Table Retrieval Does Not Necessitate Table-specific Model Design

Anonymous ACL submission

Abstract

Tables are an important form of structured data
for both human and machine readers alike, pro-
viding answers to questions that cannot, or can-
not easily, be found in texts. Recent work de-
signs special models and trains for table-related
tasks such as table-based question answering
and table retrieval. Though effective, they add
model-data dual complexity to generic text so-
lutions and obscure which elements are truly
beneficial. In this work, we focus on the task
of table retrieval, and ask: “are table-specific
model designs necessary for table retrieval, or
can a text-generic model be effectively used to
achieve a similar result?” We start by analyzing
NQ-table, a set of table-answerable questions
in the Natural Questions (NQ) dataset, and find
90% of the questions can match tables in con-
tent with little concern for table structure. Mo-
tivated by this, we experiment with a general-
purpose Dense Passage Retriever (DPR) for
text and a special-purpose Dense Table Re-
triever (DTR) for tables. We show that DPR,
without any design for or training on tables, can
perform comparably well to the state-of-the-
art DTR model, and neither adding DTR-like
table-specific embeddings nor perturbing cell
orders lead to significant changes. Both results
strongly indicate that table retrieval does not
necessitate table-specific model design, as well
as the potential of directly applying powerful
text-generic retrievers to structured tables.'

1 Introduction

Tables are a valuable form of data that organize and
distill information in a structured way for easy stor-
age, browsing, and retrieval (Cafarella et al., 2008;
Jauhar et al., 2016; Zhang and Balog, 2020). They
often contain data that is not available in text (Chen
et al., 2020a), or data records that are organized
in a more accessible manner than in unstructured
texts. Therefore, tables are widely used in Question

!Code and data to reproduce the experiments will be re-
leased upon acceptance.

Question: Who won the most Stanley Cups in history?

Stanley Cup Finals
From Wikipedia, the free encyclopedia
Most Finals appearances (top five)
(Bold indicates Cup wins)

Appearances ¢ Team 4 Wins ¢ Losses ¢ Win% ¢ Years of appearance

1916, 1917, 19191, 1924, 1925,

1930, 1931, 1944, 1946, 1947,

Montreal 1951, 1952, 1953, 1954, 1955,

3508 Canadiens 24 10 706 | 1956, 1957, 1958, 1959, 1960,

(NHA/NHL) 1965, 1966, 1967, 1968, 1969,

1971, 1973, 1976, 1977, 1978,

1979, 1986, 1989, 1993, 2021

1934, 1936, 1937, 1941, 1942,

DotroftRed 1943, 1945, 1948, 1949, 1950,

24 1 13 .458 1952, 1954, 1955, 1956, 1961,

Wings
1963, 1964, 1966, 1995, 1997,

1998, 2002, 2008, 2009

Figure 1: A correct table can be identified by matching
key phrases in question to those in the table title and
header cells.

Answering (QA) (Pasupat and Liang, 2015; Zhong
et al., 2017; Yu et al., 2018). For open-domain QA,
the ability to retrieve relevant tables with target an-
swers is crucial to the performance of end-to-end
QA systems (Herzig et al., 2021). For example, in
the Natural Questions (Kwiatkowski et al., 2019)
dataset, 13.2% of the answerable questions can be
addressed by tables.

Because tables are intuitively different from un-
structured text, most previous work has considered
text-based methods to be functionally incapable of
processing tables effectively (Herzig et al., 2020;
Yin et al., 2020; Wang et al., 2021b; Liu et al.,
2021). Recent work has created special-purpose
models for table-related tasks with structure en-
coding modules: inserting additional parameters
in the embedding (Herzig et al., 2020; Wang et al.,
2021b; Deng et al., 2020) or attention (Yin et al.,
2020; Wang et al., 2021b; Zayats et al., 2021) lay-
ers, then deliberately pre-training models using
table-oriented objectives (Deng et al., 2020; Yin
et al., 2020; Wang et al., 2021b; Liu et al., 2021;
Yu et al., 2020). Though effective in many tasks,
these special-purpose models are more complex
than generic solutions for textual encoding, and
must be intentionally built for and trained on tabu-



lar data. In addition, because these methods modify
both the model design and the training data, it is
difficult to measure the respective contributions of
each of these elements. Particularly for question-
based table retrieval, which emphasizes content
more than table structure, we argue that the bene-
fit may well come from good training data while
the model architecture has a limited influence. For
example, given a question “Who won the most
Stanley Cups in history?” in Fig. 1, a correct ta-
ble can be retrieved by simply identifying the topic
“Stanley Cup” in the table title and the words “Wins”
and “Team” among header cells.

