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Abstract
Graphical models have been widely used as par-
simonious encoders of the constraints underlying
probability models. When organized in a struc-
tured way, these models can facilitate the deriva-
tion of non-trivial constraints, the inference of
quantities of interest, and the optimization of their
estimands. In particular, causal diagrams enable
the efficient representation of the structural con-
straints of the underlying causal system. In this
paper, we introduce an efficient graphical con-
struction called Ancestral Multi-world Networks
that is sound and complete for reading counterfac-
tual independences from a causal diagram using
d-separation. Moreover, we introduce the coun-
terfactual (ctf-) calculus, which can be used to
transform counterfactual quantities using three
rules licensed by the constraints encoded in the di-
agram. This result generalizes Pearl’s celebrated
do-calculus from interventional to counterfactual
reasoning.

1. Introduction
Counterfactuals form the basis of important notions across
human cognition that require retrospective thinking, where
one must compare what did happen in the real world versus
what would have happened under some different hypothet-
ical conditions. Given the impossibility of observing an
alternative outcome once an action is taken, counterfactu-
als evoke “what if?” questions whose answers can only be
approached by imagining hypothetical conditions contrary
to this factual evidence. For instance, questions such as
“what would be the death rates had the vaccination started
two weeks earlier?” or “given that I arrived late, would I
have been on time had I taken the subway instead of the
taxi?” require us to carry out a mental experiment where
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Figure 1. A causal diagram over three variables.

we recover some state of affairs, perform a change in the
sequence of events, and let a hypothetical situation to play
out. More generally, counterfactuals are an important com-
ponent in the construction of explanations regarding why
certain events occurred the way they did (Pearl, 2000; Pearl
& Mackenzie, 2018; Bareinboim et al., 2020).

One fundamental topic of study in counterfactual reasoning
is understanding the various quantities, the constraints on
their relation, and the types of inferences allowed across vari-
ous counterfactual worlds. Specifically, counterfactual quan-
tities evoke hypothetical conditions that could contradict the
factual evidence, underpinning different applications involv-
ing blame and responsibility, credit assignment, and more
individualized types of decisions (Pearl, 2000). Examples of
such quantities include the effect of treatment on the treated
(Heckman, 1992; Pearl, 2000), path-specific effects (Pearl,
2001; Avin et al., 2005), and causal and spurious variations
(Zhang & Bareinboim, 2018; Plečko & Bareinboim, 2024).
There are also quantities such as the probability of necessity
(PN), probability of sufficiency (PS), and the probability of
necessity and sufficiency (PNS) that relate to fundamental
aspects of how events are related and can explain the other.
For example, consider the causal diagram in Figure 1 over
the variables age, treatment, and survival. The counterfac-
tual event (Yx = 1 | X = x′) refers to the survival of a
person (Y = 1) that gets a treatment X = x when they
would naturally decide not to get treated (x′). Such queries
depict a quintessential counterfactual situation, since we
aim to evaluate a world that contradicts the factual one in
which the person was not treated.

In the first part of our paper, we revisit and generalize
counterfactual constraints – exclusion and independence
restrictions, and consistency (Pearl, 2000) – and show how
they follow from the Structural Causal Model semantics.
Specifically, we introduce a new graphical representation
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that encodes independences between counterfactual random
variables, which we call Ancestral Multi-World Network
(AMWN). Based on this new data structure, we formally
show that the d-separation criterion is complete for read-
ing such constraints based on a causal graph and a set of
counterfactual variables. Compared with the prior litera-
ture, the newly proposed method improves over the Twin
Networks (Balke & Pearl, 1994), for which d-separation is
not complete, and from Single World Intervention Graphs
(Richardson & Robins, 2013), which consider a single inter-
vention at a time. AMWN also differs from Multi-Networks
and Counterfactual Graphs (Shpitser & Pearl, 2007), which
were conjectured to be complete but require constructing
a possibly exponential number of graphs to test separation
among counterfactual variables rather than events.

In the second part of the paper, and building on the con-
straints and AMWN construction, we formulate a set of
three rules for counterfactual inference called Counterfac-
tual Calculus (ctf-calculus). Compared with the litera-
ture, our rules are more general than Pearl’s celebrated
do-calculus (Pearl, 1994; 1995) for interventional reasoning,
since it allows for the transformation of counterfactual quan-
tities to infer the implied equality constraints. Moreover,
we show that the counterfactual calculus is complete for
identifying counterfactuals from observational and interven-
tional distributions. This set of rules also differs from the
Potential Outcome Calculus (po-calculus) (Malinsky et al.,
2019), which has been shown to hold if and only if the cor-
responding do-calculus rules hold. While po-calculus rules
require counterfactual variables to follow certain patterns
in terms of interventions and require pre-processing steps
to be used for certain identification tasks, we propose rules
supporting more general mixes of interventions, which, com-
bined with probability axioms, are sufficient for deciding
counterfactual identification.

