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ABSTRACT

Deepfakes pose a significant threat to the authenticity of digital media, with current
detection methods often falling short in generalizing to unseen manipulations.
INFER is the first deepfake detection framework that leverages Implicit Neural
Representations (INRs), marking a new direction in representation learning for
forensic analysis. We combine high-level semantic priors from Contrastive Lan-
guage–Image Pre-training (CLIP) with spatially detailed, frequency-sensitive fea-
tures from INR-derived heatmaps. While CLIP captures global context grounded in
natural image statistics, INR heatmaps expose subtle structural inconsistencies often
overlooked by conventional detectors. Crucially, their fusion transforms the feature
space in a way that enhances class separability—effectively re-encoding both spa-
tial artifacts and semantic inconsistencies into a more discriminative representation.
This complementary integration leads to more robust detection, especially under
challenging distribution shifts and unseen forgery types. Extensive experiments on
standard deepfake benchmarks demonstrate that our method outperforms existing
approaches by a clear margin, highlighting its strong generalization, robustness,
and practical utility.

1 INTRODUCTION

With the rapid progress of deep learning, it has become easier than ever to generate highly realistic
synthetic media, including images, videos, and audio. One of the most widely known and debated
results of this technology is deepfakes, which is artificial content that is designed to closely mimic
real-world media. Today, a deepfake is typically defined as any image, video, or audio clip that
has been generated or modified using deep learning methods, often to deceive viewers or mislead
them into believing the content is authentic. The term deepfake comes from a combination of deep,
referring to deep learning, and fake, indicating that the content is not genuine. Although early
attempts to alter video content go back to the 1990s, such as the Video Rewrite system (1997), which
altered a person’s lip movements in video to match different audio (Norman, 2025); these methods
did not involve deep neural networks. The modern concept of deepfakes only became possible
with the rise of powerful deep learning models. In particular, Generative Adversarial Networks
(GANs) (Singh et al., 2020; Alqahtani et al., 2021) played a major role in creating realistic synthetic
faces and videos. More recently, diffusion models (Croitoru et al., 2023) have made it possible to
generate even more seamless and photo-realistic content that is difficult to distinguish from real
media (Bhattacharyya et al., 2024; AV et al., 2024). As deepfake technology becomes increasingly
advanced, and widely accessible (Lanzino et al., 2024), the creation of synthetic media is accelerating
at a rapid pace. Recent estimates suggest that thousands of deepfakes are now being generated daily,
with applications ranging from entertainment and satire to more harmful uses such as misinformation
campaigns, identity theft, and financial fraud (Hancock & Bailenson, 2021; de Rancourt-Raymond &
Smaili, 2023; Gilbert & Gong, 2024). These growing risks have sparked widespread concern around
media authenticity and digital trust.

In response to the growing threat of deepfakes, researchers have turned to the same technology
that enabled their creation, which is deep learning, to develop effective detection methods. Broadly,
deepfake detection techniques fall into two main categories: image-based and video-based approaches
(Heidari et al., 2024). Image-based methods focus on analyzing individual frames to identify visual
artifacts or inconsistencies, and are often simpler and faster to train (Altaei et al., 2023; Raza et al.,
2022; Frank et al., 2020). In contrast, video-based methods aim to capture temporal inconsistencies
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across frames, such as unnatural facial expressions, blinking patterns, or head movements, but
typically require more complex models and greater computational resources (Suratkar & Kazi, 2023;
Yu et al., 2021; Kaur et al., 2024).

While a wide range of deepfake detection methods have been proposed, a persistent challenge
remains: generalization to unseen manipulations and datasets. Many models perform well on specific
benchmarks but struggle when faced with new deepfake generation techniques or distribution shifts
in real-world data. This raises a critical question: What types of representations can lead to better
class separation and more robust detection than traditional approaches? One promising direction
involves the use of features derived from Contrastive Language–Image Pre-training (CLIP) (Radford
et al., 2021). Recent studies have shown that CLIP features, which encode high-level semantic and
visual information, offer improved class separability compared to existing methodologies (Ojha et al.,
2023). Building on this, further work has demonstrated that applying wavelet decomposition to
CLIP-derived features can capture localized frequency components, leading to enhanced detection
performance (Baru et al., 2024).

These insights strongly suggest that combining semantic-rich embeddings with frequency-aware
representations may offer a promising path toward more generalizable deepfake detection. Motivated
by this, we seek an alternative representation, that can be combined with CLIP embeddings, which
not only captures frequency characteristics but also retains spatial context, enabling the model to
reason about where and how manipulations occur within an image. While many decomposition
methods exist, we observe that Implicit Neural Representations (INRs) (Sitzmann et al., 2020) offer a
unique formulation. They model images as continuous functions over spatial coordinates, implicitly
encoding both fine-grained structure and frequency content within their network parameters. In doing
so, the layer-wise activations of INRs naturally act as a form of spectral decomposition (Benbarka
et al., 2022), revealing localized frequency responses across the image. Unlike traditional CNNs
that operate on fixed grids, INRs provide a flexible and expressive representation that has recently
shown promise across various signal domains, including images, audio, and video (Sitzmann et al.,
2020; Ramasinghe & Lucey, 2022; Saragadam et al., 2023). This makes them particularly well-
suited for capturing the subtle artifacts introduced by generative manipulations. By leveraging the
representational power of INRs, we aim to build a more robust and manipulation-sensitive feature
space that complements high-level semantic cues and improves generalization to unseen deepfake
types. To the best of our knowledge, this work is the first to explore the use of INRs for deepfake
detection, leveraging their spatial-frequency sensitivity to identify manipulation artifacts.