In this paper, we focus on the task of table
retrieval and ask: “Does table retrieval require
special-purpose representations, or can properly
trained text-based models be exploited to achieve
similar results with less added complexity?” Our
work centers around the table-based open do-
main question answering dataset, NQ-table (Herzig
et al., 2021), a subset of the NaturalQuestions
dataset (Kwiatkowski et al., 2019) where each ques-
tion can be answered by part(s) of a Wikipedia
table.

We start with a manual analysis of question-table
matching patterns using 100 random NQ-table test
samples. This analysis reveals that 90% of the
pairs can be identified by table content with lit-
tle structural information, moreover, 75% involves
phrases in table title and header cells only (§ 2)
With this insight, we further experiment with two
strong models for retrieval: a general-purpose text-
based retriever (DPR; Karpukhin et al. (2020))
and a special-purpose table-based retriever (DTR;
Herzig et al. (2021)). We demonstrate that DPR,
benefiting from training on large textual data, can
retrieve tables comparably well with the state-of-
the-art table retriever DTR, which is specifically
designed for and heavily trained on tables (§ 3). We
further study the potential benefit of injecting table-
specific inductive bias into DPR via augmenting its
training data with tables and table-specific model
modifications. Our experiments show that training
on the target NQ-table dataset leads to a significant
increase in retrieval accuracy, but explicit embed-
ding layers for tabular features do not (§ 4). In sum,
the results reveal that a strong text-based model is
competitive for table retrieval, indicating the poten-
tial to directly apply future improved text retrieval
systems for retrieving structured tables, a task they
were previously considered less applicable.

2 Question-table Matching Analysis

To better understand the requirements inherent in
question-based table retrieval, we start with a de-
tailed manual analysis of NQ-table dataset. We ran-
domly sample 100 annotated question-table pairs
to see which parts of the table can allow for match-
ing to the questions, which aspects do they specify,
and in what combinations are they utilized. Our
analysis identifies three major matching patterns,
which are further verified in experiments in § 5.1.

2.1 The NQ-table Dataset

The NQ-table dataset has been recently collected
by Herzig et al. (2021) from the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019). The origi-
nal NQ dataset contains scraped search queries that
can be answered by Wikipedia pages. We focus on
the portion where the annotated answers are short
spans in relevant pages. Previous work only keeps
the text in the source HTML pages that can answer
around 59k questions. In addition, 12k questions
are answerable by content in Wikipedia tables.

2.2 Matching Questions with Tables: Title,
Header, and Content

Questions in NQ(-table) usually ask about a certain
aspect (e.g. who, when) of a main topic, often with
one or more descriptive details. For example the
question in Fig. 1 asks “who” about the topic en-
tity “Stanley Cup” and specifies “won” “the most”.
Through this analysis, we observe the alignment
of phrases between questions and tables. Indica-
tive phrases about entities, properties, and semantic
types in questions often match those in tables, es-
pecially in their title and header regions. Based on
this observation, we break down tables into three
components — title, header, and content — to study
“based on which table components” and “through
what mechanisms” can matching be performed.

Table Title Directly Matches the Question For
18 out of the 100 sampled questions, we can confi-
dently match each with the annotated table by its
title, given its informative and indicative wording.

Question: Who is the highest paid baseball player in the major leagues?

Table:| List of highest-paid Major League Baseball players
Name Position Team(s) Salary Ref
Clayton Kershaw SP Los Angeles Dodgers $32,571,428 [15]
Justin Verlander SP Houston Astros  $28,000,000 [16]

Ryan Howard B Philadelphia Phillies $25,000,000 [17]

Cliff Lee SP

Philadelphia Phillies $25,000,000 [18]

Figure 2: A table that matches the question by its title.



For the example in Fig. 2, the table title is in
good detail, including both the topic “baseball
player” and the specifications “highest paid” “ma-
jor league”. Moreover, the “List of” “players” are
highly indicative of displaying a name list to an-
swer the type “who”.

