
Under review as a conference paper at ICLR 2024

A LOCAL GRAPH LIMITS PERSPECTIVE ON
SAMPLING-BASED GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a theoretical framework for training Graph Neural Networks (GNNs)
on large input graphs via training on small, fixed-size sampled subgraphs. This
framework is applicable to a wide range of models, including popular sampling-
based GNNs, such as GraphSAGE and FastGCN. Leveraging the theory of graph
local limits, we prove that, under mild assumptions, parameters learned from
training sampling-based GNNs on small samples of a large input graph are within
an ϵ-neighborhood of the outcome of training the same architecture on the whole
graph. We derive bounds on the number of samples, the size of the graph, and
the training steps required as a function of ϵ. Our results give a novel theoretical
understanding for using sampling in training GNNs. They also suggest that by
training GNNs on small samples of the input graph, practitioners can identify and
select the best models, hyperparameters, and sampling algorithms more efficiently.
We empirically illustrate our results on a node classification task on large citation
graphs, observing that sampling-based GNNs trained on local subgraphs 12×
smaller than the original graph achieve comparable performance to those trained
on the input graph.

1 INTRODUCTION

As the size and complexity of graph data continue to increase, there is a growing need to find
ways to scale Graph Neural Networks (GNNs). Yet, scaling GNNs to larger graphs faces two
key obstacles: training inefficiencies due to repeated gradient calculations at every node; and large
memory requirements for storing not only the graph but also the node embeddings. To overcome these
challenges, a variety of efficient GNN training algorithms have been introduced which leverage a
wide array of sampling techniques. Examples include GraphSAGE (Hamilton et al., 2017), FastGCN
(Chen et al., 2018), and shaDoW-GNN (Zeng et al., 2021), among others (see (Ma et al., 2022a) for a
thorough review).

Despite the success of sampling-based GNNs in practice, there are still no formal models that explain
why they can reduce the computation and memory requirements of GNNs without significantly
compromising their performance1. We take a step in this direction by proposing a theoretical
framework that abstracts away the details of specific architectures and sampling algorithms and
defines a general class of sampling-based GNNs (see Algorithm 1). In this framework, sampling is
employed in two steps. First, nodes are sampled to estimate the gradient and update the GNN weights
for the next iteration (node sampling). Second, a sampling method is used to prune the computational
graph when computing the node embeddings via neighborhood aggregations (computational graph
sampling).

As a second contribution, we propose to use this general framework to study a training procedure in
which, instead of training the GNN on the whole graph, we train it on a collection of small subgraphs
sampled from the input graph. Intuitively, this approximates both node sampling—as gradients are
only computed for nodes in the subgraph—and computational graph sampling—as the computational
subgraphs are not necessarily induced subgraphs2. We prove the validity of this approximation

1We use the term ‘sampling-based GNN’ broadly to refer to any GNN architecture that utilizes node sampling
and/or computational graph sampling.

2Some papers in the early GNN literature introduced both a novel architecture and a sampling-based training
algorithm. This has caused confusion as it is not uncommon for the architecture and the algorithm to be called

1

Under review as a conference paper at ICLR 2024

theoretically, by showing that training such sampling-based GNNs on small sampled subgraphs yields
a similar outcome to training these GNNs directly on the large target graph (Theorem 5.4). The proof
relies on the theory of graph limits (Aldous & Steele, 2004; Benjamini & Schramm, 2001), which
provides a way to understand the behavior of a family of graphs with similar local structures. We
view the large input graph as the infinite ‘limit’ of sampled graphs with similar local structures (i.e.,
similar motifs such as triangles and k-cycles). Then, we show that the training behavior on these
smaller subgraphs converges to the training behavior on the limit graph.

In practice, our results apply to a variety of architectures, including GCN (Kipf & Welling, 2017),
GraphSAGE, and GIN with mean readout (Xu et al., 2019); and a variety of gradient and compu-
tational graph sampling schemes, including the neighborhood sampling scheme from GraphSAGE,
FastGCN, and shaDoWGNN (Zeng et al., 2021) (Corollary 5.6 and Theorem 5.7). Therefore, our
results significantly extend previous results on GNN convergence, which focused almost exclusively
on convolutional GNNs (Ruiz et al., 2020; Keriven et al., 2020; Roddenberry et al., 2022). Our
theoretical findings also provide a practical guideline for training GNNs on large graphs more ef-
ficiently. They suggest that practitioners can compare different sampling-based GNNs and their
choice of hyperparameters on small samples of the input graph, knowing that these small samples are
good approximations for training on the entire input graph as long as their underlying models and
architectures fit within our framework.

We demonstrate the validity of our results empirically on two node classification tasks: on large
citation graphs with up to 20,000 nodes (Section 6); an on a very large citation network from the
ogbn-mag graph, with 200,000 nodes. We observe that various sampling-based GNNs trained on
local subgraphs achieve comparable performance to those trained on the large input graph, even when
the subgraphs are up to 40× smaller than the original graph.

Summary. Our main contributions are:

• A unifying framework for sampling-based GNNs (Algorithm 1) incorporating gradient and compu-
tational graph sampling.

• A simplified training procedure to approximate sampling-based GNNs, wherein GNNs are trained
on small subgraphs sampled from the original input graph.

• Proving, using the theory of graph limits, that training GNNs on small samples of the large input
graph yields learned parameters within an ϵ-neighborhood of training the GNN on the large target
graph (Theorems 5.4 and 5.7). This can be interpreted to mean that sampling-based GNNs produce
similar outcomes as training on the original input graph.

• Extending GNN convergence results to many well-known architectures such as GCN, GraphSAGE
and GIN, and many node and computational graph sampling schemes such as neighborhood
sampling (GraphSAGE), FastGCN, and shaDoW-GCN (Corollary 5.6 and Theorem 5.7).

• Empirical results on a node classification task on PubMed and ogbn-mag, in which we observe
that sampling-based GNNs trained on local subgraphs achieve comparable performance to those
trained on the large target graph (Section 6).

2 RELATED WORK

Sampling-based GNNs. Stochastic node sampling for GNN training is inspired by minibatch
stochastic gradient descent and was first proposed by Hamilton et al. (2017). Hamilton et al. (2017)
also introduced GraphSAGE, which can be trained via random neighborhood sampling, a type
of computational graph sampling detailed in Appendix F. Aiming to further decrease complexity,
FastGCN uses importance sampling to sample the computational graph (Chen et al., 2018), shaDoW-
GCN first samples a collection of subgraphs of depth K—instead of sampling during training—and
then trains a conventional GNN on them (Zeng et al., 2021). Our framework also applies to more
recent advancements on sampling-based GNNs such as GNNAutoScale (Fey et al., 2021), GraphFM
(Yu et al., 2022), LMC (Shi et al., 2022), and IBMB (Gasteiger et al., 2022). These architectures and
sampling mechanisms are discussed in further detail in Appendix F. See also (Liu et al., 2021) for a
complete survey on sampling-based GNNs.

by the same name, e.g., GraphSAGE can refer to both the architecture and the computational graph sampling
scheme proposed by Hamilton et al. (2017). In general, when using these names, we will be referring to the
sampling algorithm. We will explicitly specify it when referring to the architecture.

2

Under review as a conference paper at ICLR 2024

A different related line of work is neural network pruning at the training stage, which is a technique
for reducing the computational complexity and memory requirements of deep neural networks (Zhu
& Gupta, 2017; Gale et al., 2019; Strubell et al., 2019). In this line of work, they make training more
effective and efficient by sampling the connections between neurons of a neural network (while in
our work we study sample data that has a network structure). Recent works on the lottery ticket
hypothesis (Frankle & Carbin, 2018; Frankle et al., 2020) have shed light on the possibility of
sampling subnetworks during the early phases of training that achieve comparable accuracy to the
full network while significantly reducing its complexity.

Tangential to our work is (Yehudai et al., 2021) explores distribution shifts in graph structures,
emphasizing potential generalization issues. In contrast, we focus on unifying frameworks for
training sampling-based GNNs and aim to prove the convergence of training across graph families
with consistent local structures.

Benjamini-Schramm convergence. The theory of graph limits introduced by Benjamini & Schramm
(2001); Aldous & Steele (2004) has been used for studying random network models. Almost all
sparse random graph models, including Erdös-Rényi graphs (van der Hofstad, 2021, Theorem 2.17),
configuration models (Dembo & Montanari, 2010) (van der Hofstad, 2021, Theorem 4.5), preferential
attachment models (Berger et al., 2014), geometric random graphs (Bollobás et al., 2007), and
motif-based models (Alimohammadi et al., 2022) are known to have graph limits.

3 SAMPLING-BASED GNNS

3.1 GNNS: PRELIMINARIES

Let Gn = (V (Gn), E(Gn)) be a graph where V (Gn), |V (Gn)| = n, is the set of nodes, E(Gn) ⊆
V (Gn)× V (Gn) is the set of edges, and A ∈ Rn×n is the adjacency matrix. Let X ∈ Rn×F be the
matrix of input features, where xv is the F -dimensional feature vector of node v.

