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Abstract

Tables are an important form of structured data001
for both human and machine readers alike, pro-002
viding answers to questions that cannot, or can-003
not easily, be found in texts. Recent work de-004
signs special models and trains for table-related005
tasks such as table-based question answering006
and table retrieval. Though effective, they add007
model-data dual complexity to generic text so-008
lutions and obscure which elements are truly009
beneficial. In this work, we focus on the task010
of table retrieval, and ask: “are table-specific011
model designs necessary for table retrieval, or012
can a text-generic model be effectively used to013
achieve a similar result?” We start by analyzing014
NQ-table, a set of table-answerable questions015
in the Natural Questions (NQ) dataset, and find016
90% of the questions can match tables in con-017
tent with little concern for table structure. Mo-018
tivated by this, we experiment with a general-019
purpose Dense Passage Retriever (DPR) for020
text and a special-purpose Dense Table Re-021
triever (DTR) for tables. We show that DPR,022
without any design for or training on tables, can023
perform comparably well to the state-of-the-024
art DTR model, and neither adding DTR-like025
table-specific embeddings nor perturbing cell026
orders lead to significant changes. Both results027
strongly indicate that table retrieval does not028
necessitate table-specific model design, as well029
as the potential of directly applying powerful030
text-generic retrievers to structured tables.1031

1 Introduction032

Tables are a valuable form of data that organize and033

distill information in a structured way for easy stor-034

age, browsing, and retrieval (Cafarella et al., 2008;035

Jauhar et al., 2016; Zhang and Balog, 2020). They036

often contain data that is not available in text (Chen037

et al., 2020a), or data records that are organized038

in a more accessible manner than in unstructured039

texts. Therefore, tables are widely used in Question040

1Code and data to reproduce the experiments will be re-
leased upon acceptance.

Question: Who won the most Stanley Cups in history?

Figure 1: A correct table can be identified by matching
key phrases in question to those in the table title and
header cells.

Answering (QA) (Pasupat and Liang, 2015; Zhong 041

et al., 2017; Yu et al., 2018). For open-domain QA, 042

the ability to retrieve relevant tables with target an- 043

swers is crucial to the performance of end-to-end 044

QA systems (Herzig et al., 2021). For example, in 045

the Natural Questions (Kwiatkowski et al., 2019) 046

dataset, 13.2% of the answerable questions can be 047

addressed by tables. 048

Because tables are intuitively different from un- 049

structured text, most previous work has considered 050

text-based methods to be functionally incapable of 051

processing tables effectively (Herzig et al., 2020; 052

Yin et al., 2020; Wang et al., 2021b; Liu et al., 053

2021). Recent work has created special-purpose 054

models for table-related tasks with structure en- 055

coding modules: inserting additional parameters 056

in the embedding (Herzig et al., 2020; Wang et al., 057

2021b; Deng et al., 2020) or attention (Yin et al., 058

2020; Wang et al., 2021b; Zayats et al., 2021) lay- 059

ers, then deliberately pre-training models using 060

table-oriented objectives (Deng et al., 2020; Yin 061

et al., 2020; Wang et al., 2021b; Liu et al., 2021; 062

Yu et al., 2020). Though effective in many tasks, 063

these special-purpose models are more complex 064

than generic solutions for textual encoding, and 065

must be intentionally built for and trained on tabu- 066
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lar data. In addition, because these methods modify067