Header Cells Imply the Answer Type In an-
other 57 samples, one can only infer the relevance
of the matched topic using the title, but whether
the table contains items of the requested type (e.g.
who) and fit the specification remains unknown.
Header cells can indicate the semantic types of ta-
ble columns, hence, the relevance of table can be
decided based on whether they match to the type
asked for in the question. As shown in Fig. 3, the
concise title “Bald Eagle” matches only the topic;
the header cell “Genus” further matches the asked
entity and confirms the answer to “What”.

Question: What is the genus of a bald eagle?

Table: Bald eagle
Kingdom:  Animalia
Phylum: Chordata
Family: Accipitridae
Genus: Haliaeetus
Species: H. leucocephalus

Figure 3: A sample of matching topic in table title and
answer type in table header.

Concluding from the two patterns so far, about
75% of the matching finds the combination of title
and header sufficient, suggesting that the topical
information is largely condensed into the title and
header regions.

Content Cells Clarify Table Semantics Another
15 examples involve unclear headers, which have
either general wording or only a distant relation to
the specific entities being asked, therefore, requir-
ing further confirmation of the table content cells.
For the case in Fig. 4, besides the “playoff” and
“time” matching, we need to scrutinize the table
content for “jaguars” to confirm its mention in the
“franchise” column. Inferring or confirming a target
mention is critical to judge the relevance of a table.
Up until now, the three patterns add up to 90%.
This large portion of all questions concerns only
the table content with little necessity to reference
structural information, indicating little necessity
for consideration of structure structure, the main
component of table-specific model designs.

Question: When is the last time the jaguars won a playoff game?
Table: List of NFL franchise post-season droughts

) Most recent
Franchise + . ) +| Year % Seasons ¢
division title

Cincinnati Bengals AFC North 2015 6
Denver Broncos AFC West 2015 6
Atlanta Falcons NFC South 2016 5
Jacksonville Jaguars AFC South 2017 4
Minnesota Vikings NFC North 2017 4

Figure 4: A table matches the question with additional
indication of semantic type in the content, beyond topic
in title and type indication in header cells.

Use Structure to Check Answer Although few,
3 cases find content alone is insufficient and require
table structure. For the example in Fig. 5(a), un-
der the general header “Population”, one should
locate the sub-header “Total” via their structural
correspondence to confirm that the ‘total number’
measure of the ‘population’ topic exists.

Question: What is the population of
Keystone Heights, Florida?

Question: How many scholarships do
Division 2 football teams get?

Table: Table: NCAA Division II

Sport 4| Men's ¢ Women's ¢

Keystone Heights, Florida

Country == United States

State > Florida
County Clay

Acrobatics & tumbling - 9.0
Baseball 9.0 -

Basketball 100 100
Areal!

« Total 1.09 sq mi (2.82 km?) e

* Land 1.07 sq mi (2.78 km?) Fencing 45 45
- Water 0.01 sq mi (0.04 km?)

141 1t (43 m)

Field hockey - 63
Elevation

Population (2020)

« Total 1,446 Golf 36 5.4

+ Density 1,345.12/sq mi
(519.52/km?)

(@) (b)

Football 36.0 -

Gymnastics 5.4 60

Figure 5: (a) requires both table content and its structure
to check for answer. In (b) it is hard to match the table
with the question, due to the ambiguous question and
lack of table description.

Other Hard-to-Answer Questions Besides the
above three categories, there are 7 out of 100 sam-
ples that we fail to find a confident match between
the question and the ground truth table. Two ma-
jor reasons make these questions hard to answer.
First, similar to the finding of Min et al. (2020),
the question is expressed ambiguously. Second, de-
scriptions about table content may be insufficient.
The case in Fig. 5(b) exemplifies both reasons.
First, while the question only specifies the “football
team”, the table documents “Men” and “Women”
respectively. It is unable to determine which gen-
der that is being asked for. Second, nowhere in
the table content mentions the “scholarship” being
asked about. Without further descriptions in the
table content, it is difficult to relate the “Men’s”
and “Women’s” values to “scholarship”.



3 Text and Table Retrievers

Given the observations from the previous dataset
analysis, table content plays a much more impor-
tant role in retrieval than table structure. We hence
hypothesize that general-purpose text-based retriev-
ers might not be necessarily worse than special-
purpose table-based retrievers, contradictory to
what most previous work has assumed (Herzig
et al., 2021, 2020; Yin et al., 2020; Wang et al.,
2021b). To assess our hypothesis, we examine two
representative retrieval systems under the same ex-
perimental setting: the text-based Dense Passage
Retriever (DPR) and the table-based Dense Table
Retriever (DTR).