In its most general form, a GNN consists of L layers, each of which composes an aggregation of the
information in each node’s neighborhood, and a combination of the aggregate with the node’s own
information. Explicitly, for each layer ℓ+ 1 and node v we can write the following propagation rule
(Xu et al., 2019)

h
(ℓ+1)
N(v) = AGGREGATEℓ

(
{h(ℓ)

u , u ∈ N(v)}
)

h(ℓ+1)
v = COMBINEℓ

(
h(ℓ)
v ,h

(ℓ+1)
N(v)

)
and h(0)

v = xv,
(1)

where N(v) is the neighborhood of node v and H(ℓ) ∈ Rn×Fℓ is the embedding produced by layer ℓ.

In so-called node-level or inductive learning tasks, the GNN output is Z = H(L). In graph-level or
transductive learning tasks, the GNN has a final layer called the readout layer, which aggregates the
node embeddings h(L)

v into a single graph embedding hG ∈ RF ′
as follows

hG = READOUT(h(L)
v , v ∈ V (G)) (2)

and where F ′ is the embedding dimension. The output of the GNN is then Z = hG. The READOUT
function can be a fully connected layer over the graph nodes, a sequence of pooling layers (Ying
et al., 2018; Zhang et al., 2018), or a simple aggregation operation such as the maximum, the sum,
or the average (Xu et al., 2019). We focus on architectures where the READOUT layer (if present)
is a simple aggregation operation, such as in (Xu et al., 2019) and (Dwivedi et al., 2020). This is a
common assumption in the literature, since such aggregations are invariant to node relabelings and
prevent the number of learnable parameters from depending on the size of the graph.

For examples of how two popular GNN architectures, GCN and GraphSAGE, can be written in the
form of (1)–(2), refer to Appendix B. We will experiment with these architectures in Section 6.

Training. We consider both unsupervised and supervised learning tasks. In the unsupervised case,
the goal is to minimize a loss L over the dataset T = {Xm}m. In the supervised case, each data
point is additionally associated with a label Ym, which factors in the computation of the loss. In

3

Under review as a conference paper at ICLR 2024

either case, the goal is to solve the following optimization problem

min
W(ℓ),1≤ℓ≤L

1

|T |

|T |∑
m=1

L(Zm) (3)

where Zm are the outputs of the GNN corresponding to the inputs Xm.

This problem is solved using a gradient descent approach with updates

W
(ℓ)
t+1 = W

(ℓ)
t − η

|T |

|T |∑
m=1

∇WL(Zm) (4)

where η is the step size or learning rate. The process stops when the gradient becomes smaller than
some predetermined small constant

∑
m |∇WL| ≤ |T |ϵ.

Computing the loss (3) and the gradients (4) can be cumbersome when the graph G is large, but as
we discuss in the next section, both can be estimated using sampling techniques.

3.2 SAMPLING-BASED GNNS: AN GENERAL FRAMEWORK

We consider a variety of sampling techniques under a general unified framework. In particular, we
offer a formalization for sampling-based GNNs that utilize sampling in one or both of two ways:
node sampling and computational graph sampling.

Node sampling. Due to the difficulty of computing gradient descent steps for every node on a
large graph, a common technique to accelerate GNN training is to perform stochastic gradient
descent (SGD) over minibatches of graph nodes. SGD in its conventional form samples a minibatch
of nodes VB ⊂ V (G) and then uses the gradient on these nodes to estimate (4). I.e., it uses
1

|VB |
∑

v∈VB
∇WL(zv) as an estimator for ∇WL(Z).

Other variants of SGD employ importance sampling to estimate the gradient. Let νg : G → R+ be a
weight function influencing the sampling probability as νg(G,v)

|V (G)| . Then,

∇WL̃νg (Z) =
1

|VB |
∑
v∈VB

1

νg(v)
∇WL(zv) (5)

gives an estimator for (4). Note that if νg(v) = 1 for all v ∈ V (G), we recover conventional SGD.

Computational graph sampling. In conventional GNN training, i.e., without sampling, the size of
the computational graph grows exponentially with the number of layers. Hence, many architectures
prune the computational graph by sampling which neighbor-to-neighbor connections to keep (those
that aren’t sampled are discarded). Specifically, a computational graph sampler νC taking a graph G
and a node v ∈ V (G) as inputs outputs a sampled computational graph denoted νC(G, v) (or simply
νC(v) if G is clear from context). This sampled computational graph, νC(G, v), then replaces the
full computational graph in the forward propagation step (1).

Having established these sampling processes, we now proceed to describe our proposed unified
algorithmic framework which uses a node sampler to compute gradients and a computational graph
sampler to compute the forward pass.

A unified algorithmic framework for sampling-based GNNs. A sampling-based GNN takes as
inputs a graph, a gradient sampler νg, and a computational graph sampler νC . It then samples a
minibatch of nodes VB from the graph using νg; uses νC to sample a computational graph GV ;
performs forward propagation on GV ; and outputs the embeddings Z of the sampled nodes VB . This
is shown in Algorithm 1, where we write the outer for loop for explanation purposes only. In practice,
the steps in this outer loop are executed in parallel.

This framework encompasses many well-known GNN architectures. For instance, in GraphSAGE
(Hamilton et al., 2017), the node sampler νg assigns a uniform probability to all nodes, and the
computational graph sampler νC draws a fixed number of neighbors for each node. A second example
is FastGCN, which prunes the computational graph by choosing neighbors proportionally to the nor-
malized adjacency matrix entries. We provide a more detailed discussion on how various architectures,
including GraphSAGE, FastGCN and shaDoWGNN, fit into this algorithm in Appendix F.

4

Under review as a conference paper at ICLR 2024

Alg. 1: Unified Framework for Sampling-Based GNN
Function SamplingBasedGNN
Input: graph Gt; gradient sampler νg; comp. graph
sampler νC
Sample minibatch of |VB | nodes v ∼ νg(v)
for v ∈ VB do

Sample computational graph Gv ∼ νC(v)
for ℓ = 0 to L− 1 do

h
(ℓ+1)

N(v) = AGGRℓ({h(ℓ)
u , (u, v) ∈ E(Gv)}

h
(ℓ+1)
v = COMBINEℓ

(
h
(ℓ+1)

N(v) ,h
(ℓ+1)
v

)
Z = H(L) or READOUT(h(L)

v , v ∈ V (G))

return Z

Alg. 2: Training by Sampling Local Subgraphs
Input: sample size Nϵ; subgraph sampler µS

while |∇L| > ϵ do
Draw Nϵ-node graph Gt ∼ µS

Z =SamplingBasedGNN(Gt)
∇Wt L̃νg (Z) =

1
|VB |

∑
v∈VB

1
νg(v)

∇L(zv)
Wt+1 = Wt − η∇Wt∇L̃νg

t← t+ 1

Training by sampling local subgraphs. Typically, sampling-based GNNs are trained for a fixed
number of rounds where each round consists of running Algorithm 1 followed by a backward pass
(i.e., weight updates via some variant of gradient descent; see full description in Algorithm 3 in the
appendices). We study a slight modification in which, instead of training the GNN on the full graph,
we train it on a collection of smaller subgraphs. This is achieved by employing a subgraph sampler
µS which acts as an oracle: it subsamples graphs that are then passed to the sampling-based GNN.

This change in the training procedure allows analyzing the training convergence of sampling-based
GNNs without significantly changing the original algorithm. Indeed, we will show that, above
a certain lower bound on the size of the subgraphs produced by µS , Algorithm 2 reaches the
neighborhood of a local minimum in a finite number of training steps.

4 GRAPH LIMITS AND LIMIT GNNS

We introduced a training procedure for sampling-based GNNs which consists of training them on a
collection of local subgraphs that are sampled at regular intervals during training. The purpose of this
change in training procedure is to approximate the effect of node and computational graph sampling.
However, some questions remain unanswered. Specifically, does this approach yield results similar to
training on the entire input graph? Do the sampled subgraphs contain enough information about the
graph, such that training is not significantly affected? If we are able to give positive answers to these
questions, we can analyze sampling-based GNNs on smaller graphs, which in turn allows for better
interpretability and can facilitate the design and tuning of GNNs by practitioners. To answer these
questions, we turn to the theory of graph limits. We first introduce graph limits and the associated
notion of convergence, before defining limit GNNs.

4.1 GRAPH LIMIT THEORY

At a high level, a sequence of graphs {Gn}n∈N is said to converge locally if the empirical distribution
of the local neighborhood of a uniform random node converges. The original definition of local
convergence by Benjamini & Schramm (2001) applies to graphs with no node or edge features. Here,
we consider graphs with attributes where each node and edge is associated with an input feature and
(in the case of supervised learning) a target feature. This is reminiscent of ‘marked graph convergence’
(Benjamini et al., 2015) (van der Hofstad, 2021, Ch. 2).

