal method (Gemini-2.0-Flash). Comparing to only using the high level metadata,
the inclusion of either calendar, calendar and covariates, or calendar and events brings significant
improvement. Using all context types improves the accuracy further eventually being around 16%
better than using only static metadata.

Meta Meta+Date Meta+Date+Cov Meta+Date+Event Meta+Date+Event+Cov
MASE 0.787 0.670 0.674 0.674 0.650
Rank 3.704 3.048 3.079 2.968 2.635

Table 5: Gemini-2.0-Flash MASE and MASE rank when provided with different context types.
Including all context types provides significant improvement over any other combinations.

GPT-4o Gemini-2.0-Flash DeepSeek-V3

0.65

0.70

0.75

No
rm

al
ize

d 
M

AS
E

-2.13% -3.56%

-6.10%

Meta+Date+Event
Meta+Date+Event+Cov

Figure 3: The compounded gains from all avail-
able context types are present for all LLMs.

It is worth noticing that we cannot observe
the incremental gain from adding covariates or
events alone. We speculate there is crucial in-
teraction between those two context types, for
instance the effect of an event on the target vari-
able can be quantified by a similar leading ef-
fect on a covariate. Figure 3 suggests this spec-
ulation may generalize to other LLMs. This ob-
servation is aligned with our expectation that a
multimodal method can compound the gains by
composing the information in different context
types.

4.4 WHY REVISION-BASED METHODS UNDERPERFORM?
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Figure 4: The boxplot of TimesFM-2.5, Gemini-
2.0-Flash and their composed method’s perfor-
mances.

None of the three revision methods FUNCREV,
CODEREV and TEXTREV manage to outper-
form the simple AVGENS on TimesX. Fig-
ure 4 dives deeper into the distribution of
their forecast errors, revealing that their errors
spread wider with egregious outliers compared
to TimesFM-2.5, resulting in worse geometric
means. Using Gemini-2.0-Flash alone is simi-
lar. We speculate it is because of the stochastic
nature of a LLM and that LLM revision is not
guaranteed to respect the temporal structures al-
ready present in the initial forecast. Among the
three, TEXTREV performs better than the other
two coding variants, suggesting the proper revi-
sion via coding might require specific instruc-
tion fine-tuning.

4.5 ABLATION: DOMAINS

Table 4.5 breaks down the ranking of the benchmark methods on each of the 19 domains (see Ap-
pendix L for MASE). There is no dominance of one zero-shot method over others - in fact the or-
derings of TimesFM-2.5 and Gemini-2.0-Flash are complementary. In terms of composed solutions,
the observation is consistent with Table 4 that AVGENS performs well while other compositions can
be worse than its components acting alone.

There are two domain groups where the multimodal solutions are showing a significant edge over
the TFMs. One is Shopping, for which we speculate that the calendar information provides multi-
modal solutions with strong signals about when sales would happen, which is otherwise difficult to
conclude from the time series alone. Similarly, for the domains of RMC (Raw Materials & Con-
structions), SAM (Specialty & Advanced Materials), SHVM (Strategic & High-Value Materials)
and Curr (Currency) these time series are heavily impacted by external policies, an essential part of
the event context.

Domain

Method A&E
C&E

Eco
n

E. T
ec

h

Fin P&A
Pub

. H.

PPG
Sci Sho

p
SSSG

Traf Crop
s

Ene
rgy

Lvs
tk.

RM
C

SAM
SHVM

Curr

SeasonalNaive 13 13 13 13 13 13 13 13 13 13 13 13 12 13 13 12 11 13 12
Sundial 10 11 12 11 11 12 10 12 10 11 12 10 9 10 9 10 9 12 13
Moirai-2.0 12 12 10 10 10 10 11 11 11 12 10 9 1 4 4 5 5 5 7
TimesFM-2.5 2 4 4 6 4 1 3 2 3 7 1 4 8 8 2 8 8 10 10
AVGENS: TimesFM + Moirai 9 9 8 8 8 7 6 9 7 8 6 6 2 2 1 7 6 8 8
DeepSeek-V3 11 10 11 12 12 11 12 10 12 5 11 11 7 3 6 1 2 1 3
Gemini-2.0-Flash 6 6 5 7 9 9 8 8 8 1 8 8 6 6 8 3 4 3 4
GPT-4o 7 3 6 9 7 5 5 6 9 4 5 7 4 7 5 4 1 4 2
FUNCREV: TimesFM + Gemini 8 8 9 3 2 8 9 7 5 9 7 1 11 12 11 13 13 11 9
CODEREV: TimesFM + Gemini 5 7 7 5 3 6 7 5 6 10 9 12 13 11 12 11 12 9 11
TEXTREV: TimesFM + Gemini 3 5 3 4 5 4 2 4 4 6 3 3 10 9 10 9 10 7 1
AVGENS: TimesFM + GPT 4 1 2 2 6 3 4 3 2 2 4 5 3 1 3 6 7 6 6
AVGENS: TimesFM + Gemini 1 2 1 1 1 2 1 1 1 3 2 2 6 6 8 3 4 3 6

Table 6: Breakdown of the MASE ranks of all methods on each of the 19 domains. Acronyms are
used to shorten domain names for clarity: see Appendix F.

5 CONCLUSIONS

We introduce a new multimodal time-series forecasting benchmark, TimesX, that contains real-
world, cross-domain time-series with high-quality, detailed textual contexts. TimesX includes a
dataset generation pipeline that ensures the benchmark is leakege-free and can be automatically
refreshed. We conduct detailed empirical study of zero-shot multimodal TSF approaches on this
benchmark and discover that earlier benchmarks either overestimste the performance of LLMs over
TSF models, or underreport the importance of textual context information for forecasting accuracy.
Our evaluation also shows that simple ensemble approaches outperform seemingly stronger base-
lines on the TimesX benchmark. We discuss the limitations and future plans in App Y.
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APPENDIX

A DETAILED EXPERIMENT SETTUP OF TABLE 2

For evaluation cost cosideration, we conduct the data leakage validation only on the 121 variables
in SearchTrend subset of TimesX. All other experimental settings follow Section 4.1.

B DETAILS ON METADATA AND CALENDAR CONTEXT CONSTRUCTION

B.1 METADATA CONSTRUCTION

For each variable in TimesX, we create a static metadata description that summarizes the essential
attributes of the time series. The metadata is generated using a fixed template with three components:
(1) the variable name and its measurement unit, (2) the domain the variable belongs to, and (3) the
collection frequency and the target prediction window.

The general template is as follows:

“Meta Info”: ”This time series records [variable name and unit] in the [domain]
domain, with a collection frequency of [frequency]. Prediction target period: from
[start date] to [end date].”

For example, for the gasoline price series in the Commodity Price domain, the metadata is:

“Meta Info”: ”This time series records gasoline price (USD/Gal) in the Commod-
ity Price domain, with a collection frequency of daily. Prediction target period:
from 2024-09-01 to 2024-09-15.”

B.2 CALENDAR CONTEXT CONSTRUCTION

We generate calendar-based context features by automatically identifying holidays and special dates
that fall within the forecasting horizon. Specifically, we use the Python Holidays library7 to
retrieve country- and region-specific holidays.

The construction process follows three steps:

1. Convert each time series into a sequence of (timestamp, value) pairs.

2. For each forecasting horizon, query the library to extract all holidays that overlap with the
horizon window.

3. Format the results into textual annotations describing the holiday names and dates, which
are then aligned with the corresponding timestamps.

For example, if the prediction horizon is from 2024-09-01 to 2024-09-15, the generated calendar
context includes:

“Upcoming holidays in the prediction window: Labor Day (2024-09-02).”

C COVARIATE CONTEXT CONSTRUCTION

To generate covariate-based textual contexts, we compute descriptive statistics for each covariate in
the same domain as the target series. Specifically, for each covariate we calculate:

• The average and median value over the observation window.

• The maximum value and the corresponding date.

• The minimum value and the corresponding date.

7https://pypi.org/project/holidays/
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• The overall trend (upward or downward).

These statistics are automatically extracted using simple Python scripts and converted into structured
textual descriptions. For example, one covariate may be described as:

“from 2024-06-01 to 2024-08-31: The average value of Brent Crude Oil
(USD/BBL) is 81.5. The maximum value of 87.4 occurred on 2024-07-04, and
the minimum value of 76.0 occurred on 2024-08-21, showing an overall down-
ward trend.”

D DETAILS OF TEXTUAL EVENT CONSTRUCTION

Stage 1: Time-Series-Aware Event Hypothesis Generation Input. A target variable with its
numeric series y1:T and a target period [ts, te]. The period is partitioned into fixed-length time
blocks B = {B1, . . . , BM} (e.g., week or month).

Process. For each block B, an LLM proposes an initial set of event hypotheses HB = {h1, . . . }.
Each h contains a tentative title, a draft timestamp, involved entities, and at least one candidate
source URL. We aim to ensure through multiple iterations that HB sufficiently explains the promi-
nent movements in yt within B. Specifically, We define a peak set PB from yt (by a standard peak
detector with fixed hyperparameters). A peak p ∈ PB is covered if at least one h ∈ HB is tem-
porally aligned with p (within a small window) and topically relevant to the target variable. The
coverage is

cov(HB) =
|{p ∈ PB : p is covered by HB}|

|PB |
.

We keep querying the LLM to add hypotheses iteratively and stop when cov(HB) ≥ θ or when a
step limit Kmax is reached. This rule balances completeness and cost without relying on unrestricted
search.

Output. For each block B, a hypothesis set HB with draft timestamps, entities, and seed URLs. All
retrieval during Stage 1 is time-bounded by [ts, te] to keep the search window consistent with the
evaluation period and to avoid leakage.

Leakage control. All queries use an explicit upper bound te. Sources with edited or republished
pages after te are kept only if the original publication date is within [ts, te] and the content is acces-
sible in that state.

Prompt. The prompt for this role is detailed in Fig 5

Stage 2: Rigorous Verification and Temporal Characterization Input. Hypotheses {HB} from
Stage 1.

Process. A verification role call LLMs to re-fetch evidence under the same time bound [ts, te]
and constructs a structured temporal view for each hypothesis. The verifier normalizes titles, re-
solves canonical entities, and extracts two dates: announcement date and occurrence date. It then
assigns a temporal type from a closed set: Scheduled (announced in advance), Contemporaneous
(announcement and occurrence are near in time), Retrospective (backward-looking report), Predic-
tive (forward-looking signal), or Mixed. For each atomic claim, the verifier requires an accessible
source URL (HTTP 200 at crawl time), stores the access date, and records a short quote that supports
the extracted field. Multi-source cross-checking removes items with unresolved contradictions and
de-duplicates near-duplicates by normalized title, entity set, and date tuple.

Output. A verified event set with (announcement date, occurrence date, type), consolidated
sources, and a confidence score that reflects agreement across sources and the precision of dates
(day-level preferred over month-level). The final timestamp and type come with a concise rationale
that explains corrections to the Stage 1 draft.

Leakage control. Verification refuses any evidence whose first-publication date is after te. If a page
is updated after te but preserves the original content and date within [ts, te], the verifier keeps the
archived or cited original. Otherwise the evidence is discarded.

Prompt. The prompt for this role is detailed in Fig 6

13
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Stage 3: Conditional Enrichment for Narrative Depth Input. Verified events from Stage 2.

Process. An evaluation role checks information sufficiency for forecasting. If key fields are missing
(e.g., actors, locations, magnitudes, explicit dates, or links to related variables), the pipeline runs an
iterative but bounded deep search under the same time bound [ts, te]. Each step adds at most one
new high-value source. The process stops when all required fields are present or when a small step
cap Lmax is reached. The reporting role then writes a concise narrative (a few sentences) that states
what happened, when, who is involved, and why it likely relates to the target variable. Each factual
sentence is grounded by one or more quotes with URLs.

Prompt. The prompt for this role is detailed in Fig 7 and 8

In our configuration, we empirically set Kmax = 3, θ = 90%, and Lmax = 3. Under this setting,
the system can efficiently construct high-quality corpora with reasonable runtime and cost. We also
conduct a small-scale sensitivity test: when we increase Kmax from 3 to 5 on a subset of variables,
the total number of accepted events increases by only about 2%. Overall, we encourage users to
adjust these hyperparameters according to their budget and domain, while using our configuration
as a default recommendation.

Under our current configuration (Gemini 2.5 Pro plus Gemini 2.5 Flash), the construction cost is
about $0.7 per variable per three-month time block, including reruns due to network errors. This
cost can be further reduced by using open-source LLMs or by batching verification steps so that
multiple candidate events share the same LLM calls.
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prompt = f"""
You are a professional research analyst specializing in the {domain

} field.
Your task is to use your web search capabilities to identify and

structure
significant events related to ’{keyword}’ in {geography_str} that

occurred
between {start_date} and {end_date}.

**Key Guidelines:**

1. **Source of Information:** Please base your responses on the
information

retrieved from your web search and general common sense. It is
important

to avoid relying on internal knowledge or generating speculative
details

(hallucinations).

2. **Date Extraction Principles:** It is helpful to distinguish
between

two key types of dates. If a date cannot be found from the
sources,

please use ‘null‘.
* ‘announcement_date‘: The date when the news about the event was
**published or first announced**. For example, if a news article
from **2024-01-10** announces an upcoming product launch.

* ‘occurrence_date‘: The date when the event **actually took
place

or is scheduled to take place**. For example, if the product
launch

mentioned above happens on **2024-02-02**.

3. **Event Type Classification:** Please classify the event into
the

following types based on its certainty and timing.
* ‘Scheduled Event‘: A high-certainty event that has been

officially
announced to occur at a future date.

* ‘Predictive Information‘: A lower-certainty piece of
information

about the future, such as an analyst forecast, a target price
change,

or a credible rumor.
* ‘Contemporaneous Event‘: An event that occurs at the same time

it
is announced, often unexpected.

* ‘Retrospective Report‘: An analysis or report about an event or
period that has already passed.

4. **Geographic Focus:** Please focus on events within the {
geography_str}

region.

5. **Source Verifiability:** Each event should be supported by at
least

one verifiable, high-quality URL.

**Output Format:**

Please provide your response as a JSON array of event objects. Each
object

in the array should conform to the following structure. If any
field’s value

cannot be determined from the sources, use ‘null‘.

‘‘‘json
[

{{
"event_summary": "A concise, factual description of the event

.",
"announcement_date": "YYYY-MM-DD or null",
"occurrence_date": "YYYY-MM-DD or null",
"event_type": "Scheduled Event|Predictive Information|

Contemporaneous Event|Retrospective Report or Mixed or
null",

"source_urls": ["url1", "url2"],
"confidence_score": 0.8

}}
]
‘‘‘

Please ensure the entire response is only the valid JSON array,
without

any surrounding text or explanations.
"""

Figure 5: Prompt used for Hypothesizer Role: Initial Event Discovery via LLM with Web Search
Integration. 15
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prompt = f"""
You are a meticulous fact-checker. Your task is to verify claims

against
source content and identify invalid pages.

**CRITICAL: First determine if the source content is valid.**

**Important Definitions:**
- **content_date**: The date when the event itself occurred (e.g.,

product
launch, announcement)

- **publish_date**: The original publication date of the source (
NOT "updated"

or "last modified" dates)

**Few-Shot Learning Examples:**

**Example 1 - Valid Content:**
Event Claim: "Apple Vision Pro will be available on February 2,

2024"
Source Text:
‘‘‘
<h2>Apple Vision Pro Available in the U.S. on February 2</h2>
<span class="publish-date">POSTED ON JANUARY 8, 2024</span>
<p>Apple today announced Apple Vision Pro will be available

beginning
Friday, February 2...</p>
<footer>Last updated: January 10, 2024</footer>
‘‘‘
Expected Output:
‘‘‘json
{{
"page_status": "valid_content",
"verified_statements": [
{{
"statement": "Apple Vision Pro will be available on February 2,

2024",
"status": "Confirmed",
"supporting_quote": "Apple Vision Pro will be available

beginning Friday, February 2"
}}

],
"overall_timing": {{
"content_date": "2024-02-02",
"publish_date": "2024-01-08"

}},
"reasoning": "Valid press release content. Used original publish

date (Jan 8), ignored ’last updated’ footer."
}}
‘‘‘

**Example 2 - 404 Error Page:**
Event Claim: "iPhone 16 rumors surface in March 2024"
Source Text:
‘‘‘
<title>Page Not Found - TechNews</title>
<h1>404 - Page Not Found</h1>
<p>The page you’re looking for doesn’t exist.</p>
<div class="sidebar">Today’s Hot Topics: July 28, 2025</div>
‘‘‘
Expected Output:
‘‘‘json
{{
"page_status": "error_page_404",
"verified_statements": [],
"overall_timing": {{
"content_date": null,
"publish_date": null

}},
"reasoning": "This is a 404 error page with no valid content.

Sidebar dates are irrelevant template content."
}}
‘‘‘

**Now analyze the actual content:**

**1. The Event Claim to Analyze:**
{event_claim}

**2. The Evidence (Source Text):**
---
{source_evidence}
---

**Instructions:**
1. First, determine page_status: valid_content, error_page_404,

access_denied,
or login_wall

2. If page_status is NOT "valid_content", return empty
verified_statements

and null dates
3. If valid_content, decompose claim into atomic facts and verify

each one
4. For dates: Use ORIGINAL publish dates, ignore "updated", "

modified",
or sidebar dates

5. Classify fact status: Confirmed, Anticipated, Speculation, or
Not_Found

**JSON Output format:**
{{
"page_status": "<valid_content|error_page_404|access_denied|

login_wall>",
"verified_statements": [
{{
"statement": "<atomic factual statement>",
"status": "<Confirmed|Anticipated|Speculation|Not_Found>",
"supporting_quote": "<exact quote from text or null>"

}}
],
"overall_timing": {{
"content_date": "<YYYY-MM-DD when the event occurred or null>",
"publish_date": "<YYYY-MM-DD when source was originally

published or null>"
}},
"reasoning": "<Brief explanation of your analysis process>"

}}

Respond with ONLY the JSON object, no additional text.
"""

Figure 6: Prompt used for Verifier Role: Atomic Fact Verification with Evidence Matching.
16
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prompt = f"""
You are a research strategist analyzing information gaps and

planning next steps.

**IMPORTANT ACTION LIMIT**: Please limit your next_actions to a
maximum of

{max_actions} items. Focus on the most critical information gaps
that need

to be addressed. Each action should be high-quality and targeted.

**Original Event Claim:**
{original_claim}

**Currently Verified Information:**
{statements_summary}

**Your Task:**
1. **Analyze completeness**: Compare verified information against

the
original claim

2. **Identify information gaps**: List missing or unconfirmed facts
3. **Plan next actions**: For each gap, determine if it’s common

knowledge
or requires search

For each information gap, classify as:
- **Common knowledge**: Facts that can be resolved internally (e.g

.,
"Apple’s fiscal Q1 is Oct-Dec")

- **Requires search**: Facts needing external verification

**JSON Output format:**
{{
"is_sufficient": <true if all key facts are confirmed, false

otherwise>,
"next_actions": [
{{
"info_gap": "<description of missing information>",
"is_common_knowledge": <true|false>,
"action_type": "<resolve_internally|search>",
"resolved_answer": "<answer if common knowledge, null otherwise

>",
"query": "<search query if action_type is search, null

otherwise>"
}}

]
}}

Please respond with ONLY the JSON object.
"""

Figure 7: Prompt used for Enricher Role (Phase 1): Information Sufficiency Evaluation and Action
Planning.
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E OVERVIEW OF TIMESX

TimesX contains 20 domains and 200 variables in total (balanced design: 20 × 10). The collec-
tion window spans from 2022-01-01 to 2025-06-30 for the daily subset, and from 2023-01-01 to
2025-06-30 for the weekly subset.8 Geographical coverage includes North America (United States,
Canada, Mexico), Asia (for example, China, India), Europe (for example, United Kingdom, Nor-
way), South America (for example, Brazil), and Africa.

Table 7: Dataset summary.
Item Description
Domains 20
Variables 200 (balanced: about 10 per domain)
Frequencies Weekly (Search Trend), Daily (Commodities, Exchange Rates)
Time span 2022-01-01 to 2025-06-309

Geographies North America, Asia, Europe, South America, Africa (country and
subnational coverage where applicable)

Variables and Frequencies. Weekly series consist of Google Search Trend signals10 across 12
domains. Daily series include (i) commodity prices11 covering raw materials, energy, metals, and
agriculture, and (ii) major USD exchange rates12. All series are aligned to a unified calendar per
frequency, with clear missing-value handling policies documented in the dataset card.

E.1 STRUCTURE OF TEXTUAL EVENTS

To maximize scientific utility and trust, we choose two complementary representations of the events:
a structured event corpus for modeling and the complete verification logs for audit. The former
provides clean, time-aligned annotations with compact narratives. The latter records the search
queries, source URLs, access timestamps, and short evidence quotes produced by the verifier.

Each event is organized into two layers that match modeling needs and evidence needs:

Core semantics for modeling. A short, fact-checked narrative, distinct announcement and occur-
rence dates, and a categorical event type (Scheduled, Contemporaneous, Retrospective, Predictive,
or Mixed).

Evidence and provenance. A small set of independent sources that support each claim, with ver-
batim text snippets and the corresponding access timestamps. For pages updated after the evaluation
cut-off, archived versions or original publication records are linked.

F BREAKDOWN OF TIMESX BY DOMAINS AND VARIABLES

Here are the acronyms we used for each domain when applicable:

• A&E: Arts & Entertainment;

• C&E: Climate & Environment;

• Econ: Economy;

• E. Tech: Electronic Technology;

• Fin: Finance;

• P&A: Pets & Animals;

8Weekly Google Trends series are included from 2022-01-01 due to stable availability and consistent re-
trieval settings.