2 RELATED WORKS

2.1 DEEPFAKES

Deepfake detection has become a widely studied domain due to the rise of powerful generative models.
Early methods (Afchar et al., 2018; Stehouwer et al., 2019; Li & Lyu, 2018) employ a feature encoder
followed by a binary classifier to predict manipulated content. XceptionNet (Chollet, 2017) is based
on depthwise separable convolutions with residual connections. Similarly, CapsuleNet (Nguyen et al.,
2019) better captures spatial hierarchies in manipulated media. However, these approaches were
prone to overfitting and exhibited poor generalization to unseen data. The current deepfake detection
landscape can be categorized along two major axes: frame-level vs. video-level detection methods
and spatial domain vs. frequency domain methods. Frame-level methods (Shi et al., 2025; Huang
et al., 2023; Larue et al., 2023) analyze individual frames for manipulation without considering
temporal consistency. Video-level methods (Wang et al., 2023; Xu et al., 2023; Haliassos et al.,
2022) leverage temporal information across frames to enhance robustness. When it comes to spatial
domain approaches (Ni et al., 2022; Zhao et al., 2022), they detect inconsistencies at the pixel
level. On the other hand, frequency domain approaches (Li et al., 2024; Tan et al., 2024; Jeong
et al., 2022) focus on spectral artifacts introduced during manipulation. Recently, several works
such as LSDA (Yan et al., 2024) and SBI (Shiohara & Yamasaki, 2022) have proposed dataset
augmentation strategies to increase dataset size with high-quality synthetic samples, which has been
shown to improve model performance. In contrast, we deliberately avoid using any augmentations
in order to highlight the efficacy of INRs in implicitly capturing subtle manipulation artifacts in
spatial-spectral domains. Consequently, for a fair comparison, we exclude baselines that employ
dataset augmentation. (Ojha et al., 2023) shows the advantage of using semantic CLIP features for
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deepfake detection. Wavelet-CLIP (Baru et al., 2024) appends it with additional frequency features
obtained using wavelet transform to further improve performance. In our approach, we leverage the
superior spatial-spectral decomposition capability of INRs, combined with the semantic richness of
CLIP features. Our work falls under the frame-level detection category and utilizes spatial-spectral
information derived from INRs to improve deepfake detection performance without the aid of data
augmentations.

2.2 IMPLICIT NEURAL REPRESENTATIONS

INRs are neural networks that model continuous signals (e.g., images, audio, video) by mapping
input coordinates to signal values (Sitzmann et al., 2020). Unlike discrete representations, they
embed the signal directly in network parameters, allowing smooth interpolation, compact storage, and
high-resolution reconstruction (Saragadam et al., 2023). This makes them well-suited for capturing
fine-grained structures and spectral properties. A key factor in their expressiveness is the activation
function. Standard choices such as ReLU, Sigmoid, and Tanh fail to preserve high-frequency
details. Positional embeddings (PEs) were introduced to inject high-frequency information (Tancik
et al., 2020), but often generalize poorly to unseen coordinates. Sinusoidal activations with tailored
initialization (Sitzmann et al., 2020) addressed this limitation, while more recent spatial–spectral
compact activations improve generalization and relax initialization constraints (Ramasinghe & Lucey,
2022; Saragadam et al., 2023).

The most prominent use of INRs has been in Neural Radiance Fields (NeRFs) (Gao et al., 2022),
where they model 3D scenes as continuous volumetric functions for photorealistic view synthesis.
Beyond NeRFs, INRs have been applied to image and video restoration tasks such as super-resolution
(Aiyetigbo et al., 2025), denoising (Saragadam et al., 2023; Xu et al., 2022; Kim et al., 2022),
deblurring (Lehtonen, 2024), inpainting (Xu & Jiao, 2023), and compression of visual data (Strümpler
et al., 2022). They have also been explored in medical imaging (Molaei et al., 2023), audio waveform
modeling (Sitzmann et al., 2020), and hyperspectral imaging (Chen et al., 2023; Zhang et al., 2022).
These applications highlight the versatility of INRs as compact and expressive representations.
However, none have investigated their potential for deepfake detection. Our work is the first to
explore this direction, showing that INR-derived activations provide a powerful and discriminative
modality for identifying subtle manipulations in visual media.

3 METHODOLOGY

Figure 1: Overview of the INFER Pipeline: INFER begins by associating a spatial coordinate grid
with each input image, which is then overfitted using a carefully designed INR. Internal activations
from each INR layer are extracted and decomposed using PCA to isolate dominant energy directions.
The resulting PCA-based heatmaps are stacked along the batch dimension and processed through a
dedicated Heatmap Encoder. In parallel, the RGB image is passed through a CLIP ViT-L/14 encoder
to obtain a global semantic embedding. Finally, the INR-derived and CLIP-derived features are
concatenated and fed into a classification head for deepfake detection.

3.1 DATASET PREPARATION

To build a robust dataset for training and evaluation, we follow a systematic preprocessing pipeline
comprising frame extraction, face detection, and alignment. We begin by extracting frames from
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each video, followed by face detection using the RetinaFace (Deng et al., 2020) detector. Detected
faces are then cropped based on the bounding boxes and aligned using five facial landmark keypoints.
The alignment is performed via a warp and affine transformation to standardize the facial geometry
across samples. All faces are resized following this alignment process. INFER is trained on c23
version of the FaceForensics++ (FF++) dataset (Rossler et al., 2019), which simulates realistic video
compression artifacts.When it comes to the number of frames, we extract 10 frames per fake video
and 40 frames per real video to curate the training set. This sampling strategy ensures a balanced real-
to-fake ratio, which helps minimize class bias during training. A critical goal in deepfake detection is
to ensure generalization across unseen forgery types. To assess this, we evaluate the trained model on
four out-of-distribution (OOD) benchmarks: Celeb-DF v1 (CDFv1) (Li et al., 2020b), Celeb-DF v2
(CDFv2) (Li et al., 2019), FaceShifter (FSh) (Rossler et al., 2019), and the Deep Fake Detection
(DFD) (Rossler et al., 2019) dataset.