To formalize the definition of local convergence, let (G, o) denote a rooted graph with attributes,
which is a graph G with node/edge attributes to which we assign a root node o. Let G∗ be the set of
all possible rooted graphs with attributes. A limit graph is defined as a measure over the space G∗
with respect to a local metric dloc. For a pair of rooted graphs (G1, o1) and (G2, o2), the distance
dloc is given by

dloc((G1, o1), (G2, o2)) =
1

1 + infk{k : Bk(G1, o1) ̸≃ Bk(G2, o2)}
,

where Bk(G, v) is the k-hop neighborhood of node v in graph G, and ≃ represents the graph
isomorphism. Since the limit graph is rooted, we need to make finite graphs in the sequence {Gn}n∈N
rooted as well by choosing a uniform random root denoted Pn = 1

n

∑
on ∈ V (Gn)δ(Gn, on).

5

Under review as a conference paper at ICLR 2024

Definition 4.1 (Local Convergence with Attributes). Let µ be a measure on the space G∗ . Then, a
sequence of graphs {Gn}n∈N is said to converge locally in probability to a graph µ ∼ G∗ if, for any
k > 0 and any finite graph Q with nodes at most k hops from the root,

Pv∼Pn
[Q ∼ Bk(Gn, v)]

P→ Pµ(Q ∼ Bk(G, o)).

Equivalently, for any bounded and continuous (with respect to metric dloc) function f : G∗ → R,

Ev∼Pn
[f(Gn, v)|Gn]

P→ Eµ[f(G, o)]. (6)

The above definition points out the equivalence between the convergence of local neighborhoods
around random nodes and the convergence of bounded and continuous functions known as local
functions (for the proof of equivalence, see (van der Hofstad, 2021, Ch. 2)). Intuitively, a local
function applied to finite rooted samples of a graph limit can be shown to converge to the function
applied directly to the infinite graph limit. Building upon this idea, we define almost local functions
as follows.
Definition 4.2 (Almost Local Functions). A function f : GN

∗ → RK is said to be almost local if, for
a sequence of graphs {Gn}n∈N converging to a limit graph µ ∼ G∗, it converges to a limit function
f̃ : GN

∗ → RK as

Ev1,v2...vN∼Pn

[
f
(
(Gn, v1), . . . , (Gn, vN)

)
|Gn

]
P→ E(G(i),oi)∼µ

[
f̃
(
(G(1), o1), . . . (G

(N), oN)
)]
.

(7)

Remark. The definition above departs slightly from the conventional definition of local functions
in the literature, which typically requires boundedness and continuity. Still, the introduction of
almost local functions is necessary for the analysis of sampling-based GNNs. For instance, many
typical sampling methods assign weights to nodes based on global parameters of the graph such as
the average moments of the degree, which violates the local continuity condition. Similarly, loss
functions based on negative sampling (e.g., (Hamilton et al., 2017)) are not local functions in the
conventional sense as they depend on the embedding of vertices located far away from the root. In
Appendix D, we prove that both normalized adjacency sampling and loss functions with negative
sampling yield functions that are almost local.

4.2 GNN IN THE LIMIT

We define limit GNNs, i.e., GNNs on infinite graph limits, by extending the aggregate-readout
architecture in (1) to infinite graphs.
Definition 4.3 (Limit GNNs). Consider a (possibly infinite) rooted graph (G, o) drawn from G∗
following distribution µ. Given a GNN with L layers, consider an L-neighborhood of the root o,
denoted BL(G, o). Let Zo be the output of the L-layer GNN given graph BL(G, o) [cf. (1)]. Then,
the output embedding of the limit GNN is E(G, o) ∼ µ[Zo].

In the next section, we use this limit GNN to analyze sampling-based GNNs fitting the description of
Algorithm 2.

5 CONVERGENCE OF SAMPLING-BASED GNNS

Our main result demonstrates that a sampling-based GNN trained on a collection of subgraphs
sampled from the large target graph converges to an ϵ-neighborhood of optimal limit GNN, i.e.,
the GNN that would be obtained by training on the full graph. We give convergence results for
transductive and inductive learning tasks, and show their application to commonly used GNN
architectures.

Our results rely on two sets of assumptions. First, we require the loss function to be bounded and
Lispchitz continuous. This assumption is not very stringent, and is commonly used in the literature.
Assumption 5.1 (Loss Function). The loss function L is bounded. Further, the loss function L and
its gradient ∇L are Lipschitz in the learning coefficients W with Lipschitz constant C.

6

Under review as a conference paper at ICLR 2024

Second, we require the collection of subgraphs on which the GNN is trained to satisfy the conditions
of local convergence given in Section 4. We further assume that the sampling methods in Algorithm 2
are almost local, and hence can be defined on the graph limit.
Assumption 5.2 (Almost Local Loss, Sampler and Aggregators). The computational graph sampling
scheme νC , the loss function L, and COMBINEℓ and AGGREGATEℓ for ℓ ∈ [0, L] are almost local.
Assumption 5.3 (Convergent Sequence of Graphs). The sequence of graphs {Gn}n∈N converges
locally in probability to (G, o) ∼ µ, where µ is a probability measure on the space of rooted graphs
G∗.
Theorem 5.4. Consider a sampling-based GNN with L layers [cf. Algorithm 2] and with uniform
node sampler νg (SGD), and additionally satisfying Assumptions 5.1–5.2. Let the collection of
subgraphs on which the GNN is trained (generated by sampler µS) define a convergent graph
sequence {Gn}n∈N as in Assumption 5.3. Then, there exists a learning rate η > 0 such that:

1. For any ϵ > 0, there exists Nϵ > 0 such that training Algorithm 2 on subgraph samples of size at
least Nϵ converges to the ϵ-neighborhood of the optimal GNN on the limit G.

2. The expected number of training steps, ad therefore the expected number of subgraph samples
needed for convergence, is Õ(1

ϵ2).

Let Wt denote the GNN coefficients learned in iteration t of Algorithm 2, i.e., the weights of the
GNN trained on the collection of random subgraphs. Convergence to the ϵ-neighborhood of the
optimal limit GNN means that, after a finite number of training steps, the expected gradient of
the loss in the limit graph, using these same coefficients Wt, is bounded by ϵ; or, explicitly, that
Eµ,Wt

(
|∇WtL(Wt, G)|

)
≤ ϵ. Here, note that the randomness arises from both the limit (G, o) ∼ µ

and the random initialization of the coefficients W0.

As a special case of this theorem, we focus on the situation in which the collection of subgraphs
generated by µS is a collection of local subgraphs. By that we mean that µS first samples the infinite
graph (G, o) ∼ µ and then returns the breadth-first local neighborhood of size Nϵ around the sampled
root. If we think of the large target graph as the graph limit, the following result states that training
on small subgraphs sampled via breadth-first search (BFS) is enough to get to the ϵ-neighborhood of
the optimal GNN on the large graph.
Corollary 5.5. Given a sampling-based GNN satisfying the assumptions of Theorem 5.4, let the
subgraph sampler µS = BNϵ(µ(G, o) be a local BFS sampler. Then, the result of Theorem 5.4 holds.

This result is general and applies to various GNN architectures, including but not limited to GCN
(Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), FastGCN (Chen et al., 2018), and
shaDoW-GNN (Zeng et al., 2021).
Corollary 5.6. GCN, GraphSAGE, FastGCN, and shaDoW-GNN satisfy Assumption 5.2. Therefore,
under Assumption 5.1, the results of Theorems 5.4 and Corollary 5.5 hold.

This corollary has an important practical implication: it gives guarantees allowing practitioners to
compare any of these GNNs by training them on small samples from the large target graph, which
is much less costly than doing so on the large graph itself. In Appendix F, we provide detailed
explanations for how each of these models fits into the unified framework of Algorithm 1 and satisfies
the assumptions of our main result.

We conclude by showing that our result also applies to graph learning or transductive graph machine
learning tasks. To do so, we need an additional assumption on the READOUT layer in (2), which must
be almost local. This enables extending our results to even more architectures, such asGIN (Xu et al.,
2019) with mean aggregation in the readout layer.
Theorem 5.7. For a transductive sampling-based GNN satisfying the assumptions of Theorem 5.4
and with an almost-local READOUT layer, the result of Theorem 5.4 holds.

6 EXPERIMENTS

We validate our results empirically through two sets of experiments: an ablation study of node
and computational graph sampling on a large citation network (PubMed, ∼20k nodes); and a more
realistic example on a very large citation network (sample from ogbn-mag, 200k nodes). Dataset

7

Under review as a conference paper at ICLR 2024

0 25 50 75 100 125 150
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 25 50 75 100 125 150
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 25 50 75 100 125 150
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy SAGE

GCN
SAGE full
GCN full

Figure 1: Node sampling results for PubMed with batch size 32. We consider three scenarios in
terms of the small graph size n and the graph sampling interval γ: n = 1500, γ = 15 epochs (left);
n = 2000, γ = 15 epochs (center); n = 1500, γ = 10 epochs (right). Note that these graphs have
size equal to approximately 10% of the original graph size.