10https://trends.google.com/trends/
11https://marketstack.com/
12https://frankfurter.dev/
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• Pub. H.: Public Health;
• PPG: Public Policy & Governance;
• Sci: Science;
• Shop: Shopping;
• SSSG: Society Security & Social Good;
• Traf: Traffic;
• Crops: Crops & Staples;
• Energy: Energy & Fuels;
• Lvstk.: Livestock & Food Products;
• RMC: Raw Materials & Construction;
• SAM: Specialty & Advanced Materials;
• SHVM: Strategic & High-Value Materials;
• Curr: Currency.

Table 8, 9 and 10 list the variables under each of the 19 domains in TimesX.
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Domain Variables (Search Keywords)
Arts & Entertainment art exhibitions; broadway shows; comic con; esports;

film festivals; food & wine festivals; major league baseball;
music festivals; national basketball association; na-
tional football league

Climate & Environment deforestation; drought; endangered species; flooding;
global warming; heatwave; heavy rainfall; marine pollution;
sustainable fashion; water scarcity

Economy cost of living; federal budget deficit; government spending;
healthcare costs; inflation; international trade; minimum wage;
student loans; taxes; unemployment rate

Electronic Technology alphabet; amazon; apple inc.; artificial intelligence; con-
sumer electronics; drones; meta platforms; microsoft; nvidia;
robotics

Finance asset management; cryptocurrency; financial regulation; gold-
man sachs; hedge funds; investment banking; mortgage rates; pri-
vate equity; stock market; venture capital

Pets & Animals animal migration; animal rescue; animal welfare; beekeeping; bio-
diversity; invasive species; marine life; pest control; pet adoption;
pet health

Public Health air pollution; climate change; diabetes; drug overdose; food safety;
hiv aids; infectious disease; mental health; obesity; opioid crisis

Public Policy & Gover-
nance

carbon emissions; federal reserve; healthcare policy; hu-
man rights; immigration reform; national debt; pres-
idential election; refugee support; renewable energy;
space exploration; wildlife conservation

Science cancer research; data breach; earthquake; food recall;
gene editing; meteor shower; nobel prize; quantum computing;
vaccine research; volcanic eruption

Shopping air conditioner; back to school; black friday deals; christmas gifts;
fashion week; flu shot; halloween costumes; organic food;
ski gear; tax software

Society Security & Social
Good

affordable housing; cybersecurity; data privacy; domes-
tic violence; gender equality; homelessness; income inequality;
infrastructure spending; protest; wildfires

Traffic air travel; autonomous driving; electric vehicle; formula 1;
gas prices; rocket launch; tesla; tour de france; traffic insurance;
used car

Table 8: Search Trend (weekly) coverage by domain and variables (2023-01-01–2025-06-30). Each
domain lists ten representative keywords.
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prompt = f"""
You are an Information Integration Specialist. Your task is to

produce the
final, authoritative version of an event by reviewing all provided

evidence.
Your summary must:

- Correct and enrich the original claim with additional verified
details.

- For factual or scheduled events, prioritize the most
authoritative sources.

- For subjective analyses or predictions, explicitly include
multiple credible

viewpoints, if available. Clearly acknowledging any conflicting or
uncertain

claims along with their sources, if available
- Accurately adjudicate or revise the event’s announcement date (

the date the
news was published) and occurrence date (the actual date of the

event),
using web search if necessary to ensure accuracy.

- If you are unsure, use NA and avoid making up information.

**1. Original Event Claim:**
{event_summary}

**2. Detailed Factual Evidence:**
**Confirmed Facts:**
{confirmed_facts}

**Anticipated/Planned Facts:**
{anticipated_facts}

**Internal Knowledge Resolutions:**
{internal_facts}

**3. Detailed Timing Evidence from Sources:**
{timing_summary_detailed}

**4. Initial Date:**
The following dates are preliminary findings and do not represent

100% accuracy.
Please select the most reasonable date based on the content and use

online
search tools if necessary.
- **All Publish Dates Found:** {unique_publish_dates}
- **All Content Dates Found:** {unique_content_dates}

**Your Final Task:**
Respond with ONLY a single JSON object. Do not add any text,

explanations,
or markdown formatting before or after the JSON block.

**JSON Output Format:**
{{
"final_summary_text": "<Your comprehensive summary here. This text

should be well-written, accurate, detailed and reflect your
final decision on the dates.>",

"authoritative_dates": {{
"announcement_date": "<The single, most credible YYYY-MM-DD

publish date of content. If none, use NA.>",
"occurrence_date": "<The single, most credible YYYY-MM-DD date

when the event actually took place. If none, use NA.>"
}},
"reasoning_for_date_choice": "<A brief, one-sentence explanation

for your date selection. e.g., ’Chose the earliest publish
date from a primary news source.’>"

}}
"""

Figure 8: Prompt used for Enricher Role (Phase 2): Final Information Synthesis with Authoritative
Date Determination. 21
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Domain Variables (Commodity Price)
Crops & Staples barley-INR-T; canola-CAD-T; cocoa-USD-T; cotton-USD-Lbs;

diammonium-USD-T; oat-USD-Bu; potatoes-EUR-100KG; rice-
USD-cwt; sugar-USD-Lbs; tea-INR-Kgs; urea-USD-T; wheat-
USD-Bu

Energy & Fuels bitumen-CNY-T; brent-USD-Bbl; coal-USD-T; ethanol-USD-Gal;
gasoline-USD-Gal; methanol-CNY-T; naphtha-USD-T; propane-
USD-Gal; rapeseed-EUR-T; uranium-USD-Lbs

Livestock & Food Prod-
ucts

beef-BRL-Kg; butter-EUR-T; cheese-USD-Lbs; coffee-USD-Lbs;
corn-USD-BU; milk-USD-CWT; poultry-BRL-Kgs; salmon-NOK-
KG; soybeans-USD-Bu; wool-AUD-100Kg

Raw Materials & Con-
struction

aluminum-USD-T; copper-USD-Lbs; lead-USD-T; lumber-USD-
1000 board feet; polyethylene-CNY-T; polypropylene-CNY-T;
rubber-USD CENTS - Kg; steel-CNY-T; tin-USD-T; zinc-USD-T

Specialty & Advanced
Materials

gallium-CNY-Kg; germanium-CNY-Kg; indium-CNY-Kg;
magnesium-CNY-T; manganese-CNY-T; molybdenum-CNY-
Kg; molybdenum-USD-Kg; polyvinyl-CNY-T; tellurium-CNY-Kg;
titanium-CNY-KG; titanium-USD-KG

Strategic & High-Value
Materials

cobalt-USD-T; gold-USD-t oz; lithium-CNY-T; manganese-CNY-
mtu; neodymium-CNY-T; nickel-USD-T; palladium-USD-t oz;
platinum-USD-t oz; rhodium-USD-t oz; silver-USD-t oz

Table 9: Daily dataset coverage by domain and variables (2022-01-01–2025-06-30). Each domain
lists ten representative instruments.

Domain Variables (Exchange Rate)
Currency USDtoAUD-ExchangeRate; USDtoBRL-ExchangeRate;

USDtoCAD-ExchangeRate; USDtoCHF-ExchangeRate;
USDtoGBP-ExchangeRate; USDtoHKD-ExchangeRate;
USDtoINR-ExchangeRate; USDtoKRW-ExchangeRate;
USDtoMXN-ExchangeRate; USDtoSGD-ExchangeRate

Table 10: ExchangeRate: domains and variables
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G FEATURE DEFINITION OF TIME SERIES

Let a univariate series be {xt}Tt=1. We decompose it with STL into trend Tt, seasonal component
St, and remainder Rt:

xt = Tt + St + Rt. (1)
Define the de-trended series xdetr

t = xt − Tt and the de-seasonalized series xdeseas
t = xt − St.

Seasonality

Seasonality = max

(
0, 1 − Var(Rt)

Var(xdetr
t )

)
. (2)

Higher values mean a clearer periodic pattern explains more variance in xt.

Trend
Trend = max

(
0, 1 − Var(Rt)

Var(xdeseas
t )

)
. (3)

Higher values mean a smoother long-term trend explains more variance in xt.

Nonstationarity We report the Augmented Dickey–Fuller p-value Liu et al., 2022.

Short-term distributional change (Short term jsd) . Using a short window of length ws = 30,
for each window W form a histogram estimate p̂W on fixed bins and a Gaussian reference q̂W =
N (µW , σ2

W ) discretized on the same bins, where µW and σW are the window mean and standard
deviation. The Jensen–Shannon divergence in window W is

JSD(p̂W , q̂W ) = 1
2 KL

(
p̂W

∥∥∥ p̂W+q̂W
2

)
+ 1

2 KL
(
q̂W

∥∥∥ p̂W+q̂W
2

)
. (4)

The metric is the average over all windows:

Short term jsd =
1

Nw

∑
W

JSD(p̂W , q̂W ). (5)

Larger values indicate that short-term empirical distributions deviate more from a Gaussian shape.

Shifting It summarizes typical level changes while retaining the influence of rare but large devia-
tions.

Transition Discretize {xt} into three equiprobable states st ∈ {1, 2, 3} (tertiles). Let πi =
Pr(st = i) and Tij = Pr(st+1 = j | st = i). The score is the sum of diagonal covariances
between successive states:

Transition =

3∑
i=1

[Pr(st = i, st+1 = i)− Pr(st = i) Pr(st+1 = i)] =

3∑
i=1

(
πiTii − π2

i

)
. (6)

Higher values indicate that the process tends to stay in the same state more often than expected by
chance.

Implementation details are in https://github.com/decisionintelligence/TFB.
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H DOMAIN-LEVEL FEATURE OF TIMESX

Domain Text features Numeric features
Domain AvgEventsCount AvgEventSummaryLen Transition Shifting Seasonality Trend NonStationarity Short term jsd
Arts & Entertainment 105.7000 711.2444 0.0190 0.0832 0.8596 0.4155 0.0048 0.1905
Climate & Environment 98.1000 815.6727 0.0216 0.1514 0.8904 0.3970 0.0010 0.1463
Crops & Staples 51.3333 590.8046 0.0857 -0.3797 0.6621 0.9228 0.4201 0.2056
Currency 111.0000 639.6416 0.0926 0.0923 0.5879 0.8801 0.3396 0.0595
Economy 108.9000 733.3640 0.0310 0.0647 0.9030 0.5522 0.0557 0.1984
Electronic Technology 115.7000 783.1571 0.0462 0.4609 0.8191 0.6149 0.2529 0.3264
Energy & Fuels 53.7000 615.0142 0.1007 -0.6639 0.6575 0.8752 0.3803 0.1231
Finance 102.3000 777.7485 0.0773 0.5291 0.8193 0.6827 0.3351 0.2984
Livestock & Food Products 55.4000 596.3044 0.0751 -0.2187 0.6389 0.8821 0.4700 0.2769
Pets & Animals 103.1000 815.8348 0.0418 0.2342 0.8459 0.5464 0.1143 0.2487
Public Health 119.1000 848.1958 0.0184 0.0750 0.8370 0.3992 0.0016 0.2419
Public Policy & Governance 96.4545 794.9547 0.0460 0.3298 0.8756 0.4869 0.0441 0.1710
Raw Materials & Construction 49.8000 654.2472 0.0582 -0.5388 0.6690 0.8925 0.2443 0.0805
Science 98.2000 789.5100 0.0411 0.2402 0.7741 0.3854 0.1114 0.3549
Shopping 58.4000 748.0253 0.0411 0.0815 0.9724 0.4336 0.0037 0.3374
Society Security & Social Good 108.0000 841.8060 0.0499 0.4071 0.8296 0.4276 0.2003 0.2484
Specialty & Advanced Materials 28.8182 672.6066 0.1002 -0.1111 0.6388 0.9281 0.3969 0.4774
Strategic & High-Value Materials 58.8000 683.1720 0.0918 -0.1931 0.6468 0.8971 0.4695 0.2657
Traffic 94.0000 766.4479 0.0517 -0.1120 0.8239 0.4905 0.1612 0.3555

Table 11: Domain-level textual and numeric features. ”AvgEventSummaryLen” is the average num-
ber of characters in the event summary text within each domain. The numeric feature set follows
TFB (Qiu et al., 2024). The exact computation is detailed in Section G
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I HYBRID FORECASTING METHODS: DETAILED IMPLEMENTATION

These three methods demonstrate different strategies for integrating TFM with LLMs, ranging from
simple textual corrections to complex code generation, providing diverse approaches for context-
aware time series forecasting.

I.1 TEXT REVISION METHOD (TEXTREV)

I.1.1 METHOD OVERVIEW

The Text Revision method employs a two-stage approach: first generating initial numerical forecasts
using TimesFM, then leveraging large language models to perform context-aware textual corrections
on these predictions. This method transforms time series forecasting into a text manipulation task,
enabling LLMs to understand and modify numerical predictions through natural language process-
ing.

I.1.2 IMPLEMENTATION STEPS

1. Foundation Forecast Generation: TimesFM generates point forecasts based on historical
time series data

2. Text-based Revision: The TimesFM predictions are converted to timestamp-value pairs
and fed to the LLM along with contextual information

3. Result Parsing: The corrected forecast values are extracted from the LLM response

I.1.3 CORRECTION PROMPT TEMPLATE

See Figure 9.

I.2 FUNCTION CALL REVISION METHOD (FUNCREV)

I.2.1 METHOD OVERVIEW

The Function Call Revision method extends the text revision approach by providing LLMs with
a structured set of predefined functions for forecast adjustments. This method incorporates multi-
round conversation mechanisms with text/visual/hybrid critic feedback modes, offering systematic
and reproducible forecast modifications.

I.2.2 IMPLEMENTATION STEPS

1. Initial Prediction: TimesFM generates the baseline forecast

2. Multi-round Revision Loop:

• Critic analyzes current forecast and provides feedback
• Forecaster calls predefined functions to adjust predictions based on feedback
• Process repeats until maximum rounds reached

3. Final Output: Returns the forecast from the last revision round

I.2.3 PREDEFINED FUNCTION SET

The system provides 13 forecast adjustment functions organized into five categories:

• Basic Transformations: shift(offset), scale(factor),
linear transform(slope, intercept)

• Trend Adjustments: add linear trend(slope),
add exponential trend(base, growth rate),
adjust trend strength(factor)

• Smoothing Operations: moving average smooth(window),
exponential smooth(alpha)
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I have a time series forecasting correction task for you.

Here is some context about the task. Please consider this
information when reviewing the forecast:

<context>
{background information, constraints, scenario descriptions,

holiday information, etc.}
</context>

Here is the historical time series in (timestamp, value) format:
<history>
{historical data points}
</history>

An initial forecast has been generated using a deep model. Here it
is:

<initial_forecast>
{TimesFM prediction results}
</initial_forecast>

Please review the initial forecast and adjust the values
considering the provided context. Make reasonable modifications
where the context provides relevant information that could
improve the forecast.

Return your corrected forecast in (timestamp, value) format between
<forecast> and </forecast> tags.

Do not include any other information (e.g., comments) in the
forecast.

Example format:
<forecast>
(2024-01-01 12:00:00, 123.45)
(2024-01-01 13:00:00, 124.67)
</forecast>

Figure 9: Prompt template for Text Revision method (TextRev).

• Seasonality Modifications: add seasonal pattern(period, amplitude,
phase), remove seasonal pattern(period)

• Data Normalization: standardize(), normalize range(min val,
max val), clip outliers(lower percentile, upper percentile)

I.2.4 FUNCTION CALL PROMPT TEMPLATE

See Figure 10.

I.3 CODE REVISION METHOD (CODEREV)

I.3.1 METHOD OVERVIEW

The Code Revision method provides maximum adjustment flexibility by allowing LLMs to generate
and execute free-form Python code for forecast modifications. This approach operates within a
secure execution environment, supports multiple scientific computing libraries, and includes timeout
and retry mechanisms for robust operation.

I.3.2 IMPLEMENTATION STEPS

1. Initial Prediction: TimesFM generates the baseline forecast
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You are an expert time series forecaster with access to forecast
adjustment tools.

Task context:
<context>
{contextual information}
</context>

Critic feedback:
<feedback>
{critic analysis and suggestions}
</feedback>

Current forecast:
<current_forecast>
{current prediction data}
</current_forecast>

Available adjustment functions: {function list}

Please analyze the critic feedback and select appropriate functions
to adjust the forecast. You can:

1. Call a single function for specific adjustments
2. Call multiple functions for combined adjustments
3. Choose not to call any functions if the current forecast is

already reasonable

Please explain your adjustment strategy and call the corresponding
functions.

Figure 10: Prompt template for Function Call Revision method (FuncRev).

2. Multi-round Revision Loop:
• Critic provides feedback on current forecast
• LLM generates Python code for forecast adjustments
• Code executes safely in restricted environment
• Retry mechanism activates if execution fails (maximum 3 attempts)

3. Code Execution Environment: Pre-imported scientific libraries and forecast data vari-
ables are provided

I.3.3 SUPPORTED LIBRARIES

The execution environment includes the following pre-imported libraries: numpy, pandas, math,
datetime, requests, sqlite3, csv, json, sympy, statsmodels, networkx.

I.3.4 CODE GENERATION PROMPT TEMPLATE

See Figure 11.
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You are an expert time series forecaster with Python programming
capabilities. Instead of using predefined functions, you should
write Python code to adjust the forecast based on the critic’s
feedback.

Here is the context about the task:
<context>
{contextual information}
</context>

The critic’s feedback:
<critic_feedback>
{critic feedback}
</critic_feedback>

PROGRAMMING ENVIRONMENT:
You have access to a restricted Python environment with pre-

imported libraries and variables.

Pre-imported libraries: numpy, pandas, math, datetime, requests,
sqlite3, csv, json, sympy, statsmodels, networkx

Available variables in your code:
- current_forecast: Dictionary mapping timestamps to forecast

values
- timestamps: List of prediction timestamps (strings in "YYYY-MM-DD

HH:MM:SS" format)
- forecast_values: List of forecast values corresponding to

timestamps

INSTRUCTIONS:
1. Write Python code to adjust the forecast based on the critic’s

feedback
2. DO NOT include any import statements - all libraries are already

imported
3. Your code can perform any mathematical operations,

transformations, or adjustments
4. You must assign the final adjusted forecast to a variable called

’adjusted_forecast’
5. The ’adjusted_forecast’ should be a dictionary mapping

timestamps to adjusted values
6. You can modify forecast_values list and then reconstruct the

dictionary, or work directly with current_forecast
7. Be creative with your adjustments - you’re not limited to

predefined functions

EXAMPLE CODE STRUCTURE:
‘‘‘python
# Your analysis and adjustment logic here
# DO NOT include import statements - libraries are pre-imported

# Example: Apply some adjustment based on critic feedback
for i, timestamp in enumerate(timestamps):

# Your logic here
forecast_values[i] = forecast_values[i] * some_factor # example

adjustment

# Final result
adjusted_forecast = {timestamp: value for timestamp, value in zip(

timestamps, forecast_values)}
‘‘‘

CRITICAL REQUIREMENTS:
- DO NOT include any import statements (libraries are pre-imported)
- Is syntactically correct Python
- Uses only the pre-imported libraries
- Assigns the final result to ’adjusted_forecast’ variable
- Handles the forecast data appropriately

Your Python code (without any import statements):

Figure 11: Prompt template for Code Revision method (CodeRev).
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Capability Multimodal TSF Factuality MM LongContext Mathematics Science
Benchmark Our TimesX (↓) SimpleQA (↑) MRCR (↑) AIME2025 (↑) GPQA2025 (↑)

GPT-5 0.61 51.1 96.0 91.7 85.4
GPT-4o 0.65 38.4 55.8 6.00 51.1
Gemini-2.0-Flash 0.66 28.2 69.2 21.7 62.3
DeepSeek-V3 0.72 29.5 33.8 26.0 55.7
Gemini-2.5-Flash 0.75 27.8 32.0 73.7 68.3
DeepSeek-R1 0.78 31.9 18.0 76.0 81.3

Table 12: Relationships between LLMs’ multimodal TSF performance and four core capabilities.
We use data with sample start dates after January 2025 on TimesX. On TimesX, lower MASE
indicates better performance, while on the other four benchmarks, higher scores indicate better
performance.

I.4 DETAILED EXPERIMENT RESULTS FOR ADVANCED REASONING MODELS

We further extend our experiments to advanced reasoning LLMs. Specifically, for GPT-4o, Gemini-
2.0-Flash, and DeepSeek-V3, we introduce their corresponding reasoning versions, GPT-5, Gemini-
2.5-Flash, and DeepSeek-R1. To avoid data contamination, we select evaluation examples whose
forecast horizons begin after January 2025. As shown in Table 12, we observe that while GPT-5
outperforms GPT-4o, the reasoning models in the other two pairs perform significantly worse than
their non-reasoning counterparts. To further understand the drivers of TSF performance, we cross
reference the TSF performance with other four core LLM capabilities: factuality (SimpleQA (Wei
et al., 2024)), multimodal long-context understanding (MRCR https://huggingface.co/
datasets/openai/mrcr?utm_source=chatgpt.com), mathematics (AIME (Guha et al.,
2025)), and science (GPQA (Rein et al., 2024)). The results suggest that multimodal TSF is unre-
lated to the mathematics and science skills emphasized by current reasoning models. Instead, it
depends more on factuality and multimodal long-context understanding, which are better captured
by non-reasoning LLMs.

29

https://huggingface.co/datasets/openai/mrcr?utm_source=chatgpt.com
https://huggingface.co/datasets/openai/mrcr?utm_source=chatgpt.com


1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

J KNOWLEDGE CUTOFF OF EVALUATED MODELS

Since pretrained models may have ingested training data only up to specific points in time, we
explicitly document the knowledge cutoff date of each model considered in our experiments. This
ensures a fair evaluation by avoiding potential data leakage from future information. The knowledge
cutoffs are as follows:

• GPT-5: September 30, 2024

• Gemini-2.5-Flash: January 2025

• Gemini-2.0-Flash: June 2024

• GPT-4o: October 2023

• DeepSeek-R1: prior to June 2024

• DeepSeek-V3: prior to June 2024

For all evaluations, we align the forecasting horizons such that the prediction targets fall strictly after
each model’s knowledge cutoff date, thereby minimizing the risk of contamination.