3.2 IMPROVING DEEPFAKE DETECTION VIA MODALITY FUSION

CLIP embeddings have already shown strong performance in deepfake detection (Baru et al., 2024)
as it excels in capturing high-level semantic cues such as identity, expression consistency, and scene
realism (Asperti et al., 2025). Using a pretrained ViT-L/14 encoder, we extract a global semantic
embedding c ∈ R768 by feeding in the input image I . These features provide robust scene-wide
context; however, they may lack explicit spatial and spectral structure.

Figure 2: t-SNE visualization of feature embeddings from the CDFv1 dataset using different
input modalities: A clear progression in class separability is observed: FFT-based features show
moderate entanglement between real and fake samples, while combining RGB+FFT yields modest
improvement by integrating spatial cues. In contrast, INFER-derived features exhibit well-defined,
compact clusters with a pronounced margin between classes. This suggests that the spatial–spectral
decomposition provided by INR heatmaps restructures the feature space in a way that enhances the
separability making analogies to the effect of a kernel transformation in classical machine learning

To address this limitation, we explored whether fusing CLIP embeddings with additional modalities
could yield improved separability. Specifically, we combined CLIP features with the RGB image and
its FFT-based frequency representation (Heckbert, 1995) to inject complementary spatial or spectral
information (see Section 4.3 for detailed explanation). However, as seen in both Figure 2 (see the
first two figures) and Table 3, even though these conventional representations offer some separation
in feature space, greater class separability can be achieved through a further transformation on the
feature space. Specifically, the first figure of Figure 2 shows that a degree of separation exists when
using FFT. However, the second figure further suggests that combining both FFT and RGB transforms
the feature space in a way that enhances class separation even more. This behavior is also reflected
in the AUC values reported in Table 3. These observations motivate the idea that modality fusion
along with CLIP embeddings can improve class separability, but they also raise the question: which
modality can further transform the data to enhance this separation? This motivates the need for a
new representation that should ideally include both spatial and spectral features while encoding the
required discriminative features. To this end, we explore the possibility of using INRs to derive such
features in a multiscale and interpretable manner. The following sections demonstrate on how INRs
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can be leveraged alongside CLIP embeddings to improve deepfake detection through enhanced class
separability.

3.3 FORMULATION OF AN INR

An INR defines a continuous function that maps spatial coordinates x ∈ R2 to RGB values s(x) ∈ R3.
This function is typically implemented as a fully connected neural network fθ : R2 → R3, where θ
represents the learnable parameters. Unlike conventional representations (Rabbani & Jones, 1991)
that store an image as a discrete grid of pixels, the INR encodes the image in its weights, allowing
continuous evaluation at any spatial location. Given a 2D spatial coordinate x ∈ Ω ⊂ R2, the network
predicts RGB values ŝ(x) ∈ R3 through the following layer-wise activations

h0 = x, hℓ = ϕ(Wℓhℓ−1 + bℓ), ℓ = 1, . . . , L− 1, ŝ(x) = WLhL−1 + bL

where ϕ(·) is a nonlinear activation (e.g., Sinusoid, Gaussian), and Wℓ, bℓ are learnable weights
and biases respectively. The network is trained to minimize the MSE loss given by Lrecon =
1
|Ω|

∑
x∈Ω ∥fθ(x)− s(x)∥22, where Ω denotes the set of spatial coordinates in the image domain and

|Ω| = H ×W , the H and W represent height and width of the image respectively.

3.4 HOW CAN WE DEPLOY INRS FOR DEEPFAKE DETECTION?

3.4.1 LIMITATIONS OF NAÏVE USAGE

A natural question is how INRs can be leveraged for deepfake detection. By design, an INR defines a
continuous mapping from spatial coordinates to signal values, offering a compact and differentiable
representation of content (Sitzmann et al., 2020). At first glance, this structure seems useful only for
reconstruction, with the reconstructed signal then fed to a classifier—essentially no different from
using the image itself. This ignores the internal representations unique to INRs. A more promising
idea is to treat the INR’s learned weights as discriminative features (Malherbe, 2024), but this is
computationally demanding. An INR with L fully connected layers of hidden width dh has about
(d2h + dh)(L − 2) + 5dh + 3 parameters. In practice, reconstructing face images with low error
requires at least three hidden layers of width 64, already yielding thousands of parameters. Directly
using these weights for classification is therefore expensive and impractical at scale.

3.4.2 SPECTRAL BIAS AND REPRESENTATION DYNAMICS

The challenges noted above motivate the need for more efficient and informative INR representations,
especially those unique to INRs yet compact and suitable for downstream tasks. One such direction
is to explore structural patterns or emergent behaviors within the weight space. A key insight from
the INR literature is spectral bias (Rahaman et al., 2019; Yüce et al., 2022), where lower-frequency
components of the signal are learned earlier during optimization, while higher frequencies emerge
later. Despite its empirical support, there is no definitive theory specifying the number of epochs
required to learn each frequency band. Furthermore, as each image, whether real or manipulated,
follows its own optimization trajectory, designing a universal schedule or analytical tool to probe
weight space remains a challenging open problem.

3.4.3 THE PATHWAY OF A COORDINATE THROUGH THE INR

This challenge can be addressed by analyzing how a spatial coordinate propagates through the layers
of an INR, together with the well-known phenomenon of spectral bias. Once trained to minimize
reconstruction error, an INR no longer stores an image as pixel values but implicitly encodes it in
the network parameters θ of a function fθ : R2 → R3. Given a coordinate x = (x, y), the network
outputs its RGB value s(x), thereby capturing both spatial layout and frequency content through its
parameters (Roddenberry et al., 2023). For each input location, the coordinate is transformed across
L layers, producing activations {hℓ(x)}L−1

ℓ=1 that form a coordinate-conditioned representation path.
Each step can be written as hℓ = Tℓ(hℓ−1), where Tℓ is the learned mapping at layer ℓ.