3.1 Text Retriever: DPR

We choose DPR (Karpukhin et al., 2020) as a
representative text-based retrieval model, mainly
because of (1) its impressive performance across
many text-related retrieval tasks, and (2) its simi-
larity with DTR from both training and modeling
perspectives, which make it easy to make fair com-
parisons.

DPR comprises a question-context bi-encoder
built on BERT (Devlin et al., 2018), which includes
three types of input embeddings as summarized
in Tab. 1. The question encoder BERT, encodes
each question g and outputs its dense representa-
tion using the representation of [CLS] token, de-
noted as hy = BERT,(q)[CLS]. The context en-
coder works similarly. To enable tables for sequen-
tial context inputs, we linearize each table into a to-
ken sequence T, which is then fed into the context
encoder BERT, to obtain its dense representation
hp = BERT(T")[CLS]. Similarity score between
a question g and a table T is computed as the dot
product of two vectors sim(q,T) = hq - hr.

DPR has been trained only on text contexts
within 100 words. For each question in the NQ-text
training set, the model is trained to select the cor-
rect context that contains the answer from a curated
batch of contexts including both the correct and
mined hard negative contexts. Unless otherwise
specified, we use NQ-text to denote the commonly
referred NQ dataset that can be answered by texts.

To convert tables into the DPR input format,
we linearize tables into token sequences. We con-
catenate the title, the header row, and subsequent
content rows using a period ‘. (row separator).
Within each header or content row, we concatenate
adjacent cell strings using a vertical bar ‘I’ (cell

separator). A template table linearization reads as
the order [title].[header].[content;]. - - - .[content,,].
Although BERT encoder has the capacity for at
most 512 tokens, DPR is only exposed to contexts
no longer than 100 words during training and test-
ing. To avoid potential discrepancies between its
original training and our inference procedure, we
shorten long tables by randomly selecting content
rows to approximate the 100-word window .

Embeddings | DPR | DTR
token BERT vocab BERT vocab
segment 0 for all tokens | O for text, 1 for table
position sequential cell-wise reset
row - row index
column - column index
rank - rank of token value

Table 1: Comparison of DPR and DTR embeddings.

3.2 Table Retriever: DTR

Dense Table Retriever (DTR) (Herzig et al., 2021)
is the current state-of-the-art table retrieval model
on the NQ-table dataset.

From the perspective of model architecture,
DTR largely follows the bi-encoder structure of
DPR, but differs from it in the embedding layer.
DTR utilizes the existing embeddings in a slightly
different way and introduces other types of embed-
dings specifically designed to encode table data.
Tab. 1 shows a detailed comparison of their em-
beddings. Both models share the same BERT
vocabulary index for token embedding. For the
segment index, DPR assigns all tokens in a se-
quence to the same index 0, while DTR distin-
guishes the title from the table content by as-
signing 0 and 1, respectively. But for positional
index, DPR inherits from BERT the sequence-
wise order index [0, 1,2, ..., sequence length — 1],
while DTR adopts a cell-wise reset strategy that
records the index of a token within its located cell
[0,1,...,cell length — 1]. In addition, DTR intro-
duces row and column embeddings to encode the
structural position of each token in the cell that
it appears. This explicit joint of three positional
embeddings is potentially more powerful than the
BERT-style flat index. Furthermore, concerning
the high frequency of numerical values in tabular
data, DTR adds a ranking index for each token if it
is part of a numerical value.

Final length of the linearized tables is on average 113

words. A tiny number of extra words are allowed to compen-
sate for the extra spaces taken by cell and row separators.
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Figure 6: Comparison of DPR and DTR training.

Concerning the training process summarized
in Fig. 6, DTR performs three stages of training on
tables. First, the model parameters, except for those
newly added table-specific embeddings, are initial-
ized with pre-trained BERT weights. The model is
then pre-trained on all Wikipedia tables using the
Masked LM (MLM) task. The resulting model after
this step is often referred to as TAPAS (Herzig et al.,
2020). Second, to leverage TAPAS in the retrieval
setting, it is further pre-trained using the Inverse
Cloze task (ICT) introduced by ORQA (Lee et al.,
2019), again, on all Wikipedia tables. Third, the
model trains on the specific NQ-table dataset, simi-
lar to the way that DPR is trained on text retrieval
datasets. For each question in the NQ-table training
set, DTR uses the annotated table as the positive
context and self-mined tables without answers as
hard negative (HN) contexts.