K ADDITIONAL RESULTS FOR CONTEXT–QUALITY STUDY ON TIME-MMD
DATASET

Setup. We evaluate on all nine Time-MMD datasets. For LLM methods we fix the prompt tem-
plate, the decoding settings, and the model Gemini 2.0 Flash; we only replace the textual context
(ours vs. the original Time-MMD context). The numeric series remain unchanged. We use the pe-
riod from 2021-06-30 to 2024-04-01, which is the cutoff date of Time-MMD dataset. For daily
datasets we set hist window = 365, pred window = 120, slide window = 40. For weekly datasets
we set hist window = 96, pred window = 12, slide window = 4. For monthly datasets we set
hist window = 16, pred window = 4, slide window = 2. These choices balance sample count and
sample diversity while keeping the same evaluation protocol across methods.

Complete per-domain results. Table 13 reports normalized performance (MASE ↓) for each do-
main and the geometric mean across domains, together with the average rank. We use two decimals
for all numbers and do not report the arithmetic mean.

Table 13: Per-dataset results on Time-MMD (MASE ↓). Rows are datasets and summary metrics;
columns are methods. LLM settings (model/prompt/temperature) are fixed; only textual context
differs.

Dataset / Metric LLM with our context LLM with Time-MMD context Moirai2 TimesFM2.5 SeasonalNaive
traffic 0.76 0.70 3.74 2.95 1.00
economy 0.76 0.77 1.16 1.42 1.00
health 0.92 0.89 0.99 0.81 1.00
social 0.80 1.02 0.75 1.40 1.00
environment 0.82 0.82 0.75 0.71 1.00
agriculture 0.81 0.97 0.78 0.57 1.00
energy 0.68 0.95 0.86 0.80 1.00
security 0.96 0.91 0.81 1.10 1.00
climate 1.15 1.21 0.77 0.78 1.00

Geometric Mean 0.84 0.91 1.02 1.04 1.00
Average Rank 2.50 3.06 2.56 2.89 4.00

L MASE TABLE FOR ABLATION: DOMAINS

M ABLATION: EFFECTS OF VARIOUS VARIABLE CHARACTERISTICS

In this section we investigate what variable level features can impact the ordering of LLM based
multimodal solutions vs TFMs.
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In Fig. 12, we plot the win rate of Gemini-2.0-Flash against TimesFM-2.5 as we climb the quartiles
of event counts, length of event details and seasonality. We can see that wih increasing event infor-
mation the multimodal solutions that leverage these become better than TFMs which are time-series
only. In the case of seasonality, extremely seasonal series are easy to predict and therefore that edge
that TFMs have over LLMs in pure forecasting tasks reduces.

In Fig. 13, we plot the same while varying various time-series characteristics like trend, non-
stationarity and transition/ change-points. Increasing quartiles of these indicate the hardness of the
pure time-series forecasting task irrespective of the text context, and therefore TFMs can perform
better on these time-series tasks. Consequently, very strong trends and high non-stationarity reduce
Gemini’s edge over TFMs.
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Figure 12: We plot the aggregated MASE (lower is better) as a function of variable level features
like event count, length of event details and seasonality.
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Figure 13: We plot the aggregated MASE (lower is better) as a function of variable level time-series
features like trend, non-stationarity and transitions.
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N EVALUATION METRICS

Principle We use the Mean Absolute Scaled Error (MASE) as the core metric and normalize it
by a seasonal naive baseline. This choice of MASE is following GIFT-EVAL (Aksu et al., 2024)
and Chronos Benchmark 2 (Ansari et al., 2024). We aggregate performance across datasets using
the geometric mean of normalized scores rather than the arithmetic mean, since prior work proved
that the geometric mean is more robust to the choice of normalization baseline (Fleming & Wallace,
1986).

Per-window MASE. Let dataset i ∈ {1, . . . , D} be a single variable. Its full series is {y(i)t }Ti
t=1.

Window w ∈ {1, . . . ,Wi} has forecast origin τi,w and horizon Hi,w, so the history is {y(i)t }τi,wt=1 .
Given a seasonality m, the in-history seasonal scale is

Qi,w =
1

τi,w −m

τi,w∑
t=m+1

∣∣ y(i)t − y
(i)
t−m

∣∣. (7)

For a model with forecasts {ŷ(i)τi,w+h}
Hi,w

h=1 , the per-window MASE is

MASEi,w(model) =
1

Hi,w

Hi,w∑
h=1

∣∣ y(i)τi,w+h − ŷ
(i)
τi,w+h

∣∣
Qi,w

. (8)

This follows the GIFT-EVAL scaling but replaces a separate training split with the history up to the
forecast origin.

Seasonal naive baseline. The seasonal naive forecast repeats the last observed seasonal cycle from
the history. Let s(i,w) =

(
y
(i)
τi,w−m+1, . . . , y

(i)
τi,w

)
. Then

ŷ
(i),SNAIVE
τi,w+h = s

(i,w)

1+
(
(h−1) mod m

), h = 1, . . . ,Hi,w. (9)

We compute MASEi,w(SNAIVE) by substituting equation 9 into equation 8.

Per-dataset normalization. For each dataset i, we aggregate across its windows and form a nor-
malized MASE ratio:

Ri(model) =

∑Wi

w=1 MASEi,w(model)∑Wi

w=1 MASEi,w(SNAIVE)
. (10)

Values Ri < 1 indicate improvement over the seasonal naive baseline on dataset i.

Primary aggregate: geometric mean of ratios. We report the geometric mean across all datasets
as the primary summary:

GM(model) =

(
D∏
i=1

Ri(model)

) 1
D

. (11)

In our release, D = 200.

Secondary aggregate: average rank. As a complementary, scale-free indicator, we rank models
on each dataset by Ri (lower is better). Let ranki(model) ∈ {1, 2, . . . } be the rank of a model on
dataset i. We report the average rank

AvgRank(model) =
1

D

D∑
i=1

ranki(model). (12)

More Details. Unless otherwise specified, we set the seasonality to m = 12 for monthly data,
m = 4 for weekly data, and m = 7 for daily data, which matches the construction of our series and
the seasonal naive baseline used for normalization.
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Data Source Numeric features

Data Source Transition Shifting Seasonality Trend NonStationarity Short term jsd

CommodityPrice 0.09 -0.35 0.65 0.90 0.40 0.24
ExchangeRate 0.09 0.09 0.59 0.88 0.34 0.06
SearchTrend 0.04 0.21 0.85 0.49 0.11 0.26

Table 15: Data-source-level mean of numeric characteristics (Transition, Shifting, Seasonality,
Trend, NonStationarity (ADF p-value), Short term jsd).
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O VISUALIZATION OF NUMERIC DATASET IN TIMESX BY DOMAIN
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Figure 14: Numeric series visualization for the Arts and Entertainment domain .
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Figure 15: Numeric series visualization for the Climate and Environment domain .
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Figure 16: Numeric series visualization for the Economy domain .
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Figure 17: Numeric series visualization for the Electronic Technology domain .
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Figure 18: Numeric series visualization for the Finance domain .

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

2022 2023 2024 2025

0

20

40

60

80

100
an

im
al

_m
ig

ra
tio

n

2022 2023 2024 2025

60

65

70

75

80

85

90

95

100

an
im

al
_r

es
cu

e

2022 2023 2024 2025

60

70

80

90

100

an
im

al
_w

el
fa

re

2022 2023 2024 2025

30

40

50

60

70

80

90

100

be
ek

ee
pi

ng

2022 2023 2024 2025

20

40

60

80

100

bi
od

iv
er

sit
y

2022 2023 2024 2025

20

40

60

80

100

in
va

siv
e_

sp
ec

ie
s

2022 2023 2024 2025

20

30

40

50

60

70

80

90

100

m
ar

in
e_

lif
e

2022 2023 2024 2025

30

40

50

60

70

80

90

100

pe
st

_c
on

tro
l

2022 2023 2024 2025
30

40

50

60

70

80

90

100

pe
t_

ad
op

tio
n

2022 2023 2024 2025

50

60

70

80

90

100

pe
t_

he
al

th

Pets & Animals

Figure 19: Numeric series visualization for the Pets and Animals domain .
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Figure 20: Numeric series visualization for the Public Health domain .
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Figure 21: Numeric series visualization for the Public Policy and Governance domain .
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Figure 22: Numeric series visualization for the Science domain .
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Figure 23: Numeric series visualization for the Shopping domain .
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Figure 24: Numeric series visualization for the Society, Security, and Social Good domain .
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Figure 25: Numeric series visualization for the Traffic domain .
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Figure 26: Numeric series visualization for the Crops and Staples domain .
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Figure 27: Numeric series visualization for the Currency domain .
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Figure 28: Numeric series visualization for the Energy and Fuels domain .
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Figure 29: Numeric series visualization for the Livestock and Food Products domain .
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Figure 30: Numeric series visualization for the Raw Materials and Construction domain .
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Figure 31: Numeric series visualization for the Specialty and Advanced Materials domain .
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Figure 32: Numeric series visualization for the Strategic and High-Value Materials domain .
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Method affordable housing air conditioner air pollution air travel alphabet

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.708 0.230 0.656 0.965 0.581
Moirai2.0 0.705 0.391 0.642 0.969 0.645
TimesFM2.5 0.662 0.227 0.436 0.858 0.476
AvgEnsemble(TimesFM,Moirai) 0.678 0.249 0.466 0.907 0.530
DeepSeek-V3 0.701 0.495 0.523 0.950 0.586
Gemini-2.0-Flash 0.688 0.274 0.356 0.917 0.513
GPT-4o 0.659 0.339 0.367 0.829 0.567
FuncRev(TimesFM,Gemini) 0.730 0.398 0.416 0.895 0.483
CodeRev(TimesFM,Gemini) 0.646 0.243 0.521 0.947 0.479
TextRev(TimesFM,Gemini) 0.666 0.230 0.421 0.842 0.465
AvgEnsemble(TimesFM,GPT) 0.644 0.238 0.343 0.851 0.463
AvgEnsemble(TimesFM,Gemini) 0.641 0.243 0.340 0.844 0.495

Table 16: Detailed MASE results of Table 1. (part 1/38)

Method aluminum usd t amazon animal migration animal rescue animal welfare

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 1.014 1.051 0.634 0.830 0.709
Moirai2.0 0.785 0.875 0.628 0.820 0.739
TimesFM2.5 0.873 0.635 0.617 0.713 0.516
AvgEnsemble(TimesFM,Moirai) 0.810 0.747 0.599 0.752 0.599
DeepSeek-V3 0.782 1.241 0.794 1.166 0.695
Gemini-2.0-Flash 0.795 0.570 0.696 0.956 0.647
GPT-4o 0.784 0.996 0.664 1.048 0.618
FuncRev(TimesFM,Gemini) 1.259 0.828 0.687 0.873 0.583
CodeRev(TimesFM,Gemini) 1.821 0.661 0.589 0.786 0.566
TextRev(TimesFM,Gemini) 0.528 0.683 0.612 0.814 0.537
AvgEnsemble(TimesFM,GPT) 0.805 0.544 0.644 0.797 0.549
AvgEnsemble(TimesFM,Gemini) 0.795 0.492 0.649 0.778 0.560

Table 17: Detailed MASE results of Table 1. (cont’d, part 2/38)

P DETAILED PERFORMANCE COMPARISON RESULTS
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Method apple inc art exhibitions artificial intelligence asset management autonomous driving

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.791 0.727 1.050 1.026 1.099
Moirai2.0 0.772 0.806 0.921 0.827 0.949
TimesFM2.5 0.732 0.816 0.902 0.830 0.888
AvgEnsemble(TimesFM,Moirai) 0.749 0.801 0.908 0.825 0.915
DeepSeek-V3 0.714 0.752 0.825 0.877 0.980
Gemini-2.0-Flash 0.690 0.767 0.967 0.887 1.056
GPT-4o 0.656 0.674 0.761 0.759 0.855
FuncRev(TimesFM,Gemini) 0.666 0.738 1.020 0.866 0.781
CodeRev(TimesFM,Gemini) 0.731 0.846 0.884 0.815 0.841
TextRev(TimesFM,Gemini) 0.735 0.816 0.894 0.844 0.891
AvgEnsemble(TimesFM,GPT) 0.679 0.822 0.891 0.830 0.935
AvgEnsemble(TimesFM,Gemini) 0.675 0.725 0.861 0.816 0.918

Table 18: Detailed MASE results of Table 1. (cont’d, part 3/38)

Method back to school barley inr t beef brl kg beekeeping biodiversity

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.544 0.939 0.522 0.477 0.687
Moirai2.0 0.522 0.925 0.499 0.656 0.610
TimesFM2.5 0.339 0.936 0.437 0.526 0.291
AvgEnsemble(TimesFM,Moirai) 0.423 0.917 0.450 0.584 0.414
DeepSeek-V3 0.292 0.954 0.567 0.585 0.367
Gemini-2.0-Flash 0.306 0.950 0.574 0.596 0.314
GPT-4o 0.257 0.956 0.559 0.517 0.281
FuncRev(TimesFM,Gemini) 0.431 1.653 0.696 1.019 0.329
CodeRev(TimesFM,Gemini) 0.341 1.180 0.617 0.658 0.327
TextRev(TimesFM,Gemini) 0.248 2.005 0.406 0.596 0.296
AvgEnsemble(TimesFM,GPT) 0.314 0.938 0.463 0.519 0.274
AvgEnsemble(TimesFM,Gemini) 0.311 0.950 0.574 0.533 0.271

Table 19: Detailed MASE results of Table 1. (cont’d, part 4/38)

Method bitumen cny t black friday deals brent usd bbl broadway shows butter eur t

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.852 0.622 0.825 0.593 0.701
Moirai2.0 0.748 0.584 0.851 0.653 0.694
TimesFM2.5 0.744 0.552 0.767 0.561 0.777
AvgEnsemble(TimesFM,Moirai) 0.733 0.557 0.802 0.599 0.726
DeepSeek-V3 0.727 0.129 0.820 0.732 0.762
Gemini-2.0-Flash 0.733 0.571 0.818 0.666 0.773
GPT-4o 0.728 0.457 0.830 0.649 0.763
FuncRev(TimesFM,Gemini) 1.209 1.222 0.789 0.750 0.805
CodeRev(TimesFM,Gemini) 0.968 1.594 0.771 0.554 0.777
TextRev(TimesFM,Gemini) 0.938 0.374 0.641 0.588 0.916
AvgEnsemble(TimesFM,GPT) 0.729 0.433 0.783 0.561 0.753
AvgEnsemble(TimesFM,Gemini) 0.733 0.435 0.818 0.577 0.773

Table 20: Detailed MASE results of Table 1. (cont’d, part 5/38)

Method cancer research canola cad t carbon emissions cheese usd lbs christmas gifts

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.846 0.994 0.693 0.873 0.535
Moirai2.0 0.845 0.845 0.671 0.850 0.499
TimesFM2.5 0.779 0.883 0.513 0.855 0.306
AvgEnsemble(TimesFM,Moirai) 0.802 0.859 0.568 0.845 0.383
DeepSeek-V3 0.856 0.827 0.633 0.810 0.120
Gemini-2.0-Flash 0.829 0.846 0.718 0.787 0.098
GPT-4o 0.718 0.817 0.665 0.789 0.119
FuncRev(TimesFM,Gemini) 0.935 1.048 0.583 0.877 0.445
CodeRev(TimesFM,Gemini) 0.736 0.880 0.501 0.908 0.426
TextRev(TimesFM,Gemini) 0.766 1.055 0.530 0.792 0.285
AvgEnsemble(TimesFM,GPT) 0.802 0.858 0.565 0.816 0.187
AvgEnsemble(TimesFM,Gemini) 0.792 0.846 0.594 0.787 0.188

Table 21: Detailed MASE results of Table 1. (cont’d, part 6/38)
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Method climate change coal usd t cocoa usd t coffee usd lbs comic con

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.795 0.900 0.984 0.957 0.551
Moirai2.0 0.858 0.638 0.822 0.775 0.663
TimesFM2.5 0.878 0.625 0.864 0.775 0.498
AvgEnsemble(TimesFM,Moirai) 0.822 0.605 0.834 0.751 0.561
DeepSeek-V3 1.475 0.653 0.812 0.750 0.445
Gemini-2.0-Flash 1.485 0.661 0.827 0.757 0.450
GPT-4o 1.359 0.655 0.768 0.757 0.507
FuncRev(TimesFM,Gemini) 0.797 0.674 0.849 0.870 0.426
CodeRev(TimesFM,Gemini) 0.952 0.617 0.750 0.819 0.439
TextRev(TimesFM,Gemini) 0.871 0.436 0.768 1.067 0.467
AvgEnsemble(TimesFM,GPT) 1.163 0.634 0.838 0.743 0.498
AvgEnsemble(TimesFM,Gemini) 0.762 0.661 0.827 0.757 0.479

Table 22: Detailed MASE results of Table 1. (cont’d, part 7/38)

Method consumer electronics copper usd lbs corn usd bu cost of living cotton usd lbs

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.727 0.757 0.985 0.676 0.891
Moirai2.0 0.786 0.640 0.832 0.723 0.955
TimesFM2.5 0.638 0.711 0.850 0.725 0.834
AvgEnsemble(TimesFM,Moirai) 0.676 0.655 0.826 0.722 0.872
DeepSeek-V3 0.795 0.620 0.857 0.763 1.147
Gemini-2.0-Flash 0.621 0.635 0.855 0.799 1.148
GPT-4o 0.716 0.625 0.850 0.732 1.141
FuncRev(TimesFM,Gemini) 0.661 1.191 0.954 0.733 1.029
CodeRev(TimesFM,Gemini) 0.648 1.004 0.871 0.734 1.164
TextRev(TimesFM,Gemini) 0.644 1.177 1.043 0.720 0.965
AvgEnsemble(TimesFM,GPT) 0.600 0.652 0.849 0.746 0.963
AvgEnsemble(TimesFM,Gemini) 0.610 0.635 0.855 0.753 1.148

Table 23: Detailed MASE results of Table 1. (cont’d, part 8/38)

Method cryptocurrency cybersecurity data breach data privacy deforestation

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.811 1.102 0.762 0.948 0.739
Moirai2.0 0.814 0.916 0.727 0.774 0.621
TimesFM2.5 0.772 0.879 0.706 0.709 0.376
AvgEnsemble(TimesFM,Moirai) 0.786 0.887 0.711 0.726 0.472
DeepSeek-V3 0.864 0.837 0.958 0.770 0.466
Gemini-2.0-Flash 0.750 0.994 0.828 0.760 0.298
GPT-4o 0.711 0.687 1.054 0.635 0.269
FuncRev(TimesFM,Gemini) 0.819 0.693 0.829 0.787 0.390
CodeRev(TimesFM,Gemini) 0.775 0.867 0.825 0.706 0.374
TextRev(TimesFM,Gemini) 0.769 0.787 0.784 0.718 0.363
AvgEnsemble(TimesFM,GPT) 0.753 0.929 0.745 0.721 0.323
AvgEnsemble(TimesFM,Gemini) 0.761 0.904 0.740 0.724 0.330

Table 24: Detailed MASE results of Table 1. (cont’d, part 9/38)
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Method diabetes diammonium usd t domestic violence drones drought

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.611 0.934 0.631 0.924 0.753
Moirai2.0 0.647 0.768 0.693 0.861 0.884
TimesFM2.5 0.570 0.818 0.605 0.917 0.757
AvgEnsemble(TimesFM,Moirai) 0.592 0.790 0.625 0.888 0.819
DeepSeek-V3 0.637 0.794 0.644 0.993 0.905
Gemini-2.0-Flash 0.572 0.711 0.725 0.850 0.670
GPT-4o 0.575 0.799 0.738 0.988 0.655
FuncRev(TimesFM,Gemini) 0.689 1.681 0.666 0.817 0.844
CodeRev(TimesFM,Gemini) 0.599 3.869 0.622 0.911 0.849
TextRev(TimesFM,Gemini) 0.578 0.609 0.605 0.914 0.751
AvgEnsemble(TimesFM,GPT) 0.555 0.764 0.628 0.877 0.685
AvgEnsemble(TimesFM,Gemini) 0.568 0.711 0.632 0.881 0.719

Table 25: Detailed MASE results of Table 1. (cont’d, part 10/38)

Method drug overdose earthquake electric vehicle endangered species esports

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.561 0.705 0.924 0.598 0.599
Moirai2.0 0.573 0.716 0.956 0.600 0.588
TimesFM2.5 0.444 0.687 0.811 0.395 0.600
AvgEnsemble(TimesFM,Moirai) 0.471 0.694 0.875 0.462 0.572
DeepSeek-V3 0.618 0.765 1.071 0.520 0.823
Gemini-2.0-Flash 0.514 0.854 0.829 0.332 0.621
GPT-4o 0.531 0.894 0.881 0.322 0.727
FuncRev(TimesFM,Gemini) 0.628 0.728 0.759 0.449 0.685
CodeRev(TimesFM,Gemini) 0.596 0.696 0.796 0.416 0.618
TextRev(TimesFM,Gemini) 0.432 0.726 0.805 0.411 0.615
AvgEnsemble(TimesFM,GPT) 0.459 0.752 0.793 0.338 0.600
AvgEnsemble(TimesFM,Gemini) 0.461 0.727 0.789 0.337 0.576

Table 26: Detailed MASE results of Table 1. (cont’d, part 11/38)

Method ethanol usd gal fashion week federal budget deficit federal reserve film festivals