This layered refinement is reminiscent of classical signal decompositions such as wavelets (Zhang,
2019) or multiresolution pyramids (Goutsias & Heijmans, 2000). Unlike handcrafted bases that
separate spatial and frequency domains, INRs inherently couple both due to their coordinate-based
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formulation. As a result, early layers capture coarse, global structures (low frequencies), while
deeper layers encode fine, localized variations (high frequencies), reflecting the spectral bias of neural
networks.

3.4.4 EXTRACTING INTERPRETABLE FEATURES FROM INR LAYERS.

We begin by examining the internal activations hℓ(x) ∈ Rdℓ at each layer ℓ ∈ {1, . . . , L − 1}
and spatial coordinate x ∈ Ω ⊂ R2. These activations form tensors of size H ×W × dℓ. While
these feature maps encode rich information, they are high-dimensional, difficult to interpret, and
infeasible to directly use in downstream classification due to memory constraints. To obtain a compact
yet informative representation, we seek a transformation that reduces each activation vector to a
scalar, while preserving the most structurally meaningful content for deepfake detection. From a
signal processing perspective, this corresponds to emphasizing high-energy components—regions
where the network’s response is most active and discriminative. As an initial step, we explored
the L2 norm of the activation vectors. Although smooth and easy to compute, these maps were
often dominated by magnitude rather than structure, leading to limited interpretability and poor
spatial localization (See Supplementary material). To address this, we adopt a simple, non-learnable
alternative that extracts the dominant energy component of each layer’s response. Specifically, we use
Principal Component Analysis (PCA) to identify the most expressive direction in the activation space.
Projecting each feature vector hℓ(x) onto this direction yields a scalar heatmap that summarizes
the layer’s internal representation at each location. The sequence of PCA-derived scalar maps
{Aℓ(x)}L−1

ℓ=1 forms a structured representation that captures how an INR distributes signal content
across layers. We interpret this set as an approximate multiscale decomposition: I(x, y) 7→ a(x, y) :=
[A1(x, y), . . . , AL−1(x, y)] ∈ RL−1.

3.4.5 DISCRIMINATIVE NATURE OF THE MULTISCALE DECOMPOSITION

Figure 3: Despite producing visually faithful reconstructions for both real and fake images (last
column), INRs exhibit markedly different internal dynamics across layers. This visualization
highlights a key insight about implicit representations: models can generate perceptually accurate
outputs while following fundamentally different internal pathways. By projecting layer activations
via PCA, these hidden trajectories are revealed—showing that although the output may conceal
manipulation, the network’s internal structure does not.

Section 3.4.5 presents two examples from the CDFv2 dataset: the top row corresponds to a real image,
and the bottom row to a deepfake. Each row visualizes the spatial–spectral multiscale decomposition
obtained from the INR’s internal activations across layers. The final column shows the image
reconstructed by the INR, which appears visually similar in both cases despite notable differences in
their internal representations. While the quantitative results demonstrate that INFER significantly
improves deepfake detection across datasets (See Section 4), the proposed decomposition also reveals
subtle structural discrepancies, particularly mid-to-deep layers—that are not easily observable in the
RGB image or FFT maps. These visual differences provide a glimpse into the discriminative nature
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of INR-derived representations, though additional non-visible cues encoded in the internal activations
may also contribute to the classifier’s decision-making process.

In Layer 1, both real and fake activations exhibit wave-like patterns with visually high-frequency
textures, which may arise due to the deployed sinusoidal activation function in the INR. Despite their
appearance, these early activations primarily capture low-level spatial variations and lack semantic
distinction, making them visually similar across real and fake images.

By Layer 2, the activations begin to reflect mid-level facial structure. For the real image (top),
the representation becomes more coherent where it highlights eyes, nose, and mouth regions with
smoother transitions. In contrast, the fake image (bottom) shows irregular, noisy responses lacking
semantic consistency. This instability suggests the INR struggles to encode manipulated features
cleanly at mid-to-deep levels.

In Layer 3, the differences become more pronounced. The real image produces well-aligned,
semantically interpretable activations that faithfully reconstruct identity features, whereas the fake
image exhibits distorted contours and exaggerated edge responses—visual evidence of manipulation
artifacts that become amplified through the INR’s encoding process.

Even though the final INR reconstructions (rightmost column) appear visually similar, the internal
activations reveal a clear distinction in representation quality.

3.5 FUSING SEMANTIC AND MULTISCALE REPRESENTATIONS

To extract robust and discriminative features from the PCA-projected INR heatmaps, we design
a compact convolutional encoder tailored to the spatial–spectral nature of these representations.
INR-derived heatmaps encode multiscale structural information across layers but can also exhibit
smooth gradients and locally diffuse patterns due to the continuity and frequency sensitivity inherent
in the INR formulation. Capturing useful cues from such signals requires an architecture that is both
spatially aware and resistant to low-frequency redundancy.

We employ stacked 3× 3 convolutional layers to effectively capture local spatial correlations while
preserving translational structure. Each convolution is followed by Batch Normalization to stabilize
learning and reduce internal covariate shift, and a GELU activation to introduce smooth, non-linear
transformations that preserve gradient flow while enhancing expressive capacity. To reduce spatial
resolution while retaining global context, we apply an AdaptiveAvgPool2d operation that maps
the feature maps to a fixed 4 × 4 resolution, independent of the input size. This is followed by
a fully connected projection and Layer Normalization to produce a compact, fixed-dimensional
feature embedding. The heatmap encoder serves as an effective counterpart to the CLIP encoder by
transforming localized INR-derived activations into a structured, learnable form. The final CLIP
feature and heatmap encoder output are concatenated and passed through a classifier head composed
of three fully connected layers with a hidden dimension of 256. This classification module is trained
end-to-end using cross-entropy loss to discriminate between real and fake inputs. A visual summary
of the entire INFER pipeline is shown in Figure 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To validate the effectiveness of INFER, we conduct experiments across multiple deepfake datasets.
The training set includes videos generated with four popular manipulation techniques—Deepfakes,
Face2Face, FaceSwap, and NeuralTextures—covering diverse manipulation styles. The evaluation
datasets, detailed in Section 3.1, are distinct in both manipulation technique and visual domain,
enabling a rigorous test of generalization. Performance is measured using the Area Under the Curve
(AUC), and results for state-of-the-art (SOTA) methods are taken from their respective papers or
(Baru et al., 2024).