More specifically, our contributions are as follows:

1. Graphical criteria: a sound, complete, and efficient
procedure to test conditional independences among
counterfactual variables using d-separation on a modi-
fied causal diagram.

2. Inference rules: a set of inference rules for coun-
terfactual reasoning that are sound and complete for
counterfactual identification from observational and
experimental distributions.

Proofs can be found in the supplemental material.

Definitions and Background. We denote variables by
capital letters, X , and values by small letters, x. Bold letters,
X represent a set of variables and x a set of values. The
domain of a variable X is denoted by Val(X). Two values

x and z are consistent if they share the common values
for X ∩ Z. We also denote by x \ Z the value of X \ Z
consistent with x and by x∩Z the subset of x corresponding
to variables in Z. We assume the domain of every variable
is finite.

We represent qualitative assumptions using causal graphs,
denoted with a calligraphic letter, e.g., G, etc. Given a
graph G, GWX is the result of removing edges coming into
variables in W and going out from variables in X. G[W]
denotes a vertex-induced subgraph, which includes W and
the edges among its elements. We use kinship notation for
graphical relationships such as parents, children, descen-
dants, and ancestors of a set of variables.

We base our analysis on the Structural Causal Model
(SCM) paradigm (Pearl, 2000). An SCMM is a 4-tuple
⟨U,V,F , P (u)⟩, where U is a set of exogenous (latent)
variables; V is a set of endogenous (observable) variables;
F is a collection of functions such that each variable Vi ∈ V
is determined by a function fi ∈ F . Each fi is a mapping
from a set of exogenous variables Ui ⊆ U and a set of
endogenous variables Pai ⊆ V \ {Vi} to the domain of Vi.
Uncertainty is encoded through a probability distribution
over the exogenous variables, P (U).

An SCMM induces a causal diagram G where V is the
set of vertices, there is a directed edge (Vj → Vi) for every
Vi ∈ V and Vj ∈ Pai, and a bidirected edge (Vi L9999K Vj)
for every pair Vi, Vj ∈ V such that Ui ∩ Uj ̸= ∅ (Vi and Vj

have a common exogenous parent) (Bareinboim et al., 2020).
We assume that the underlying model is recursive. That is,
there are no cyclic dependencies among the variables.

SCMs allow us to define counterfactual quantities with pre-
cision based on the Pearl’s Causal Hierarchy (PCH) (Pearl
& Mackenzie, 2018; Bareinboim et al., 2020). This hier-
archy is divided into three layers (Figure 2): the first one
(L1) captures the notion of “seeing,” that is, observing a cer-
tain phenomenon or reality and possibly making inferences
about it. The second (L2) allows one to represent the no-
tion of “doing”, that is, intervening (or deliberately acting)
in the environment to bring about a certain state of affairs.
Modifying an SCM gives natural valuations for quantities
of this kind, as defined next.
Definition 1.1 (Submodel). LetM be a causal model, X a
set of variables in V, and x a particular realization of X. A
submodelMx ofM is the causal model

Mx = ⟨U,V,Fx, P (U)⟩, where (1)

Fx = {fi : Vi /∈ X} ∪ {X← x}. (2)

That is, performing an external intervention (or action) is
modeled through the replacement of the original (natural)
mechanisms associated with some variables X with a con-
stant x, which is represented by the do-operator. The impact
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SCM

L1: P (V)

L2: P (Vx)

L3: P (V1[x1],V2[x2], . . .)

Figure 2. Every SCM induces different distributions in each layer
of the PCH.

of the intervention on an outcome variable Y is commonly
called the potential response:

Definition 1.2 (Potential Response). Let X and Y be two
sets of variables in V, and u be a unit. The potential re-
sponse Yx(u) is defined as the solution for Y of the set of
equations Fx with respect to SCMM (for short, YMx(u)).
That is, Yx(u) = YMx(u).