3.3 Table Retrieval: Results and Analysis

We start with measuring the retrieval accuracy us-
ing the original DPR and DTR model without sup-
plemental training. We load the published check-
points of both models and evaluate on NQ-table
test set, then measure the retrieval accuracy by as-
sessing whether the retrieved table contains the
answer. The published DPR and DTR checkpoints
are not directly comparable, since the DPR “base”
size, which falls between the DTR “medium” and
“large” sizes with respect to the number of param-
eters. Hence, we measure DTR in both medium
and large sizes as approximate lower and upper
bounds for a “base” DTR model. More detailed
model configurations for different sizes are listed
in Appendix A.

The top-k retrieval accuracy of DTR and DPR
is listed in Tab. 2. DPR is able to achieve an ac-
curacy comparable to DTR on NQ-table without
any table-specific model design or training. Even
more impressively, starting from the top-3 metric,
DPR-base readily outperforms DTR-large. DTR
incorporates table-specific embeddings and trains
heavily on tables from the entirety of Wikipedia
as well as those in the NQ-table dataset. In con-
trast, DPR involves no table-specific modules and
is only trained on text. The similarity in perfor-
mance and differences in modeling and training
align with our previous analysis that table retrieval
may not necessitate table-specific model design.

Model Retrieval Accuracy
Name Size @ @3 @5 @10 @20 @50
DTR medium | 62.32 78.16 82.51 86.75 91.51 94.26
DTR large 63.98 78.99 84.27 89.65 93.48 95.65
DPR  base | 61.38 80.54 85.51 91.41 94.62 96.69

Table 2: Top-k table retrieval accuracy on NQ-table test.

Many differences do DPR and DTR have in em-
bedding and training. While it is yet unclear to state
the effect of embedding, which we will examine
in § 4, we conjecture that training on text retrieval
datasets can also benefit table retrieval. Although
the context (text in DPR versus tables in DTR)
could bring in potential gaps, the questions in NQ-
text and NQ-table share similar characteristics and
can be agnostic to answer sources (Wolfson et al.,
2020). As such, a good NQ-text question encoder
can be similarly used to represent NQ-table ques-
tions, especially when it is trained on a larger set
of NQ-text questions (58,880) than on NQ-table
(9,596). Motivated by this, we compare the ques-
tions in NQ-text and NQ-table to measure their
extent of overlap. After basic NLTK (Bird et al.,
2009) text normalization®, we find that around
59.6% of questions in the NQ-table training set
also appear in the NQ-text training set. This is
rather intuitive since a question answerable by ta-
bles can also have answer spans in text, especially
when the text and table describe the same subject
on the same Wikipedia page.

In summary, our analysis implies that text re-
trieval and table retrieval are not two isolated tasks
that are meant to be solved individually and specif-
ically. As we will examine in § 4, training on both
datasets is indeed a better choice.

3This is part of the standard normalization process of DPR.



4 Learning to Represent Tables

In this section, we study the potential benefit of
learning table-specific representations based on the
DPR model. First, we train DPR on the NQ-table
training set to learn the patterns in table data, and
examine “would simply training on table data im-
prove DPR’s performance?”. Second, we train with
additional table-oriented embeddings in the DPR
context encoder, and examine “would introducing
table-specific embeddings further help?”.

4.1 Training on the NQ-table Dataset

To create training samples for DPR, we follow its
curation strategy on NQ-text, and similarly create
the NQ-table training samples using the annotated-
positive and mined hard-negative tables. For each
question in the NQ-table training set, we take the
same positive table used in DTR training. For neg-
ative samples, we use the original DPR checkpoint
to retrieve the top-100 table candidates for each
question, among which we take the highest-ranked
tables without the answer as the hard negatives.

Since the questions in NQ-text and NQ-table are
largely the same, the distinction between textual
and tabular context can generate more notable up-
dates in the DPR context encoder. To prevent the
updates in the context encoder from overly disturb-
ing the question encoder, we first fix the question
encoder and train the context encoder for one epoch.
Then, we optimize both encoders and train for an-
other epoch. Both experiments use a batch size of
16 and a learning rate of 2e—5. More experimental
details are described in Appendix B.