Table 1 summarizes the performance of the proposed INFER compared to existing SOTA methods
across four widely-used OOD deepfake detection benchmarks (“–” indicates results not reported
in prior works). As evident from the results, INFER consistently achieves superior AUC scores,
demonstrating strong generalization capability even under distribution shift. For the Celeb-DF family
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of datasets, CDFv1 and CDFv2, INFER attains AUC scores of 0.863 and 0.819, respectively. On
CDFv1, it outperforms the best prior method, SRM (0.792), by a relative margin of 8.22%. On CDFv2,
it surpasses the best-performing CLIP-based method, which is Wavelet-CLIP (0.759), by 7.32%.
Notably, when compared against plain CLIP (0.743), the improvement is over 9.28%, validating the
complementary nature of the INR-derived modality. On the FSh dataset, INFER achieves an AUC of
0.747, outperforming Wavelet-CLIP (0.732) by a relative margin of 2.00%. For the DFD dataset, both
the F-G method and the proposed INFER achieve the same AUC score. It can be stated that, INFER
delivers consistently strong performance across all benchmarks without requiring dataset-specific
tuning or modality customization.

Model Venue CDFv1 CDFv2 FSh DFD Avg.
General SOTA Methods

MesoNet (Afchar et al., 2018) WIFS-18 0.735 0.609 0.566 0.548 0.615
MesoInception (Afchar et al., 2018) WIFS-18 0.736 0.696 0.643 0.607 0.671
EfficientNet (Tan & Le, 2019) ICML-19 0.790 0.748 0.616 0.815 0.742
Xception (Chollet, 2017) ICCV-19 0.779 0.736 0.624 0.816 0.739
Capsule (Nguyen et al., 2019) ICASSP-19 0.790 0.747 0.646 0.684 0.717
DSP-FWA (Li & Lyu, 2018) CVPR-19 0.789 0.668 0.555 0.740 0.688
CNN-Aug (Wang et al., 2020) CVPR-20 0.742 0.702 0.598 0.646 0.672
FaceX-ray (Li et al., 2020a) CVPR-20 0.709 0.678 0.655 0.766 0.702
FFD (Dang et al., 2020) CVPR-20 0.784 0.744 0.605 0.802 0.734
F3-Net (Qian et al., 2020) ECCV-20 0.776 0.735 0.591 0.798 0.725
SRM (Luo et al., 2021) CVPR-21 0.792 0.755 0.601 0.812 0.740
CORE (Ni et al., 2022) CVPR-22 0.779 0.743 0.603 0.802 0.732
RECCE (Cao et al., 2022) CVPR-22 0.767 0.731 0.609 0.812 0.730
UCF (Yan et al., 2023) ICCV-23 0.779 0.752 0.646 0.807 0.746
F-G (Lin et al., 2024) CVPR-24 0.744 – – 0.848 0.796

CLIP-Based Methods

CLIP (Ojha et al., 2023) CVPR-23 0.743 0.750 0.730 – 0.741
Wavelet-CLIP (Baru et al., 2024) WACV-25 0.756 0.759 0.732 – 0.749
INFER (Ours) – 0.863 0.819 0.747 0.848 0.819

Table 1: AUC performance across cross-dataset evaluations. The top section lists general SOTA
methods, while the bottom focuses on CLIP-based approaches, including the proposed INFER.

4.2 HOW WELL DOES INFER SEPARATE CLASSES?

Table 2: Silhouette score (↑ higher is better) of INFER,
RGB+FFT, and FFT.

Dataset INFER RGB+FFT FFT
CDFv1 0.0617 0.0416 0.0393
CDFv2 0.0320 0.0168 0.0167
FSh 0.0217 0.0078 0.0072
DFD 0.0737 0.0249 0.0239

To further assess the discriminative abil-
ity of INFER, we evaluated how well its
learned representations separate classes in
the feature space. We employed the Silhou-
ette score as the clustering metric (↑ higher
indicates better separation). Specifically,
we compared INFER against two baselines,
RGB+FFT and FFT, and report both the
absolute Silhouette scores and the relative
percentage improvements. As shown in ta-
ble 2, INFER consistently achieves substan-
tial gains across all datasets, highlighting
its effectiveness in producing more separable feature clusters.

4.3 ABLATION STUDIES

An ablation study was conducted to evaluate which modality provides the most discriminative infor-
mation when combined with CLIP embeddings for the task of deepfake detection. The comparison
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includes the standard CLIP module, as well as additional fusion configurations as described below. In
the setting labeled FFT, the Fourier transform of the input image is processed through a shallow CNN
and its embeddings are concatenated with CLIP features. In the RGB+FFT configuration, both RGB
and FFT representations are passed through separate shallow CNNs, and their respective embeddings
are fused with CLIP embeddings.

Method CDFv1 CDFv2 Avg.