In other words, YMx(u) is obtained through the compu-
tation of Y(u) in the submodelMx. On the other hand,
the meaning of every term in the counterfactual layer (L3)
can be directly determined from a fully specified structural
causal model, as described in the sequel:

Definition 1.3 (Counterfactual Distribution Valuation). An
SCM M = ⟨U,V,F , P (U)⟩ induces a family of joint
distributions over counterfactual events Yx, . . . ,Zw, for
any Y,Z, . . . ,X,W ⊆ V, PM(yx, . . . , zw) is given by:∑

u
1[Yx(u) = y, . . . ,Zw(u) = z ] P (u). (3)

Let W∗ = {(W1)T1 , (W2)T2 , . . .} represent an arbitrary
set of counterfactual variables such that Wi ∈ V and Ti ⊆
V for i = 1, . . . , l. We assume throughout this paper that
all the distributions generated by the models are positive.

2. Counterfactual Constraints
We begin by stating three types of constraints that hold over
counterfactuals random variables: consistency (Section 2.1),
exclusion (Section 2.2), and independence (Section 2.3),
which we detail in the following subsections.

2.1. Consistency Constraints

Consistency constraints relate to the interplay between ob-
serving a variable taking a particular value and the effect
of an intervention that fixes this variable to the same value.
To ground this idea, consider an SCMM over endogenous
variables V = {X,Y, Z} and suppose we are interested in
studying the joint counterfactual event (Yx = y,X = x).
Following the proper semantics (Theorem 1.2), the value of
variable X is given by the solution of the system of equa-
tions F associated withM, X(u), for each unit U = u.
Similarly, the value of Yx is given by the solution of the sys-
tem Fx, Yx(u), for the same unit. The event X = x occurs

for u whenever the solution of fx is equal to x. While fx
is fixed as a constant x in Fx (as illustrated in Figure 3(a)),
for any unit U = u for which X = x, the result of these
two systems of equations coincide.

Both models will match in the value of every observable,
i.e., for u′ = {u | X(u) = x},

X(u′)=Xx(u
′)=x, Y (u′)=Yx(u

′), Z(u′)=Zx(u
′). (4)

Moreover, the probability of the corresponding random vari-
ables follows from averaging P (U) for those u, and then:

P (Yx = y,X = x)

=
∑

u
1[Yx(u) = y,X(u) = x] P (u) (5)

=
∑

u
1[Y (u) = y,X(u) = x] P (u) (6)

= P (Y = y,X = x). (7)

Again, this is so because Yx(u) = Y (u) for those u for
which X(u) = x. More generally, when considering all the
endogenous variables, we have:

P (Yx, Zx, X = x) = P (Y,Z,X = x), (8)

In other words, once we restrict our attention to the set of
units that generate X = x, then the variations of Yx, and Zx

are consistent with the variations of Y , and Z, respectively.

Intuitively, once X takes the value x, naturally, other vari-
ables in the model behave the same as if X had been fixed
to x by intervention, for instance, Yx = Y .1

More broadly, consistency does not depend on the indepen-
dence structure among the exogenous variables, P (U), and
follows from the relationships within the structural mecha-
nisms F .

The following characterizes this family of constraints across
endogenous variables:

Lemma 2.1 (Consistency). Given SCMM and X,Y ∈ V,
T∗ be any combination of counterfactuals, and let x be a
value in the domain of X . Then,

P (YT∗ , XT∗ = x) = P (YT∗x, XT∗ = x). (9)

As suggested by the term T∗ in Theorem 2.1, consistency
between observations and interventions not only occurs for
interventions that fix a variable to a constant value (e.g.,
do (X = x)) but is also true with interventions that set a
variable to match another counterfactual variable, as dis-
cussed next.

1One way to interpret such a statement is through the indepen-
dence of the mechanisms that give value to each of the endogenous
variables in the system in conjunction with the locality of the
intervention.
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(u | X = x)
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fz
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f ′
x

fy

(X = x, Yx)

(a) Mechanisms involved in
generating the event (Yx, X =
x).

(u)
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(YXz
)

(b) The variable YXz results
from forcing X to take the
value Xz(u) for every u.

Figure 3. Representation of the mechanism involved in generating
counterfactual events. The gray boxes represent data-generating
mechanisms that transform a particular unit U = u into a coun-
terfactual event over the observable variables. Each rectangle is a
copy of the mechanisms of the structural causal model. Depend-
ing on the counterfactual of interest, the mechanisms share some
functions (e.g. fz and fy in (a)), redefine others (fx and f ′

x in (a)),
or contain functions that require the evaluation of a separate set of
mechanisms (e.g. f ′

x in (b)) to compute a nested counterfactual.