As shown by the DPR-t in Tab. 3, this two-
epoch training drastically increases the model per-
formance on the NQ-table test questions, especially
in top-k metrics with smaller k. Since DPR has not
been trained on table data, training on NQ-table
samples helps it learn to consume tables and adapt
from question-text to question-table mapping.

4.2 Injecting Table-Specific Embeddings into
Context Encoder

Auxiliary training on the NQ-table dataset brings
about a significant improvement. To examine if
an explicit incorporation of table-specific features
would further help, we augment the DPR context
encoder with extra embeddings as those used in
DTR (described in § 3.2). We substitute the DPR
context encoder from BERT with a TAPAS encoder.
Except for the newly added table-specific embed-

dings, other parts of the model are kept the same
and initialized with the original DPR parameters.
We initialize new embeddings to zero to prevent un-
wanted disturbance to the holistically learned DPR
weights. Besides the weights, the modified DPR is
identical to DTR in terms of model architecture.

The adjusted model is trained in three steps. We
first freeze all modules except the newly introduced
table-specific embeddings and train on NQ-table
for one epoch. Next, we fix the question encoder
and update the entire context encoder for one epoch.
Lastly, we unfreeze all model parameters and train
both encoders for one epoch. We use the same
hyper-parameter setting to the previous experiment
(batch size = 16 and learning rate = 2e—5). More
details can be referred to in Appendix B.

Model Retrieval Accuracy
Name Size @ @3 @5 @10 @20 @50
DTR medium | 62.32 78.16 82.51 86.75 91.51 94.26
DTR  large 63.98 78.99 84.27 89.65 93.48 95.65
DPR  base 61.38 80.54 85.51 91.41 94.62 96.69
DPR-t base 70.08 85.51 88.82 91.72 94.51 97.20
DPR-e Dbase 66.01 85.20 89.95 91.93 94.31 95.85

Table 3: Top-k table retrieval accuracy on NQ-table test.
DPR is the original model checkpoint. DPR-t is tuned
on the NQ-table training set. DPR-e is the embedding-
augmented DPR tuned on the NQ-table training set.

As shown by the DPR-e results in Tab. 3, encod-
ing tables with specific embeddings do not bring
substantial improvement on the retrieval accuracy.
Instead, the results with and without table-specific
embeddings are comparable to each other across
multiple top-k metrics. Nonetheless, we recog-
nize that it can be hard to make the original DPR
weights and new embeddings compatible in as few
as three epochs, which could potentially result in
the —4.07 drop in top-1 retrieval accuracy.

5 Ablation: Table Components and Their
Structured Order

In this section, we conduct ablation studies in two
aspects. For one, to experimentally corroborate our
analysis on the NQ-table dataset in § 2, we adjust
the inputs to DPR by using different combinations
of table components and explore alternative table
linearization methods. For another, given the minor
significance of the structure demonstrated in § 4.2,
we perform perturbations on the ordered table cell
mapping to further consolidate this finding.



5.1 Table Components for DPR Inputs

To corroborate our analysis in § 2 and examine the
utility of different table components (title, header,
and content), we experiment with using different
combinations of them to generate DPR inputs.

Tables on the same Wikipedia page have the
same title, hence only using the title hardly distin-
guishes them and results poorly in our preliminary
experiments. So, we start by examining the joint
usage of title and table headers for input. Our first
experiment linearizes each table by concatenating
its title and header, which is denoted by no-content
in Tab. 4. Because fewer table components are
used, the resulting sequences can be shorter than
the 100-word passages used at training. To mitigate
this potential discrepancy, we follow Herzig et al.
(2021) to repeat the resulting text for at most 15
times until they reach the 100 words, which is the
default length limit of DPR model inputs.

Next, to study the additional benefit brought by
table content, our second setting appends linearized
table content rows into the input sequence. We ex-
plore two linearization methods. The first one uses
the same input as the DTR model: table content is
linearized in turns of rows, and, to maximize the
number of cells that fits in a 512-token window, cell
strings are truncated to a dynamic length threshold.
We denote this by all-cell-trunc. in Tab. 4.

Retrieval Accuracy

Content ‘ @1 @3 @5 @10 @20 @50

no-content ‘ 38.82 57.45 65.73 75.98 82.50 89.34

all-cell-trunc. | 56.52 77.02 82.82 89.23 93.17 95.76
all-row-trunc. | 58.28 78.26 83.13 88.51 92.86 96.69

partial | 61.38 80.54 85.51 91.41 94.62 96.69

Table 4: Top-k table retrieval accuracy on NQ-table test
set with various table components and linearizations.
no-content refers to the first title-header setting with no
content. all-cell-trunc. uses the DTR linearization that
truncates cell for input, all-table-trunc. discard excess
cells to input all contents using 512 tokens. partial
selects random rows to fits 100 words.

