
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM WEAK DATA TO STRONG POLICY: Q-TARGETS
ENABLE PROVABLE IN-CONTEXT REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers trained with offline expert-level data have shown remarkable suc-
cess in In-Context Reinforcement Learning (ICRL), enabling effective decision-
making in unseen environments. However, the performance of these models
heavily depends on optimal or expert-level trajectories, making them expensive
in various real-world scenarios. In this work, we introduce Q-Target Pretrained
Transformers (QTPT), a novel framework that leverages Q-learning instead of su-
pervised learning during the training stage. In particular, QTPT doesn’t require
optimal-labeled actions or expert trajectories, and provides a practical solution for
real-world applications. We theoretically establish the performance guarantee for
QTPT and show its superior robustness to data quality compared to traditional
supervised learning approaches. Through comprehensive empirical evaluations,
QTPT consistently outperforms existing approaches, especially when trained on
data sampled with non-expert policies.

1 INTRODUCTION

Recent advances in large language models have demonstrated their remarkable ability to perform
various tasks in a zero-shot or few-shot manner using in-context learning (Brown et al., 2020; Garg
et al., 2023). Building upon this paradigm, transformer-based models have been successfully ap-
plied to Reinforcement Learning (RL) settings, showing strong In-Context Reinforcement Learning
(ICRL) capabilities (Laskin et al., 2022; Lee et al., 2023; Lin et al., 2024). These models can implic-
itly capture temporal dependencies within sequences of state-action-reward tuples, enabling them to
generalize and make decisions in unseen environments.

Despite impressive results achieved by transformers in offline RL, most existing approaches, such
as Algorithm Distillation (Laskin et al., 2022) and Decision Pretrained Transformer (Lee et al.,
2023), rely heavily on high-quality datasets. However, these data sets are typically generated by
expert policies or contain optimal action labels, which may not be readily available or prohibitively
expensive to obtain, limiting the applicability of these ICRL methods in many practical applications.

To address these challenges, we propose Q-Target Pretrained Transformers (QTPT), a novel pre-
training framework that replaces supervised behavior cloning with a Q-learning objective. Unlike
existing methods that depend on optimal action labels or expert-generated trajectories, QTPT learns
to approximate the optimal Q-function directly from offline datasets—even if these datasets are
generated by suboptimal policies (see Figure 1). By aligning the pretraining objective with rein-
forcement learning principles, QTPT reduces the reliance on high-quality data and enhances the
robustness and adaptability of transformers in a wide range of decision-making tasks.

Theoretically, we prove that the pretrained transformer can approximate the optimal Q-function
and further establish the regret upper bound for QTPT, which can be separated into two distinct
components. The first component represents the regret from the inherent sample bias influenced by
behavior policies, and the second component stems from the model bias affected by the Rademacher
complexity and the size of the training dataset. Such a clear separation builds a novel theoretical
foundation to isolate the impacts of sample bias and model bias and sheds light on how QTPT
balances leveraging available data and mitigating model bias during pretraining.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of Q-target Pretrained Transformers (QTPT) and Supervised Pretrained
Transformers (SPT) for in-context RL. While SPT requires expert demonstrations for good per-
formance, QTPT maintains robust performance even when trained on suboptimal data.

We further validate the effectiveness of QTPT through extensive numerical experiments and ob-
serve that QTPT consistently outperforms existing supervised-learning-based algorithms, particu-
larly when pretraining datasets are generated by suboptimal policies. This observation highlights
QTPT’s ability to extract valuable information, even from noisy and suboptimal datasets, where
high-quality data is scarce, as in many real-world applications. Achieving strong performance
through pretraining on suboptimal data, QTPT lays the foundation for robust and scalable ICRL
methods.

The major contributions of this work are summarized as follows:

1. We propose QTPT, a novel framework that pretrains Transformers using Q-learning, reducing
the reliance on expert-generated datasets or optimal action labels. By integrating Q-learning with
Transformers, we enhance their expressiveness for dynamic programming in Reinforcement Learn-
ing (RL), enabling end-to-end value updates. This shift from supervised learning to Q-learning in
Transformer pretraining offers a fresh perspective on applying Transformers to RL tasks, marking a
significant step in bridging the gap between Transformer models and RL.