both the model design and the training data, it is068

difficult to measure the respective contributions of069

each of these elements. Particularly for question-070

based table retrieval, which emphasizes content071

more than table structure, we argue that the bene-072

fit may well come from good training data while073

the model architecture has a limited influence. For074

example, given a question “Who won the most075

Stanley Cups in history?” in Fig. 1, a correct ta-076

ble can be retrieved by simply identifying the topic077

“Stanley Cup” in the table title and the words “Wins”078

and “Team” among header cells.079

In this paper, we focus on the task of table080

retrieval and ask: “Does table retrieval require081

special-purpose representations, or can properly082

trained text-based models be exploited to achieve083

similar results with less added complexity?” Our084

work centers around the table-based open do-085

main question answering dataset, NQ-table (Herzig086

et al., 2021), a subset of the NaturalQuestions087

dataset (Kwiatkowski et al., 2019) where each ques-088

tion can be answered by part(s) of a Wikipedia089

table.090

We start with a manual analysis of question-table091

matching patterns using 100 random NQ-table test092

samples. This analysis reveals that 90% of the093

pairs can be identified by table content with lit-094

tle structural information, moreover, 75% involves095

phrases in table title and header cells only (§ 2)096

With this insight, we further experiment with two097

strong models for retrieval: a general-purpose text-098

based retriever (DPR; Karpukhin et al. (2020))099

and a special-purpose table-based retriever (DTR;100

Herzig et al. (2021)). We demonstrate that DPR,101

benefiting from training on large textual data, can102

retrieve tables comparably well with the state-of-103

the-art table retriever DTR, which is specifically104

designed for and heavily trained on tables (§ 3). We105

further study the potential benefit of injecting table-106

specific inductive bias into DPR via augmenting its107

training data with tables and table-specific model108

modifications. Our experiments show that training109

on the target NQ-table dataset leads to a significant110

increase in retrieval accuracy, but explicit embed-111

ding layers for tabular features do not (§ 4). In sum,112

the results reveal that a strong text-based model is113

competitive for table retrieval, indicating the poten-114

tial to directly apply future improved text retrieval115

systems for retrieving structured tables, a task they116

were previously considered less applicable.117

2 Question-table Matching Analysis 118

To better understand the requirements inherent in 119

question-based table retrieval, we start with a de- 120

tailed manual analysis of NQ-table dataset. We ran- 121

domly sample 100 annotated question-table pairs 122

to see which parts of the table can allow for match- 123

ing to the questions, which aspects do they specify, 124

and in what combinations are they utilized. Our 125

analysis identifies three major matching patterns, 126

which are further verified in experiments in § 5.1. 127

2.1 The NQ-table Dataset 128

The NQ-table dataset has been recently collected 129

by Herzig et al. (2021) from the Natural Questions 130

(NQ) dataset (Kwiatkowski et al., 2019). The origi- 131

nal NQ dataset contains scraped search queries that 132

can be answered by Wikipedia pages. We focus on 133

the portion where the annotated answers are short 134

spans in relevant pages. Previous work only keeps 135

the text in the source HTML pages that can answer 136

around 59k questions. In addition, 12k questions 137

are answerable by content in Wikipedia tables. 138

2.2 Matching Questions with Tables: Title, 139

Header, and Content 140

Questions in NQ(-table) usually ask about a certain 141

aspect (e.g. who, when) of a main topic, often with 142

one or more descriptive details. For example the 143

question in Fig. 1 asks “who” about the topic en- 144

tity “Stanley Cup” and specifies “won” “the most”. 145

Through this analysis, we observe the alignment 146

of phrases between questions and tables. Indica- 147

tive phrases about entities, properties, and semantic 148

types in questions often match those in tables, es- 149

pecially in their title and header regions. Based on 150

this observation, we break down tables into three 151

components — title, header, and content — to study 152

“based on which table components” and “through 153

what mechanisms” can matching be performed. 154

Table Title Directly Matches the Question For 155

18 out of the 100 sampled questions, we can confi- 156

dently match each with the annotated table by its 157

title, given its informative and indicative wording. 158

Question: Who is the highest paid baseball player in the major leagues?

       Table:

Figure 2: A table that matches the question by its title.
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For the example in Fig. 2, the table title is in159

good detail, including both the topic “baseball160

player” and the specifications “highest paid” “ma-161

jor league”. Moreover, the “List of” “players” are162

highly indicative of displaying a name list to an-163

swer the type “who”.164

Header Cells Imply the Answer Type In an-165

other 57 samples, one can only infer the relevance166

of the matched topic using the title, but whether167

the table contains items of the requested type (e.g.168

who) and fit the specification remains unknown.169

Header cells can indicate the semantic types of ta-170

ble columns, hence, the relevance of table can be171

decided based on whether they match to the type172

asked for in the question. As shown in Fig. 3, the173

concise title “Bald Eagle” matches only the topic;174

the header cell “Genus” further matches the asked175

entity and confirms the answer to “What”.176

Question: What is the genus of a bald eagle?

       Table:

Question: What is the genus of a bald eagle?

       Table:

……

Figure 3: A sample of matching topic in table title and
answer type in table header.