2.1.1. NESTED COUNTERFACTUALS

So far we have considered counterfactuals of the form
Yx, where the subscript x indicates that an intervention
do (X = x) has been performed in the system. We turn
our attention to interventions that could be expressed as
do (X = Xz), and represent settings where the variable X
is set to behave as another counterfactual variable, say Xz .
This operation is illustrated in Figure 3(b). In other words,
the value of Xz is computed in a sub-model Fz (figure’s
r.h.s.) and used to replace the natural mechanism fx (in the
l.h.s.). A random variable Y in such a system is represented
with a counterfactual of the form YXz , which is called a
nested counterfactual.

The nesting means the target counterfactual internally refers
to another nested world (possibly multiple times).
Corollary 2.2 (Counterfactual Unnesting (CU)). Let
Y,X ∈ V, T,Z ⊆ V, and let z be a set of values for
Z. Then, the nested counterfactual P (YT∗Xz = y) can be
written with one less level of nesting as:

P (YT∗Xz = y) =
∑

x
P (YT∗x = y,Xz = x). (10)

This statement follows from the law of total probability and
consistency itself, i.e.:

P (YT∗Xz = y)

=
∑

x
P (Y

T∗ Xz
=y, Xz =x) (sum over Xz) (11)

=
∑

x
P (Y

T∗ x =y,Xz= x ) (consistency). (12)

These two steps allow us to reason about nested counterfac-
tuals and transform them into expressions involving non-
nested ones.

2.2. Exclusion Constraints

Although the semantics of counterfactuals allows one to
consider a variable Yt for arbitrary Y ∈ V and T ⊆ V,
some counterfactual variables are not entirely free to vary
depending on the topology and the sparsity of the causal
system. For example, consider the simple chain graph in
Figure 4(a) and the counterfactual variables Yz and Yzx. To
understand the relationship between these two variables, we
write the corresponding sub-modelsMz andMzx:

Fz=


Xz ← fX(Ux)

Zz ← z

Yz ← fY (z, Uy)

Fzx=


Xzx ← x

Zzx ← z

Yzx ← fY (z, Uy),

(13)

and P (U) = P (Ux)P (Uz)P (Uy). Note that for each unit
U = u, the variables Yz and Yzx are the same. Intuitively,
once the value of Z is fixed to z by intervention, the only
source of variation for the variable Y in bothMz andMzx

comes from Uy, so intervening on X is irrelevant. In some
sense, the intervention on X can be excluded without any
changes in the value of Y , which gives the name exclusion
restriction.

In graphical terms, an intervention on a variable X could
affect another variable Y only if there exists a causal (di-
rected) path from X to Y in G.2 Although in Figure 4(a)
there is such path, the same is severed once Z is intervened
on. This observation can be stated more generally in the
form of an operator used to exclude interventions from a
given counterfactual variable as follows:

Lemma 2.3 (Exclusion operator). Let Yx be a counterfac-
tual variable, G a causal diagram, and

Yz such that Z = X ∩An(Y )GX
and z = x ∩ Z. (14)

Then, Yz = Yx holds for any model compatible with G.
Moreover, this transformation is denoted as ∥Yx∥:= Yz.

Note that by keeping X ∩ An(Y )GX
(Equation (14)), the

exclusion operator removes from the counterfactual’s an-
tecedent (i.e., subscript) variables that are not ancestors of Y
(variables without causal paths to Y ) as well as those ances-
tors that once do (X) is performed are no longer ancestors
of Y .

For a set Y∗, define ∥Y∗∥=
⋃

Yt∈Y∗
∥Yt∥. The result of

applying the exclusion operator to Yx, ∥Yx∥, is always equal
to Yx or an equivalent counterfactual variable with fewer
variables in its antecedent.

2In terms of SCM, this means there is a sequence of functional
substitutions such that X may appear in the argument set of Y .
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ZX Y

(a) Chain causal structure.

Z

WX Y

(b) Causal diagram over 4 variables.

Figure 4. Graphical structures used to illustrate exclusion and in-
dependence constraints.

One interesting feature of exclusion constraints is that they
are derivable from the order relative to the mechanisms, F ,
of the underlying SCM,M∗. Other invariances fromM∗

come from sparsity in P (U), as discussed in the sequel.

2.3. Independence Constraints and the Counterfactual
d-separation Criterion

The ability to represent multiple worlds simultaneously is a
fundamental aspect that sets apart the third layer of the PCH
from the others. One could therefore consider a probability
expression involving variables from multiple worlds, such
as Yx and Zx′ when x ̸= x′.