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.861 0.532 0.566 0.646 0.701
Moirai2.0 0.778 0.604 0.710 0.675 0.661
TimesFM2.5 0.808 0.322 0.433 0.581 0.610
AvgEnsemble(TimesFM,Moirai) 0.778 0.442 0.539 0.611 0.623
DeepSeek-V3 0.799 0.399 0.625 0.671 0.522
Gemini-2.0-Flash 0.805 0.250 0.473 0.646 0.689
GPT-4o 0.808 0.331 0.455 0.606 0.577
FuncRev(TimesFM,Gemini) 0.746 0.277 0.446 0.582 0.628
CodeRev(TimesFM,Gemini) 0.846 0.279 0.500 0.583 0.600
TextRev(TimesFM,Gemini) 0.995 0.302 0.425 0.583 0.599
AvgEnsemble(TimesFM,GPT) 0.789 0.236 0.400 0.580 0.610
AvgEnsemble(TimesFM,Gemini) 0.805 0.237 0.398 0.582 0.624

Table 27: Detailed MASE results of Table 1. (cont’d, part 12/38)
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Method financial regulation flooding flu shot food recall food safety

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.940 0.693 0.341 0.761 0.950
Moirai2.0 0.792 0.659 0.362 0.727 0.787
TimesFM2.5 0.626 0.664 0.223 0.698 0.774
AvgEnsemble(TimesFM,Moirai) 0.668 0.657 0.274 0.701 0.772
DeepSeek-V3 0.677 0.696 0.365 1.138 0.812
Gemini-2.0-Flash 0.741 0.772 0.272 1.118 0.757
GPT-4o 0.531 0.783 0.315 1.287 0.565
FuncRev(TimesFM,Gemini) 0.551 0.844 0.325 0.640 1.014
CodeRev(TimesFM,Gemini) 0.616 0.780 0.287 0.776 0.762
TextRev(TimesFM,Gemini) 0.651 0.687 0.218 0.754 0.744
AvgEnsemble(TimesFM,GPT) 0.652 0.699 0.212 0.852 0.756
AvgEnsemble(TimesFM,Gemini) 0.637 0.695 0.199 0.816 0.728

Table 28: Detailed MASE results of Table 1. (cont’d, part 13/38)

Method food wine festivals formula 1 gallium cny kg gas prices gasoline usd gal

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.811 0.678 0.875 1.006 0.840
Moirai2.0 0.882 0.823 0.673 0.912 0.693
TimesFM2.5 0.782 0.575 0.731 0.966 0.773
AvgEnsemble(TimesFM,Moirai) 0.830 0.647 0.668 0.939 0.717
DeepSeek-V3 0.949 0.767 0.577 1.250 0.691
Gemini-2.0-Flash 0.935 0.717 0.581 1.217 0.698
GPT-4o 0.860 0.717 0.574 1.352 0.679
FuncRev(TimesFM,Gemini) 0.738 0.560 2.508 0.847 1.983
CodeRev(TimesFM,Gemini) 0.765 0.621 3.055 1.072 2.390
TextRev(TimesFM,Gemini) 0.798 0.566 1.809 0.954 0.727
AvgEnsemble(TimesFM,GPT) 0.782 0.620 0.650 1.050 0.715
AvgEnsemble(TimesFM,Gemini) 0.806 0.604 0.581 0.924 0.698

Table 29: Detailed MASE results of Table 1. (cont’d, part 14/38)

Method gender equality gene editing germanium cny kg global warming gold usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.483 0.772 0.991 0.673 1.127
Moirai2.0 0.508 0.866 0.655 0.772 0.846
TimesFM2.5 0.314 0.610 0.795 0.526 1.058
AvgEnsemble(TimesFM,Moirai) 0.377 0.708 0.660 0.633 0.944
DeepSeek-V3 0.477 0.870 0.622 0.967 0.917
Gemini-2.0-Flash 0.333 0.692 0.732 0.576 0.927
GPT-4o 0.332 0.601 0.619 0.663 0.921
FuncRev(TimesFM,Gemini) 0.446 0.685 5.698 0.547 1.239
CodeRev(TimesFM,Gemini) 0.335 0.644 4.188 0.635 1.058
TextRev(TimesFM,Gemini) 0.327 0.639 1.322 0.534 1.172
AvgEnsemble(TimesFM,GPT) 0.299 0.630 0.730 0.515 0.986
AvgEnsemble(TimesFM,Gemini) 0.299 0.609 0.732 0.530 0.927

Table 30: Detailed MASE results of Table 1. (cont’d, part 15/38)

Method goldman sachs government spending halloween costumes healthcare costs healthcare policy

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.592 0.723 0.564 0.897 0.972
Moirai2.0 0.661 0.663 0.542 0.768 0.860
TimesFM2.5 0.595 0.525 0.321 0.544 0.704
AvgEnsemble(TimesFM,Moirai) 0.624 0.557 0.412 0.620 0.760
DeepSeek-V3 0.651 0.652 0.131 0.628 0.753
Gemini-2.0-Flash 0.667 0.505 0.112 0.613 0.841
GPT-4o 0.683 0.547 0.131 0.513 0.593
FuncRev(TimesFM,Gemini) 0.585 0.637 0.349 0.541 0.688
CodeRev(TimesFM,Gemini) 0.597 0.539 0.770 0.517 0.659
TextRev(TimesFM,Gemini) 0.586 0.518 0.220 0.541 0.699
AvgEnsemble(TimesFM,GPT) 0.605 0.493 0.173 0.562 0.738
AvgEnsemble(TimesFM,Gemini) 0.581 0.486 0.185 0.545 0.700

Table 31: Detailed MASE results of Table 1. (cont’d, part 16/38)
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Method heatwave heavy rainfall hedge funds hiv aids homelessness

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.465 0.813 0.845 0.688 0.673
Moirai2.0 0.527 0.736 0.818 0.776 0.746
TimesFM2.5 0.494 0.590 0.838 0.638 0.499
AvgEnsemble(TimesFM,Moirai) 0.477 0.648 0.821 0.693 0.584
DeepSeek-V3 0.727 0.640 0.928 0.815 1.035
Gemini-2.0-Flash 0.543 0.626 0.842 0.674 0.630
GPT-4o 0.695 0.525 0.844 0.593 0.647
FuncRev(TimesFM,Gemini) 0.627 0.672 0.824 0.581 0.497
CodeRev(TimesFM,Gemini) 0.516 0.597 0.815 0.652 0.622
TextRev(TimesFM,Gemini) 0.518 0.594 0.818 0.628 0.494
AvgEnsemble(TimesFM,GPT) 0.512 0.587 0.798 0.628 0.527
AvgEnsemble(TimesFM,Gemini) 0.517 0.580 0.796 0.621 0.536

Table 32: Detailed MASE results of Table 1. (cont’d, part 17/38)

Method human rights immigration reform income inequality indium cny kg infectious disease

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.632 0.844 0.686 0.826 0.676
Moirai2.0 0.627 0.824 0.549 0.846 0.780
TimesFM2.5 0.429 0.670 0.285 0.787 0.588
AvgEnsemble(TimesFM,Moirai) 0.498 0.712 0.384 0.807 0.674
DeepSeek-V3 0.705 0.901 0.593 0.804 0.738
Gemini-2.0-Flash 0.433 0.734 0.311 0.812 0.558
GPT-4o 0.527 0.779 0.324 0.786 0.515
FuncRev(TimesFM,Gemini) 0.485 0.753 0.350 1.224 0.728
CodeRev(TimesFM,Gemini) 0.428 0.816 0.298 0.852 0.594
TextRev(TimesFM,Gemini) 0.416 0.709 0.278 0.441 0.584
AvgEnsemble(TimesFM,GPT) 0.407 0.682 0.283 0.769 0.557
AvgEnsemble(TimesFM,Gemini) 0.407 0.676 0.279 0.812 0.571

Table 33: Detailed MASE results of Table 1. (cont’d, part 18/38)

Method inflation infrastructure spending international trade invasive species investment banking

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.664 0.833 0.827 0.667 0.907
Moirai2.0 0.682 0.692 0.706 0.527 0.779
TimesFM2.5 0.667 0.652 0.422 0.321 0.648
AvgEnsemble(TimesFM,Moirai) 0.668 0.665 0.529 0.392 0.704
DeepSeek-V3 0.718 0.661 0.657 0.367 0.841
Gemini-2.0-Flash 0.600 0.759 0.441 0.298 0.741
GPT-4o 0.661 0.526 0.390 0.275 0.684
FuncRev(TimesFM,Gemini) 0.838 0.671 0.510 0.368 0.710
CodeRev(TimesFM,Gemini) 0.688 0.735 0.428 0.334 0.629
TextRev(TimesFM,Gemini) 0.689 0.690 0.461 0.317 0.654
AvgEnsemble(TimesFM,GPT) 0.603 0.684 0.407 0.287 0.659
AvgEnsemble(TimesFM,Gemini) 0.610 0.687 0.401 0.279 0.651

Table 34: Detailed MASE results of Table 1. (cont’d, part 19/38)

Method lead usd t lithium cny t lumber usd 1000 board feet magnesium cny t major league baseball

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.775 0.815 1.015 0.960 0.536
Moirai2.0 0.793 0.554 0.907 0.756 0.562
TimesFM2.5 0.859 0.584 1.059 0.821 0.332
AvgEnsemble(TimesFM,Moirai) 0.808 0.564 0.980 0.781 0.431
DeepSeek-V3 0.834 0.589 0.886 0.771 0.421
Gemini-2.0-Flash 0.838 0.578 0.882 0.781 0.241
GPT-4o 0.829 0.589 0.888 0.764 0.278
FuncRev(TimesFM,Gemini) 1.144 0.518 1.083 1.201 0.345
CodeRev(TimesFM,Gemini) 0.916 0.482 0.987 1.023 0.366
TextRev(TimesFM,Gemini) 1.105 0.368 1.040 1.355 0.338
AvgEnsemble(TimesFM,GPT) 0.832 0.576 0.968 0.797 0.332
AvgEnsemble(TimesFM,Gemini) 0.838 0.578 0.882 0.781 0.274

Table 35: Detailed MASE results of Table 1. (cont’d, part 20/38)
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Method manganese cny mtu marine life marine pollution mental health meta platforms

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.724 0.866 0.529 0.651 0.638
Moirai2.0 0.574 0.693 0.535 0.586 0.696
TimesFM2.5 0.658 0.564 0.359 0.444 0.647
AvgEnsemble(TimesFM,Moirai) 0.598 0.592 0.397 0.491 0.669
DeepSeek-V3 0.499 0.749 0.397 0.584 0.944
Gemini-2.0-Flash 0.519 0.569 0.337 0.459 0.652
GPT-4o 0.519 0.443 0.315 0.423 0.823
FuncRev(TimesFM,Gemini) 0.442 0.497 0.343 0.457 0.311
CodeRev(TimesFM,Gemini) 0.765 0.486 0.347 0.448 0.645
TextRev(TimesFM,Gemini) 1.089 0.537 0.353 0.425 0.651
AvgEnsemble(TimesFM,GPT) 0.589 0.555 0.328 0.431 0.631
AvgEnsemble(TimesFM,Gemini) 0.519 0.537 0.326 0.440 0.640

Table 36: Detailed MASE results of Table 1. (cont’d, part 21/38)

Method meteor shower methanol cny t microsoft milk usd cwt minimum wage

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.666 1.060 0.689 0.681 0.817
Moirai2.0 0.597 0.941 0.668 0.605 0.716
TimesFM2.5 0.533 0.898 0.607 0.607 0.660
AvgEnsemble(TimesFM,Moirai) 0.555 0.914 0.629 0.598 0.673
DeepSeek-V3 0.532 0.892 0.802 0.577 0.987
Gemini-2.0-Flash 0.329 0.877 0.649 0.585 1.051
GPT-4o 0.514 0.902 0.650 0.575 1.249
FuncRev(TimesFM,Gemini) 0.863 0.743 0.667 1.120 0.819
CodeRev(TimesFM,Gemini) 0.677 0.861 0.615 1.508 0.885
TextRev(TimesFM,Gemini) 0.560 0.969 0.599 0.609 0.750
AvgEnsemble(TimesFM,GPT) 0.346 0.882 0.621 0.591 0.747
AvgEnsemble(TimesFM,Gemini) 0.350 0.877 0.607 0.585 0.723

Table 37: Detailed MASE results of Table 1. (cont’d, part 22/38)

Method molybdenum cny kg mortgage rates music festivals naphtha usd t national basketball association

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.853 0.685 0.532 1.118 0.589
Moirai2.0 0.613 0.691 0.593 0.845 0.573
TimesFM2.5 0.724 0.685 0.467 0.800 0.521
AvgEnsemble(TimesFM,Moirai) 0.602 0.688 0.488 0.817 0.535
DeepSeek-V3 0.544 0.848 0.633 0.815 0.619
Gemini-2.0-Flash 0.560 0.716 0.460 0.827 0.687
GPT-4o 0.558 0.809 0.572 0.822 0.594
FuncRev(TimesFM,Gemini) 0.769 0.810 0.503 1.062 0.578
CodeRev(TimesFM,Gemini) 0.685 0.700 0.453 0.933 0.546
TextRev(TimesFM,Gemini) 1.183 0.682 0.447 1.061 0.519
AvgEnsemble(TimesFM,GPT) 0.627 0.695 0.467 0.787 0.521
AvgEnsemble(TimesFM,Gemini) 0.560 0.694 0.426 0.827 0.565

Table 38: Detailed MASE results of Table 1. (cont’d, part 23/38)

Method national debt national football league neodymium cny t nickel usd t nobel prize

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.809 0.672 0.534 0.810 0.663
Moirai2.0 0.815 0.657 0.614 0.775 0.634
TimesFM2.5 0.841 0.610 0.549 0.741 0.573
AvgEnsemble(TimesFM,Moirai) 0.821 0.625 0.519 0.751 0.592
DeepSeek-V3 0.801 0.710 0.542 0.778 0.609
Gemini-2.0-Flash 0.804 0.561 0.552 0.773 0.499
GPT-4o 0.812 0.648 0.543 0.779 0.475
FuncRev(TimesFM,Gemini) 0.850 0.694 0.803 0.806 0.562
CodeRev(TimesFM,Gemini) 0.856 0.620 0.661 0.692 0.500
TextRev(TimesFM,Gemini) 0.824 0.626 0.457 0.689 0.489
AvgEnsemble(TimesFM,GPT) 0.806 0.610 0.548 0.739 0.519
AvgEnsemble(TimesFM,Gemini) 0.803 0.572 0.552 0.773 0.479

Table 39: Detailed MASE results of Table 1. (cont’d, part 24/38)
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Method nvidia oat usd bu obesity opioid crisis organic food

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.694 0.840 0.574 0.554 0.669
Moirai2.0 0.849 0.861 0.728 0.665 0.639
TimesFM2.5 0.761 0.810 0.453 0.543 0.564
AvgEnsemble(TimesFM,Moirai) 0.803 0.827 0.577 0.562 0.565
DeepSeek-V3 1.121 0.888 1.111 0.570 0.627
Gemini-2.0-Flash 0.691 0.877 0.701 0.554 0.469
GPT-4o 0.854 0.880 0.728 0.611 0.471
FuncRev(TimesFM,Gemini) 0.769 0.811 0.883 0.563 0.548
CodeRev(TimesFM,Gemini) 0.701 0.805 0.577 0.526 0.561
TextRev(TimesFM,Gemini) 0.649 0.715 0.461 0.533 0.547
AvgEnsemble(TimesFM,GPT) 0.684 0.837 0.544 0.504 0.480
AvgEnsemble(TimesFM,Gemini) 0.685 0.877 0.456 0.495 0.479

Table 40: Detailed MASE results of Table 1. (cont’d, part 25/38)

Method palladium usd t oz pest control pet adoption pet health platinum usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.812 0.435 0.815 1.123 0.865
Moirai2.0 0.749 0.394 0.780 0.887 0.703
TimesFM2.5 0.800 0.349 0.730 0.870 0.766
AvgEnsemble(TimesFM,Moirai) 0.761 0.367 0.752 0.874 0.729
DeepSeek-V3 0.773 0.438 0.965 1.039 0.667
Gemini-2.0-Flash 0.759 0.387 0.862 1.111 0.673
GPT-4o 0.763 0.320 1.256 0.794 0.671
FuncRev(TimesFM,Gemini) 0.711 0.242 1.051 0.813 0.782
CodeRev(TimesFM,Gemini) 0.911 0.337 0.904 0.898 0.734
TextRev(TimesFM,Gemini) 0.732 0.316 0.791 0.862 0.840
AvgEnsemble(TimesFM,GPT) 0.739 0.364 0.753 0.964 0.700
AvgEnsemble(TimesFM,Gemini) 0.759 0.351 0.748 0.951 0.673

Table 41: Detailed MASE results of Table 1. (cont’d, part 26/38)

Method polyethylene cny t polypropylene cny t polyvinyl cny t potatoes eur 100kg poultry brl kgs

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.810 1.122 0.869 0.823 1.052
Moirai2.0 0.746 0.945 0.600 0.677 0.834
TimesFM2.5 0.793 0.880 0.749 0.752 0.928
AvgEnsemble(TimesFM,Moirai) 0.765 0.907 0.669 0.708 0.877
DeepSeek-V3 0.677 0.950 0.606 0.672 0.771
Gemini-2.0-Flash 0.673 0.936 0.586 0.679 0.783
GPT-4o 0.680 0.930 0.584 0.667 0.783
FuncRev(TimesFM,Gemini) 0.749 0.852 0.734 0.779 1.041
CodeRev(TimesFM,Gemini) 0.786 0.879 0.698 0.749 0.943
TextRev(TimesFM,Gemini) 0.699 0.866 0.927 0.781 1.307
AvgEnsemble(TimesFM,GPT) 0.727 0.897 0.649 0.693 0.847
AvgEnsemble(TimesFM,Gemini) 0.673 0.936 0.586 0.679 0.783

Table 42: Detailed MASE results of Table 1. (cont’d, part 27/38)

Method presidential election private equity propane usd gal protest quantum computing

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.847 1.059 0.840 0.910 0.870
Moirai2.0 0.839 0.820 0.712 0.907 0.888
TimesFM2.5 0.847 0.809 0.732 0.859 0.908
AvgEnsemble(TimesFM,Moirai) 0.843 0.807 0.717 0.878 0.898
DeepSeek-V3 0.824 0.932 0.756 0.879 0.787
Gemini-2.0-Flash 0.827 0.878 0.756 0.985 0.930
GPT-4o 0.831 0.698 0.759 1.025 0.843
FuncRev(TimesFM,Gemini) 0.733 0.690 0.842 1.132 0.693
CodeRev(TimesFM,Gemini) 0.857 0.787 0.751 0.977 0.863
TextRev(TimesFM,Gemini) 0.847 0.817 1.014 0.878 0.881
AvgEnsemble(TimesFM,GPT) 0.837 0.835 0.728 0.886 0.907
AvgEnsemble(TimesFM,Gemini) 0.838 0.800 0.756 0.857 0.899

Table 43: Detailed MASE results of Table 1. (cont’d, part 28/38)
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Method rapeseed eur t refugee support renewable energy rhodium usd t oz rice usd cwt

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.856 0.629 0.638 1.052 0.792
Moirai2.0 0.664 0.707 0.674 0.979 0.715
TimesFM2.5 0.722 0.491 0.436 0.987 0.740
AvgEnsemble(TimesFM,Moirai) 0.674 0.591 0.515 0.973 0.723
DeepSeek-V3 0.777 0.665 0.499 0.917 0.653
Gemini-2.0-Flash 0.773 0.531 0.420 0.914 0.671
GPT-4o 0.778 0.575 0.346 0.907 0.647
FuncRev(TimesFM,Gemini) 0.683 0.644 0.464 1.070 0.941
CodeRev(TimesFM,Gemini) 0.710 0.624 0.391 0.786 0.868
TextRev(TimesFM,Gemini) 0.862 0.584 0.435 0.876 0.923
AvgEnsemble(TimesFM,GPT) 0.686 0.498 0.404 0.945 0.688
AvgEnsemble(TimesFM,Gemini) 0.773 0.488 0.385 0.914 0.671

Table 44: Detailed MASE results of Table 1. (cont’d, part 29/38)

Method robotics rocket launch rubber usd cents kg salmon nok kg silver usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 1.014 0.834 1.010 0.786 0.946
Moirai2.0 0.832 0.768 0.818 1.013 0.847
TimesFM2.5 0.786 0.797 0.904 0.841 0.954
AvgEnsemble(TimesFM,Moirai) 0.796 0.778 0.855 0.919 0.887
DeepSeek-V3 1.014 1.087 0.814 1.357 0.822
Gemini-2.0-Flash 0.962 1.030 0.806 1.326 0.818
GPT-4o 0.788 1.210 0.822 1.317 0.828
FuncRev(TimesFM,Gemini) 0.810 0.852 0.955 – 0.981
CodeRev(TimesFM,Gemini) 0.760 0.899 0.944 0.860 0.941
TextRev(TimesFM,Gemini) 0.744 0.848 1.126 0.790 0.729
AvgEnsemble(TimesFM,GPT) 0.850 0.891 0.849 1.059 0.862
AvgEnsemble(TimesFM,Gemini) 0.868 0.858 0.806 1.326 0.818

Table 45: Detailed MASE results of Table 1. (cont’d, part 30/38)

Method ski gear soybeans usd bu space exploration steel cny t stock market

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.293 0.900 0.642 1.025 0.747
Moirai2.0 0.344 0.850 0.577 0.918 0.750
TimesFM2.5 0.231 0.801 0.405 0.958 0.729
AvgEnsemble(TimesFM,Moirai) 0.275 0.803 0.453 0.932 0.738
DeepSeek-V3 0.247 0.866 0.499 0.877 1.045
Gemini-2.0-Flash 0.225 0.908 0.418 0.866 0.758
GPT-4o 0.245 0.864 0.455 0.873 0.832
FuncRev(TimesFM,Gemini) 0.276 0.846 0.409 1.113 0.651
CodeRev(TimesFM,Gemini) 0.237 0.876 0.399 0.964 0.729
TextRev(TimesFM,Gemini) 0.216 0.821 0.409 1.056 0.721
AvgEnsemble(TimesFM,GPT) 0.223 0.822 0.397 0.892 0.739
AvgEnsemble(TimesFM,Gemini) 0.225 0.908 0.393 0.866 0.730