Concluding from the two patterns so far, about177

75% of the matching finds the combination of title178

and header sufficient, suggesting that the topical179

information is largely condensed into the title and180

header regions.181

Content Cells Clarify Table Semantics Another182

15 examples involve unclear headers, which have183

either general wording or only a distant relation to184

the specific entities being asked, therefore, requir-185

ing further confirmation of the table content cells.186

For the case in Fig. 4, besides the “playoff” and187

“time” matching, we need to scrutinize the table188

content for “jaguars” to confirm its mention in the189

“franchise” column. Inferring or confirming a target190

mention is critical to judge the relevance of a table.191

Up until now, the three patterns add up to 90%.192

This large portion of all questions concerns only193

the table content with little necessity to reference194

structural information, indicating little necessity195

for consideration of structure structure, the main196

component of table-specific model designs.197

Question: When is the last time the jaguars won a playoff game?

       Table:

……

Figure 4: A table matches the question with additional
indication of semantic type in the content, beyond topic
in title and type indication in header cells.

Use Structure to Check Answer Although few, 198

3 cases find content alone is insufficient and require 199

table structure. For the example in Fig. 5(a), un- 200

der the general header “Population”, one should 201

locate the sub-header “Total” via their structural 202

correspondence to confirm that the ‘total number’ 203

measure of the ‘population’ topic exists. 204

       Question: What is the population of 
                         Keystone Heights, Florida?

       Table:
……

       Question: How many scholarships do           
                         Division 2 football teams get?

       Table:

……

(a) (b)

Figure 5: (a) requires both table content and its structure
to check for answer. In (b) it is hard to match the table
with the question, due to the ambiguous question and
lack of table description.

Other Hard-to-Answer Questions Besides the 205

above three categories, there are 7 out of 100 sam- 206

ples that we fail to find a confident match between 207

the question and the ground truth table. Two ma- 208

jor reasons make these questions hard to answer. 209

First, similar to the finding of Min et al. (2020), 210

the question is expressed ambiguously. Second, de- 211

scriptions about table content may be insufficient. 212

The case in Fig. 5(b) exemplifies both reasons. 213

First, while the question only specifies the “football 214

team”, the table documents “Men” and “Women” 215

respectively. It is unable to determine which gen- 216

der that is being asked for. Second, nowhere in 217

the table content mentions the “scholarship” being 218

asked about. Without further descriptions in the 219

table content, it is difficult to relate the “Men’s” 220

and “Women’s” values to “scholarship”. 221
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3 Text and Table Retrievers222

Given the observations from the previous dataset223

analysis, table content plays a much more impor-224

tant role in retrieval than table structure. We hence225

hypothesize that general-purpose text-based retriev-226

ers might not be necessarily worse than special-227

purpose table-based retrievers, contradictory to228

what most previous work has assumed (Herzig229

et al., 2021, 2020; Yin et al., 2020; Wang et al.,230

2021b). To assess our hypothesis, we examine two231

representative retrieval systems under the same ex-232

perimental setting: the text-based Dense Passage233

Retriever (DPR) and the table-based Dense Table234

Retriever (DTR).235

3.1 Text Retriever: DPR236

We choose DPR (Karpukhin et al., 2020) as a237

representative text-based retrieval model, mainly238

because of (1) its impressive performance across239

many text-related retrieval tasks, and (2) its simi-240

larity with DTR from both training and modeling241

perspectives, which make it easy to make fair com-242

parisons.243

DPR comprises a question-context bi-encoder244

built on BERT (Devlin et al., 2018), which includes245

three types of input embeddings as summarized246

in Tab. 1. The question encoder BERTq encodes247

each question q and outputs its dense representa-248

tion using the representation of [CLS] token, de-249

noted as hq = BERTq(q)[CLS]. The context en-250

coder works similarly. To enable tables for sequen-251

tial context inputs, we linearize each table into a to-252

ken sequence T , which is then fed into the context253

encoder BERTc to obtain its dense representation254

hT = BERTc(T )[CLS]. Similarity score between255

a question q and a table T is computed as the dot256

product of two vectors sim(q, T ) = hq · hT .257

DPR has been trained only on text contexts258

within 100 words. For each question in the NQ-text259

training set, the model is trained to select the cor-260

rect context that contains the answer from a curated261

batch of contexts including both the correct and262

mined hard negative contexts. Unless otherwise263

specified, we use NQ-text to denote the commonly264

referred NQ dataset that can be answered by texts.265

To convert tables into the DPR input format,266

we linearize tables into token sequences. We con-267

catenate the title, the header row, and subsequent268

content rows using a period ‘.’ (row separator).269

Within each header or content row, we concatenate270

adjacent cell strings using a vertical bar ‘|’ (cell271

separator). A template table linearization reads as 272

the order [title].[header].[content1]. · · · .[contentn]. 273

Although BERT encoder has the capacity for at 274

most 512 tokens, DPR is only exposed to contexts 275

no longer than 100 words during training and test- 276

ing. To avoid potential discrepancies between its 277

original training and our inference procedure, we 278

shorten long tables by randomly selecting content 279

rows to approximate the 100-word window 2. 280

Embeddings DPR DTR

token BERT vocab BERT vocab
segment 0 for all tokens 0 for text, 1 for table
position sequential cell-wise reset