At the structural level, multiple interventions entail different
copies of the mechanismsF of the SCM, each for a different
world (syntactically represented by a different subscript),
but all sharing the same P (U). As implied by Equation (3),
a counterfactual distribution can be evaluated by passing the
set of exogenous variables U through the different versions
of those mechanisms, depending on which hypothetical
world one aims to evaluate. This process can be mimicked
and represented at the graphical level by a “meta” diagram
incorporating different instances of the endogenous vari-
ables produced by the various mechanisms and connecting
different worlds through the U variables. This idea allows
the evaluation of separation statements among nodes repre-
senting counterfactual variables, which in turn imply condi-
tional independences among the corresponding variables in
the underlying distribution.

For concreteness, consider whether the causal graph in Fig-
ure 4(b) implies that (Yxw,Wx′ ⊥⊥ X | Zx′). Figure 5(a)
shows a natural generalization of the twin network to 3
worlds, a 3-plet network, for this graph and question. Note
that the variables in the query involve three submodels:
M,Mx′ , and Mxw, all depicted in the network sharing
explicit unobservable variables.

While it seems that X is d-connected to Yxw given Zx′

in Figure 5(a), due to the active path X ← Z ← Uz →
Zxw → Yxw, the exclusion operator reveals Zx′ = ∥Zx′∥=
Z. This means that conditioning on Zx′ is the same as
conditioning on Z, and the separation holds.

In this sense, we should merge the nodes Z, Zx′ , and Zxw

due to the deterministic relationship among them. It is also

convenient to ignore nodes of variables fixed by intervention
and reduce every variable with the exclusion operator. This
results in the 3-plet network shown in Figure 5(b). In this
new graph, d-separation can be used to tell that X and
Yxw = Yw are separated given Zx′ = Z.

More generally, we can construct twin networks, 3-plet
networks, or k-plet networks depending on the number of
interventions in the separation statement. Then, use the ex-
clusion operator to merge nodes corresponding to variables
that are deterministically the same. This method, however,
includes many variables in the graph that we do not need
to check. To improve efficiency, as we will show later, we
discuss the concept of ancestors of a counterfactual.

Definition 2.4 (Ancestors (of a counterfactual) (Correa et al.,
2021)). Let Yx be such that Y ∈ V,X ⊆ V. Then, the
set of (counterfactual) ancestors of Yx, denoted by An(Yx),
consist of each Wz such that W ∈ An(Y )GX

\X (which
includes Y itself), and z = x ∩An(W )GX

.

This extends the idea that, in graphical terms, a variable can
only affect another if the former is an ancestor of the latter.
When counterfactuals are involved, some of those ancestors
become irrelevant (by virtue of the exclusion operator). For
example, for the graph in Figure 4(a), X is an ancestor of Y ,
but it is not a (counterfactual) ancestor of Yz , because under
do (Z), X cannot affect Yz . Similarly, Z is an ancestor of
Y , but for Yx a counterfactual ancestor is Zx, not X or Z.

For a set of variables W∗, we define An(W∗) as
the union of the ancestors of each variable in the set.
That is, An(W∗) =

⋃
Wt∈W∗

An(Wt). For exam-
ple, in Figure 4(b), An(Yxw) = {Yw, Z},An(Wx′) =
{Wx′},An(X) = {X,Z}.

We describe a graphical construction called the Ancestral
Multi-World Network (AMWN), denoted GA(G,Y∗). This
data structure is a function of the original causal diagram G
and the counterfactual variables Y∗ in the separation state-
ment to be evaluated. Algorithm 1 describes the procedure
for creating an AMWN.

For concreteness, let us consider again the evaluation of the
separation query (Yxw,Wx′ ⊥⊥X) using the causal diagram
in Figure 4(b). In line 1, the procedure computes An(Y∗),
which will be added as nodes in the AMWN.

The associated directed arrows witness the ancestrality of
the variables involved. For instance, Z is an ancestor (par-
ent) of Yw, hence Z and the arrow Z → Yw must be present
in the graph. Note that, at this point, the resulting graph is a
subgraph of Figure 5(b), but the rest of the graph is not rele-
vant to evaluate the separation statement with d-separation.
That is, (Xt ⊥⊥ Yr | Z∗) can be judged using d-separation
on top of GA(Xt, Yr,Z∗).

The second part of Algorithm 1 explicitly adds latent vari-
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M Mx′ Mxw

Z

WX Y

Zxw

WxwXxw Yxw

Zx′

Wx′

Xx′ Yx′

Ux Uz

Uw Uy

(a)

M Mx′ Mw

Z

WX Y YwWx′

Yx′

Ux Uz

Uw Uy

(b)

Z

Wx′X Yw

(c)

Figure 5. Based on the causal diagram in Figure 4(b) and inter-
ventions do (x,w), do (x′), and do (∅): 3-plet network (a), 3-plet
network + exclusion. (c) AMWN with the ancestors of variables
Yxw,Wx′ , X and Z.