0 25 50 75 100 125 150
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 25 50 75 100 125 150
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy

SAGE
GCN
SAGE full
GCN full

0 25 50 75 100 125 150
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

Figure 2: Computational graph sampling results for PubMed with K1 = K2 = 32 and batch size
32. We consider three scenarios in terms of the small graph size n and the graph sampling interval
γ: n = 1500, γ = 15 epochs (left); n = 2000, γ = 15 epochs (center); n = 1500, γ = 10 epochs
(right). Note that these graphs have size equal to approximately 10% of the original graph size.

details are provided in Appendix G. Common hyperparameters and training details are described in
Appendix G, and details specific to each experiment are listed in the corresponding sections.

6.1 ABLATION STUDY ON A LARGE GRAPH

In first the experiment in this section, we consider node sampling independently, and then incorporate
computational graph sampling in the second experiment. In each case, we compare GNNs trained on
the full N -node graph with the same type of GNN, but trained on a collection of n-node subgraphs.
These subgraphs are sampled via breadth-first search from random seeds sampled at random from
the full graph at regular training intervals γ (in epochs). In Figures 1–2, the dashed lines correspond
to the best test accuracy of the model trained on the full N -node graph. The solid lines are the per
epoch test accuracy of the models trained on the collection of stochastic n-node subgraphs.

Node sampling. We consider GNNs trained using the uniform random node sampling strategy (SGD)
described in Section 3 and used, e.g., in (Hamilton et al., 2017). This sampling technique consists of
partitioning the nodes into batches and, at each step, only considering the nodes in the current batch
to compute the gradient updates. In Figure 1, we consider three scenarios in terms of the small graph
size n and the graph sampling interval γ: n = 1500, γ = 15 epochs (left); n = 2000, γ = 15 epochs
(center); n = 1500, γ = 10 epochs (right). Note that these graphs have size equal to approximately
10% of the original graph size. The GNNs are trained for 150 epochs with learning rate 1e−4 and
batch size 32. In Figure 1, we observe that the GNNs trained on collections of random subgraphs
achieve comparable performance to the GNNs trained on the full graph. Increasing the graph size n
leads some improvement for the GCN, but causes GraphSAGE to overfit. Increasing the sampling
rate increases the variation in accuracy, but leads to a slight improvement in performance for both
architectures.

Computational graph sampling. Next, we consider GNNs which, in addition to employing node
sampling, use the computational graph sampling strategy proposed by Hamilton et al. (2017), called
neighborhood sampling (see Appendix F). This technique consists of fixing parameters Kℓ and, at
each layer ℓ, randomly sampling Kℓ neighbors of each node from which to aggregate information.

8

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140
Epochs

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

Figure 3: Computational graph sampling results for ogbn-mag with K1 = K2 = 25 and batch size
128. We consider one scenario in terms of the small graph size n and the graph sampling interval γ:
n = 5000, γ = 10 epochs.

We fix K1 = K2 = 32. The combinations of graph size n and sampling interval γ as well as the
number of epochs and the learning rate are the same as in the previous experiment. The results
are reported in Figure 2. We see that GNNs trained on collections of random subgraphs achieve
comparable performance to GNNs trained on the full graph. Further, we observe some improvement
in performance for GraphSAGE when the graph size is larger (center), and more variability in
accuracy for both models when we increase the random subgraph sampling rate (right).

Additional ablation results for two other citation networks—Cora and CiteSeer—can be found in
Appendix H. We also provide additional results for GNNs without node or computational graph
sampling in Appendix I.

6.2 APPLICATION EXAMPLE ON A VERY LARGE GRAPH

Next, we consider a more realistic example on a very large graph: ogbn-mag. ogbn-mag is a
heterogeneous citation network with 1,939,743 nodes representing authors, papers, institutions and
fields of study (Hu et al., 2020). We focus exclusively on the paper-to-paper citation graph, which
has 736,389 nodes. Due to memory limitations, we subsample it to 200,000 nodes. We consider a
single experimental scenario using both node sampling with batch size 128 and computational graph
sampling with K1 = K2 = 25. The learning rate was 1e− 2.

The experiment results are reported in Figure 3. As before, the solid line corresponds to the GNN
trained on a collection of randomly sampled subgraphs of size n, and the dashed line to the one
trained on the full graph. We choose n = 5000 and resampling interval γ = 10 epochs for the former.
Note that this choice of n gives graphs with size equal to approximately 2.5% of the size of full graph.

7 CONCLUSION AND FUTURE STEPS

We have presented a novel theoretical framework for training GNNs on large graphs by leveraging the
concept of local limits. Our algorithm guarantees convergence to an ϵ-neighborhood of the learning
GNN on the limit in O(1/ϵ2) training steps, which makes it a promising method for comparing
different GNN architectures on large graphs efficiently.

Moving forward, a promising avenue for research is to explore the algorithm’s robustness with
adaptive sampling strategies, like those in ASGCN (Huang et al., 2018), or with schemes that globally
encompass the graph, exemplified by ClusterGCN (Chiang et al., 2019). It would be interesting to
see how the convergence behavior of the algorithm is affected when the limit itself changes over time.
Additionally, it would be valuable to explore whether the weights learned by sampling-based GNNs
in the limit can be coupled with the actual GNN. Although it may not be possible in general, under
certain assumptions, it may be feasible to establish such a connection, opening up new avenues for
further research in this field.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Aldous, D. and Steele, J. M. The objective method: probabilistic combinatorial optimization and local
weak convergence, pp. 1–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-
3-662-09444-0. doi: 10.1007/978-3-662-09444-0_1. URL https://doi.org/10.1007/
978-3-662-09444-0_1.

Alimohammadi, Y., Borgs, C., and Saberi, A. Algorithms using local graph features to predict
epidemics. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 3430–3451. SIAM, 2022.

Baranwal, A., Fountoulakis, K., and Jagannath, A. Effects of graph convolutions in multi-layer
networks. In Int. Conf. Learning Representations, Kigali, Rwanda, 2023.

Benjamini, I. and Schramm, O. Recurrence of distributional limits of finite planar graphs. Electron. J.
Probab., 6:13 pp., 2001. doi: 10.1214/EJP.v6-96. URL https://doi.org/10.1214/EJP.
v6-96.

Benjamini, I., Lyons, R., and Schramm, O. Unimodular random trees. Ergodic Theory and Dynamical
Systems, 35(2):359–373, 2015.

Berger, N., Borgs, C., Chayes, J. T., and Saberi, A. Asymptotic behavior and distributional limits
of preferential attachment graphs. Ann. Probab., 42(1):1–40, 01 2014. doi: 10.1214/12-AOP755.
URL https://doi.org/10.1214/12-AOP755.

Bertsekas, D. P. and Tsitsiklis, J. N. Gradient convergence in gradient methods with errors. SIAM
Journal on Optimization, 10(3):627–642, 2000.

Bollobás, B., Janson, S., and Riordan, O. The phase transition in inhomogeneous random graphs.
Random Structures & Algorithms, 31(1):3–122, 2007. doi: https://doi.org/10.1002/rsa.20168. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20168.

Cerviño, J., Ruiz, L., and Ribeiro, A. Learning by transference: Training graph neural networks on
growing graphs. IEEE Trans. Signal Process., 71:233–247, 2023.

Chen, J., Ma, T., and Xiao, C. FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling. In Int. Conf. Learning Representations, Vancouver, BC, Apr. 2018.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. Cluster-GCN: An efficient
algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257–266,
2019.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural networks on graphs with
fast localized spectral filtering. In Neural Inform. Process. Syst. 2016, Barcelona, Spain, 5-10 Dec.
2016. NIPS Foundation.

Dembo, A. and Montanari, A. Ising models on locally tree-like graphs. 2010.

Du, J., Shi, J., Kar, S., and Moura, J. M. F. On graph convolution for graph CNNs. In 2018 IEEE
Data Sci. Workshop, pp. 239–243, Lausanne, Switzerland, 4-6 June 2018. IEEE.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. Benchmarking graph neural
networks. March 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. arXiv preprint
arXiv:1903.02428, 2019.

Fey, M., Lenssen, J. E., Weichert, F., and Leskovec, J. Gnnautoscale: Scalable and expressive graph
neural networks via historical embeddings. In International conference on machine learning, pp.
3294–3304. PMLR, 2021.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

10

https://doi.org/10.1007/978-3-662-09444-0_1
https://doi.org/10.1007/978-3-662-09444-0_1
https://doi.org/10.1214/EJP.v6-96
https://doi.org/10.1214/EJP.v6-96
https://doi.org/10.1214/12-AOP755
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20168

Under review as a conference paper at ICLR 2024

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear mode connectivity and the lottery ticket
hypothesis. In International Conference on Machine Learning, pp. 3259–3269. PMLR, 2020.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Gama, F., G. Marques, A., Leus, G., and Ribeiro, A. Convolutional neural network architectures for
signals supported on graphs. IEEE Trans. Signal Process., 67:1034–1049, 2018.