row - row index
column - column index

rank - rank of token value

Table 1: Comparison of DPR and DTR embeddings.

3.2 Table Retriever: DTR 281

Dense Table Retriever (DTR) (Herzig et al., 2021) 282

is the current state-of-the-art table retrieval model 283

on the NQ-table dataset. 284

From the perspective of model architecture, 285

DTR largely follows the bi-encoder structure of 286

DPR, but differs from it in the embedding layer. 287

DTR utilizes the existing embeddings in a slightly 288

different way and introduces other types of embed- 289

dings specifically designed to encode table data. 290

Tab. 1 shows a detailed comparison of their em- 291

beddings. Both models share the same BERT 292

vocabulary index for token embedding. For the 293

segment index, DPR assigns all tokens in a se- 294

quence to the same index 0, while DTR distin- 295

guishes the title from the table content by as- 296

signing 0 and 1, respectively. But for positional 297

index, DPR inherits from BERT the sequence- 298

wise order index [0, 1, 2, ..., sequence length − 1], 299

while DTR adopts a cell-wise reset strategy that 300

records the index of a token within its located cell 301

[0, 1, ..., cell length − 1]. In addition, DTR intro- 302

duces row and column embeddings to encode the 303

structural position of each token in the cell that 304

it appears. This explicit joint of three positional 305

embeddings is potentially more powerful than the 306

BERT-style flat index. Furthermore, concerning 307

the high frequency of numerical values in tabular 308

data, DTR adds a ranking index for each token if it 309

is part of a numerical value. 310

2Final length of the linearized tables is on average 113
words. A tiny number of extra words are allowed to compen-
sate for the extra spaces taken by cell and row separators.
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Figure 6: Comparison of DPR and DTR training.

Concerning the training process summarized311

in Fig. 6, DTR performs three stages of training on312

tables. First, the model parameters, except for those313

newly added table-specific embeddings, are initial-314

ized with pre-trained BERT weights. The model is315

then pre-trained on all Wikipedia tables using the316

Masked LM (MLM) task. The resulting model after317

this step is often referred to as TAPAS (Herzig et al.,318

2020). Second, to leverage TAPAS in the retrieval319

setting, it is further pre-trained using the Inverse320

Cloze task (ICT) introduced by ORQA (Lee et al.,321

2019), again, on all Wikipedia tables. Third, the322

model trains on the specific NQ-table dataset, simi-323

lar to the way that DPR is trained on text retrieval324

datasets. For each question in the NQ-table training325

set, DTR uses the annotated table as the positive326

context and self-mined tables without answers as327

hard negative (HN) contexts.328

3.3 Table Retrieval: Results and Analysis329

We start with measuring the retrieval accuracy us-330

ing the original DPR and DTR model without sup-331

plemental training. We load the published check-332

points of both models and evaluate on NQ-table333

test set, then measure the retrieval accuracy by as-334

sessing whether the retrieved table contains the335

answer. The published DPR and DTR checkpoints336

are not directly comparable, since the DPR “base”337

size, which falls between the DTR “medium” and338

“large” sizes with respect to the number of param-339

eters. Hence, we measure DTR in both medium340

and large sizes as approximate lower and upper341

bounds for a “base” DTR model. More detailed342

model configurations for different sizes are listed343

in Appendix A.344

The top-k retrieval accuracy of DTR and DPR 345

is listed in Tab. 2. DPR is able to achieve an ac- 346

curacy comparable to DTR on NQ-table without 347

any table-specific model design or training. Even 348

more impressively, starting from the top-3 metric, 349

DPR-base readily outperforms DTR-large. DTR 350

incorporates table-specific embeddings and trains 351

heavily on tables from the entirety of Wikipedia 352

as well as those in the NQ-table dataset. In con- 353

trast, DPR involves no table-specific modules and 354

is only trained on text. The similarity in perfor- 355

mance and differences in modeling and training 356

align with our previous analysis that table retrieval 357

may not necessitate table-specific model design. 358

Model Retrieval Accuracy
Name Size @1 @3 @5 @10 @20 @50

DTR medium 62.32 78.16 82.51 86.75 91.51 94.26
DTR large 63.98 78.99 84.27 89.65 93.48 95.65

DPR base 61.38 80.54 85.51 91.41 94.62 96.69

Table 2: Top-k table retrieval accuracy on NQ-table test.