In the second method, we adopt a similar row-
wise approach, but (1) limit the number of tokens
in header and content cells to 12 and 8 4, given that
the previous dynamic truncation strategy is risky
of truncating cells too aggressively for long tables,
and that header information is often more crucial;

*We experiment with cell limit 6/8/10 and header limit
8/12/16 and find this to be the best configuration.

(2) only include the first few rows instead of all
rows that fit into the 512-token limit. We denote
this by all-table-trunc. in Tab. 4.

Meanwhile, regarding that DPR is accustomed
to 100-word text passages during training, our third
experiment fits table linearization into the 100-
word input limit by selecting the first few rows >,
which is denoted as partial in Tab. 4. We aim to
study if a moderate compromise of reducing con-
tent to meet the optimal sequence length helps.

Results of three experimental settings are shown
in Tab. 4. First, as shown by the no-content results,
using the title-header combination can solve a de-
cent amount of cases. Compared to the solvable
cases with additional table content, this content-
free setting can solve around 65% to 80% of them,
if examined among the top 1-5 metrics. Second,
comparing all-cell-trunc. and all-row-trunc. that
write all table content using 512-tokens, our sec-
ond method that removes end rows is better than
the DTR strategy of cell truncation. Trading off
cell lengths to fit more cells deteriorates the quality
of generated representations. Third, the partial
method performs better than the above two using
all table content. Trimming tables to conform to
the training format (100-word), even by discarding
some of the content rows, can be more helpful than
naively enlarging the content volume.

5.2 Perturbing the Structured Table Layout

Results in § 4.2 suggests that a retriever model
without explicit structural embeddings can perform
similarly well as one that does. Although the DPR
architecture has no explicit features to encode struc-
tures such as row and column positions, it can po-
tentially combine the BERT sequential position
indices with cell/row separators to configure the
cell mapping as in a two-dimensional table layout.
In this way, DPR can implicitly capture some struc-
tures using a generic sequence-oriented encoder.
Therefore, we aim to investigate if the DPR rep-
resentation on table structure is sufficient, or that
NQ-table retrieval actually relies more on the ta-
ble structural information. To prove which is the
case, we propose to perturb the structured table cell
mapping by shuffling the order of table cells.

Shuffle In Row A table row often relates to the
same entity and contains multiple cells to describe
the various properties of that entity. The content

SUsing the first few or a random selection of rows performs
very similarly in our preliminary experiments



of each cell maps with the header cell in the cor-
responding columns. In this setting, we randomly
select one row in the table and shuffle all of its cells,
such that the resulting cell order in the selected row
does not match it in the header row. In other words,
for each cell in the selected row, the type declared
in the header cell of that column does not match
with it. We denote it as DPR-row in Tab. 5.

Shuffle In Column Table cells within the same
column are often different values given the type de-
scription of the column header cell. We also exper-
iment with the shuffle-in-column setting, where in
arandomly selected column all cells are re-ordered.
This setting is denoted as DPR-col in Tab. 5.

Retrieval Accuracy

Model ‘@1 @ @5 @10 @20 @50
DPR | 6138 80.54 8551 9141 94.62 96.69
DPR-row | 60.97 7930 8499 91.20 9420 97.00
DPR-col | 60.86 7930 84.99 9110 9431 97.31

Table 5: Zero-shot table retrieval accuracy measured in
top-k metrics on NQ-table test. DPR linearizes tables
in the correct order. For each table, DPR-row perturbs
the order of cells within one row, DPR-col perturbs the
order of cells within one column.

From the results in Tab. 5, perturbing orders,
either row-wise or column-wise, only lead to minor
changes in the retrieval accuracy. For the questions
in the NQ-table dataset, retrieving the correct table
does not heavily require on its structured layout.