Table 46: Detailed MASE results of Table 1. (cont’d, part 31/38)

Method student loans sugar usd lbs sustainable fashion tax software taxes

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.831 1.218 0.621 0.805 0.696
Moirai2.0 0.847 1.056 0.632 0.659 0.545
TimesFM2.5 0.854 0.934 0.537 0.487 0.346
AvgEnsemble(TimesFM,Moirai) 0.846 0.986 0.568 0.538 0.423
DeepSeek-V3 0.908 0.943 0.622 0.437 0.526
Gemini-2.0-Flash 0.844 0.946 0.648 0.379 0.191
GPT-4o 0.982 0.953 0.526 0.363 0.180
FuncRev(TimesFM,Gemini) 1.052 0.959 0.567 0.462 0.375
CodeRev(TimesFM,Gemini) 0.864 1.043 0.529 0.484 0.376
TextRev(TimesFM,Gemini) 0.852 1.085 0.515 0.466 0.274
AvgEnsemble(TimesFM,GPT) 0.830 0.901 0.559 0.404 0.250
AvgEnsemble(TimesFM,Gemini) 0.819 0.946 0.563 0.396 0.245

Table 47: Detailed MASE results of Table 1. (cont’d, part 32/38)
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Method tellurium cny kg tesla tin usd t titanium cny kg tour de france

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.765 0.714 0.835 0.781 0.557
Moirai2.0 0.647 0.720 0.791 0.692 0.395
TimesFM2.5 0.675 0.720 0.783 0.718 0.372
AvgEnsemble(TimesFM,Moirai) 0.652 0.717 0.779 0.694 0.355
DeepSeek-V3 0.709 0.679 0.738 0.614 0.354
Gemini-2.0-Flash 0.711 0.743 0.740 0.604 0.285
GPT-4o 0.699 0.652 0.747 0.610 0.257
FuncRev(TimesFM,Gemini) 1.352 0.591 1.029 0.795 0.536
CodeRev(TimesFM,Gemini) 0.680 0.709 0.757 0.745 1.438
TextRev(TimesFM,Gemini) 1.379 0.695 0.765 0.319 0.358
AvgEnsemble(TimesFM,GPT) 0.692 0.723 0.744 0.659 0.284
AvgEnsemble(TimesFM,Gemini) 0.711 0.703 0.740 0.604 0.299

Table 48: Detailed MASE results of Table 1. (cont’d, part 33/38)

Method traffic insurance unemployment rate uranium usd lbs urea usd t usdtoaud exchangerate

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 1.056 0.651 1.050 0.729 1.019
Moirai2.0 0.935 0.621 0.992 0.500 0.869
TimesFM2.5 0.950 0.497 1.100 0.646 0.866
AvgEnsemble(TimesFM,Moirai) 0.942 0.527 1.037 0.559 0.858
DeepSeek-V3 0.887 0.731 0.863 0.492 0.841
Gemini-2.0-Flash 1.048 0.529 0.869 0.507 0.807
GPT-4o 0.774 0.625 0.871 0.495 0.833
FuncRev(TimesFM,Gemini) 0.729 0.835 1.074 0.601 0.764
CodeRev(TimesFM,Gemini) 0.904 0.505 1.119 0.610 0.815
TextRev(TimesFM,Gemini) 0.947 0.504 0.937 0.626 0.742
AvgEnsemble(TimesFM,GPT) 0.970 0.488 0.975 0.571 0.828
AvgEnsemble(TimesFM,Gemini) 0.952 0.495 0.869 0.507 0.828

Table 49: Detailed MASE results of Table 1. (cont’d, part 34/38)

Method usdtobrl exchangerate usdtocad exchangerate usdtochf exchangerate usdtogbp exchangerate usdtohkd exchangerate

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.955 1.013 1.135 1.321 0.820
Moirai2.0 0.774 0.726 0.900 0.828 0.778
TimesFM2.5 0.703 0.714 1.028 0.801 0.748
AvgEnsemble(TimesFM,Moirai) 0.727 0.701 0.962 0.812 0.761
DeepSeek-V3 0.695 0.629 0.852 0.773 0.781
Gemini-2.0-Flash 0.697 0.636 0.878 0.778 0.810
GPT-4o 0.696 0.612 0.852 0.779 0.784
FuncRev(TimesFM,Gemini) 0.772 0.692 1.125 0.689 0.754
CodeRev(TimesFM,Gemini) 0.727 0.708 1.020 0.817 0.750
TextRev(TimesFM,Gemini) 0.892 0.761 0.588 0.687 0.797
AvgEnsemble(TimesFM,GPT) 0.676 0.654 0.970 0.781 0.776
AvgEnsemble(TimesFM,Gemini) 0.676 0.654 0.970 0.781 0.776

Table 50: Detailed MASE results of Table 1. (cont’d, part 35/38)

Method usdtoinr exchangerate usdtokrw exchangerate usdtomxn exchangerate usdtosgd exchangerate used car

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.906 1.198 1.123 1.337 0.719
Moirai2.0 0.736 0.922 0.804 0.983 0.775
TimesFM2.5 0.828 0.954 0.914 0.975 0.663
AvgEnsemble(TimesFM,Moirai) 0.779 0.929 0.852 0.970 0.703
DeepSeek-V3 0.720 0.858 0.767 0.933 0.797
Gemini-2.0-Flash 0.737 0.866 0.766 0.910 0.644
GPT-4o 0.733 0.859 0.749 0.909 0.738
FuncRev(TimesFM,Gemini) 0.790 0.941 1.073 0.836 0.741
CodeRev(TimesFM,Gemini) 0.843 0.947 1.305 0.950 0.642
TextRev(TimesFM,Gemini) 0.641 1.028 0.824 0.886 0.635
AvgEnsemble(TimesFM,GPT) 0.780 0.898 0.822 0.938 0.644
AvgEnsemble(TimesFM,Gemini) 0.780 0.898 0.822 0.938 0.658

Table 51: Detailed MASE results of Table 1. (cont’d, part 36/38)
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Method vaccine research venture capital volcanic eruption water scarcity wheat usd bu

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Sundial 0.855 0.966 0.592 0.688 0.832
Moirai2.0 0.832 0.876 0.716 0.672 0.824
TimesFM2.5 0.716 0.769 0.532 0.414 0.884
AvgEnsemble(TimesFM,Moirai) 0.762 0.816 0.583 0.518 0.844
DeepSeek-V3 0.831 0.868 0.749 0.589 0.991
Gemini-2.0-Flash 0.838 0.823 0.642 0.437 0.966
GPT-4o 0.691 0.811 0.594 0.434 0.972
FuncRev(TimesFM,Gemini) 0.490 0.757 0.527 0.390 1.053
CodeRev(TimesFM,Gemini) 0.677 0.797 0.600 0.440 1.010
TextRev(TimesFM,Gemini) 0.706 0.791 0.523 0.413 0.946
AvgEnsemble(TimesFM,GPT) 0.761 0.764 0.549 0.412 0.895
AvgEnsemble(TimesFM,Gemini) 0.746 0.755 0.486 0.415 0.966

Table 52: Detailed MASE results of Table 1. (cont’d, part 37/38)

Method wildfires wildlife conservation wool aud 100kg zinc usd t

SeasonalNaive 1.000 1.000 1.000 1.000
Sundial 0.622 0.911 0.864 0.987
Moirai2.0 0.618 0.809 0.767 0.681
TimesFM2.5 0.617 0.690 0.794 0.724
AvgEnsemble(TimesFM,Moirai) 0.613 0.736 0.772 0.692
DeepSeek-V3 0.665 0.863 0.744 0.691
Gemini-2.0-Flash 0.650 0.830 0.742 0.695
GPT-4o 0.752 0.614 0.742 0.697
FuncRev(TimesFM,Gemini) 0.738 0.640 0.571 0.939
CodeRev(TimesFM,Gemini) 1.458 0.664 0.809 0.789
TextRev(TimesFM,Gemini) 0.700 0.666 0.831 0.641
AvgEnsemble(TimesFM,GPT) 0.630 0.741 0.764 0.698
AvgEnsemble(TimesFM,Gemini) 0.610 0.724 0.742 0.695

Table 53: Detailed MASE results of Table 1. (cont’d, part 38/38)
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Method affordable housing air conditioner air pollution air travel alphabet

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.613 0.480 0.489 0.986 0.650
DeepSeek-V3 (AllContext) 0.701 0.495 0.523 0.950 0.586
Gemini-2.0-Flash (Event) 0.668 0.287 0.349 0.909 0.570
Gemini-2.0-Flash (AllContext) 0.688 0.274 0.356 0.917 0.513
GPT-4o (Event) 0.634 0.326 0.337 0.852 0.521
GPT-4o (AllContext) 0.659 0.339 0.367 0.829 0.567

Table 54: Detailed MASE Results of Event Type Attribution Analysis. (part 1/38)

Method aluminum usd t amazon animal migration animal rescue animal welfare

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.924 1.213 0.764 1.072 0.734
DeepSeek-V3 (AllContext) 0.782 1.241 0.794 1.166 0.695
Gemini-2.0-Flash (Event) 1.095 0.521 0.708 0.924 0.666
Gemini-2.0-Flash (AllContext) 0.795 0.570 0.696 0.956 0.647
GPT-4o (Event) 0.881 0.922 0.662 0.965 0.595
GPT-4o (AllContext) 0.784 0.996 0.664 1.048 0.618

Table 55: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 2/38)
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65



3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Method apple inc art exhibitions artificial intelligence asset management autonomous driving

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.710 0.769 0.906 0.815 0.941
DeepSeek-V3 (AllContext) 0.714 0.752 0.825 0.877 0.980
Gemini-2.0-Flash (Event) 0.682 0.769 0.872 0.841 0.985
Gemini-2.0-Flash (AllContext) 0.690 0.767 0.967 0.887 1.056
GPT-4o (Event) 0.626 0.668 0.759 0.803 0.821
GPT-4o (AllContext) 0.656 0.674 0.761 0.759 0.855

Table 56: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 3/38)

Method back to school barley inr t beef brl kg beekeeping biodiversity

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.291 0.976 0.576 0.620 0.406
DeepSeek-V3 (AllContext) 0.292 0.954 0.567 0.585 0.367
Gemini-2.0-Flash (Event) 0.300 0.889 0.649 0.629 0.310
Gemini-2.0-Flash (AllContext) 0.306 0.950 0.574 0.596 0.314
GPT-4o (Event) 0.263 0.912 0.457 0.533 0.239
GPT-4o (AllContext) 0.257 0.956 0.559 0.517 0.281

Table 57: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 4/38)

Method bitumen cny t black friday deals brent usd bbl broadway shows butter eur t

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.896 0.343 0.823 0.727 0.758
DeepSeek-V3 (AllContext) 0.727 0.129 0.820 0.732 0.762
Gemini-2.0-Flash (Event) 0.841 0.552 0.824 0.627 0.894
Gemini-2.0-Flash (AllContext) 0.733 0.571 0.818 0.666 0.773
GPT-4o (Event) 0.977 0.449 0.853 0.715 0.745
GPT-4o (AllContext) 0.728 0.457 0.830 0.649 0.763

Table 58: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 5/38)

Method cancer research canola cad t carbon emissions cheese usd lbs christmas gifts

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.815 0.794 0.916 1.055 0.116
DeepSeek-V3 (AllContext) 0.856 0.827 0.633 0.810 0.120
Gemini-2.0-Flash (Event) 0.815 0.998 0.760 0.868 0.094
Gemini-2.0-Flash (AllContext) 0.829 0.846 0.718 0.787 0.098
GPT-4o (Event) 0.756 0.850 0.669 0.867 0.088
GPT-4o (AllContext) 0.718 0.817 0.665 0.789 0.119

Table 59: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 6/38)

Method climate change coal usd t cocoa usd t coffee usd lbs comic con

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 1.771 0.625 0.797 0.819 0.408
DeepSeek-V3 (AllContext) 1.475 0.653 0.812 0.750 0.445
Gemini-2.0-Flash (Event) 0.696 0.704 0.935 0.955 0.492
Gemini-2.0-Flash (AllContext) 1.485 0.661 0.827 0.757 0.450
GPT-4o (Event) 1.950 0.731 0.767 0.895 0.518
GPT-4o (AllContext) 1.359 0.655 0.768 0.757 0.507

Table 60: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 7/38)

Method consumer electronics copper usd lbs corn usd bu cost of living cotton usd lbs

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.753 0.732 0.865 0.778 1.311
DeepSeek-V3 (AllContext) 0.795 0.620 0.857 0.763 1.147
Gemini-2.0-Flash (Event) 0.640 0.856 0.899 0.809 1.347
Gemini-2.0-Flash (AllContext) 0.621 0.635 0.855 0.799 1.148
GPT-4o (Event) 0.649 0.740 0.911 0.712 1.196
GPT-4o (AllContext) 0.716 0.625 0.850 0.732 1.141

Table 61: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 8/38)
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Method cryptocurrency cybersecurity data breach data privacy deforestation

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.815 0.896 1.236 0.680 0.407
DeepSeek-V3 (AllContext) 0.864 0.837 0.958 0.770 0.466
Gemini-2.0-Flash (Event) 0.764 0.942 0.800 0.764 0.302
Gemini-2.0-Flash (AllContext) 0.750 0.994 0.828 0.760 0.298
GPT-4o (Event) 0.742 0.695 1.057 0.648 0.267
GPT-4o (AllContext) 0.711 0.687 1.054 0.635 0.269

Table 62: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 9/38)

Method diabetes diammonium usd t domestic violence drones drought

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.663 0.782 0.593 0.999 0.754
DeepSeek-V3 (AllContext) 0.637 0.794 0.644 0.993 0.905
Gemini-2.0-Flash (Event) 0.591 0.743 0.737 0.854 0.726
Gemini-2.0-Flash (AllContext) 0.572 0.711 0.725 0.850 0.670
GPT-4o (Event) 0.551 0.754 0.684 0.900 0.701
GPT-4o (AllContext) 0.575 0.799 0.738 0.988 0.655

Table 63: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 10/38)

Method drug overdose earthquake electric vehicle endangered species esports

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.543 0.751 1.136 0.412 0.825
DeepSeek-V3 (AllContext) 0.618 0.765 1.071 0.520 0.823
Gemini-2.0-Flash (Event) 0.521 0.806 0.820 0.328 0.609
Gemini-2.0-Flash (AllContext) 0.514 0.854 0.829 0.332 0.621
GPT-4o (Event) 0.532 0.893 0.854 0.323 0.806
GPT-4o (AllContext) 0.531 0.894 0.881 0.322 0.727

Table 64: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 11/38)

Method ethanol usd gal fashion week federal budget deficit federal reserve film festivals

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 1.068 0.382 0.585 0.699 0.564
DeepSeek-V3 (AllContext) 0.799 0.399 0.625 0.671 0.522
Gemini-2.0-Flash (Event) 0.989 0.248 0.463 0.640 0.700
Gemini-2.0-Flash (AllContext) 0.805 0.250 0.473 0.646 0.689
GPT-4o (Event) 0.985 0.332 0.441 0.603 0.541
GPT-4o (AllContext) 0.808 0.331 0.455 0.606 0.577

Table 65: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 12/38)

Method financial regulation flooding flu shot food recall food safety

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.691 0.732 0.369 1.442 0.819
DeepSeek-V3 (AllContext) 0.677 0.696 0.365 1.138 0.812
Gemini-2.0-Flash (Event) 0.721 0.752 0.237 1.032 0.698
Gemini-2.0-Flash (AllContext) 0.741 0.772 0.272 1.118 0.757
GPT-4o (Event) 0.556 0.761 0.292 1.308 0.609
GPT-4o (AllContext) 0.531 0.783 0.315 1.287 0.565

Table 66: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 13/38)
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Method food wine festivals formula 1 gallium cny kg gas prices gasoline usd gal

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.941 0.678 0.710 1.145 0.929
DeepSeek-V3 (AllContext) 0.949 0.767 0.577 1.250 0.691
Gemini-2.0-Flash (Event) 0.912 0.674 0.864 0.956 0.884
Gemini-2.0-Flash (AllContext) 0.935 0.717 0.581 1.217 0.698
GPT-4o (Event) 0.885 0.733 0.651 1.408 0.718
GPT-4o (AllContext) 0.860 0.717 0.574 1.352 0.679

Table 67: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 14/38)

Method gender equality gene editing germanium cny kg global warming gold usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.538 0.988 0.677 0.843 0.979
DeepSeek-V3 (AllContext) 0.477 0.870 0.622 0.967 0.917
Gemini-2.0-Flash (Event) 0.329 0.637 1.466 0.597 0.812
Gemini-2.0-Flash (AllContext) 0.333 0.692 0.732 0.576 0.927
GPT-4o (Event) 0.306 0.623 0.541 0.579 1.066
GPT-4o (AllContext) 0.332 0.601 0.619 0.663 0.921

Table 68: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 15/38)

Method goldman sachs government spending halloween costumes healthcare costs healthcare policy

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.664 0.640 0.144 0.726 0.880
DeepSeek-V3 (AllContext) 0.651 0.652 0.131 0.628 0.753
Gemini-2.0-Flash (Event) 0.658 0.495 0.131 0.577 0.759
Gemini-2.0-Flash (AllContext) 0.667 0.505 0.112 0.613 0.841
GPT-4o (Event) 0.610 0.509 0.123 0.529 0.617
GPT-4o (AllContext) 0.683 0.547 0.131 0.513 0.593

Table 69: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 16/38)

Method heatwave heavy rainfall hedge funds hiv aids homelessness

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.703 0.679 0.878 0.681 0.953
DeepSeek-V3 (AllContext) 0.727 0.640 0.928 0.815 1.035
Gemini-2.0-Flash (Event) 0.559 0.614 0.834 0.674 0.654
Gemini-2.0-Flash (AllContext) 0.543 0.626 0.842 0.674 0.630
GPT-4o (Event) 0.654 0.545 0.851 0.526 0.604
GPT-4o (AllContext) 0.695 0.525 0.844 0.593 0.647

Table 70: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 17/38)

Method human rights immigration reform income inequality indium cny kg infectious disease

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.675 1.008 0.642 1.056 0.835
DeepSeek-V3 (AllContext) 0.705 0.901 0.593 0.804 0.738
Gemini-2.0-Flash (Event) 0.424 0.750 0.311 1.259 0.581
Gemini-2.0-Flash (AllContext) 0.433 0.734 0.311 0.812 0.558
GPT-4o (Event) 0.445 0.778 0.303 1.204 0.518
GPT-4o (AllContext) 0.527 0.779 0.324 0.786 0.515

Table 71: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 18/38)

Method inflation infrastructure spending international trade invasive species investment banking

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.781 0.723 0.605 0.375 0.697
DeepSeek-V3 (AllContext) 0.718 0.661 0.657 0.367 0.841
Gemini-2.0-Flash (Event) 0.622 0.767 0.434 0.287 0.731
Gemini-2.0-Flash (AllContext) 0.600 0.759 0.441 0.298 0.741
GPT-4o (Event) 0.658 0.570 0.371 0.259 0.636
GPT-4o (AllContext) 0.661 0.526 0.390 0.275 0.684

Table 72: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 19/38)

68



3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Method lead usd t lithium cny t lumber usd 1000 board feet magnesium cny t major league baseball

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 1.120 0.468 1.075 0.903 0.323
DeepSeek-V3 (AllContext) 0.834 0.589 0.886 0.771 0.421
Gemini-2.0-Flash (Event) 1.129 0.415 0.850 0.939 0.235
Gemini-2.0-Flash (AllContext) 0.838 0.578 0.882 0.781 0.241
GPT-4o (Event) 1.041 0.470 0.933 0.821 0.245
GPT-4o (AllContext) 0.829 0.589 0.888 0.764 0.278

Table 73: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 20/38)

Method manganese cny mtu marine life marine pollution mental health meta platforms

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.533 0.615 0.538 0.553 0.960
DeepSeek-V3 (AllContext) 0.499 0.749 0.397 0.584 0.944
Gemini-2.0-Flash (Event) 0.498 0.536 0.337 0.476 0.666
Gemini-2.0-Flash (AllContext) 0.519 0.569 0.337 0.459 0.652
GPT-4o (Event) 0.608 0.470 0.308 0.441 0.749
GPT-4o (AllContext) 0.519 0.443 0.315 0.423 0.823

Table 74: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 21/38)

Method meteor shower methanol cny t microsoft milk usd cwt minimum wage

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.528 0.998 0.691 0.689 1.005
DeepSeek-V3 (AllContext) 0.532 0.892 0.802 0.577 0.987
Gemini-2.0-Flash (Event) 0.336 0.816 0.616 0.686 1.017
Gemini-2.0-Flash (AllContext) 0.329 0.877 0.649 0.585 1.051
GPT-4o (Event) 0.562 1.028 0.649 0.630 1.334
GPT-4o (AllContext) 0.514 0.902 0.650 0.575 1.249

Table 75: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 22/38)

Method molybdenum cny kg mortgage rates music festivals naphtha usd t national basketball association

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.706 0.787 0.743 0.997 0.637
DeepSeek-V3 (AllContext) 0.544 0.848 0.633 0.815 0.619
Gemini-2.0-Flash (Event) 0.684 0.716 0.460 1.097 0.665
Gemini-2.0-Flash (AllContext) 0.560 0.716 0.460 0.827 0.687
GPT-4o (Event) 0.696 0.788 0.524 1.014 0.539
GPT-4o (AllContext) 0.558 0.809 0.572 0.822 0.594

Table 76: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 23/38)

Method national debt national football league neodymium cny t nickel usd t nobel prize

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.808 0.759 0.704 0.821 0.543
DeepSeek-V3 (AllContext) 0.801 0.710 0.542 0.778 0.609
Gemini-2.0-Flash (Event) 0.791 0.554 0.513 0.910 0.414
Gemini-2.0-Flash (AllContext) 0.804 0.561 0.552 0.773 0.499
GPT-4o (Event) 0.818 0.632 0.535 0.801 0.550
GPT-4o (AllContext) 0.812 0.648 0.543 0.779 0.475