Many differences do DPR and DTR have in em- 359

bedding and training. While it is yet unclear to state 360

the effect of embedding, which we will examine 361

in § 4, we conjecture that training on text retrieval 362

datasets can also benefit table retrieval. Although 363

the context (text in DPR versus tables in DTR) 364

could bring in potential gaps, the questions in NQ- 365

text and NQ-table share similar characteristics and 366

can be agnostic to answer sources (Wolfson et al., 367

2020). As such, a good NQ-text question encoder 368

can be similarly used to represent NQ-table ques- 369

tions, especially when it is trained on a larger set 370

of NQ-text questions (58,880) than on NQ-table 371

(9,596). Motivated by this, we compare the ques- 372

tions in NQ-text and NQ-table to measure their 373

extent of overlap. After basic NLTK (Bird et al., 374

2009) text normalization3, we find that around 375

59.6% of questions in the NQ-table training set 376

also appear in the NQ-text training set. This is 377

rather intuitive since a question answerable by ta- 378

bles can also have answer spans in text, especially 379

when the text and table describe the same subject 380

on the same Wikipedia page. 381

In summary, our analysis implies that text re- 382

trieval and table retrieval are not two isolated tasks 383

that are meant to be solved individually and specif- 384

ically. As we will examine in § 4, training on both 385

datasets is indeed a better choice. 386

3This is part of the standard normalization process of DPR.
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4 Learning to Represent Tables387