2. We theoretically derive the upper bound guarantee on suboptimality for QTPT, demonstrating its
superior robustness to data quality over traditional supervised learning approaches. Specifically, we
provide strong theoretical guarantees under the finite-horizon Markov Decision Process (MDP) and
stochastic linear bandit settings and achieve Õ(T 2/

√
n) and Õ(

√
T/n) suboptimality gap respec-

tively, where T is the total time steps and n is the sample size (with Õ hiding logarithmic factor).
QTPT builds on Bellman-error framework by embedding Rademacher-complexity-based general-
ization into in-context reinforcement learning, extending it from tabular or function-approximation
batch RL (Duan et al., 2021) to sequence-model pretraining with end-to-end regret bounds. This ap-
proach preserves the crucial decomposition of sample bias and model bias, offering a robust solution
for learning from offline data in real-world RL tasks.

3. We conduct extensive experiments that validate our theory and show QTPT outperforms super-
vised methods, particularly on suboptimal or noisy datasets. This highlights the practical advantages
of Q-learning pretraining in environments where high-quality expert data is scarce, further reinforc-
ing the effectiveness of QTPT in real-world applications.

1.1 RELATED WORK

Q-Learning. Q-learning is a foundational off-policy reinforcement learning algorithm that updates
Q-values using the Bellman equation to learn optimal policies through environmental interaction
(Watkins & Dayan, 1992; Sutton, 2018). Over the years, a range of advancements have improved
Q-learning’s efficiency and practical applicability—especially regarding exploration-exploitation
trade-offs. Upper-Confidence Bounds (UCB) have enabled more efficient exploration, achieving
regret bounds on par with model-based methods (Jin et al., 2018; Zanette & Brunskill, 2019). Op-
timistic Q-learning algorithms (Even-Dar & Mansour, 2001; Yang et al., 2021) further reduce re-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

gret under appropriate conditions, marking a notable improvement over earlier approaches that suf-
fered from poor sample complexity. Deep Q-Networks (DQN) (Mnih et al., 2015) integrates the
Q-learning with deep learning to achieve human-level performance in complex tasks. Kapturowski
et al. (2018) leverage LSTM networks to better capture temporal dependencies in RL tasks.

Recent advances have adapted Q-learning to large-scale sequence models. Q-SFT (Hong et al.,
2024) reframes Q-learning as a supervised fine-tuning problem, optimizing a weighted cross-entropy
loss to approximate Q-values and providing theoretical analysis of convergence. Similarly, the Q-
learning Decision Transformer (Yamagata et al., 2023) employs a two-step approach: it first relabels
reward-to-go (RTG) values using Q-learning, then trains a Decision Transformer (Chen et al., 2021)
on these relabeled trajectories.

In contrast, QTPT introduces a novel architectural and algorithmic advance by weaving the entire
Bellman backup process directly into the transformer’s layers, eliminating the need for external
buffers or supervised objectives. Unlike Q-SFT or Q-learning Decision Transformer, QTPT intrin-
sically performs temporal-difference updates and Bellman backups within its decoder-only archi-
tecture, enabling true end-to-end reinforcement learning via self-attention. This unified approach
bridges sequence modeling and dynamic programming, allowing QTPT to efficiently handle offline
or suboptimal data. Moreover, QTPT is backed by polynomial-in-T regret guarantees, thus making
steps in bridging the gap between practice and theory in transformer-based RL.

Offline Reinforcement Learning. Offline Reinforcement Learning (RL) focuses on learning op-
timal policies from pre-collected datasets, without additional interactions with the environment
(Levine et al., 2020; Matsushima et al., 2020). One of the major challenges in offline RL is the
distribution drift between the behavior policy, which generates the dataset, and the learned policy
(Levine et al., 2020; Kostrikov et al., 2021; Rashidinejad et al., 2021). Techniques such as conserva-
tive value function estimation, policy constraints, and regularization have been developed to mitigate
this challenge (Wu et al., 2019; Kumar et al., 2020; Kidambi et al., 2021; Jin et al., 2022; Dong et al.,
2023; Hu et al., 2024; Qu et al., 2024; Setlur et al., 2024; Park et al., 2024). QTPT follows the suc-
cess of using Transformer models like AD(Laskin et al., 2022) and DPT(Lee et al., 2023), avoiding
these issues. The advantages of offline reinforcement learning over behavior cloning (imitation
learning) are studied in Kumar et al. (2022). Unlike this stream of work, we utilize meta-learning
framework to generalize and solve unseen RL tasks after pretraining, while offline RL generally
focuses on solving same RL tasks from which the offline datasets were originally collected.