W
Z

Y

X

(a)

W
Z

Yxw

X

Zw
Uz

Uzx

(b)

Figure 6. To judge the separation statement (Yxw ⊥⊥X | Z,W ) in
(a), we construct AMWN (b) and use d-separation.

ables U to facilitate reasoning about the relations among
variables appearing more than once in the graph with differ-
ent subscripts and variables originally connected by latent
confounding.3

For instance, consider the causal diagram in Figure 6(a) and
whether (Yxw⊥⊥X | {Z,W}). The relevant set of ancestors
is An(Yxw, X, Z,W ) = {Yxw, Zw, X, Z,W}. The corre-
sponding AWMN is shown in Figure 6(b). The node Uz

has been added and connected to Z and Zw (line 1), which
come from the same original variable. There is also the node
Uzx, that is connected to Z, Zw and X due to the bidirected
arrow Z L9999K X in G (line 1). By the d-separation criterion,
the path X L9999K Zw → Yxw is active given {Z,W}, which
leads to the conclusion that (Yxw ⊥̸⊥X | Z,W ), as stated in
the sequel.

Theorem 2.5 (Independence Constraints — Counterfactual
d-separation (soundness)). Consider a causal diagram G

3The exogenous variables shared across worlds are precisely
the anchors of invariance in these settings. They represent precisely
the identity of the units submitted to these different counterfactual
conditions.

Algorithm 1 AMWN-CONSTRUCT(G,Y∗)

Input: Causal diagram G and a set of counterfactual variables Y∗.
Output: GA(Y∗) the AMWN of G and Y∗.
1: Initialize a network G′ adding the variables in An(Y∗) to-

gether with the directed arrows witnessing the ancestrality.
2: for each variable V ∈ V appearing more than once in G′ do
3: Add a node UV and an edge UV → Vx for every instance

of Vx of V .
4: end for
5: for each bidirected V L9999K W where V and W are in G′ do
6: Add a node UV W and edges from it to Vx and Wx, for

every instance of Vx of V or Wx of W in G′.
7: end for
8: return G′.

and a collection of counterfactual distributions, P⋆⋆⋆, in-
duced by the SCM associated with G. For counterfactual
variables Xt, Yr,Z∗,

(∥Xt∥⊥⊥∥Yr∥
∣∣ ∥Z∗∥)GA

→ (∥Xt∥⊥⊥∥Yr∥
∣∣ ∥Z∗∥)P⋆⋆⋆ .

Moreover, if an independence relationship cannot be in-
ferred with the criterion, there exist at least two models
inducing the graphical model where the independence does
not hold.

In other words, the d-separation criterion is sound for
the counterfactual variables in the AMWN, that is, if
∥Xt∥ and ∥Yr∥ are d-separated given ∥Z∗∥ in the diagram
GA(Xt, Yr,Z∗), then Xt and Yr are independent given Z∗
in every distribution P⋆⋆⋆ compatible with the causal diagram
G. It is also complete because if d-separation does not hold
in the AMWN, then independence cannot be guaranteed.

This result allows us to use the construction of an AMWN
of G to test whether a pair of counterfactual variables is
independent in the probability distributions generated by the
model compatible with G.

Now, we examine the time complexity of constructing an
AMWN. Let z be the number of different interventions in
the separation query, and n, m be the number of nodes
and edges, respectively. In line 1, the set of counterfactual
ancestors can be computed in time linear to the size of the
graph, for each intervention appearing in Y∗; hence the step
takes time O(z(n + m)). Due to line 1, no more than n
latent nodes and zn edges are added. Line 1 adds m latent
nodes and 2zm edges at most. Overall, the construction
takes O(z(n +m)), which is polynomial in the size of G
and Y∗.

The resulting graph GA has O(z(n+m)) nodes and edges,
hence running d-separation on top of it takes O(z(n+m))
time (van der Zander et al., 2014). Compared with the clas-
sical d-separation criterion, the time required to use AMWN
increases by a factor of z, the number of different worlds
involved in the query. Table 1 summarizes the methods
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discussed, in terms of whether they allow for checking any
separation constraints (among any counterfactual in the con-
sidered worlds), if d-separation is complete for them, and the
time complexity of the construction of the graph and check-
ing the constraint.4 Overall, the method based on AMWN
is more general and efficient than previous algorithms in the
literature.