In this section, we study the potential benefit of388

learning table-specific representations based on the389

DPR model. First, we train DPR on the NQ-table390

training set to learn the patterns in table data, and391

examine “would simply training on table data im-392

prove DPR’s performance?”. Second, we train with393

additional table-oriented embeddings in the DPR394

context encoder, and examine “would introducing395

table-specific embeddings further help?”.396

4.1 Training on the NQ-table Dataset397

To create training samples for DPR, we follow its398

curation strategy on NQ-text, and similarly create399

the NQ-table training samples using the annotated-400

positive and mined hard-negative tables. For each401

question in the NQ-table training set, we take the402

same positive table used in DTR training. For neg-403

ative samples, we use the original DPR checkpoint404

to retrieve the top-100 table candidates for each405

question, among which we take the highest-ranked406

tables without the answer as the hard negatives.407

Since the questions in NQ-text and NQ-table are408

largely the same, the distinction between textual409

and tabular context can generate more notable up-410

dates in the DPR context encoder. To prevent the411

updates in the context encoder from overly disturb-412

ing the question encoder, we first fix the question413

encoder and train the context encoder for one epoch.414

Then, we optimize both encoders and train for an-415

other epoch. Both experiments use a batch size of416

16 and a learning rate of 2e−5. More experimental417

details are described in Appendix B.418

As shown by the DPR-t in Tab. 3, this two-419

epoch training drastically increases the model per-420

formance on the NQ-table test questions, especially421

in top-k metrics with smaller k. Since DPR has not422

been trained on table data, training on NQ-table423

samples helps it learn to consume tables and adapt424

from question-text to question-table mapping.425

4.2 Injecting Table-Specific Embeddings into426

Context Encoder427

Auxiliary training on the NQ-table dataset brings428

about a significant improvement. To examine if429

an explicit incorporation of table-specific features430

would further help, we augment the DPR context431

encoder with extra embeddings as those used in432

DTR (described in § 3.2). We substitute the DPR433

context encoder from BERT with a TAPAS encoder.434

Except for the newly added table-specific embed-435

dings, other parts of the model are kept the same 436

and initialized with the original DPR parameters. 437

We initialize new embeddings to zero to prevent un- 438

wanted disturbance to the holistically learned DPR 439

weights. Besides the weights, the modified DPR is 440

identical to DTR in terms of model architecture. 441

The adjusted model is trained in three steps. We 442

first freeze all modules except the newly introduced 443

table-specific embeddings and train on NQ-table 444

for one epoch. Next, we fix the question encoder 445

and update the entire context encoder for one epoch. 446

Lastly, we unfreeze all model parameters and train 447

both encoders for one epoch. We use the same 448

hyper-parameter setting to the previous experiment 449

(batch size = 16 and learning rate = 2e−5). More 450

details can be referred to in Appendix B. 451

Model Retrieval Accuracy
Name Size @1 @3 @5 @10 @20 @50

DTR medium 62.32 78.16 82.51 86.75 91.51 94.26
DTR large 63.98 78.99 84.27 89.65 93.48 95.65

DPR base 61.38 80.54 85.51 91.41 94.62 96.69
DPR-t base 70.08 85.51 88.82 91.72 94.51 97.20
DPR-e base 66.01 85.20 89.95 91.93 94.31 95.85

Table 3: Top-k table retrieval accuracy on NQ-table test.
DPR is the original model checkpoint. DPR-t is tuned
on the NQ-table training set. DPR-e is the embedding-
augmented DPR tuned on the NQ-table training set.

As shown by the DPR-e results in Tab. 3, encod- 452

ing tables with specific embeddings do not bring 453

substantial improvement on the retrieval accuracy. 454

Instead, the results with and without table-specific 455

embeddings are comparable to each other across 456

multiple top-k metrics. Nonetheless, we recog- 457

nize that it can be hard to make the original DPR 458

weights and new embeddings compatible in as few 459

as three epochs, which could potentially result in 460

the −4.07 drop in top-1 retrieval accuracy. 461

5 Ablation: Table Components and Their 462

Structured Order 463

In this section, we conduct ablation studies in two 464

aspects. For one, to experimentally corroborate our 465

analysis on the NQ-table dataset in § 2, we adjust 466

the inputs to DPR by using different combinations 467

of table components and explore alternative table 468

linearization methods. For another, given the minor 469

significance of the structure demonstrated in § 4.2, 470

we perform perturbations on the ordered table cell 471

mapping to further consolidate this finding. 472
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5.1 Table Components for DPR Inputs473

To corroborate our analysis in § 2 and examine the474

utility of different table components (title, header,475

and content), we experiment with using different476

combinations of them to generate DPR inputs.477

Tables on the same Wikipedia page have the478

same title, hence only using the title hardly distin-479

guishes them and results poorly in our preliminary480

experiments. So, we start by examining the joint481

usage of title and table headers for input. Our first482

experiment linearizes each table by concatenating483

its title and header, which is denoted by no-content484

in Tab. 4. Because fewer table components are485

used, the resulting sequences can be shorter than486

the 100-word passages used at training. To mitigate487

this potential discrepancy, we follow Herzig et al.488

(2021) to repeat the resulting text for at most 15489

times until they reach the 100 words, which is the490

default length limit of DPR model inputs.491

Next, to study the additional benefit brought by492

table content, our second setting appends linearized493

table content rows into the input sequence. We ex-494

plore two linearization methods. The first one uses495

the same input as the DTR model: table content is496

linearized in turns of rows, and, to maximize the497

number of cells that fits in a 512-token window, cell498

strings are truncated to a dynamic length threshold.499

We denote this by all-cell-trunc. in Tab. 4.500

Content Retrieval Accuracy
@1 @3 @5 @10 @20 @50

no-content 38.82 57.45 65.73 75.98 82.50 89.34

all-cell-trunc. 56.52 77.02 82.82 89.23 93.17 95.76
all-row-trunc. 58.28 78.26 83.13 88.51 92.86 96.69

partial 61.38 80.54 85.51 91.41 94.62 96.69

Table 4: Top-k table retrieval accuracy on NQ-table test
set with various table components and linearizations.
no-content refers to the first title-header setting with no
content. all-cell-trunc. uses the DTR linearization that
truncates cell for input, all-table-trunc. discard excess
cells to input all contents using 512 tokens. partial
selects random rows to fits 100 words.

In the second method, we adopt a similar row-501

wise approach, but (1) limit the number of tokens502

in header and content cells to 12 and 8 4, given that503

the previous dynamic truncation strategy is risky504

of truncating cells too aggressively for long tables,505

and that header information is often more crucial;506

4We experiment with cell limit 6/8/10 and header limit
8/12/16 and find this to be the best configuration.