CLIP 0.743 0.750 0.7465
FFT 0.759 0.760 0.7595
RGB+FFT 0.786 0.794 0.7900

INFER 0.863 0.819 0.8410

Table 3: AUC scores and average perfor-
mance across CDF datasets. Figure 4: ROC curves for CDFv1 and CDFv2

As seen in Table 3, adding FFT features to CLIP embeddings improves the average AUC from 0.7465
to 0.7595 (+1.71%), close to Wavelet CLIP. Incorporating both RGB and FFT features further raises
performance to 0.7900 (+5.50% over CLIP), confirming that spatial and spectral cues complement
CLIP’s semantics. Our INR-based method (INFER) achieves the highest performance with an average
AUC of 0.8410, a +6.06% gain over RGB+FFT and +11.24% over CLIP. The corresponding ROC
curves are shown in Figure 4. These results underscore the strong discriminative power of INR-
derived features, which unify spatial–spectral information and expose subtle manipulation artifacts
often missed by RGB or FFT features, supplying crucial cues that drive the performance gains of our
approach.

5 CONFIGURATIONS AND ADDITIONAL PLOTS

The supplementary materials include detailed explanations of the network configurations used in
the INR framework. These cover the selection of activation functions, the reasoning behind specific
choices for network depth and the number of hidden neurons, as well as an analysis of why PCA
provides better feature representations than L2 norm-based maps. Moreover, additional visualizations
are provided that demonstrate the INR’s ability to capture multiscale structural information through
its hierarchical decomposition. These materials offer further insight into the design choices and
effectiveness of the proposed method.

6 CONCLUSION

In this work, we propose INFER, a deepfake detection framework that synergistically combines
semantic embeddings from CLIP with spatial–spectral cues extracted from Implicit Neural Represen-
tations (INRs). Unlike traditional approaches that rely solely on either pixel or frequency-domain
features, our method leverages INR-derived heatmaps, which capture multiscale structural patterns
through a learned continuous implicit function. These heatmaps expose subtle inconsistencies often
overlooked by CLIP and conventional CNN-based features. Through extensive experiments across
standard deepfake detection benchmarks, we show that INR features significantly boost performance
when fused with CLIP embeddings. Compared to standalone CLIP models, INFER achieves an aver-
age AUC improvement of +11.24%, and outperforms other CLIP-based variants such as RGB+FFT
by +6.06%. These results underscore the complementary nature of INR-derived representations,
which offer a richer and more discriminative feature space for detecting manipulated content. Our
findings not only demonstrate the efficacy of INR-guided feature decomposition for deepfake de-
tection but also open up new opportunities for applying INRs to other forensic tasks where subtle
structural cues are critical. We believe this work lays the foundation for further exploration of implicit
representations as a powerful modality in real-world multimedia integrity verification.

9
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A SUPPLEMENTARY MATERIAL

A.1 CHOOSING THE MOST EFFECTIVE ACTIVATION FUNCTION

As discussed in the main text, the core of an INR lies in its activation function. An inappropriate or
conventional activation can often lead to degraded performance in image representation tasks. To
assess the most effective activation function, we randomly sampled 100 real and 100 fake images
from the FaceForensics++ dataset, following the preprocessing steps outlined in Section 3.1. INRs
were then trained using sinusoidal activations from SIREN (Sitzmann et al., 2020), as well as those
introduced in Gauss (Ramasinghe & Lucey, 2022) and WIRE (Saragadam et al., 2023).

The table below summarizes the average Peak Signal-to-Noise Ratio (PSNR, in dB) obtained for both
real and fake images across the different activation types:

Activation Function PSNR (Real) PSNR (Fake)

SIREN 37.41 38.18
Gauss 29.41 29.71
WIRE 20.01 19.73

Table 4: Average PSNR values for real and fake images across different activation functions.

As shown in Table 4, the SIREN model with sinusoidal activation significantly outperforms both
Gauss and WIRE across real and fake image reconstructions. Due to its superior performance, SIREN
was adopted as the default activation function for all INR-based experiments in this work.

A.2 CHOOSING THE NUMBER OF HIDDEN NEURONS

Another important design choice in INRs is the number of hidden neurons in each layer. Increasing
this number generally enhances the network’s representation capacity, enabling it to capture more
complex structures and finer details. However, beyond a certain point, increasing the hidden neuron
count may no longer lead to meaningful improvements in reconstruction quality. Specifically, the
PSNR often plateaus once the network has reached its capacity to represent the target signal, indicating
diminishing returns with further increases in model size. It is worth noting that this behavior can also
depend on the type of activation function used.

Similar to the procedure described in Section A.1, we randomly sampled 100 real and 100 fake
images from the FaceForensics++ dataset and varied the hidden neuron count from 32 to 160 in
increments of 32 while keeping the number of hidden layers as two. The resulting average PSNR
values for both real and fake images are presented in the left side of Fig. 5.

A.3 CHOOSING THE NUMBER OF HIDDEN LAYERS

In addition to the number of hidden neurons, the depth of the network, defined by the number of
hidden layers, is another key factor that influences the expressiveness of INRs. Deeper networks are
generally capable of modeling more intricate patterns and hierarchical structures, potentially leading
to better reconstruction quality. However, similar to increasing the number of neurons, increasing
the number of hidden layers may also yield no further improvements in reconstruction quality. This
phenomenon can be attributed to the combined effects of the activation function and other network
parameters.

To analyze the impact of network depth, we varied the number of hidden layers from 1 to 3 while
keeping the number of hidden neuron count as 128. Following the same evaluation protocol as before,
we randomly sampled 100 real and 100 fake images from the FaceForensics++ dataset and trained
INRs under each configuration. The average PSNR values obtained for both real and fake images are
summarized in the right side of Fig. 5.
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Figure 5: Average PSNR Variation for both Real and Fake Samples: Left side plot shows how
the average PSNR varies with hidden neuron count while the Right side plot shows how the average
PSNR varies with the number of hidden layers

A.4 UTILIZED INR

For the image reconstruction task through INR, our objective is to achieve at least 35 dB PSNR, as
this level reflects high signal fidelity and indicates that the INR has effectively captured the essential
structural content of the image. Such a threshold helps ensure that the reconstruction is stable
and reliable for downstream analysis, including feature extraction and classification. At the same
time, we aimed to avoid overly complex networks with a large number of trainable parameters. To
balance reconstruction quality and model efficiency, we selected an INR architecture with sinusoidal
activation sitzmann2020implicit, consisting of 128 hidden neurons and 2 hidden layers.