Table 77: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 24/38)

Method nvidia oat usd bu obesity opioid crisis organic food

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 1.052 1.024 1.026 0.567 0.621
DeepSeek-V3 (AllContext) 1.121 0.888 1.111 0.570 0.627
Gemini-2.0-Flash (Event) 0.730 1.027 0.520 0.557 0.476
Gemini-2.0-Flash (AllContext) 0.691 0.877 0.701 0.554 0.469
GPT-4o (Event) 0.872 0.999 0.684 0.541 0.477
GPT-4o (AllContext) 0.854 0.880 0.728 0.611 0.471

Table 78: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 25/38)

69



3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Method palladium usd t oz pest control pet adoption pet health platinum usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.916 0.407 0.991 0.953 0.752
DeepSeek-V3 (AllContext) 0.773 0.438 0.965 1.039 0.667
Gemini-2.0-Flash (Event) 0.975 0.368 0.866 1.064 0.772
Gemini-2.0-Flash (AllContext) 0.759 0.387 0.862 1.111 0.673
GPT-4o (Event) 0.869 0.303 1.039 0.820 0.701
GPT-4o (AllContext) 0.763 0.320 1.256 0.794 0.671

Table 79: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 26/38)

Method polyethylene cny t polypropylene cny t polyvinyl cny t potatoes eur 100kg poultry brl kgs

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.769 1.059 0.708 0.731 0.828
DeepSeek-V3 (AllContext) 0.677 0.950 0.606 0.672 0.771
Gemini-2.0-Flash (Event) 0.730 0.848 0.853 0.742 0.921
Gemini-2.0-Flash (AllContext) 0.673 0.936 0.586 0.679 0.783
GPT-4o (Event) 0.817 0.892 0.658 0.612 0.888
GPT-4o (AllContext) 0.680 0.930 0.584 0.667 0.783

Table 80: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 27/38)

Method presidential election private equity propane usd gal protest quantum computing

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.829 0.721 0.950 0.922 0.908
DeepSeek-V3 (AllContext) 0.824 0.932 0.756 0.879 0.787
Gemini-2.0-Flash (Event) 0.829 0.829 0.844 0.933 0.895
Gemini-2.0-Flash (AllContext) 0.827 0.878 0.756 0.985 0.930
GPT-4o (Event) 0.817 0.702 0.937 1.024 0.858
GPT-4o (AllContext) 0.831 0.698 0.759 1.025 0.843

Table 81: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 28/38)

Method rapeseed eur t refugee support renewable energy rhodium usd t oz rice usd cwt

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 1.070 0.696 0.504 0.835 0.872
DeepSeek-V3 (AllContext) 0.777 0.665 0.499 0.917 0.653
Gemini-2.0-Flash (Event) 0.853 0.522 0.388 0.779 0.736
Gemini-2.0-Flash (AllContext) 0.773 0.531 0.420 0.914 0.671
GPT-4o (Event) 1.095 0.541 0.352 0.723 0.775
GPT-4o (AllContext) 0.778 0.575 0.346 0.907 0.647

Table 82: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 29/38)

Method robotics rocket launch rubber usd cents kg salmon nok kg silver usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.937 1.125 1.243 1.326 1.105
DeepSeek-V3 (AllContext) 1.014 1.087 0.814 1.357 0.822
Gemini-2.0-Flash (Event) 1.001 0.971 0.974 1.329 0.936
Gemini-2.0-Flash (AllContext) 0.962 1.030 0.806 1.326 0.818
GPT-4o (Event) 0.826 1.160 1.151 1.182 0.984
GPT-4o (AllContext) 0.788 1.210 0.822 1.317 0.828

Table 83: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 30/38)

Method ski gear soybeans usd bu space exploration steel cny t stock market

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.275 1.035 0.471 1.215 1.059
DeepSeek-V3 (AllContext) 0.247 0.866 0.499 0.877 1.045
Gemini-2.0-Flash (Event) 0.233 1.260 0.417 1.023 0.735
Gemini-2.0-Flash (AllContext) 0.225 0.908 0.418 0.866 0.758
GPT-4o (Event) 0.240 1.086 0.393 1.004 0.813
GPT-4o (AllContext) 0.245 0.864 0.455 0.873 0.832

Table 84: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 31/38)
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Method student loans sugar usd lbs sustainable fashion tax software taxes

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.940 1.188 0.606 0.404 0.336
DeepSeek-V3 (AllContext) 0.908 0.943 0.622 0.437 0.526
Gemini-2.0-Flash (Event) 0.823 1.129 0.649 0.365 0.182
Gemini-2.0-Flash (AllContext) 0.844 0.946 0.648 0.379 0.191
GPT-4o (Event) 0.968 1.145 0.534 0.362 0.170
GPT-4o (AllContext) 0.982 0.953 0.526 0.363 0.180

Table 85: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 32/38)

Method tellurium cny kg tesla tin usd t titanium cny kg tour de france

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 1.479 0.667 0.855 0.675 0.305
DeepSeek-V3 (AllContext) 0.709 0.679 0.738 0.614 0.354
Gemini-2.0-Flash (Event) 0.787 0.711 1.080 0.628 0.321
Gemini-2.0-Flash (AllContext) 0.711 0.743 0.740 0.604 0.285
GPT-4o (Event) 0.704 0.629 0.686 0.703 0.198
GPT-4o (AllContext) 0.699 0.652 0.747 0.610 0.257

Table 86: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 33/38)

Method traffic insurance unemployment rate uranium usd lbs urea usd t usdtoaud exchangerate

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.947 0.714 1.036 0.418 1.275
DeepSeek-V3 (AllContext) 0.887 0.731 0.863 0.492 0.841
Gemini-2.0-Flash (Event) 0.997 0.544 1.142 0.593 1.072
Gemini-2.0-Flash (AllContext) 1.048 0.529 0.869 0.507 0.807
GPT-4o (Event) 0.765 0.557 0.993 0.428 1.195
GPT-4o (AllContext) 0.774 0.625 0.871 0.495 0.833

Table 87: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 34/38)

Method usdtobrl exchangerate usdtocad exchangerate usdtochf exchangerate usdtogbp exchangerate usdtohkd exchangerate

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 1.065 0.999 1.110 1.178 0.919
DeepSeek-V3 (AllContext) 0.695 0.629 0.852 0.773 0.781
Gemini-2.0-Flash (Event) 1.099 0.795 0.890 0.964 0.970
Gemini-2.0-Flash (AllContext) 0.697 0.636 0.878 0.778 0.810
GPT-4o (Event) 1.004 0.835 0.932 0.860 0.881
GPT-4o (AllContext) 0.696 0.612 0.852 0.779 0.784

Table 88: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 35/38)

Method usdtoinr exchangerate usdtokrw exchangerate usdtomxn exchangerate usdtosgd exchangerate used car

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.658 0.927 1.166 1.282 0.805
DeepSeek-V3 (AllContext) 0.720 0.858 0.767 0.933 0.797
Gemini-2.0-Flash (Event) 0.734 0.920 0.927 1.041 0.673
Gemini-2.0-Flash (AllContext) 0.737 0.866 0.766 0.910 0.644
GPT-4o (Event) 0.647 0.855 0.920 0.943 0.760
GPT-4o (AllContext) 0.733 0.859 0.749 0.909 0.738

Table 89: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 36/38)

Method vaccine research venture capital volcanic eruption water scarcity wheat usd bu

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.893 1.073 0.905 0.553 1.251
DeepSeek-V3 (AllContext) 0.831 0.868 0.749 0.589 0.991
Gemini-2.0-Flash (Event) 0.803 0.803 0.502 0.442 1.087
Gemini-2.0-Flash (AllContext) 0.838 0.823 0.642 0.437 0.966
GPT-4o (Event) 0.688 0.790 0.552 0.418 1.194
GPT-4o (AllContext) 0.691 0.811 0.594 0.434 0.972

Table 90: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 37/38)
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Method wildfires wildlife conservation wool aud 100kg zinc usd t

SeasonalNaive 1.000 1.000 1.000 1.000
DeepSeek-V3 (Event) 0.699 0.764 0.765 1.013
DeepSeek-V3 (AllContext) 0.665 0.863 0.744 0.691
Gemini-2.0-Flash (Event) 0.626 0.799 0.728 0.927
Gemini-2.0-Flash (AllContext) 0.650 0.830 0.742 0.695
GPT-4o (Event) 0.750 0.653 0.768 0.899
GPT-4o (AllContext) 0.752 0.614 0.742 0.697

Table 91: Detailed MASE Results of Event Type Attribution Analysis. (cont’d, part 38/38)
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R DETAILED MASE RESULTS OF EVENT TYPE DEEP ANALYSIS USING
GEMINI

Method affordable housing air conditioner air pollution air travel alphabet

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.740 0.504 0.827 1.086 0.747
Meta+Date 0.701 0.287 0.362 0.950 0.616
Meta+Date+Cov 0.673 0.271 0.355 0.943 0.514
Meta+Date+Event 0.668 0.287 0.349 0.909 0.570
AllContext 0.688 0.274 0.356 0.917 0.513

Table 92: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (part 1/38)

Method aluminum usd t amazon animal migration animal rescue animal welfare

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.876 0.836 0.977 0.753 0.808
Meta+Date 0.921 0.581 0.718 0.921 0.641
Meta+Date+Cov 1.191 0.597 0.727 0.871 0.633
Meta+Date+Event 1.095 0.521 0.708 0.924 0.666
AllContext 0.795 0.570 0.696 0.956 0.647

Table 93: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 2/38)

Method apple inc art exhibitions artificial intelligence asset management autonomous driving

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.826 0.832 1.017 0.846 0.873
Meta+Date 0.680 0.813 0.904 0.838 1.027
Meta+Date+Cov 0.684 0.775 0.946 0.874 1.035
Meta+Date+Event 0.682 0.769 0.872 0.841 0.985
AllContext 0.690 0.767 0.967 0.887 1.056

Table 94: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 3/38)
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Method back to school barley inr t beef brl kg beekeeping biodiversity

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.570 0.969 0.524 1.019 0.648
Meta+Date 0.288 0.944 0.494 0.625 0.324
Meta+Date+Cov 0.302 1.018 0.659 0.531 0.300
Meta+Date+Event 0.300 0.889 0.649 0.629 0.310
AllContext 0.306 0.950 0.574 0.596 0.314

Table 95: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 4/38)

Method bitumen cny t black friday deals brent usd bbl broadway shows butter eur t

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.737 1.262 0.931 0.748 0.768
Meta+Date 0.734 0.563 0.830 0.637 0.837
Meta+Date+Cov 0.846 0.543 0.785 0.692 0.873
Meta+Date+Event 0.841 0.552 0.824 0.627 0.894
AllContext 0.733 0.571 0.818 0.666 0.773

Table 96: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 5/38)

Method cancer research canola cad t carbon emissions cheese usd lbs christmas gifts

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.883 0.772 0.838 0.771 0.225
Meta+Date 0.832 0.868 0.774 0.861 0.093
Meta+Date+Cov 0.857 0.940 0.687 0.932 0.090
Meta+Date+Event 0.815 0.998 0.760 0.868 0.094
AllContext 0.829 0.846 0.718 0.787 0.098

Table 97: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 6/38)

Method climate change coal usd t cocoa usd t coffee usd lbs comic con

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.893 0.736 0.884 0.788 0.812
Meta+Date 1.213 0.712 0.885 0.745 0.465
Meta+Date+Cov 1.262 0.610 1.000 0.850 0.490
Meta+Date+Event 0.696 0.704 0.935 0.955 0.492
AllContext 1.485 0.661 0.827 0.757 0.450

Table 98: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 7/38)

Method consumer electronics copper usd lbs corn usd bu cost of living cotton usd lbs

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.857 0.733 0.822 0.699 0.844
Meta+Date 0.634 0.816 0.966 0.801 1.274
Meta+Date+Cov 0.583 0.794 1.037 0.710 1.263
Meta+Date+Event 0.640 0.856 0.899 0.809 1.347
AllContext 0.621 0.635 0.855 0.799 1.148

Table 99: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 8/38)
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Method cryptocurrency cybersecurity data breach data privacy deforestation

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.809 0.946 0.922 0.879 0.634
Meta+Date 0.793 0.878 0.873 0.754 0.304
Meta+Date+Cov 0.769 0.956 0.798 0.756 0.315
Meta+Date+Event 0.764 0.942 0.800 0.764 0.302
AllContext 0.750 0.994 0.828 0.760 0.298

Table 100: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 9/38)

Method diabetes diammonium usd t domestic violence drones drought

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.789 0.797 0.749 0.827 0.789
Meta+Date 0.611 0.799 0.742 0.879 0.676
Meta+Date+Cov 0.568 0.785 0.710 0.853 0.651
Meta+Date+Event 0.591 0.743 0.737 0.854 0.726
AllContext 0.572 0.711 0.725 0.850 0.670

Table 101: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 10/38)

Method drug overdose earthquake electric vehicle endangered species esports

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.815 0.689 0.843 0.703 0.671
Meta+Date 0.514 0.942 0.818 0.329 0.642
Meta+Date+Cov 0.527 0.899 0.861 0.320 0.646
Meta+Date+Event 0.521 0.806 0.820 0.328 0.609
AllContext 0.514 0.854 0.829 0.332 0.621

Table 102: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 11/38)

Method ethanol usd gal fashion week federal budget deficit federal reserve film festivals

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.838 0.636 0.809 0.710 0.758
Meta+Date 0.913 0.276 0.454 0.627 0.667
Meta+Date+Cov 1.134 0.248 0.425 0.610 0.663
Meta+Date+Event 0.989 0.248 0.463 0.640 0.700
AllContext 0.805 0.250 0.473 0.646 0.689

Table 103: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 12/38)

Method financial regulation flooding flu shot food recall food safety

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.900 0.703 0.622 0.740 0.845
Meta+Date 0.731 0.758 0.237 1.211 0.751
Meta+Date+Cov 0.713 0.753 0.261 1.100 0.716
Meta+Date+Event – 0.752 0.237 1.032 0.698
AllContext 0.741 0.772 0.272 1.118 0.757

Table 104: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 13/38)
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Method food wine festivals formula 1 gallium cny kg gas prices gasoline usd gal

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.851 0.908 0.579 0.908 0.686
Meta+Date 0.929 0.664 0.579 1.276 1.172
Meta+Date+Cov 0.925 0.685 0.638 1.180 0.910
Meta+Date+Event 0.912 0.674 0.864 0.956 0.884
AllContext 0.935 0.717 0.581 1.217 0.698

Table 105: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 14/38)

Method gender equality gene editing germanium cny kg global warming gold usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.814 0.894 0.606 0.814 0.797
Meta+Date 0.340 0.692 0.620 0.569 1.005
Meta+Date+Cov 0.319 0.637 0.615 0.578 1.076
Meta+Date+Event 0.329 0.637 1.466 0.597 0.812
AllContext 0.333 0.692 0.732 0.576 0.927

Table 106: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 15/38)

Method goldman sachs government spending halloween costumes healthcare costs healthcare policy

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.686 0.905 0.322 0.869 0.846
Meta+Date 0.714 0.555 0.144 0.605 0.777
Meta+Date+Cov 0.646 0.505 0.127 0.621 0.778
Meta+Date+Event 0.658 0.495 0.131 0.577 0.759
AllContext 0.667 0.505 0.112 0.613 0.841

Table 107: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 16/38)

Method heatwave heavy rainfall hedge funds hiv aids homelessness

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.667 0.928 0.820 1.220 0.721
Meta+Date 0.548 0.634 0.848 0.645 0.709
Meta+Date+Cov 0.529 0.615 0.824 0.626 0.649
Meta+Date+Event 0.559 0.614 0.834 0.674 0.654
AllContext 0.543 0.626 0.842 0.674 0.630

Table 108: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 17/38)

Method human rights immigration reform income inequality indium cny kg infectious disease

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.825 0.879 0.734 0.792 0.794
Meta+Date 0.441 0.773 0.323 0.815 0.558
Meta+Date+Cov 0.427 0.724 0.290 0.785 0.555
Meta+Date+Event 0.424 0.750 0.311 1.259 0.581
AllContext 0.433 0.734 0.311 0.812 0.558

Table 109: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 18/38)
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Method inflation infrastructure spending international trade invasive species investment banking

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.783 0.879 0.882 0.569 0.849
Meta+Date 0.642 0.766 0.424 0.277 0.717
Meta+Date+Cov 0.596 0.766 0.410 0.273 0.743
Meta+Date+Event 0.622 0.767 0.434 0.287 0.731
AllContext 0.600 0.759 0.441 0.298 0.741

Table 110: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 19/38)

Method lead usd t lithium cny t lumber usd 1000 board feet magnesium cny t major league baseball

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.883 0.731 0.987 0.748 0.612
Meta+Date 1.036 0.504 0.996 0.846 0.248
Meta+Date+Cov 1.121 0.407 0.952 0.860 0.250
Meta+Date+Event 1.129 0.415 0.850 0.939 0.235
AllContext 0.838 0.578 0.882 0.781 0.241

Table 111: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 20/38)

Method manganese cny mtu marine life marine pollution mental health meta platforms

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.542 0.892 0.805 0.736 0.820
Meta+Date 0.553 0.523 0.332 0.461 0.665
Meta+Date+Cov 0.625 0.545 0.348 0.469 0.663
Meta+Date+Event 0.498 0.536 0.337 0.476 0.666
AllContext 0.519 0.569 0.337 0.459 0.652

Table 112: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 21/38)

Method meteor shower methanol cny t microsoft milk usd cwt minimum wage

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.592 0.925 0.683 0.564 0.992
Meta+Date 0.417 0.861 0.641 0.626 1.117
Meta+Date+Cov 0.297 1.012 0.667 0.702 0.991
Meta+Date+Event 0.336 0.816 0.616 0.686 1.017
AllContext 0.329 0.877 0.649 0.585 1.051

Table 113: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 22/38)

Method molybdenum cny kg mortgage rates music festivals naphtha usd t national basketball association

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.570 0.747 0.935 0.776 0.766
Meta+Date 0.558 0.747 0.490 0.984 0.688
Meta+Date+Cov 0.670 0.735 0.483 1.039 0.687
Meta+Date+Event 0.684 0.716 0.460 1.097 0.665
AllContext 0.560 0.716 0.460 0.827 0.687

Table 114: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 23/38)

77



4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2026

Method national debt national football league neodymium cny t nickel usd t nobel prize

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.837 0.775 0.562 0.761 0.826
Meta+Date 0.855 0.557 0.590 0.923 0.456
Meta+Date+Cov 0.816 0.557 0.695 1.110 0.500
Meta+Date+Event 0.791 0.554 0.513 0.910 0.414
AllContext 0.804 0.561 0.552 0.773 0.499

Table 115: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 24/38)

Method nvidia oat usd bu obesity opioid crisis organic food

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.772 0.851 0.745 0.726 0.787
Meta+Date 0.815 0.952 0.490 0.603 0.474
Meta+Date+Cov 0.734 1.106 0.546 0.541 0.463
Meta+Date+Event 0.730 1.027 0.520 0.557 0.476
AllContext 0.691 0.877 0.701 0.554 0.469

Table 116: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 25/38)

Method palladium usd t oz pest control pet adoption pet health platinum usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.730 0.711 0.786 0.844 0.754
Meta+Date 0.817 0.382 1.373 1.030 0.747
Meta+Date+Cov 0.884 0.360 0.770 1.124 0.919
Meta+Date+Event 0.975 0.368 0.866 1.064 0.772
AllContext 0.759 0.387 0.862 1.111 0.673

Table 117: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 26/38)

Method polyethylene cny t polypropylene cny t polyvinyl cny t potatoes eur 100kg poultry brl kgs

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.804 1.014 0.689 0.804 0.761
Meta+Date 0.790 0.884 0.644 0.742 0.804
Meta+Date+Cov 0.818 0.898 0.865 0.760 0.832
Meta+Date+Event 0.730 0.848 0.853 0.742 0.921
AllContext 0.673 0.936 0.586 0.679 0.783

Table 118: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 27/38)

Method presidential election private equity propane usd gal protest quantum computing

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.855 0.844 0.743 0.931 0.900
Meta+Date 0.823 0.899 0.864 0.914 0.961
Meta+Date+Cov 0.818 0.906 1.001 0.933 0.939
Meta+Date+Event 0.829 0.829 0.844 0.933 0.895
AllContext 0.827 0.878 0.756 0.985 0.930

Table 119: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 28/38)
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Method rapeseed eur t refugee support renewable energy rhodium usd t oz rice usd cwt

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.814 0.762 0.930 0.915 0.747
Meta+Date 0.856 0.541 0.413 0.945 0.714
Meta+Date+Cov 0.951 0.517 0.402 0.891 0.793
Meta+Date+Event 0.853 0.522 0.388 0.779 0.736
AllContext 0.773 0.531 0.420 0.914 0.671

Table 120: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 29/38)

Method robotics rocket launch rubber usd cents kg salmon nok kg silver usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 1.019 0.837 0.877 1.109 0.887
Meta+Date 0.961 1.051 1.008 1.174 0.846
Meta+Date+Cov 0.958 1.012 1.162 0.975 0.886
Meta+Date+Event 1.001 0.971 0.974 1.329 0.936
AllContext 0.962 1.030 0.806 1.326 0.818

Table 121: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 30/38)

Method ski gear soybeans usd bu space exploration steel cny t stock market

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.643 0.819 0.898 0.904 0.789
Meta+Date 0.215 1.183 0.407 0.926 0.749
Meta+Date+Cov 0.215 1.294 0.420 0.804 0.781
Meta+Date+Event 0.233 1.260 0.417 1.023 0.735
AllContext 0.225 0.908 0.418 0.866 0.758

Table 122: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 31/38)