Garavaglia, A., van der Hofstad, R., and Litvak, N. Local weak convergence for PageRank. The
Annals of Applied Probability, 30(1):40–79, 2020.

Gasteiger, J., Qian, C., and Günnemann, S. Influence-based mini-batching for graph neural networks.
In Learning on Graphs Conference, pp. 9–1. PMLR, 2022.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. Neural
Inform. Process. Syst., 30, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open
graph benchmark: Datasets for machine learning on graphs. Neural Inform. Process. Syst., 33:
22118–22133, 2020.

Huang, W., Zhang, T., Rong, Y., and Huang, J. Adaptive sampling towards fast graph representation
learning. Neural Inform. Process. Syst., 31, 2018.

Keriven, N., Bietti, A., and Vaiter, S. Convergence and stability of graph convolutional networks on
large random graphs. Neural Inform. Process. Syst., 33:21512–21523, 2020.

Kingma, D. P. and Ba, J. L. ADAM: A method for stochastic optimization. In 3rd Int. Conf. Learning
Representations, San Diego, CA, 7-9 May 2015. Assoc. Comput. Linguistics.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In 5th
Int. Conf. Learning Representations, Toulon, France, 24-26 Apr. 2017. Assoc. Comput. Linguistics.

Levie, R., Huang, W., Bucci, L., Bronstein, M., and Kutyniok, G. Transferability of spectral graph
convolutional neural networks. Journal of Machine Learning Research, 22(272):1–59, 2021.

Liu, X., Yan, M., Deng, L., Li, G., Ye, X., and Fan, D. Sampling methods for efficient training of
graph convolutional networks: A survey. IEEE/CAA Journal of Automatica Sinica, 9(2):205–234,
2021.

Ma, H., Rong, Y., and Huang, J. Graph neural networks: Scalability. Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 99–119, 2022a.

Ma, Y., Liu, X., Shah, N., and Tang, J. Is homophily a necessity for graph neural networks? In ICLR,
2022b.

Maskey, S., Levie, R., and Kutyniok, G. Transferability of graph neural networks: an extended
graphon approach. Applied and Computational Harmonic Analysis, 63:48–83, 2023.

Roddenberry, T. M., Gama, F., Baraniuk, R. G., and Segarra, S. On local distributions in graph signal
processing. IEEE Trans. Signal Process., 70:5564–5577, 2022.

Ruiz, L., Chamon, L. F. O., and Ribeiro, A. Graphon neural networks and the transferability of graph
neural networks. In Neural Inform. Process. Syst. 2020, Vancouver, BC [online], 6-12 Dec. 2020.
NeurIPS Foundation.

Ruiz, L., Chamon, L. F., and Ribeiro, A. Transferability properties of graph neural networks. arXiv
preprint arXiv:2112.04629, 2022a.

Ruiz, L., Huang, N., and Villar, S. Graph neural networks for community detection on sparse graphs.
arXiv preprint arXiv:2211.03231, 2022b.

Shi, Z., Liang, X., and Wang, J. Lmc: Fast training of gnns via subgraph sampling with provable
convergence. In The Eleventh International Conference on Learning Representations, 2022.

11

Under review as a conference paper at ICLR 2024

Strubell, E., Ganesh, A., and McCallum, A. Energy and policy considerations for deep learning in
nlp. arXiv preprint arXiv:1906.02243, 2019.

van der Hofstad, R. Random graphs and complex networks, Vol 2. online (accessed on 04/2022),
2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? In 7th
Int. Conf. Learning Representations, pp. 1–17, New Orleans, LA, 6-9 May 2019. Assoc. Comput.
Linguistics.

Yehudai, G., Fetaya, E., Meirom, E., Chechik, G., and Maron, H. From local structures to size
generalization in graph neural networks. In International Conference on Machine Learning, pp.
11975–11986. PMLR, 2021.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. Hierarchical graph representa-
tion learning with differentiable pooling. Neural Inform. Process. Syst., 31, 2018.

Yu, H., Wang, L., Wang, B., Liu, M., Yang, T., and Ji, S. Graphfm: Improving large-scale gnn training
via feature momentum. In International Conference on Machine Learning, pp. 25684–25701.
PMLR, 2022.

Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan, R., Prasanna, V., Jin, L., and
Chen, R. Decoupling the depth and scope of graph neural networks. Neural Inform. Process. Syst.,
34:19665–19679, 2021.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-end deep learning architecture for graph
classification. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

12

Under review as a conference paper at ICLR 2024

A MORE RELATED WORK

Convergence and transferability of GNNs. The convergence of GNNs on sequences of graphs,
also called transferability, has been studied in a number of works. Ruiz et al. (2020) derive a non-
asymptotic error bound for GNNs on dense graph sequences converging to graphons, and use it to
show that GNNs can be trained on graphs of moderate size and transferred to larger graphs. These
bounds are refined, and proved for a wider class of graphs, in (Ruiz et al., 2022a). Levie et al. (2021)
prove convergence and transferability of GNNs on graphs sampled from general topological spaces,
and Maskey et al. (2023) particularize this analysis to graphons. Keriven et al. (2020) study the
convergence and transferability of GNNs on graphs sampled from a random graph model where
the edge probability scales with the graph size, allowing for graphs that are moderately sparse.
Roddenberry et al. (2022) define local distributions of the neighborhoods of a graph to prove a
series of convergence results for graph convolutional filters, and in particular their transferability
across graphs of bounded degree. Note that this is different than what we do in this paper: we
focus on sampling-based GNNs, and prove convergence of their training on local subgraphs to
GNNs trained on the large limit graph. More generally, random graph models have been a popular
tool for understanding theoretical properties of GNNs, with several applications to topics including
expressive power in community detection (Ruiz et al., 2022b), linear separability in semi-supervised
classification (Baranwal et al., 2023), heterophily (Ma et al., 2022b).

Pruning neural networks. Another line of research closely related to our work revolves around
neural network pruning during the training stage. This approach aims to improve training efficiency
by selectively sampling connections between neurons (Zhu & Gupta, 2017; Gale et al., 2019; Strubell
et al., 2019). Notably, recent studies on the lottery ticket hypothesis (Frankle & Carbin, 2018; Frankle
et al., 2020) have demonstrated that by sampling subnetworks during training, comparable accuracy
to the full network can be achieved while significantly reducing its complexity. In contrast, our work
takes a divergent trajectory as we shift our focus towards sampling data characterized by an intrinsic
network structure, instead of manipulating the neural network connections.

B GCN AND GRAPHSAGE

For illustrative purposes, we focus on the GCN and GraphSAGE architectures. We also experiment
with these architectures in Section 6.

GCN. The layerwise propagation rule of GCN is given by (Kipf & Welling, 2017)

H(ℓ+1) = σ
(
D−1/2AD−1/2H(ℓ)W(ℓ+1)

)
and H(0) = X, (8)

where D = diag(A1) is the degree matrix; W(ℓ+1) ∈ RFℓ×Fℓ+1 are the learnable convolution
weights at layer ℓ + 1; and σ is a pointwise nonlinearity such as the ReLU or the sigmoid. The
adjacency matrix A is modified to include self-loops, hence the AGGREGATE and COMBINE opera-
tions can be written as a single operation. Variants of GCN may consider K-hop graph convolutions
instead of one-hop (Defferrard et al., 2016; Gama et al., 2018; Du et al., 2018).

GraphSAGE. The layerwise propagation rule of GraphSAGE is given by (Hamilton et al., 2017)

h
(ℓ+1)
N(v) = AGGREGATEℓ

(
{h(ℓ)

u , u ∈ N(v)}
)

h(ℓ+1)
v = σ

(
W(ℓ+1) · CONCAT

(
h(ℓ)
v ,h

(ℓ+1)
N(v)

))
and h(0)

v = xv,
(9)

where W(ℓ+1) ∈ RFℓ+1×2Fℓ are learnable weights and σ is a pointwise nonlinearity. Typical
AGGREGATE operations are the mean, the sum, and the max.

13

Under review as a conference paper at ICLR 2024

C CLASSICAL SAMPLING-BASED GNN TRAINING ALGORITHM

Alg. 3: Classical Training

while |∇L| > ϵ do
Z =SamplingBasedGNN(G)
∇Wt L̃νg (Z) =

1
|VB |

∑
v∈VB

1
νg(v)

∇L(zv)
Wt+1 = Wt − η∇Wt∇L̃νg

t← t+ 1

D EXAMPLES OF ALMOST LOCAL FUNCTIONS

Proposition D.1. For a sequence of convergent graphs {Gn}n∈N, the following holds.