3. The Counterfactual Calculus
Building on our understanding of the constraints discussed
earlier, this section introduces the counterfactual calculus
and how it can be used for counterfactual inference based
on the assumptions encoded in a causal diagram.

In the spirit of Pearl’s celebrated interventional calculus
(do-calculus), its counterfactual counterpart allows one to
transform expressions in the form P (y∗ | x∗) to other coun-
terfactual quantities, including in observational (P (y | x))
and experimental (P (y | do (x))) forms, as licensed by the
constraints encoded in the causal diagram. The counterfac-
tual calculus consists of three inference rules based on the
three types of constraints discussed earlier.

Theorem 3.1 (Counterfactual Calculus (ctf-calculus)). Let
G be a causal diagram, then for Y,X,Z,W,T,R ⊆ V,
the following rules hold for the probability distributions
generated by any model compatible with G:

Rule 1 (Consistency rule — Obs./intervention exchange)

P (yT∗x,xT∗ ,w∗) = P (yT∗ ,xT∗ ,w∗) (15)

Rule 2 (Independence Rule — Adding/removing counter-
factual observations)

P (yr | xt,w∗) = P (yr | w∗)

if (Yr ⊥⊥Xt |W∗) in GA, (16)

Rule 3 (Exclusion Rule — Adding/removing interventions)

P (yxz,w∗) = P (yz,w∗)

if X ∩An(Y) = ∅ in GZ, (17)

where GA is the counterfactual ancestral graph GA(G,Yr∪
Xt ∪W∗).

The first rule of the calculus, consistency, was discussed in
Section 2.1. One distinct feature of this rule is that it does
not depend on the graphical structure and allows for adding
or removing interventions whenever a specific observational
context and the antecedent of the counterfactual (subscript)

4Further details on this comparison are given in Appendix C.1
in (Correa & Bareinboim, 2024).

5n,m, z, and d refer to the number of nodes, edges, (different)
interventions, and maximum cardinality of any observable variable
in G, respectively.

Method Any sep. Complete Time Complexity5

Twin Network Yes No O(n+m)
SWIG No Yes O(n+m)
Multi-Networks Yes Conject. O(dn(n+m))
k-plet Network Yes Yes O(zn(n+m))
AMWN Yes Yes O(z(n+m))

Table 1. Comparison of counterfactual independence graphical
constructions. For each method, we look at whether it supports any
separation query, whether it is complete, and its time complexity.

match. As mentioned earlier, consistency is essentially the
probabilistic instantiation of the invariances that follow from
the modularity and stability of the causal mechanisms of the
underlying system.

The second rule, independence (Section 2.3), corresponds
to a generalized version of d-separation for counterfactual
events. Syntactically, it permits the addition/removal of
counterfactual evidence in a probability distribution.

The third rule, exclusion (Section 2.2), follows from the idea
that interventions on variables without a causal path to the
observed variable do not affect this variable and, therefore,
can be dismissed.6

For concreteness, we illustrate next the use of the ctf-
calculus rules for counterfactual identification tasks through
a few examples.
Example 1 (ETT in the Backdoor diagram). Consider the
causal diagram in Figure 1 and the observational distribution
as input, and the counterfactual distribution P (yx | x′) as
the query. Using the ctf-calculus, we can then write:

P (yx | x′)

=
∑

z
P (yx | z, x′)P (z | x′)

(Conditioning on Z) (18)

=
∑

z
P (yx | zx, x′)P (z | x′)

(R3: {X} ∩An(Z) = ∅) (19)

=
∑

z
P (yxz | zx, x′)P (z | x′)

(R1: (Zx = z ⇒ Yx = Yxz)) (20)

=
∑

z
P (yxz | z, x′)P (z | x′)

(R3: {X} ∩An(Z) = ∅) (21)

=
∑

z
P (yxz | z, x)P (z | x′)

(R2: (X ⊥⊥ Yxz | Z) in GA (Figure 7(a)))
(22)

=
∑

z
P (y | z, x)P (z | x′)

6We provide a comparison of ctf-calculus and do-calculus in
Appendix C.2 in (Correa & Bareinboim, 2024).
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X

Z

Yxz

(a)

X

W

Y

(b)

Figure 7. (a) An AMWN based on Figure 1 and variable set
Y∗ = {Yxz, X, Z} used in the derivation of Example 1. (b)
causal diagram used in Example 2.