(2) only include the first few rows instead of all 507

rows that fit into the 512-token limit. We denote 508

this by all-table-trunc. in Tab. 4. 509

Meanwhile, regarding that DPR is accustomed 510

to 100-word text passages during training, our third 511

experiment fits table linearization into the 100- 512

word input limit by selecting the first few rows 5, 513

which is denoted as partial in Tab. 4. We aim to 514

study if a moderate compromise of reducing con- 515

tent to meet the optimal sequence length helps. 516

Results of three experimental settings are shown 517

in Tab. 4. First, as shown by the no-content results, 518

using the title-header combination can solve a de- 519

cent amount of cases. Compared to the solvable 520

cases with additional table content, this content- 521

free setting can solve around 65% to 80% of them, 522

if examined among the top 1-5 metrics. Second, 523

comparing all-cell-trunc. and all-row-trunc. that 524

write all table content using 512-tokens, our sec- 525

ond method that removes end rows is better than 526

the DTR strategy of cell truncation. Trading off 527

cell lengths to fit more cells deteriorates the quality 528

of generated representations. Third, the partial 529

method performs better than the above two using 530

all table content. Trimming tables to conform to 531

the training format (100-word), even by discarding 532

some of the content rows, can be more helpful than 533

naively enlarging the content volume. 534

5.2 Perturbing the Structured Table Layout 535

Results in § 4.2 suggests that a retriever model 536

without explicit structural embeddings can perform 537

similarly well as one that does. Although the DPR 538

architecture has no explicit features to encode struc- 539

tures such as row and column positions, it can po- 540

tentially combine the BERT sequential position 541

indices with cell/row separators to configure the 542

cell mapping as in a two-dimensional table layout. 543

In this way, DPR can implicitly capture some struc- 544

tures using a generic sequence-oriented encoder. 545

Therefore, we aim to investigate if the DPR rep- 546

resentation on table structure is sufficient, or that 547

NQ-table retrieval actually relies more on the ta- 548

ble structural information. To prove which is the 549

case, we propose to perturb the structured table cell 550

mapping by shuffling the order of table cells. 551

Shuffle In Row A table row often relates to the 552

same entity and contains multiple cells to describe 553

the various properties of that entity. The content 554

5Using the first few or a random selection of rows performs
very similarly in our preliminary experiments
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of each cell maps with the header cell in the cor-555

responding columns. In this setting, we randomly556

select one row in the table and shuffle all of its cells,557

such that the resulting cell order in the selected row558

does not match it in the header row. In other words,559

for each cell in the selected row, the type declared560

in the header cell of that column does not match561

with it. We denote it as DPR-row in Tab. 5.562

Shuffle In Column Table cells within the same563

column are often different values given the type de-564

scription of the column header cell. We also exper-565

iment with the shuffle-in-column setting, where in566

a randomly selected column all cells are re-ordered.567

This setting is denoted as DPR-col in Tab. 5.568

Model Retrieval Accuracy
@1 @3 @5 @10 @20 @50

DPR 61.38 80.54 85.51 91.41 94.62 96.69
DPR-row 60.97 79.30 84.99 91.20 94.20 97.00
DPR-col 60.86 79.30 84.99 91.10 94.31 97.31

Table 5: Zero-shot table retrieval accuracy measured in
top-k metrics on NQ-table test. DPR linearizes tables
in the correct order. For each table, DPR-row perturbs
the order of cells within one row, DPR-col perturbs the
order of cells within one column.