1. Negative sampling: Let σ be the Sigmoid function and x · y be the dot-product of two vectors
x and y, and let gℓ : G∗ : RK be a bounded and continuous function on rooted graphs with a
finite radius ℓ ≥ 0. Then the functions f(Gn, v, u) = σ

(
gℓ(G, v) · gℓ(G, u)

)
and f̃(Gn, v) =

Eu∼Dn [f(Gn, v, u)] are almost local. Here Dn is a distribution on nodes of Gn such that its
density, i.e., nPv∼Dn , is local.

2. Normalized adjacency matrix: When the degree sequence is uniformly integrable3, then
re-weighting any local function with respect to the normalized adjacency matrix is al-
most local. Formally, if g is a bounded and continuous function, then the function
f(Gn, v) = g(Gn, v)

deg(v)
1

|V (G)|
∑

u deg(u)
is almost local, and the limit can be written as,

Ev∼Pn
[f(Gn, v)|Gn]

P→ E(G,o)∼µ

[
g(G, o)

deg(o)

d̄

]
.

Proof of Proposition D.1. Part 1 (Negative sampling). We start with the proof for negative sampling.
The main idea is that, the value of gℓ(G, v) only depends on ℓ neighborhood of the node v. On
the other hand, given the assumption on Dn two random nodes drawn independently from Dn are
with high probability more than 2ℓ far apart. As a result, their corresponding node embedding
zv = gℓ(G, v) and zu = gℓ(G, u) is with high probability independent of each other. So, we can
use the fact that if two independent random variables converge in probability, then their product also
converges.

Next, we formalize this intuition using the second-moment method. The convergence of the first
moment is trivial by the

EGn

[
Eu,v∼Pn [f(Gn, u, v)|Gn]

]
= EGn

[
Eu,v∼Pn [σ(gv · gu)|Gn]

]
I want to prove it converges to

E(G(1),o1),(G(2),o2)∼µ

[
σ(g(G(1), o1), g(G

(2), o2))
]

Part 2 (Normalized adjacency matrix). The proof follows the classic proofs on the locality of
functions such as centrality coefficients as in (van der Hofstad, 2021, Chapter 2.4). First, note that we
can rewrite:

Ev∼Pn
[f(Gn, v)|Gn] =

Ev∼Pn
[deg(v)g(Gn, v)|Gn]

Ev∼Pn [deg(v)|Gn]
. (10)

The local convergence in probability (6) applies to only bounded and continuous functions. However,
the graph might have unbounded degrees that could make the enumerator or the denominator of
(10) unbounded. We will control its effect using the uniform integrability assumption on the degree
sequence.

First, we will focus on the enumerator. In particular, for any fixed integer ∆ > 0, we can split

Ev∼Pn
[deg(v)g(Gn, v)|Gn] = Ev∼Pn

[deg(v)g(Gn, v)1(deg(v) ≤ ∆)|Gn]

+Ev∼Pn
[g(Gn, v)deg(v)1(deg(v) > ∆)|Gn].

3A random variable X is said to be uniformly integrable if the probability that it exceeds a certain threshold
value approaches zero as the threshold increases towards infinity, i.e., for any ϵ > 0 there exists Kϵ such that
P(X > Kϵ) < ϵ.

14

Under review as a conference paper at ICLR 2024

The first term, deg(v)g(Gn, v)1(deg(v) ≤ ∆), is already a bounded continuous function and we can
apply (6), to get

Ev∼Pn
[deg(v)g(Gn, v)1(deg(v) ≤ ∆)|Gn]

P→ E(G,o)∼µ[deg(o)g(G, o)1(deg(o) ≤ ∆)].

For the second term, we bound it using uniform integrability. Since g is a bounded function, there
exists M as an upper bound for it. The uniform integrability implies that for any ϵ > 0 there exists a
large enough Nϵ, such that for all n > Nϵ,

Ev∼Pn [deg(v)g(Gn, v)] ≤ Ev∼Pn [deg(v)M] ≤ ϵ2. (11)

Then using Markov inequality,

P
(
Ev∼Pn

[deg(v)g(Gn, v)] ≥ ϵ|Gn

)
≤ 1

ϵ
Ev∼Pn

[deg(v)M] ≤ ϵ. (12)

Therefore,

Ev∼Pn [deg(v)g(Gn, v)|Gn]
P→ E(G,o)∼µ[deg(o)g(G, o)].

Similarly, we can get
Ev∼Pn [deg(v)|Gn]

P→ E(G,o)∼µ[deg(o)],

which would prove the second part of the proposition.

E PROOF OF THEOREM 5.4

We begin the proof by relating the gradient of the loss function on finite samples to the gradient of
the loss function in the limit. To formalize the proof, let Lνg

(Wt, G) be the loss of applying Wt

(coefficients at iteration t of the algorithm) to graph G with node sampling νg
4.

In this section, we present the proof of Theorem 5.4, which provides a theoretical guarantee for the
convergence of the sampling-based GNN training algorithm presented in Algorithm 2.

To start the proof, we first establish a connection between the gradient of the loss function on finite
samples and the gradient of the loss function in the limit. Specifically, we use the notation Lνg

(Wt, G)

to denote the loss of applying the coefficients Wt at iteration t to a graph G with node sampling νg
5.

Our proof proceeds in two main steps. First, we show that in each iteration of the algorithm, the
gradient of the loss on the sampled graphs is close to the expected gradient of the loss in the limit
infinite graph (Lemma E.1). Second, we show that the loss on finite graphs decreases at each step
with a high probability for the correct choice of learning rates (Lemma E.3).
Lemma E.1. Given the assumptions of Theorem 5.4, for any t > 0, then the loss in iteration t of
Algorithm 2 on a finite graph Gnwith appropriately sized mini-batches is with high probability close
to the expected loss on the limit. In particular, for any ϵ > 0 there exists Nϵ and Yϵ, such that for
n > Nϵ, when either the mini-batch is large enough (i.e., VB ≥ Yϵ) but at the same time not too
large (i.e., VB = o(

√
|V (Gn)|)) or includes all nodes (i.e., |VB | = |V (Gn)|),

P
(
|∇L̃νg (Wt, Gn)− Eµ[∇L(Wt, G)]| ≥ ϵ

)
≤ ϵ,

where the probability is over the possible randomness of Gn, the randomness of SGD, and the
computational graph sampler νC .

Remark E.2. The Lemma requires an upper bound on the minibatch size to ensure that the embeddings
and their loss are independent. This is necessary to control for the possibility of the local neighborhood
of sampled nodes not being disjoint.

4For simplicity, we don’t show the input feature in this representation. But all results apply to convergent
graphs with input features.

5Note that for simplicity, we do not explicitly show the input feature in this notation, but all results apply to
convergent graphs with input features.

15

Under review as a conference paper at ICLR 2024

Proof. First, consider the case that the minibatch VB includes all nodes, i.e., we use gradient descent
instead of SGD to compute the gradient of loss. Then, the loss on the finite graph converges to the
limit by the assumption that the loss is almost local. In particular, for any ϵ′ > 0 there exist Nϵ′ such
that for n > Nϵ′ ,

P
(
|∇L̃(Wt, Gn)− Eµ[∇L(Wt, G)]| ≥ ϵ′

)
≤ ϵ′, (13)

where the probability is over the possible randomness of Gn, and the weights Wt (which in turn
depends on the randomness of the computational graph sampler νC). In fact, as the size of the graphs
in the sequence Gnn∈N grows, we have convergence in probability,

∇L̃(Wt, Gn)
P→ Eµ[∇L(Wt, G)].

Note that there is no expectation on the left-hand side of neither Lemma E.1 nor (13) nor the above
expression, as the loss (and its gradient) are invariant to the choice of root in Gn.

Next, we consider the case where VB is an i.i.d subset of nodes. The idea is to use of the fact that
the loss is almost local, and hence only depends on a bounded neighborhood of a few nodes. So, if
we draw a small enough minibatch |VB | = o(

√
|V (Gn)|) then the loss of different nodes should be

independent of each other, and we can use Hoeffding bound to control the error. We formalize this
idea next.

Let v1, . . . , vVB
be the sampled nodes in the minibatch. First, note that since the loss is almost local,

there exists Kϵ such that there exists a function on Kϵ neighborhood of nodes which is a (1− ϵ/4)
approximation of the loss. We continue by proving that the local neighborhoods of the sampled
nodes in the minibatch are disjoint with high probability. For this purpose, let IVB

= {∀i, j ∈
[VB], BK(Gn, vi) ∩BK(Gn, vi) = ∅} be the event that K-neighborhoods are disjoint. We want
to prove that there exists Nϵ such that for |V (Gn)| ≥ Nϵ and any |VB | = o

(√
|V (Gn)|

)
,

P(IVB
does not happen.) ≤ ϵ

4
. (14)

Define VK,∆ as the set of nodes such that the maximum degree in their K neighborhood is at most
∆. Since the sequence {Gn}n∈N converges in the local sense, for all ϵ > 0, there exists ∆ < ∞ and
N ′

ϵ < ∞ such that for n ≥ N ′
ϵ, with probability 1− ϵ

4 we have |Vkϵ,∆|
n ≥ 1− ϵ

4 . Let Eϵ be the event
that |Vkϵ,∆|

n ≥ 1− ϵ
4 . Then by a union bound

P(IVB
does not happen) ≤ P(IVB

does not happen | Eϵ) + P(Eϵ) ≤ |VB |2
∆K

|V (Gn)|
+

ϵ

8
.