(R1: (Z = z,X = x⇒ Yxz = Y )) (23)

The effect of the treatment on the treated is then identifiable
from P (x, z, y) and G. ■
Example 2 (Natural Direct and Indirect Effects). Consider
the causal diagram in Figure 7(b) and suppose we wish to
evaluate the natural direct (NDE) to understand how ex-
ercising (X) affects cardiovascular disease (Y ) by means
other than affecting the cholesterol level (W ), that acts as
a mediator of this relationship. The NDE can be written in
counterfactual language as

NDEx,x′(y) = P (yx′,Wx
)− P (yx). (24)

The derivation of the first term of the NDE expression goes
as follows:

P (yx′Wx)

=
∑

w
P (yx′w, wx)

(CU, cor. 2.2: sum over Wx + consistency) (25)

=
∑

w
P (yx′w | wx)P (wx)

(Chain rule) (26)

=
∑

w
P (yx′w | wx′)P (wx)

(R2: (Yx′w ⊥⊥Wx,Wx′) in GA (Figure 8(a))) (27)

=
∑

w
P (yx′w | wx′ , x′)P (wx)

(R2: (Yx′w ⊥⊥X |Wx′) in GA (Figure 8(b))) (28)

=
∑

w
P (yx′w | w, x′)P (wx)

(R1: (X = x′ ⇒Wx′ = W )) (29)

=
∑

w
P (y | w, x′)P (wx)

(R1: (W = w,X = x′ ⇒ Yx′w = Y )). (30)

Here, P (wx) cannot be further reduced to an expression in
terms of observational distributions.

For the baseline P (yx), the derivation goes as follows:

P (yx)

=
∑

w
P (yx | wx)P (wx)

Wx

Wx′ Yx′w

(a)

X

Wx′

Yx′w

(b)

X

Wx

Yx

(c)

Figure 8. Causal diagrams used in derivation in Example 2.

(Condition on Wx) (31)

=
∑

w
P (yx | wx, x)P (wx)

(R2: (Yx ⊥⊥X |Wx) in GA (Figure 8(c))) (32)

=
∑

w
P (y | w, x)P (wx)

(R1: (X = x⇒Wx = W,Yx = Y )). (33)

Finally, we get

NDEx,x′(y)=
∑
w

(P (y|w, x′)−P (y|w, x))P (wx). (34)

by putting Equations (30) and (33) together. ■

The calculus guarantees the correctness of the reduction
whenever such a derivation from a counterfactual query to
the probabilities over the observed distributions is available.

Theorem 3.2 (Soundness and Completeness for Counterfac-
tual Identifiability). A counterfactual quantity Q = P (y∗ |
x∗) is identifiable from a given combination of observa-
tional and experimental distributions and a causal diagram
G if and only if there exists a sequence of applications of the
rules of ctf-calculus and the probability axioms that reduces
Q into a function of the available distributions.

In other words, any derivation following the ctf-calculus is
correct (soundness) and, if any counterfactual is identifiable
from certain observational (L1) and interventional (L2) dis-
tributions, there must exist a sequence of applications of
the ctf-calculus that witnesses the mapping of the available
distributions and the target effect (completeness).

Since any causal effect can be written in counterfactual
terms, it is only natural that ctf-calculus subsumes do-
calculus, as follows.

Lemma 3.3 (ctf-calculus — do-calculus reduction). ctf-
calculus subsumes do-calculus.

More details on the relationship between do-calculus and
ctf-calculus can be found in Appendix C.2 in (Correa &
Bareinboim, 2024).
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4. Conclusions
In this paper, we first established consistency (Theorem 2.1),
exclusion (Theorem 2.3), and independence constraints
(Theorem 2.5) following from the SCM semantics. We
showed that d-separation is complete for obtaining inde-
pendence constraints from the causal diagram using an effi-
cient graphical construction called Ancestral Multi-World
Network (Algorithm 1). This constitutes the first efficient
procedure for reading counterfactual independence. We
then introduced a set of rules called counterfactual calculus
(Theorem 3.1), which can be used to transform target coun-
terfactual quantities based on the constraints encoded in the
diagram. Finally, we showed that counterfactual calculus
is sound and complete for identifying counterfactuals from
an arbitrary combination of observational and experimental
distributions (Theorem 3.2). We hope the results in this
paper can further our understanding and expand the tool-
box for performing causal reasoning, closing a journey that
started with Pearl’s fundamental results on d-separation for
observational distributions (circa 1986) and the do-calculus
for interventional reasoning (1995). We now have more
general machinery that allows for reasoning across the three
layers of the causal hierarchy, including the very top: coun-
terfactual relations.
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