Method student loans sugar usd lbs sustainable fashion tax software taxes

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.827 0.922 0.802 0.764 0.713
Meta+Date 0.792 0.939 0.658 0.368 0.189
Meta+Date+Cov 0.850 1.129 0.633 0.364 0.240
Meta+Date+Event 0.823 1.129 0.649 0.365 0.182
AllContext 0.844 0.946 0.648 0.379 0.191

Table 123: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 32/38)

Method tellurium cny kg tesla tin usd t titanium cny kg tour de france

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.722 0.707 0.802 0.588 0.380
Meta+Date 0.687 0.776 0.933 0.618 0.287
Meta+Date+Cov 0.656 0.747 0.871 0.600 0.198
Meta+Date+Event 0.787 0.711 1.080 0.628 0.321
AllContext 0.711 0.743 0.740 0.604 0.285

Table 124: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 33/38)
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Method traffic insurance unemployment rate uranium usd lbs urea usd t usdtoaud exchangerate

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.905 0.798 0.936 0.613 0.925
Meta+Date 0.964 0.533 0.944 0.496 0.827
Meta+Date+Cov 0.997 0.535 1.105 0.494 0.929
Meta+Date+Event 0.997 0.544 1.142 0.593 1.072
AllContext 1.048 0.529 0.869 0.507 0.807

Table 125: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 34/38)

Method usdtobrl exchangerate usdtocad exchangerate usdtochf exchangerate usdtogbp exchangerate usdtohkd exchangerate

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.795 0.716 0.978 0.766 0.810
Meta+Date 0.674 0.711 0.968 0.856 0.856
Meta+Date+Cov 0.822 0.915 1.139 0.897 0.985
Meta+Date+Event 1.099 0.795 0.890 0.964 0.970
AllContext 0.697 0.636 0.878 0.778 0.810

Table 126: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 35/38)

Method usdtoinr exchangerate usdtokrw exchangerate usdtomxn exchangerate usdtosgd exchangerate used car

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.783 0.927 0.775 1.038 0.935
Meta+Date 0.719 0.845 0.927 0.916 0.711
Meta+Date+Cov 0.705 0.911 0.915 1.017 0.682
Meta+Date+Event 0.734 0.920 0.927 1.041 0.673
AllContext 0.737 0.866 0.766 0.910 0.644

Table 127: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 36/38)

Method vaccine research venture capital volcanic eruption water scarcity wheat usd bu

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
Meta 0.918 0.834 1.009 0.930 0.895
Meta+Date 0.810 0.822 0.661 0.441 1.023
Meta+Date+Cov 0.846 0.848 0.591 0.443 1.048
Meta+Date+Event 0.803 0.803 0.502 0.442 1.087
AllContext 0.838 0.823 0.642 0.437 0.966

Table 128: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 37/38)

Method wildfires wildlife conservation wool aud 100kg zinc usd t

SeasonalNaive 1.000 1.000 1.000 1.000
Meta 0.630 0.897 0.755 0.779
Meta+Date 0.626 0.785 0.749 0.963
Meta+Date+Cov 0.649 0.807 0.770 0.967
Meta+Date+Event 0.626 0.799 0.728 0.927
AllContext 0.650 0.830 0.742 0.695

Table 129: Detailed MASE Results of Event Type Deep Analysis Using Gemini-2.0-Flash (cont’d,
part 38/38)
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S DETAILED MASE RESULTS OF REASONING MODELS WITH DATA AFTER
2025 JAN

Method affordable housing air conditioner air pollution air travel alphabet

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.625 0.498 0.311 0.822 0.738
GPT-5 0.500 0.448 0.321 0.864 0.677
Gemini-2.0-Flash 0.549 0.456 0.366 0.969 0.653
Gemini-2.5-Flash 0.583 0.328 0.356 0.932 0.635
DeepSeek-V3 0.516 0.351 0.297 1.068 0.628
DeepSeek-R1 0.603 0.616 0.440 0.699 0.886

Table 130: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (part 1/38)

Method aluminum usd t amazon animal migration animal rescue animal welfare

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.727 0.887 0.777 0.807 0.666
GPT-5 0.618 0.674 0.777 0.911 0.658
Gemini-2.0-Flash 1.164 0.408 0.844 0.773 0.711
Gemini-2.5-Flash 1.525 0.418 0.750 0.884 0.687
DeepSeek-V3 0.997 1.191 0.840 0.914 0.688
DeepSeek-R1 1.296 1.309 0.751 1.231 0.767

Table 131: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
2/38)

Method apple inc art exhibitions artificial intelligence asset management autonomous driving

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.775 0.728 0.992 0.744 0.862
GPT-5 0.712 0.794 0.823 0.755 1.055
Gemini-2.0-Flash 0.750 0.922 0.965 0.841 1.171
Gemini-2.5-Flash 0.722 1.529 1.082 0.663 1.148
DeepSeek-V3 0.824 0.809 1.056 0.840 0.946
DeepSeek-R1 0.863 1.181 0.942 0.745 1.099

Table 132: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
3/38)
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Method back to school barley inr t beef brl kg beekeeping biodiversity

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.353 0.659 0.646 0.439 0.297
GPT-5 0.475 0.877 0.706 0.477 0.396
Gemini-2.0-Flash 0.445 0.741 0.693 0.465 0.423
Gemini-2.5-Flash 0.492 0.780 0.934 1.660 0.414
DeepSeek-V3 0.406 0.836 0.751 0.395 0.397
DeepSeek-R1 0.655 0.922 0.945 0.420 0.522

Table 133: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
4/38)

Method bitumen cny t black friday deals brent usd bbl broadway shows butter eur t

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.901 0.007 1.085 0.600 1.126
GPT-5 0.898 0.004 0.966 0.666 1.149
Gemini-2.0-Flash 0.857 0.004 1.108 0.451 1.051
Gemini-2.5-Flash 1.304 0.004 1.016 1.635 1.135
DeepSeek-V3 0.925 0.003 0.977 0.802 1.351
DeepSeek-R1 1.465 0.002 1.094 1.391 1.204

Table 134: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
5/38)

Method cancer research canola cad t carbon emissions cheese usd lbs christmas gifts

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.710 0.789 0.702 0.727 0.063
GPT-5 0.893 0.696 0.991 0.631 0.045
Gemini-2.0-Flash 0.739 0.758 0.778 0.712 0.037
Gemini-2.5-Flash 0.764 0.930 1.027 0.741 0.006
DeepSeek-V3 0.749 0.634 0.680 0.692 0.063
DeepSeek-R1 0.653 0.847 0.820 0.623 0.028

Table 135: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
6/38)

Method climate change coal usd t cobalt usd t cocoa usd t coffee usd lbs

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 6.545 0.931 1.378 0.983 1.173
GPT-5 9.371 1.015 0.932 0.895 0.770
Gemini-2.0-Flash 6.639 1.105 1.007 1.029 1.220
Gemini-2.5-Flash 18.592 1.086 0.736 0.994 1.680
DeepSeek-V3 9.381 0.762 0.783 0.994 1.116
DeepSeek-R1 7.727 1.139 0.946 1.022 1.094

Table 136: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
7/38)
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Method comic con consumer electronics copper usd lbs corn usd bu cost of living

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.551 0.775 0.749 1.013 0.693
GPT-5 0.468 0.675 0.784 0.941 0.536
Gemini-2.0-Flash 0.484 0.704 0.730 1.004 0.597
Gemini-2.5-Flash 0.762 0.887 0.876 1.070 0.636
DeepSeek-V3 0.562 0.749 0.723 0.905 0.554
DeepSeek-R1 0.745 1.144 0.966 1.206 0.847

Table 137: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
8/38)

Method cotton usd lbs cryptocurrency cybersecurity data breach data privacy

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 1.049 0.775 0.748 1.299 0.721
GPT-5 1.177 0.614 0.718 1.114 0.713
Gemini-2.0-Flash 1.216 0.563 0.854 1.058 0.714
Gemini-2.5-Flash 1.467 1.630 0.642 2.352 0.719
DeepSeek-V3 1.141 0.697 0.891 1.207 0.925
DeepSeek-R1 1.469 1.314 0.792 1.434 0.721

Table 138: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
9/38)

Method deforestation diabetes diammonium usd t domestic violence drones

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.327 0.472 0.483 0.758 0.619
GPT-5 0.262 0.382 0.512 0.764 0.668
Gemini-2.0-Flash 0.364 0.485 0.950 0.860 0.568
Gemini-2.5-Flash 0.428 0.564 0.340 0.601 0.811
DeepSeek-V3 0.465 0.550 0.382 0.584 0.515
DeepSeek-R1 0.527 0.409 0.372 0.515 0.740

Table 139: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
10/38)

Method drought drug overdose earthquake electric vehicle endangered species

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.400 0.462 0.888 0.686 0.313
GPT-5 0.393 0.473 0.776 0.691 0.270
Gemini-2.0-Flash 0.513 0.442 0.816 0.649 0.326
Gemini-2.5-Flash 1.187 0.455 0.969 0.733 0.462
DeepSeek-V3 0.708 0.491 0.977 0.943 0.355
DeepSeek-R1 1.225 0.797 0.884 0.990 0.618

Table 140: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
11/38)
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Method esports ethanol usd gal fashion week federal budget deficit federal reserve

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.712 1.081 0.373 0.483 0.555
GPT-5 0.781 1.019 0.304 0.579 0.475
Gemini-2.0-Flash 0.418 0.982 0.298 0.529 0.445
Gemini-2.5-Flash 1.607 1.017 0.367 0.569 0.599
DeepSeek-V3 0.667 1.248 0.411 0.537 0.519
DeepSeek-R1 1.164 1.065 0.411 0.677 0.678

Table 141: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
12/38)

Method film festivals financial regulation flooding flu shot food recall

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.694 0.436 1.156 0.379 1.053
GPT-5 0.744 0.457 1.016 0.424 0.746
Gemini-2.0-Flash 0.720 0.576 1.060 0.378 0.731
Gemini-2.5-Flash 0.797 0.546 1.439 0.436 1.242
DeepSeek-V3 0.600 0.806 1.094 0.324 1.073
DeepSeek-R1 0.646 0.637 1.379 0.436 1.019

Table 142: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
13/38)

Method food safety food wine festivals formula 1 gallium cny kg gas prices

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.648 0.768 0.513 0.876 0.830
GPT-5 0.677 0.772 0.465 0.902 0.982
Gemini-2.0-Flash 0.770 1.026 0.531 2.649 0.795
Gemini-2.5-Flash 0.732 0.775 0.586 0.932 1.579
DeepSeek-V3 0.749 0.836 0.465 1.398 0.725
DeepSeek-R1 0.499 0.808 0.635 3.772 1.169

Table 143: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
14/38)

Method gasoline usd gal gender equality gene editing germanium cny kg global warming

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.672 0.300 0.708 0.964 0.792
GPT-5 0.596 0.242 0.696 0.910 0.795
Gemini-2.0-Flash 0.808 0.351 0.798 1.290 0.614
Gemini-2.5-Flash 0.803 0.501 1.021 3.568 0.981
DeepSeek-V3 0.677 0.587 0.884 1.534 0.963
DeepSeek-R1 1.046 0.531 1.249 4.826 1.196

Table 144: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
15/38)

Method gold usd t oz goldman sachs government spending healthcare costs healthcare policy

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 1.181 0.717 0.586 0.557 0.604
GPT-5 0.872 0.663 0.515 0.537 0.542
Gemini-2.0-Flash 1.156 0.687 0.551 0.591 0.544
Gemini-2.5-Flash 1.399 0.749 0.454 0.669 0.828
DeepSeek-V3 1.077 0.672 0.591 0.670 0.704
DeepSeek-R1 1.668 0.862 0.561 0.726 0.558

Table 145: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
16/38)
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Method heatwave heavy rainfall hedge funds hiv aids homelessness

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.895 0.494 0.668 0.656 0.772
GPT-5 0.900 0.563 0.583 0.694 0.844
Gemini-2.0-Flash 0.782 0.637 0.782 0.814 0.936
Gemini-2.5-Flash 2.677 0.678 0.646 0.784 1.657
DeepSeek-V3 0.934 0.526 0.734 0.914 0.991
DeepSeek-R1 2.180 0.456 0.689 0.776 1.210

Table 146: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
17/38)

Method human rights immigration reform income inequality indium cny kg infectious disease

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.472 0.857 0.369 0.641 0.452
GPT-5 0.453 0.903 0.404 0.551 0.450
Gemini-2.0-Flash 0.482 0.673 0.359 0.790 0.504
Gemini-2.5-Flash 0.464 1.558 0.442 0.882 0.502
DeepSeek-V3 0.678 0.947 0.493 0.771 0.602
DeepSeek-R1 0.567 0.812 0.414 1.200 0.780

Table 147: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
18/38)

Method inflation infrastructure spending international trade invasive species investment banking

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.640 0.428 0.456 0.266 0.647
GPT-5 0.732 0.614 0.406 0.268 0.453
Gemini-2.0-Flash 0.566 0.693 0.478 0.286 0.640
Gemini-2.5-Flash 0.613 0.847 1.113 0.546 0.384
DeepSeek-V3 0.824 0.579 0.596 0.385 0.759
DeepSeek-R1 0.860 0.780 1.036 0.451 0.616

Table 148: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
19/38)

Method lead usd t lithium cny t lumber usd 1000 board feet magnesium cny t major league baseball

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.766 0.238 0.979 0.810 0.223
GPT-5 0.735 0.372 0.997 0.806 0.222
Gemini-2.0-Flash 0.705 0.221 0.891 0.967 0.228
Gemini-2.5-Flash 0.911 0.223 1.539 0.819 0.347
DeepSeek-V3 1.024 0.372 0.983 0.776 0.264
DeepSeek-R1 1.054 0.257 1.298 0.701 0.580

Table 149: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
20/38)

Method manganese cny mtu marine life marine pollution mental health meta platforms

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.832 0.521 0.303 0.443 0.730
GPT-5 0.724 0.541 0.300 0.380 0.670
Gemini-2.0-Flash 0.718 0.585 0.374 0.441 0.656
Gemini-2.5-Flash 1.109 0.383 0.366 0.340 0.866
DeepSeek-V3 0.782 0.626 0.401 0.618 0.691
DeepSeek-R1 0.718 0.486 0.490 0.517 0.928

Table 150: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
21/38)
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Method meteor shower methanol cny t microsoft milk usd cwt minimum wage

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.665 0.809 0.721 0.903 1.096
GPT-5 0.275 0.842 0.595 0.958 0.918
Gemini-2.0-Flash 0.311 0.812 0.709 0.857 1.009
Gemini-2.5-Flash 0.573 0.702 1.163 1.067 1.308
DeepSeek-V3 0.363 0.922 0.872 0.848 0.882
DeepSeek-R1 0.979 0.623 1.069 0.926 0.958

Table 151: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
22/38)

Method molybdenum cny kg mortgage rates music festivals naphtha usd t national basketball association

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.794 0.770 0.349 1.235 0.587
GPT-5 0.803 0.740 0.305 0.942 0.681
Gemini-2.0-Flash 0.747 0.839 0.331 1.142 0.629
Gemini-2.5-Flash 0.850 0.827 0.738 1.110 0.729
DeepSeek-V3 1.007 0.781 0.443 1.027 0.503
DeepSeek-R1 1.003 0.920 0.557 1.154 0.641

Table 152: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
23/38)

Method national debt national football league neodymium cny t nickel usd t nobel prize

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.737 0.615 0.942 0.913 0.566
GPT-5 0.610 0.586 0.956 0.763 0.385
Gemini-2.0-Flash 0.663 0.542 0.908 0.980 0.511
Gemini-2.5-Flash 0.620 0.829 1.080 0.866 0.526
DeepSeek-V3 0.736 0.724 1.041 0.736 0.507
DeepSeek-R1 0.697 1.121 0.963 0.672 0.729

Table 153: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
24/38)

Method nvidia oat usd bu obesity opioid crisis organic food

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 1.315 0.944 0.608 0.729 0.407
GPT-5 1.130 0.872 0.422 0.383 0.317
Gemini-2.0-Flash 0.826 0.894 0.669 0.449 0.426
Gemini-2.5-Flash 1.692 1.033 1.499 0.387 0.369
DeepSeek-V3 1.678 1.108 0.768 0.597 0.479
DeepSeek-R1 1.663 1.187 0.886 0.641 0.722

Table 154: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
25/38)

Method palladium usd t oz pest control pet adoption pet health platinum usd t oz

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.838 0.362 1.028 0.747 0.556
GPT-5 1.021 0.311 0.881 0.836 0.572
Gemini-2.0-Flash 1.002 0.436 0.809 0.933 0.493
Gemini-2.5-Flash 1.080 0.259 1.345 0.813 0.717
DeepSeek-V3 1.036 0.394 0.994 0.883 0.611
DeepSeek-R1 1.250 0.250 1.848 0.857 0.717

Table 155: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
26/38)
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Method polyethylene cny t polypropylene cny t polyvinyl cny t potatoes eur 100kg poultry brl kgs

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.711 0.718 0.878 0.706 0.654
GPT-5 0.776 0.610 0.954 0.730 0.399
Gemini-2.0-Flash 0.724 0.711 0.833 0.738 0.565
Gemini-2.5-Flash 0.818 0.765 0.974 0.760 0.447
DeepSeek-V3 0.759 0.863 0.993 0.757 0.923
DeepSeek-R1 0.687 0.798 0.943 1.034 0.534

Table 156: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
27/38)

Method presidential election private equity propane usd gal protest quantum computing

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.952 0.619 1.246 0.974 0.702
GPT-5 0.407 0.691 0.869 0.989 0.902
Gemini-2.0-Flash 0.522 0.818 1.140 1.043 0.843
Gemini-2.5-Flash 0.387 0.671 0.794 0.999 0.800
DeepSeek-V3 0.406 0.817 1.330 1.017 0.750
DeepSeek-R1 0.384 0.823 1.035 0.994 0.197

Table 157: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
28/38)

Method rapeseed eur t refugee support renewable energy rhodium usd t oz rice usd cwt

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.807 0.576 0.365 0.875 1.084
GPT-5 0.761 0.599 0.368 0.570 1.061
Gemini-2.0-Flash 0.858 0.549 0.476 0.776 1.482
Gemini-2.5-Flash 0.817 0.667 0.554 0.535 1.070
DeepSeek-V3 0.808 0.689 0.499 1.087 1.139
DeepSeek-R1 0.900 0.751 0.537 0.630 1.474

Table 158: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
29/38)

Method robotics rocket launch rubber usd cents kg silver usd t oz ski gear

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 1.049 0.870 1.063 1.049 0.205
GPT-5 0.893 0.769 0.445 1.023 0.216
Gemini-2.0-Flash 1.058 0.889 1.012 1.043 0.150
Gemini-2.5-Flash 1.093 0.711 0.965 1.297 0.150
DeepSeek-V3 1.110 0.815 1.017 1.035 0.248
DeepSeek-R1 1.157 0.680 1.126 1.426 0.218

Table 159: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
30/38)

Method soybeans usd bu space exploration steel cny t stock market student loans

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 1.198 0.433 0.883 0.925 0.879
GPT-5 1.121 0.440 0.898 1.041 0.759
Gemini-2.0-Flash 1.569 0.393 1.097 1.027 0.872
Gemini-2.5-Flash 1.470 0.334 0.966 0.848 0.897
DeepSeek-V3 1.195 0.612 1.005 0.910 0.909
DeepSeek-R1 1.610 0.434 1.592 0.779 0.820

Table 160: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
31/38)
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Method sugar usd lbs sustainable fashion tax software taxes tellurium cny kg

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.613 0.514 0.290 0.168 1.085
GPT-5 0.640 0.549 0.324 0.168 0.975
Gemini-2.0-Flash 0.722 0.581 0.327 0.170 0.893
Gemini-2.5-Flash 0.603 0.635 0.347 0.170 1.240
DeepSeek-V3 0.933 0.632 0.362 0.628 1.343
DeepSeek-R1 0.682 0.732 0.359 0.346 2.312

Table 161: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
32/38)

Method tesla tin usd t titanium cny kg tour de france traffic insurance

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.706 0.665 1.184 1.729 0.777
GPT-5 0.642 0.504 0.520 0.949 0.757
Gemini-2.0-Flash 0.751 0.697 0.831 1.438 1.079
Gemini-2.5-Flash 0.627 0.501 1.094 0.891 0.758
DeepSeek-V3 0.738 0.576 0.884 1.483 0.850
DeepSeek-R1 0.700 0.601 0.852 2.873 0.700

Table 162: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
33/38)

Method unemployment rate uranium usd lbs urea usd t usdtoaud exchangerate usdtobrl exchangerate

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.572 0.723 0.492 1.076 0.658
GPT-5 0.356 0.904 0.393 1.116 0.659
Gemini-2.0-Flash 0.406 0.807 0.495 1.084 0.691
Gemini-2.5-Flash 0.383 1.300 0.858 1.124 0.660
DeepSeek-V3 0.838 0.904 0.497 1.161 0.663
DeepSeek-R1 0.720 1.091 0.669 1.360 0.620

Table 163: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
34/38)

Method usdtocad exchangerate usdtochf exchangerate usdtogbp exchangerate usdtohkd exchangerate usdtoinr exchangerate

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.873 0.615 0.981 0.621 0.601
GPT-5 0.861 0.663 1.003 0.629 0.608
Gemini-2.0-Flash 0.868 0.643 1.012 0.632 0.626
Gemini-2.5-Flash 0.886 0.636 1.019 0.623 0.615
DeepSeek-V3 0.906 0.633 1.041 0.595 0.570
DeepSeek-R1 0.912 0.614 0.929 0.439 0.666

Table 164: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
35/38)

Method usdtokrw exchangerate usdtomxn exchangerate usdtosgd exchangerate used car vaccine research

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 1.175 0.939 1.057 0.545 0.715
GPT-5 1.163 0.940 1.082 0.271 0.815
Gemini-2.0-Flash 1.152 0.956 1.063 0.475 0.942
Gemini-2.5-Flash 1.193 0.989 1.088 0.414 0.784
DeepSeek-V3 1.201 0.996 1.117 0.565 0.876
DeepSeek-R1 1.257 1.001 1.000 0.618 0.923

Table 165: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
36/38)
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Method venture capital volcanic eruption water scarcity wheat usd bu wildfires

SeasonalNaive 1.000 1.000 1.000 1.000 1.000
GPT-4o 0.634 0.490 0.401 1.080 0.557
GPT-5 0.357 0.519 0.469 1.195 0.568
Gemini-2.0-Flash 0.835 0.683 0.522 1.106 0.546
Gemini-2.5-Flash 0.759 0.921 0.439 1.362 0.989
DeepSeek-V3 0.782 1.044 0.512 1.099 0.555
DeepSeek-R1 0.874 0.827 0.515 1.525 0.834

Table 166: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
37/38)

Method wildlife conservation wool aud 100kg zinc usd t

SeasonalNaive 1.000 1.000 1.000
GPT-4o 0.631 0.441 0.911
GPT-5 0.686 0.468 0.803
Gemini-2.0-Flash 0.911 0.426 0.989
Gemini-2.5-Flash 0.481 0.484 1.214
DeepSeek-V3 0.865 0.693 1.072
DeepSeek-R1 0.514 0.846 1.158

Table 167: Detailed MASE Results of Reasoning Models with Data after 2025 Jan (cont’d, part
38/38)
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T MODEL RANKINGS ROBUSTNESS TO BENCHMARK SIZE

We study how the size of the evaluation benchmark affects the stability of model performance.
Starting from the 190 in-distribution variables in TimesX, we construct smaller benchmark variants
by randomly sampling subsets of variables without replacement.