Since ∆ and K are independent from |V (Gn)|, by increasing N ′
ϵ, if necessary, we can assume that

|VB |∆K ≤ ϵ
8 |V (Gn)| and hence proving (14).

Now, conditioned on the event IVB
, we can apply Hoefdding bound. Let Xi = L(Gn, vi), where

vi ∼ Pn is drawn uniformly at random. Then,

P(|∇ ˜LVB
−∇ ˜LVB

| ≥ ϵ

2
) ≤ P(|∇ ˜LVB

−∇ ˜LVB
| ≥ ϵ

2
| IVB

) + P(IVB
does not happen)

≤ exp(−|VB |ϵ
C2

) +
ϵ

4
.

So, if we choose |VB | between o(
√
|V (Gn)|) and Ω(log(1/ϵ)), we will get

P(|∇ ˜LVB
−∇ ˜LVB

| ≥ ϵ

2
) ≤ ϵ

2
.

This together with (13) gives the result.

In the following lemma, we demonstrate that the loss in the limit decays in each iteration of the
algorithm by applying the above lemma. Notably, we only rely on the Lipschitz property of the loss
function in our proof and do not make any other use of the locality of the loss function, as long as
Lemma E.1 holds.

16

Under review as a conference paper at ICLR 2024

Lemma E.3. Given the assumption of Theorem 5.4, fix some ϵ > 0. Also assume the learning rate η
is smaller than 1/C, where C is the loss function’s Lipschitz constant. Then there exists some Nϵ

such that if Algorithm 2 is trained on graphs of size larger than Nϵ, then the loss on the limiting
graph decreases in each iteration,

P
(
Eµ[L(Wt+1, G)] ≤ Eµ[L(Wt, G)]− η

4
||Eµ[∇L(Wt, G)]||2

)
≥ 1− ϵ,

where the probability is over the possible randomness of Gn, the randomness of SGD, and the
computational graph sampler νC .

Proof. We use a helper function to smooth out the difference between the two steps of the loss
function. Let (in the following the expectation is over the limit G),

g(ϵ) = Eµ[L(Wt − ϵη∇L(Wt, Gn), G))].

Then g(1) = E[L(Wt+1, G)] and g(0) = E[L(Wt, G)]. This definition of a helper function has been
classically used in the literature to prove convergence of the loss (Cerviño et al., 2023; Bertsekas &
Tsitsiklis, 2000).

By differentiating the helper function, ∂g
∂ϵ = −η∇L(Wt, Gn)Eµ[∇L(Wt − ϵηL(Wt, Gn), G))]. So,

we can write,

g(1)− g(0) =

∫ 1

0

∂g

∂ϵ
dϵ.

= −η∇L(Wt, Gn)

∫ 1

0

Eµ[∇L(Wt − ϵηL(Wt, Gn), G))]dϵ

Then we add and subtract Eµ[∇L(Wt, G)] to get

Eµ[L(Wt+1, G)]− Eµ[L(Wt, G)]

= −η∇L(Wt, Gn)E[∇L(Wt, G)] + η∇L(Wt, Gn)
(∫ 1

0

∇L(Wt − ϵη∇L(Wt, Gn), G)

− Eµ[∇L(Wt, G)]dϵ
)

Now since ∇L is Lipschitz (with constant C),

Eµ[L(Wt+1, G)]− Eµ[L(Wt, G)]

≤ −η∇L(Wt, Gn)E[∇L(Wt, G)] + η|∇L(Wt, Gn)|
(∫ 1

0

ϵηC||∇L(Wt, Gn)||dϵ
)

= −η∇L(Wt, Gn)E[∇L(Wt, G)] +
η2C

2
||∇L(Wt, Gn)||2

=
η2C − η

2
||∇L(Wt, Gn)||2 −

η

2

(
||Eµ[∇L(Wt, G)]||2 − ||∇L(Wt, Gn)− Eµ[∇L(Wt, G)]||2

)
.

To finish the proof, we can bound the first term by choosing the learning rate η smaller than 1/C, and
the second term by using Lemma E.3.

Now, we are ready to prove the theorem. For proof, we analyze the stopping time t∗, which is the
first iteration at which the expected gradient of the loss with respect to the coefficients falls below a
threshold ϵ. Then we use Lemma E.3 to bound this stopping time.

Proof of Theorem 5.4. Given ϵ > 0 define the stopping time

t∗ = inf
t
{Eµ,Wt(∇L(Wt, G)) ≤ ϵ},

where the expectation is both over the randomness of the limit G and the coefficients Wt. Note that
the randomness of Wt is due to the randomness of sampling the graph Gn. We write loss as the sum
of differences of loss in each iteration,

Eµ,Wt

(
L(W0, G)− L(Wt∗ , G)

)
= Eµ,Wt

(t∗−1∑
t=0

L(Wt, G)− L(Wt+1, G)
)
.

17

Under review as a conference paper at ICLR 2024

We can take the expected value with respect to the randomness of t∗,

Et∗Eµ,Wt

(
L(W0, G)− L(Wt∗ , G)

)
=

∞∑
t∗=0

Eµ,Wt

(t∗−1∑
t=0

L(Wt, G)− L(Wt+1, G)
)
P(t∗).

By applying Lemma E.3 for t < t∗,

P
(
Eµ

(
L(Wt, G)− L(Wt+1, G)

)
≥ η

4
ϵ2
)
≥ 1− ϵ.

By applying this to the previous inequalities:

Et∗Eµ,Wt

(
L(W0, G)− L(Wt∗ , G)

)
≥ ηϵ2(1− ϵ)

4

∞∑
t∗=0

t∗P(t∗) =
ηϵ2(1− ϵ)

4
E[t∗].

Since loss is non-negative

4

ηϵ2(1− ϵ)
Et∗Eµ

(
L(W0, G)

)
≥ E[t∗].

F APPLICATIONS

Our main result applies to various GNN architectures, including GCN, GraphSAGE, and GIN with
mean readout; and various sampling mechanisms, such as neighborhood sampling (GraphSAGE),
FastGCN, and shaDoW-GNN. In each of the following sections, we will discuss how each model fits
into our unified framework (Algorithm 2), and explain why they satisfy the assumptions of the main
theorem.

GCN. The GCN architecture (Kipf & Welling, 2017), as described in (8), applies the convolutional
layer on the entire computational graph of a node. So, for a L-layer GCN and a given node v, the
computational graph sampler µC(v) returns the entire L-neighborhood of v. In addition, it is common
to use SGD to compute the gradient in GCNs. Both the gradient and computational graph samplers
satisfy the locality assumption 5.2, and hence, our main theorem applies.

GIN. In the Graph Isomorphism Network (GIN) (Xu et al., 2019), the AGGREGATE and COMBINE
operations consist of a multi-layer perceptron applied to the sum of each node’s embeddings with
their neighbors’ embeddings. In its standard form, GIN thus takes in the entire computational graph
of a node. Since the AGGREGATE and COMBINE operations are local, in a node-level task GIN
satisfies all of our assumptions, hence our results hold. In a graph-level task, our results hold provided
that the readout is a mean aggregation, which is permutation invariant and, unlike the sum, does not
increase with the graph size.

GraphSAGE with neighborhood sampling. GraphSAGE (Hamilton et al., 2017) is a popular
GNN architecture that generates node embeddings by concatenating information from each node’s
local neighborhood. They also propose to train GraphSAGE with a computational graph sampling
technique called neighborhood sampling, where they sample a fixed number of neighbors for each
node. The computational graph sampler νC assigns probabilities proportional to 1/

(
deg(v)
Kℓ

)
to all sets

of size Kℓ from the neighbors of node v at layer ℓ, where Kℓ is the number of nodes to sample at
layer ℓ and deg(v) is the degree of node v. They also use SGD for gradient sampler νg .

Another novelty of the GraphSAGE approach was to suggest unsupervised learning based on com-
puting loss with negative sampling, which is almost local per Proposition D.1. Therefore, our result
applies to both their semi-supervised and unsupervised training.