A.5 INR RECONSTRUCTIONS

In addition to proving the quantitative results for INR reconstruction, Figure 6, and Figure 7 showcase
how the INR reconstruction quality looks for six different real and fake samples respectively.

Figure 6: Original Images and INR Reconstructions for Real Samples: This figure presents
side-by-side comparisons of original real images and their corresponding reconstructions produced
by INRs.
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Figure 7: Original Images and INR Reconstructions for Fake Samples: Side-by-side comparisons
of original fake images and their corresponding INR reconstructions.

A.6 HEATMAP ANALYSIS FOR DIFFERENT DATASETS

In addition to the heatmap visualizations from the CDFv2 dataset in the main text, we also present
INR-derived heatmaps for CDFv1, DFD, and FSh. These additional visualizations further highlight
the ability of INRs to capture structural inconsistencies across different manipulation methods and
datasets.

A.6.1 CDFV1

Figure 8: INR Feature Heatmap Progression for Real and Fake Images (CDFv1)

As can be seen from Figure 8, the first row corresponds to a real image, while the second row shows
a deepfake. In the real image, the INR learns progressively meaningful representations: the first layer
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captures periodic frequency patterns, the second begins to reveal coarse facial structure, and the third
cleanly delineates key semantic features such as eyes, nose, and mouth with sharp transitions and
spatial coherence. This reflects a natural multiscale decomposition that can be commonly observed in
INRs trained on natural content. In contrast, the heatmaps from the deepfake image reveal subtle
inconsistencies. While the initial layer shows strong frequency bands, the second and third layers
display noisier, less structured activations, particularly in regions like the cheek and jawline. Notably,
the third-layer features lack the same spatial sharpness and exhibit localized overactivation near
synthetic textures (e.g., the forehead accessory). These differences highlight how INR activations
implicitly encode artifacts introduced by manipulation, supporting their utility in forensic analysis.

A.6.2 DFD

Figure 9: INR Feature Heatmap Progression for Real and Fake Images (DFD)

As can be seen from Figure 9, in the real sample (top row), the network exhibits a natural decomposi-
tion: the first layer encodes smooth, low-frequency gradients, while subsequent layers progressively
extract spatial structure aligned with facial semantics. By the third layer, the representation distinctly
highlights the subject’s facial features and background texture in a spatially coherent manner. On
the other hand, the fake sample reveals signatures of overactivation and structural inconsistency. As
the depth increases, the heatmaps become increasingly noisy, with attention distributed unevenly
across irrelevant regions such as the background or accessories (e.g., hat, hair). The third layer lacks
the focused delineation observed in the real case, underscoring the INR’s struggle to generalize to
synthetic artifacts. These observations highlight the discriminative potential of INR-derived features
in distinguishing real from fake content.

A.6.3 FSH

As can be seen from Figure 10, in the real image (top row), the network exhibits a natural and
structured activation flow. The first layer encodes smooth, diagonal sinusoidal frequencies. By the
second layer, coherent facial structures begin to emerge. In the third layer, semantic features such
as the eyes, mouth, and hairline become sharply defined, with strong localization and contrast —
indicating confident learning of meaningful spatial content. In contrast, for the fake image, the deep
layers tend to be spatially noisy and less well-formed activations in layers 2 and 3. Although the
overall face layout is still present, the details are less distinct. Key features like the mouth and eyes
appear blurred or over-smoothed, and the network spreads attention more uniformly, suggesting
difficulty in modeling fine-grained semantics. These differences align with patterns observed across
fake content, where subtle inconsistencies in structure and texture impede robust INR representation
learning. This highlights the sensitivity of INR-derived heatmaps to manipulation artifacts.
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Figure 10: INR Feature Heatmap Progression for Real and Fake Images (FSh)

A.7 FEATURE SPACE ANALYSIS

Figure 11: t-SNE visualization of feature embeddings from the CDFv2 dataset using different
input modalities

To better understand how different feature combinations affect the structure of the learned representa-
tion space, we visualize the embeddings of real and fake samples using t-SNE for three configurations
as shown in Figure 11. Each configuration involves concatenating the respective features before
classification. These plots reveal how the choice of representation transforms the feature space and
impacts class separability.

FFT Only (Left): This configuration concatenates global frequency information (via the FFT
magnitude spectrum) with CLIP embeddings. The FFT captures the global energy distribution across
frequencies, but discards all spatial localization. While this can detect abnormal high-frequency
content typical of manipulations, it cannot tell where these signals occur which is a critical limitation
for identifying local artifacts. As many fake traces are spatially sparse or structured (e.g., boundary
mismatches or warped facial regions), this global representation leads to significant overlap between
real and fake distributions in the t-SNE space. Moreover, FFT is phase-agnostic in this setup, meaning
structural information embedded in phase is ignored. CLIP contributes semantic context but lacks
pixel-level sensitivity. As a result, the combined representation fails to disentangle class boundaries
effectively.

RGB + FFT (Middle): Here, raw image pixels, FFT features, and CLIP embeddings are concatenated.
While this introduces spatial information through RGB and captures frequency cues through FFT,
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the representation is not explicitly organized to reflect multi-scale spatial-frequency patterns. Even
though FFT complements this with frequency statistics, it still lacks localization. Consequently, the
feature space becomes more structured than the FFT-only case, but real and fake samples still exhibit
considerable intermixing, suggesting insufficient separation.