For a target subset size K ∈ {10, 20, . . . , 190}, we draw 20 subsets of K distinct variables. For
each subset and each forecasting model, we compute the geometric-mean normalized MASE over
the variables in that subset. This gives, for every (K,model) pair, a distribution of MASE values
across random subsets.

Figure 33 summarizes these results. The horizontal axis is the number of variables K, and for
each model we plot the mean MASE over the 20 subsets (solid line) together with the 5th–95th
percentile band (shaded area). When K is between 10 and 40—which is similar to the sizes of most
existing multimodal TSF benchmarks listed in Table 1—the percentile bands are very wide and
strongly overlap across models. This means that, in this small-scale regime, the apparent ranking of
models can change substantially depending on which variables are included in the benchmark. As
K increases, the bands shrink and the relative ordering becomes more stable.

These observations support our motivation of designing a large-scale benchmark for more stable and
reliable comparisons.

Figure 33: Effect of benchmark size on the geometric-mean normalized MASE. For each subset size
K, we sample 20 subsets of K variables from TimesX, compute the metric for each model on each
subset, and plot the mean (solid line) and the 5th–95th percentile band (shaded area). When K is at
existing benchmark scale (10–40), the bands are wide and strongly overlapping, indicating unstable
rankings; at larger K the bands narrow and the ordering becomes more stable.

90



4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913

Under review as a conference paper at ICLR 2026

Input
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Figure 34: The complete workflow of the Hypothesizer-Verifier-Enricher framework. This multi-
agent pipeline incorporates explicit loops for verification and iterative enrichment, with strict API-
level time constraints in Phase 3 to ensure timestamp accuracy and prevent data leakage.

91



4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967

Under review as a conference paper at ICLR 2026

U DETAILED EXECUTION LOG: COTTON PRICE CASE STUDY

To further elucidate the leakage prevention and verification mechanisms of the Hypothesizer-
Verifier-Enricher (H-V-E) framework, we present a detailed step-by-step execution log for the vari-
able “cotton price” over the historical window from 2024-01-01 to 2024-03-31.

PHASE 1: HYPOTHESIZER

• Input: Keyword: “cotton price”; Time Range: 2024-01-01 to 2024-03-31.

• Action 1 (Peak Discovery): The system analyzed the time-series data and identified 10
significant peaks requiring explanation (e.g., 2024-01-08, 2024-02-19, etc.).

• Action 2 (Event Discovery): The LLM (Gemini-2.5-Pro) performed an initial search and
generated 14 candidate events. Examples include:

– Event 66e0: “The USDA’s January 2024 WASDE report...” (Source: cotton-
grower.com/...)

– Event 57e9: “The USDA’s weekly export sales report...” (Source: ccf-
group.com/...)

– Event a7a7: “An early 2024 report highlighted... Panama Canal...” (Source: ter-
rain.sc.eg/...)

PHASE 2 & 3: VERIFIER & ENRICHER (PARALLEL STREAMS)

The system spawned 14 independent verification tasks for the candidate events. We illustrate the
robustness of the pipeline using three representative tasks:

Task 1: Successful Verification (Event 66e0 - USDA WASDE Report)

• Verify: Crawler accessed cottongrower.com/... (Status: Success).

• Verify: The claim verifier agent (Gemini-2.5-Flash) cross-referenced the crawled
content with the claim and confirmed consistency.

• Enrich (Evaluate): The info sufficiency evaluator deemed the information
sufficient.

• Finalize: The final synthesis agent generated the final summary.

• Output: Status VERIFIED.

Task 2: Verification Failure and Discard (Event 57e9 - USDA Weekly Sales)

• Verify: Crawler attempted to access ccfgroup.com/... (Status: Failed, er-
ror page 404).

• Enrich (Evaluate): Evaluator deemed information insufficient, triggering an Action Plan.

• Enrich (Act): Agent generated a new query: “cotton price official announcement”.

• Enrich (Act - Leakage Prevention): The system executed a time-bounded search.

INFO - Executing Date-Restricted Search: 2024-01-05 to
2024-01-19
INFO - [SEARCH DEBUG] tbs: cdr:1,cd min:01/05/2024,cd max:01/19/2024

• Verify (Loop 2): System crawled new URLs (e.g., usda.gov), but the claim verifier
could not verify the specific statistics (“262,500 running bales”) from the new sources.

• Finalize: Verification failed after max attempts.

• Output: Status UNVERIFIED. The event was discarded.
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Task 3: Recovery via Enrichment (Event a7a7 - Panama Canal)

• Verify: Crawler attempted to access terrain.sc.eg/... (Status: Failed,
net::ERR NAME NOT RESOLVED).

• Enrich (Evaluate): Evaluator deemed information insufficient.
• Enrich (Act): Agent generated a new query: “cotton price... Panama Canal... details”.
• Enrich (Act - Leakage Prevention): The system executed a time-bounded search to find

alternative sources.
INFO - Executing Date-Restricted Search: 2024-01-03 to
2024-01-17
INFO - [SEARCH DEBUG] tbs: cdr:1,cd min:01/03/2024,cd max:01/17/2024

• Enrich (Act): Search successfully retrieved valid new URLs (e.g., windward.ai/...
and porttechnology.org/...).

• Verify (Loop 2): Crawler accessed windward.ai/... (Status: Success).
• Verify (Loop 2): The claim verifier successfully verified the facts regarding the

Panama Canal drought impact.
• Finalize: The final synthesis agent generated the final summary using the verified

facts from the new source.
• Output: Status VERIFIED.
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V DETAILS ON TIME ISOLATION AND EVENT TIMESTAMP VERIFICATION

Addressing the risk of sample-level information leakage—specifically, the inclusion of future events
within the historical window—is a critical challenge in constructing time-series datasets. As stated in
Section 4.1, our evaluation protocol strictly incorporates textual events with timestamps that precede
the prediction window. Consequently, the integrity of our benchmark hinges on the Dataset Agent’s
capability to accurately annotate event timestamps.

Our Dataset Agent does not operate as a simple, unrestricted web search tool, but rather as a rig-
orous, multi-stage verification pipeline governed by the Hypothesizer-Verifier-Enricher framework
(see Figure 34). To mitigate hallucinations and prevent timestamp errors, we design a three-tier
correction mechanism:

• Verifier (Phase 2a-2b): Following the initial event list generation by LLM A in the Hy-
pothesizer phase, the Verifier employs a web crawler to fetch content from specific URLs.
It then utilizes LLM B to strictly validate whether the dates within the webpage content
align with the proposed event, thereby filtering out discrepancies.

• Enricher (Phase 3): For details that the Verifier cannot conclusively confirm, the Enricher
formulates search queries. Crucially, in Phase 3b, we enforce hard constraints on the search
engine API (e.g., the tbs parameter in the Google Search API), restricting results to a time
window of ±k days around the candidate event date. This API-level constraint provides a
strong guarantee for timestamp validity.

• Synthesizer (Phase 4): LLM E aggregates all verified evidence to make a final adjudica-
tion. Any event that fails to achieve cross-source verification regarding its date is rejected.

V.1 MANUAL AUDIT OF TIMESTAMP ACCURACY

To empirically validate this mechanism, we conducted a manual audit on 50 randomly sampled
events generated by the pipeline.13

• In 47 cases (94%), the automatically annotated timestamps matched the human annotation
exactly.

• In 2 cases (4%), the agent’s timestamp was 1–2 days later than the human annotation. This
represents a conservative error that does not constitute leakage.

• Only 1 case (2%) was dated 1 day earlier than the human annotation. Upon inspection,
this discrepancy arose from ambiguity in defining the date for a complex event involving
multiple sequential developments.

V.2 CASE STUDY: CORRECTING REPORTING LAG

We observe that the agent is capable of reducing reporting lag while maintaining strict leakage
prevention. We present a representative case study regarding Medicare drug costs to demonstrate
this capability:

• Initial Signal: A news article reports on a study regarding rising drug costs on February
18 (Source: USC News14).

• Agent Action: The agent traces the primary source cited within the news report.
• Correction: The agent successfully retrieves the original JAMA Health Forum article pub-

lished on February 14 and corrects the event timestamp from February 18 to February 14.

This precision ensures that the event is correctly aligned with the historical window, capturing the
earliest valid signal without violating temporal causality.

13The full validation results are available at https://anonymous.4open.science/r/TimesX_
UnderReview-387D/Supp/timestamps-eval.csv

14https://hscnews.usc.edu/medicare-beneficiaries-face-much-higher-drug-costs-as-plans-shift-to-coinsurance
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Table 168: Results on all the five CiK subsets (MASE ↓). The geometric-mean column shows that
CODEREV performs best, followed by Gemini-2.0-Flash, and then TimesFM-2.5. This ordering is
the opposite of what we observe on real-world data (TimesX), illustrating that synthetic generation
can flip model rankings. While, carefully designed synthetic benchmarks like CiK are very useful
for testing specific capabilities such as instruction following and different types of reasoning over
controlled contexts. We highly recommend using both synthetic and real-world benchmarks for a
more complete and robust evaluation

Method CiK Causal CiK Covariates CiK History CiK Intemporal CiK Future Geom. mean MASE
CODEREV 0.76 0.58 0.67 0.66 0.24 0.38 (#1)
Gemini-2.0-Flash 0.77 0.57 0.76 0.61 0.32 0.43 (#1)
TimesFM-2.5 0.73 0.73 0.69 0.71 0.70 0.58 (#3)

W EVALUATION SAMPLES STATISTICS

Under our rolling-window evaluation setup, we obtain a total of 2,434 forecasting samples on
TimesX. These samples cover 19 domains and 190 variables. On average, each domain contributes
about 128.1 samples, and each variable contributes about 12.8 samples.

X PCA AND T-SNE VISUALIZATIONS

In this section we visualize the diversity of TimesX in both the textual and numeric spaces. For
textual features, we compute embeddings for each variable’s context and then apply PCA and t-SNE
to obtain two-dimensional representations. For numeric features, we extract summary statistics or
learned representations of each time series and apply the same dimensionality-reduction procedures.
We color the points either by domain or by data source.

Across all plots we make two consistent observations. First, there is clear diversity in both the textual
and numeric spaces, with points spread over the two-dimensional maps rather than concentrating in
a few tight clusters. Second, the three data sources form distinct clusters in feature space, which
supports the value of integrating multiple sources to achieve broad coverage and diversity.
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Figure 35: PCA and t-SNE visualizations of textual features in TimesX. Each point corresponds to
a variable, colored either by domain or by data source.
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Figure 36: PCA and t-SNE visualizations of numeric time-series features in TimesX. Each point
corresponds to a variable, colored either by domain or by data source.
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Y LIMITATIONS AND FUTURE DIRECTIONS

Y.1 CRPS-BASED PROBABILISTIC EVALUATION

In the main text we focus on the (normalized) MASE because most LLM-based methods in our
study output point forecasts rather than full predictive distributions. Here we complement this view
with a probabilistic evaluation based on the continuous ranked probability score (CRPS).

For a predictive distribution F over a scalar outcome y, the CRPS is defined as

CRPS(F, y) =

∫ +∞

−∞

(
F (z)− 1{z ≥ y}

)2
dz. (13)

When we only have samples x1, . . . , xM from the predictive distribution, we estimate the CRPS
follow CiK (Williams et al., 2024b). Let x1 ≤ · · · ≤ xM denote the samples sorted in ascending
order. An efficient estimator is

ĈRPS(X̃, y) ≈ 1

M

M∑
n=1

|xn − y|+ 1

M

M∑
n=1

xn − 2

M(M − 1)

M∑
n=1

(n− 1)xn, (14)

where X̃ = {x1, . . . , xM} and the xn are sorted. This estimator has O(M logM) time complexity
due to the sorting step and is numerically equivalent to the standard unbiased estimator based on
pairwise distances.

In our experiments we treat each stochastic run of a method as one sample from its predictive distri-
bution. For every method and every evaluation instance on TimesX, we produce M = 10 stochastic
forecasts, compute the CRPS using Equation equation 14, and then aggregate CRPS across variables
using geometric mean . Table 169 reports the resulting aggregated CRPS values (lower is better).

Table 169: Geometric-mean CRPS on TimesX when estimating predictive uncertainty with 10
stochastic samples per instance. Lower is better.

Method Geometric-mean CRPS
GPT-4o 0.258
Gemini-2.0-Flash 0.276
DeepSeek-V3 0.277
Sundial 0.278
TimesFM-2.5 0.293
Moirai-2.0 0.327

All three LLMs achieve lower geometric-mean CRPS than the three TFMs. This is consistent with
our MASE results and suggests that LLMs can use the rich textual context in TimesX to assign
probability mass to multiple plausible futures, while TFMs rely only on numeric series. We view
this CRPS study as an initial step toward more systematic probabilistic evaluation on TimesX; future
work may explore improved uncertainty estimation and training objectives that directly optimize
probabilistic scores such as CRPS.

Y.2 COVERAGE OF LOW-FREQUENCY TIME SERIES

The current release of TimesX focuses on daily and weekly frequencies. There are two main rea-
sons for this choice. First, our goal is to perform leakage-free evaluation using data strictly after the
knowledge cutoffs of mainstream LLMs (around June 2024). Under this constraint, even if we col-
lect monthly or quarterly data from July 2024 to August 2025 (submission deadline), there would be
only about 13 monthly points or 4 quarterly points per variable, which is too short for a meaningful
forecasting evaluation.

Second, many real-world monthly or quarterly indicators can be constructed by aggregating higher-
frequency series. Users of TimesX can aggregate our daily or weekly variables into monthly or
quarterly indicators when they wish to study lower-frequency behavior. This provides a practical
way to analyze coarser temporal patterns on top of TimesX.
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We fully agree that native monthly and quarterly series would further improve coverage. We are ac-
tively searching for real-world, regularly updated low-frequency series that satisfy the same leakage-
free constraint, and we plan to add such variables in future versions of TimesX.

Y.3 GEOGRAPHIC AND MEDIA BIAS

Event texts in the current version of TimesX are written in English. We adopt English as a starting
point, in line with common practice in NLP where a robust English setup is built first and then
extended to multilingual settings. At the same time, the numeric variables themselves already cover
multiple regions, including North America (United States, Canada), Asia (China, India), Europe
(United Kingdom, Norway, Germany), South America, and Africa.

We are aware that geographic and media biases can still arise. As shown in the workflow diagram
in Figure 34, our dataset construction agent already takes several steps to mitigate these biases. In
Steps 1b and 3b, the web search is configured with a global scope rather than a single country or
region. In Step 3b, the search engine retrieves information from multiple sources. In Step 4a, the
Synthesizer LLM is instructed to cross-check evidence across sources and to give higher weight to
authoritative outlets when producing the final event description. These design choices help, but they
cannot completely remove bias.

In future versions of TimesX, we plan to make biases more transparent and more controllable by
explicitly disentangling each stored event description into two parts: an “Objective Facts” segment
that records dates, numbers, and events that have already occurred, and a “Subjective Analysis”
segment that records market sentiment and speculative commentary. This structured separation will
allow users to focus on objective information when needed and to design more targeted robustness
analyses.

Y.4 OUT-OF-DISTRIBUTION EVALUATION: MULTILINGUAL AND SPARSE-EVENT VARIABLES

To explore out-of-distribution (OOD) generalization, we extend TimesX with two types of additional
variables that are not part of the main in-distribution set: multilingual variables and sparse-event
rare-disease variables.

Multilingual variables. The main release of TimesX uses English event texts, but we agree that
multilingual and region-specific events are important. To this end, we construct 11 new non-English
variables that span five continents and cover the following languages: Afrikaans, French, German,
Hindi, Japanese, Korean, Portuguese, Simplified Chinese, Spanish, Swahili, and Turkish. Each vari-
able focuses on region-specific topics in the corresponding language. These multilingual variables
are available in an extended split of TimesX.15 We reserve them for OOD evaluation rather than
including them in the main in-distribution benchmark.

Sparse-event rare-disease variables. We also construct five rare-disease variables to study
sparse-event settings: Chagas disease, Huntington’s disease, Guinea worm disease, Marburg virus
disease, and Nipah virus.16 For these variables, the numeric component currently uses search-trend
signals; we are actively looking for stable, regularly updated sources of case counts or incidence
rates.

Figure 37 visualizes the search-trend signals for these five rare-disease variables. Even though the
events are sparse, the series still show noticeable spikes around news or outbreak-related periods.

We further compute statistics over the constructed events for these rare-disease variables. Table 170
reports the number of events, the average event summary length, and several time-series character-
istics. Compared with typical variables in TimesX (see Tables 11 and 15), the rare-disease variables
indeed have fewer events, but still more than 30 events per disease between 2023 and mid-2025 on
average. This suggests that our dataset agent remains effective even in sparse-event domains and
can recover a reasonable amount of external context.

15https://anonymous.4open.science/r/TimesX_UnderReview-387D/Datasets_
Extended/Explore_MultiLanguagAndRareDisease/Multilanguage-2023-2025/

16https://anonymous.4open.science/r/TimesX_UnderReview-387D/Datasets_
Extended/Explore_MultiLanguagAndRareDisease/RareDisease-2023-2025
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Figure 37: Search-trend signals for the five rare-disease variables in TimesX. Each panel shows
a normalized trend series for one disease, where spikes often align with news or outbreak-related
events.

Table 170: Statistics of sparse-event rare-disease variables in TimesX. “Events” is the number of
constructed events per variable between 2023 and mid-2025; “Avg. summary len” is the average
length of event descriptions; the remaining columns are time-series characteristics computed as in
Tables 11 and 15.

Variable Events Avg. summary len Transition Shifting Seasonality Trend Stationarity
Chagas disease 29 443.28 0.00651 -0.733 0.555 0.239 2.49× 10−3

Guinea worm disease 18 423.17 0.00536 0.107 0.724 0.134 4.48× 10−14

Huntington’s disease 56 437.13 0.00690 -0.145 0.550 0.167 7.38× 10−6

Marburg virus disease 30 569.47 0.01316 -0.237 0.590 0.395 1.93× 10−16

Nipah virus 24 478.67 0.03846 -0.412 0.372 0.403 4.77× 10−7

Average 31.4 470.34 0.01408 -0.284 0.558 0.268 4.99× 10−4

Y.5 SUPPORT FOR FINETUNING AND FUTURE EXPLORATION

The main focus of this paper is to address the lack of an appropriate multimodal TSF evaluation
benchmark. We see this as a key bottleneck before fully exploring finetuning strategies. At the same
time, we aim to make TimesX a useful testbed for future work on finetuning TFMs and LLMs.

To support finetuning, we construct an additional dataset that covers the years 2018–2022 for the
same 190 in-distribution variables, including both numeric series and textual contexts.17 This split
is intended as a training resource, while the 2023–2025 split serves as the main evaluation period.

As a first step toward using TimesX for finetuning-style studies, we run a simple one-shot in-context
learning (ICL) experiment with Gemini 2.0 Flash. For each of the 190 variables, we select the
last three evaluation instances and compare four methods: a simple ensemble of Gemini 2.0 Flash

17https://anonymous.4open.science/r/TimesX_UnderReview-387D/Datasets_
Extended/Finetune_2018-2022/
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Table 171: Geometric-mean normalized MASE on the last three evaluation instances per variable
when adding a one-shot ICL example for Gemini 2.0 Flash. Lower is better.

Method Geometric-mean MASE
AvgEns (Gemini-2.0-Flash + TimesFM-2.5) 0.712
Gemini-2.0-Flash 1-shot ICL 0.727
Gemini-2.0-Flash 0.748
TimesFM-2.5 0.750

and TimesFM-2.5 (AvgEns), Gemini 2.0 Flash with one ICL example, Gemini 2.0 Flash without
ICL, and TimesFM-2.5 alone. Table 171 reports the geometric-mean normalized MASE over all
variables.

We observe that adding a single ICL example already improves Gemini 2.0 Flash compared with the
zero-shot setting, although it does not yet surpass the simple ensemble. This suggests that finetuning
or more advanced adaptation schemes on TimesX could be promising. A thorough study of finetun-
ing TFMs and LLMs on TimesX would, however, require substantial additional effort in terms of
computation and method design (including tokenization, alignment strategies, and loss functions),
which is beyond the scope of this dataset-and-benchmark paper. We hope that the finetuning split,
the refreshable leakage-free evaluation set, and our empirical findings can serve as a solid foundation
for future work on finetuning models for multimodal time-series forecasting.
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