6 Related Work

Open Domain Question Answering (ODQA)
ODQA systems often use a retriever-reader
pipeline, where the retriever selects relevant con-
texts and the reader further selects answer spans
from them. Because candidate contexts normally
approach millions in size, good retrieval accu-
racy is critical for an effective end-to-end QA sys-
tem (Karpukhin et al., 2020). Most text retrieval
systems are built on the Dense Passage Retriever
(DPR) (Karpukhin et al., 2020). Beyond texts, one
of the most common sources for answering open-
domain questions is structured tables. Herzig et al.
(2021) recently identified a subset of Natural Ques-
tions (NQ) dataset (Kwiatkowski et al., 2019) that
is answerable by Wikipedia tables. Oguz et al.
(2021); Ma et al. (2021) find Wikipedia tables also
helpful to answer NQ questions. This paper aims
to optimize the usage of tables for QA and focuses
on the task of table retrieval.

Table Understanding To encode the relational
structure of web tables, CNNs (Chen et al., 2019a),
RNNs (Gol et al., 2019), LSTMs (Fetahu et al.,
2019), and their combinations (Chen et al., 2019b)
are explored. In addition, Graph Neural Network
(GNN) is used, especially for tables with complex
structures (Koci et al., 2018; Zayats et al., 2021;
Vu et al., 2021; Bhagavatula et al., 2015). Upon the
advances in pre-trained Transformers, recent table
encoders adapt the BERT model with table-specific
modules concerning structure (Herzig et al., 2020;
Yin et al., 2020; Wang et al., 2021b), numer-
acy (Wang et al., 2021b; Herzig et al., 2020), and
other features. These methods are intentionally
built for tables, but their necessity in certain tasks
remains unknown. Our work exploits a generic
model to show that some content-emphasized tasks
like retrieval do not require such specific designs.

Table Retrieval Earlier work focus on web table
search in response to a keyword query (Cafarella
et al., 2008, 2009; Balakrishnan et al., 2015; Pimp-
likar and Sarawagi, 2012) or a seed table (Sarmad
et al., 2012). Many of them use the 60 keywords
and relevant web tables collected by Zhang and Ba-
log (2018). Tables are modeled by aggregating mul-
tiple fields (Zhang et al., 2019), contexts (Trabelsi
et al., 2019), and synthesized schema labels (Chen
et al., 2020b). More recently, Chen et al. (2020c);
Wang et al. (2021a) use structure-augmented BERT
for retrieval. These works largely treat the retrieval
task on its own account and target similarity un-
der the traditional Information Retrieval (IR). We
focus on the extended scope of retrieval to also
emphasize model inference abilities for answering
questions in the open domain.

7 Conclusion

Given the importance of finding relevant tables to
answer questions in the NQ-table dataset, we study
the task of table retrieval and identify question-
table matching patterns that emphasize content
rather than table structure. Our experiment using a
text-generic Dense Passage Retriever (DPR) proves
its comparable performance to the state-of-the-art
Dense Table Retriever (DTR) on table retrieval.
While both adding table-specific modules and per-
turbing table cell ordering in DPR bring negligible
change, our work reveals the unnecessity of table-
specific designs for table retrieval, as well as the
great potential of generic text retrievers in their
direct applicability on structured tables.
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A Model Size

Tab. 6 shows the detailed configurations of BERT-
variants in different sizes. As can be seen from the
hyper-parameter values, models of medium size
have the smallest capacity, base is an intermediate
configuration, and large size is the biggest.

Size ‘Layers Attention Heads Hidden Size

medium 8 8 512
base 12 8 768
large 24 16 1024

Table 6: Hyper-parameters for BERT models of varied
sizes. Models of different sizes vary in the number of
Transformer layers, the number of heads in the self-
attention module, and the dimension of hidden states.

B Experiment Details

For the DPR experiments, we use the latest pub-
lished checkpoint (in base size) © where the hard-
negative text passages are mined using the DPR
checkpoint saved in the previous round. Except for
our experiments on table linearization strategies,
all data processing details follow the original DPR
manipulation.

To substitute the original DPR context encoder
with the one with augmented embeddings (TAPAS),
we import the implemented version in the Hugging-
face ’ repository. Following the default setting of
DPR, all fine-tuning use batch size = 16 and learn-
ing rate = 2e—5. Experiments run on a single GPU
on the Tesla K80 server.

To reproduce the DTR performance, we use
the published checkpoints (in medium and large
sizes) ® and run the retrieval inference. Our results
are comparably close to the number reported in the
paper and the GitHub repository, although they do
not exactly match.

®https://github.com/facebookresearch/DPR
"https://github.com/huggingface/transformers

8https://github.com/google-research/tapas/blob/master/
DENSE_TABLE_RETRIEVER.md
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