INFER (Right): The proposed INFER, where INR-derived heatmaps are concatenated with CLIP
embeddings, results in the most well-separated clusters. INRs reconstruct images from continuous
coordinates, and the resulting heatmaps capture how different spatial positions activate the network.
These activations inherently encode localized frequency responses, much like a learned multiscale
basis decomposition. From a signal processing perspective, INRs offer a unique advantage: they
disentangle an image’s representation into a hierarchy of frequencies conditioned on position. This
means they capture both what frequencies are present and where, which is similar to a spatially
adaptive filter bank. Fake images, which often contain unnatural local discontinuities, exhibit distinct
activation behaviors in these heatmaps compared to real images. When concatenated with CLIP,
which provides semantic structure, the combined representation becomes highly expressive: local
inconsistencies are aligned with global semantics, resulting in a well-structured, and a more separable
space. This is visually evident from the transformation that both real and fake clusters have undergone
compared to Left and Middle figures.

A.8 EFFECT OF NUMBER OF HIDDEN LAYERS OF INR IN DEEPFAKE DETECTION

To examine the role of network depth in our INR-based DeepFake detection framework, we conducted
an ablation study by progressively incorporating feature maps from different hidden layers. We first
considered only the feature map from the first hidden layer, then combined feature maps from the
first and second layers, and finally aggregated feature maps from all three layers. This step-by-step
inclusion allows us to assess how deeper representations contribute to the discriminative power of the
model. The resulting AUC scores across the test datasets are summarized in Table 5

Table 5: AUC scores with increasing number of INR layer features across datasets.

Feature Combination Celeb-DF v1 Celeb-DF v2 Fsh DFD

Single Layer Feature 0.8258 0.7916 0.7413 0.8399
Two Layer Features 0.8341 0.8071 0.7430 0.8369
Three Layer Features 0.8630 0.8190 0.7470 0.8480

A.9 RELATIVE CONTRIBUTION FROM CLIP

To asses how INR alone helps in deepfake detection task, we conducted an ablation study in which the
classifier was trained using only PCA-based INR features. The results, shown in Table 6 , compare
this INR-only baseline to INFER:

Table 6: How INR only features help for deepfake detection

Method Celeb-DF v1 Celeb-DF v2 FSh DFD

INR-only 0.551 0.580 0.543 0.506
INFER 0.863 0.819 0.747 0.848

These results highlight the importance of CLIP features within the INFER framework. However,
it is crucial to emphasize that the strength of INFER lies in the complementary nature of these
two modalities. INR-derived heatmaps provide a rich spatial–frequency decomposition, capturing
structural irregularities and local manipulation artifacts that may be imperceptible in RGB space.
CLIP, on the other hand, contributes global semantic understanding—such as identity coherence and
contextual realism—that helps place these local distortions in a broader, meaningful context.
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A.10 GRAD-CAM ANALYSIS

Real Fake

Figure 12: Activation Maps for Real and Fake Images

The Grad-CAM visualizations reveal distinct attention patterns for real and fake images, highlighting
the complementary roles of semantic and structural cues in INFER, as shown in Figure 12. For real
faces, the heatmaps are diffuse, with activations spilling into the background and being distributed
across broad facial regions rather than tightly clustering around specific landmarks. This suggests
that, in the absence of obvious distortions, the detector relies on the overall consistency of textures,
both in the background and on the face, rather than on narrowly defined semantic features. In contrast,
when processing deepfake images, the attention drifts outward toward peripheral zones such as the
hairline boundaries and jawline contours, as well as toward landmark regions like the eyes, nose,
and mouth. These are precisely the areas where synthesis artifacts commonly appear, including
blending errors, texture irregularities, and subtle warping. This shift in attention arises from INFER’s
integration of INR-derived features: by overfitting a sinusoidally activated INR to each input and
extracting multiscale activation heatmaps via PCA, INFER captures fine-grained frequency-domain
distortions that standard CNN backbones and CLIP embeddings often overlook. When these INR
heatmaps are concatenated with CLIP’s semantic embeddings, the downstream classifier learns to
look where the fakes break, prompting Grad-CAM to highlight artifact-rich regions in fake images.
Consequently, INFER enhances robustness by guiding the detector to attend not only to plausible
facial geometry but also to the subtle structural inconsistencies that are characteristic of deepfakes.

A.11 ROBUSTNESS ANALYSIS UNDER DEGRADATOPMS

As an addtional ablation study, We evaluated the performance of three methods—INFER (ours),
RGB+FFT, and FFT-only—under three common perturbations: Gaussian blur (σ = 1, kernel size
5×5), JPEG compression (Q=30), and additive Gaussian noise (std=10). Experiments were conducted
on both Celeb-DF v1 and v2, and we report the AUC before and after degradation, and the resuls are
shown in Table 7

Across both datasets, INFER consistently demonstrates the smallest performance drop under all
perturbations. For example:

• Blur: INFER drops only 4.06% on Celeb-DF v1 and 3.91% on v2, compared to maximum
drops of 11.05% (FFT) and 6.67% (RGB+FFT), respectively.

• Noise: INFER drops 7.30% (v1) and 4.03% (v2), while FFT suffers the most with 15.13%
and 5.66%.

• Compression: Overall, all methods tend to remain stable, but INFER again shows the
lowest drop (0.46% on v1, 3.17% on v2).
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Table 7: AUC before and after degradation on Celeb-DF v1 and v2.

Dataset Method Blur Compression (Q30) Noise (std=10)

Initial After Initial After Initial After

Celeb-DF v1
INFER 0.863 0.828 0.863 0.859 0.863 0.800

RGB+FFT 0.786 0.712 0.786 0.775 0.786 0.687
FFT 0.759 0.675 0.759 0.737 0.759 0.644

Celeb-DF v2
INFER 0.819 0.787 0.819 0.793 0.819 0.786

RGB+FFT 0.794 0.741 0.794 0.774 0.794 0.746
FFT 0.760 0.721 0.760 0.738 0.760 0.717

These results highlight the robustness of our INR-based representations, which are more resilient to
pixel-level corruption than image- or frequency-based baselines.

A.12 LLM USAGE

LLMs were used to improve the writing of the paper.
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