FastGCN. Fast GCN (Chen et al., 2018) relies on layerwise sampling to address scalability issues
GNNs. The computational graph sampler in FastGCN subsamples nodes from each layer based on
the normalized adjacency matrix, as expressed by the equation

q(u; v) =
∥A′(u, v)∥2

∥
∑

u′∈N(v) A
′(u′, v)∥2

,

18

Under review as a conference paper at ICLR 2024

which by Proposition D.1 is almost local. So, for a node v already sampled in the computational
graph, νC samples a fixed number of nodes kℓ in the next layer w.r.t q(u; v). This architecture also
uses SGD as the gradient sampler.

shaDoW-GNN. shaDoW-GNN (Zeng et al., 2021) is a method that tackles the scalability issue of
GNNs by subsampling a subgraph for each node in a minibatch. Specifically, for a L′-layer GNN,
shaDoW-GNN selects a subgraph with nodes that are at most L hops away from each node in the
minibatch, where L ≤ L′. They decouple nodes that appear in more than one sampled subgraph by
keeping two copies of them. Their framework allows either to keep the whole L-neighborhood or
to sample from it, similar to GraphSAGE or FastGCN. So, the computational graph sampler νC is
similar to one of the previous frameworks, with the only difference being that it creates new copies in
memory for each node sampled multiple times.

GNNAutoScale. A recent addition to the family of GNNs is GNNAutoScale(Fey et al., 2021),
which integrates well with our framework. It leverages historical embeddings of out-of-sample
neighbors during training, merging minibatch sampling and historical embeddings. This method
aligns well with our framework for the following reason: Each iteration of embedding calculation
is convergent, as shown by Lemma ??. So, one can use historical embeddings as ‘features’ for
subsequent iterations during information aggregation, so it satisfies the Assumption 5.2. Therefore,
we can view GNNAutoScale’s approach through the lens of our framework.

GraphFM. This framework by (Yu et al., 2022), although bearing similarities with GNNAutoScale,
distinguishes itself by including historical embeddings of nodes within the one-hop boundary of
selected minibatches. This novel incremental update strategy remains consistent with the principles
of our framework, indicating a promising compatibility.

LMC. Another model, LMC(Shi et al., 2022), while echoing GNNAuto-scale in many respects, shows
unique differences in aggregation during its forward/backward propagation. Its localized aggregation
strategies remain consistent with our proposed framework, satisfying with the assumptions of our
result.

IBMB. This method by (Gasteiger et al., 2022) employs a distinctive approach by computing influence
scores for nodes and subsequently optimizing the selection of influential nodes for computation.
Despite its broad methodology of calculating node influence, the implementation specifics, especially
using pagerank computation and localized node selection, align well with our framework (given that
pagerank is a local function as shown in (Garavaglia et al., 2020)).

G EXPERIMENT DETAILS

Citation networks. Cora, CiteSeer, PubMed and ogbn-mag are citation networks commonly used to
benchmark GNNs. Their nodes represent papers, and their edges are citations between papers (in
either direction). Each paper is associated with a bag-of-words vector, and the task is to use both
the citation graph and the node information to classify the papers into C classes. Relevant dataset
statistics are presented in Table 1.

Training details. In all experiments, we use PyTorch Geometric (Fey & Lenssen, 2019) and consider
a GraphSAGE (Hamilton et al., 2017) and a GCN (Kipf & Welling, 2017) architectures with 2 layers
and embedding dimensions 64 and 32 respectively (64 and 64 for ogbn-mag). In the first and the
second layers, the nonlinearity is a ReLU, and in the readout layer, a softmax. We minimize the
negative log-likelihood (NLL) loss and report the classification accuracy. We consider the train-
validation-test splits from the full Planetoid distribution from PyTorch Geometric for PubMed, Cora,
and CiteSeer; and from Open Graph Benchmark for ogbn-mag. To train the models, we use ADAM
with the standard forgetting factors (Kingma & Ba, 2015).

H ADDITIONAL EXPERIMENTS ON CORA AND CITESEER

In this section, we repeat the experiments of Section 6 for the Cora and CiteSeer datasets, whose
corresponding dataset statistics can be found in Table 1. The results for node sampling, computational
graph sampling, and no sampling are described below.

19

Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

Figure 4: Node sampling results for Cora (top) and CiteSeer (bottom) with batch size 32. We consider
three scenarios in terms of the small graph size n and the graph sampling interval γ: n = 300, γ = 5
epochs (left); n = 500, γ = 5 epochs (center); n = 300, γ = 2 epochs (right). Note that these graphs
have size equal to approximately 10-16% of the original graph size.

Table 1: Dataset statistics.

Nodes (N) Edges Features Classes (C)
Cora 2708 10556 1433 7
CiteSeer 3327 9104 3703 6
PubMed 19717 88648 500 3
ogbn-mag 1,939,743 21,111,007 128 349

Node sampling. In Figure 4, we consider three scenarios in terms of the small graph size n and the
graph sampling interval γ: n = 300, γ = 5 epochs (left); n = 500, γ = 5 epochs (center); n = 300,
γ = 3 epochs (right). Note that these graphs have size equal to approximately 10 − 16% of the
original graph size. The GNNs are trained for 300 epochs with a learning rate 1e−4 and batch size
32. In Figure 4, we observe that resampling graphs every γ = 5 epochs, at either n = 300 (left)
or n = 500 (center), is not enough to train both models (but especially GraphSAGE) to correctly
classify nodes on the full Cora graph under 300 epochs. However, decreasing the resampling interval
to γ = 2 (right) helps. In the case of CiteSeer, n = 300 and γ = 5 (left) are enough to match the
accuracy of the model trained on the full graph, but the models learn faster when n = 500 (center).
Increasing the sampling rate (right) increases the variability in accuracy and worsens performance.

Computational graph sampling. In this experiment, we fix the neighborhood sizes for computational
graph sampling in both layers at K1 = K2 = 32, and also consider node sampling with batch size
32. The combinations of graph size n and sampling interval γ, and the number of epochs and the
learning rate are the same as in the node sampling experiment. The results are reported in Figure 5.
For Cora, we observe the best results for n = 500 and γ = 5 (center), and for CiteSeer, for n = 300
and γ = 5 (left). On both datasets, increasing the sampling rate (right) increases the variability in
performance, which is undesirable. In the case of CiteSeer, increasing the graph size (center) leads to
some overfitting for GraphSAGE.

I EXPERIMENTS WITHOUT NODE AND COMPUTATIONAL GRAPH SAMPLING

Here, we consider GNNs without any form of sampling other than the n-node random graph sequences
sampled from the target graph. The combinations of graph size n and sampling interval γ are the same
as in the two previous experiments, and the GNNs are trained for 300 epochs with a learning rate
1e−3. The results are reported in Figure 6 for PubMed and in Figure 7 for Cora and CiteSeer. The
GraphSAGE models trained on the random graph sequences generally achieve better performance on

20

Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

Figure 5: Computational graph sampling results for Cora (top) and CiteSeer (bottom) with K1 =
K2 = 32 and batch size 32. We consider three scenarios in terms of the small graph size n and the
graph sampling interval γ: n = 300, γ = 5 epochs (left); n = 500, γ = 5 epochs (center); n = 300,
γ = 2 epochs (right). Note that these graphs have size equal to approximately 10-16% of the original
graph size.

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy SAGE

GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8
Ac

cu
ra

cy SAGE
GCN
SAGE full
GCN full

Figure 6: Results for PubMed without any sampling other than the graph sequence sampling. We
consider three scenarios in terms of the small graph size n and the graph sampling interval γ:
n = 1500, γ = 15 epochs (left); n = 2000, γ = 15 epochs (center); n = 1500, γ = 10 epochs
(right). Note that these graphs have size equal to approximately 10% of the original graph size.

the random graph sequences than on the target graph, with slight accuracy improvement when n is
increased and higher variability in accuracy when γ is decreased. The GCN performance is subpar
in both cases and for all combinations of n and γ. We observe more variability in accuracy than
in Figures 1 and 2, which is expected since in the absence of node sampling, the gradient updates
are calculated at all nodes; and in the absence of computational graph sampling, the effective graph
neighborhoods are less regular. It is also interesting to note that gradient and computational graph
sampling provide good inductive bias in this experiment, as the test accuracy achieved by the GNNs
with node and computational graph sampling, in Figures 1,4 and 2,5, are higher than those achieved
by the GNNs without sampling in Figures 6–7.

21

Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SAGE
GCN
SAGE full
GCN full

Figure 7: Results for Cora (top) and CiteSeer (bottom) without any sampling other than the graph
sequence sampling. We consider three scenarios in terms of the small graph size n and the graph
sampling interval γ: n = 300, γ = 5 epochs (left); n = 500, γ = 5 epochs (center); n = 300, γ = 2
epochs (right). Note that these graphs have size equal to approximately 10-16% of the original graph
size.

22

	Introduction
	Related Work
	Sampling-Based GNNs
	GNNs: Preliminaries
	Sampling-Based GNNs: An General Framework

	Graph Limits and Limit GNNs
	Graph Limit Theory
	GNN in the limit

	Convergence of Sampling-Based GNNs
	Experiments
	Ablation Study on a Large Graph
	Application Example on a Very Large Graph

	Conclusion and Future Steps
	More Related Work
	GCN and GraphSAGE
	Classical Sampling-Based GNN Training Algorithm
	Examples of Almost Local Functions
	Proof of Theorem 5.4
	Applications
	Experiment Details
	Additional Experiments on Cora and CiteSeer
	Experiments without Node and Computational Graph Sampling