From the results in Tab. 5, perturbing orders,569

either row-wise or column-wise, only lead to minor570

changes in the retrieval accuracy. For the questions571

in the NQ-table dataset, retrieving the correct table572

does not heavily require on its structured layout.573

6 Related Work574

Open Domain Question Answering (ODQA)575

ODQA systems often use a retriever-reader576

pipeline, where the retriever selects relevant con-577

texts and the reader further selects answer spans578

from them. Because candidate contexts normally579

approach millions in size, good retrieval accu-580

racy is critical for an effective end-to-end QA sys-581

tem (Karpukhin et al., 2020). Most text retrieval582

systems are built on the Dense Passage Retriever583

(DPR) (Karpukhin et al., 2020). Beyond texts, one584

of the most common sources for answering open-585

domain questions is structured tables. Herzig et al.586

(2021) recently identified a subset of Natural Ques-587

tions (NQ) dataset (Kwiatkowski et al., 2019) that588

is answerable by Wikipedia tables. Oguz et al.589

(2021); Ma et al. (2021) find Wikipedia tables also590

helpful to answer NQ questions. This paper aims591

to optimize the usage of tables for QA and focuses592

on the task of table retrieval.593

Table Understanding To encode the relational 594

structure of web tables, CNNs (Chen et al., 2019a), 595

RNNs (Gol et al., 2019), LSTMs (Fetahu et al., 596

2019), and their combinations (Chen et al., 2019b) 597

are explored. In addition, Graph Neural Network 598

(GNN) is used, especially for tables with complex 599

structures (Koci et al., 2018; Zayats et al., 2021; 600

Vu et al., 2021; Bhagavatula et al., 2015). Upon the 601

advances in pre-trained Transformers, recent table 602

encoders adapt the BERT model with table-specific 603

modules concerning structure (Herzig et al., 2020; 604

Yin et al., 2020; Wang et al., 2021b), numer- 605

acy (Wang et al., 2021b; Herzig et al., 2020), and 606

other features. These methods are intentionally 607

built for tables, but their necessity in certain tasks 608

remains unknown. Our work exploits a generic 609

model to show that some content-emphasized tasks 610

like retrieval do not require such specific designs. 611

Table Retrieval Earlier work focus on web table 612

search in response to a keyword query (Cafarella 613

et al., 2008, 2009; Balakrishnan et al., 2015; Pimp- 614

likar and Sarawagi, 2012) or a seed table (Sarmad 615

et al., 2012). Many of them use the 60 keywords 616

and relevant web tables collected by Zhang and Ba- 617

log (2018). Tables are modeled by aggregating mul- 618

tiple fields (Zhang et al., 2019), contexts (Trabelsi 619

et al., 2019), and synthesized schema labels (Chen 620

et al., 2020b). More recently, Chen et al. (2020c); 621

Wang et al. (2021a) use structure-augmented BERT 622

for retrieval. These works largely treat the retrieval 623

task on its own account and target similarity un- 624

der the traditional Information Retrieval (IR). We 625

focus on the extended scope of retrieval to also 626

emphasize model inference abilities for answering 627

questions in the open domain. 628

7 Conclusion 629

Given the importance of finding relevant tables to 630

answer questions in the NQ-table dataset, we study 631

the task of table retrieval and identify question- 632

table matching patterns that emphasize content 633

rather than table structure. Our experiment using a 634

text-generic Dense Passage Retriever (DPR) proves 635

its comparable performance to the state-of-the-art 636

Dense Table Retriever (DTR) on table retrieval. 637

While both adding table-specific modules and per- 638

turbing table cell ordering in DPR bring negligible 639

change, our work reveals the unnecessity of table- 640

specific designs for table retrieval, as well as the 641

great potential of generic text retrievers in their 642

direct applicability on structured tables. 643
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A Model Size841

Tab. 6 shows the detailed configurations of BERT-842

variants in different sizes. As can be seen from the843

hyper-parameter values, models of medium size844

have the smallest capacity, base is an intermediate845

configuration, and large size is the biggest.846

Size Layers Attention Heads Hidden Size

medium 8 8 512
base 12 8 768
large 24 16 1024

Table 6: Hyper-parameters for BERT models of varied
sizes. Models of different sizes vary in the number of
Transformer layers, the number of heads in the self-
attention module, and the dimension of hidden states.

B Experiment Details847

For the DPR experiments, we use the latest pub-848

lished checkpoint (in base size) 6 where the hard-849

negative text passages are mined using the DPR850

checkpoint saved in the previous round. Except for851

our experiments on table linearization strategies,852

all data processing details follow the original DPR853

manipulation.854

To substitute the original DPR context encoder855

with the one with augmented embeddings (TAPAS),856

we import the implemented version in the Hugging-857

face 7 repository. Following the default setting of858

DPR, all fine-tuning use batch size = 16 and learn-859

ing rate = 2e−5. Experiments run on a single GPU860

on the Tesla K80 server.861

To reproduce the DTR performance, we use862

the published checkpoints (in medium and large863

sizes) 8 and run the retrieval inference. Our results864

are comparably close to the number reported in the865

paper and the GitHub repository, although they do866

not exactly match.867

6https://github.com/facebookresearch/DPR
7https://github.com/huggingface/transformers
8https://github.com/google-research/tapas/blob/master/

DENSE_TABLE_RETRIEVER.md
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