In-Context Learning and Reinforcement Learning. As a non-adaptation method, the In-Context
Learning (ICL) approach has shown impressive success in adapting to new tasks by leveraging con-
textual information from limited examples (Brown et al., 2020; Min et al., 2022; Garg et al., 2023).
Various explanations on the mechanism behind ICL has been proposed (e.g., Akyürek et al. (2022);
Bai et al. (2023); Von Oswald et al. (2023); Zhang et al. (2023)),gradient descent, temporal differ-
ence, and policy updates through their self-attention structures. In-Context Reinforcement Learning
(ICRL) addresses sequential decision-making problems by inferring optimal policies from past tra-
jectories. In the realm of ICRL, Wang et al. (2024a) explores how transformers can implement
Temporal Difference (TD) learning directly in the forward pass. See Moeini et al. (2025) for a
more comprehensive survey. While existing literature mainly focus on the ICRL with supervised
pertaining paradigm (e.g., Lin et al. (2024)), our approach leverages Q-learning as the pretraining
strategy, explicitly minimizing in-context temporal difference errors. This approach directly aligns
the pretraining objective with subsequent in-context decision-making tasks, especially when noisy
or suboptimal data are involved.

2 MODEL SETTING

2.1 PRELIMINARIES

We consider a set of decision-making environmentsM, each operating over T rounds with shared
state and action spaces (S,A). Each environment M ∈ M has a unique transition model PM :
S ×A → ∆(S), initial state distribution ηM ∈ ∆(S), and a reward function rM : S ×A → ∆(R).
The agent’s uncertainty is captured by environment priors Λtrain ∈ ∆(M) and Λtest ∈ ∆(M) for
training and testing respectively. This framework represents various scenarios, including T rounds
of multi-armed bandit problems and K episodes of H-step MDPs with T = KH . The training stage

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Q-target Pretrained Transformers (QTPT)

1: Input: an Offline Dataset D collected in Λtrain, and the horizon T .
2: // Pretraining model on dataset
3: Randomly initialize Q̂θ

4: while not converged do
5: Sample a batch of B trajectories from D

6: Compute the Temporal Difference (TD) target yit = rit +maxa′∈A Q̂θ(s
i
t+1, a

′, Di
t)

7: Compute the loss: LB(Q̂θ) =
1

|B|T
∑|B|

i=1

∑T
t=1

(
Q̂θ(s

i
t, a

i
t, D

i
t−1)− yit

)2
8: Backpropagate to update θ
9: end while

10: // Online test-time deployment
11: Initialize an empty dataset D and sample environment M ∼ Λtest
12: for t in horizon T do
13: Choose at ∈ argmaxa Q̂θ(st, a,D)
14: Execute at and observe rt, st+1

15: Update D with (st, at, rt)
16: end for

uses an offline dataset D consisting n offline trajectories {Di
T = (si1, a

i
1, r

i
1, . . . , s

i
T , a

i
T , r

i
T)}ni=1,

which have been collected by the behavior policy πβ .

We denote a partial interaction trajectory—comprising the sequence of observed states, actions, and
rewards—by Dt = {s1, a1, r1, · · · , st, at, rt} ∈ Tt = (S × A × R)t. For convenience, we define
the context state as xt = Dt−1 ∪ {st}, which lies in the space Xt = Tt−1 × S . This representation
captures the cumulative interaction history up to round t− 1 and the current state st. Analogous to
standard state transitions in reinforcement learning, the context state evolves based on the current
context and action. Specifically, the next context state is given by:

xt+1 = xt ∪ {at, rt, st+1} where rt ∼ rM (·|st, at), st+1 ∼ PM (·|st, at).
We formalize this dynamic with the context transition model, defined as TM,t : Xt×A → ∆(Xt+1),
which maps a given context-action pair to a distribution over the next context state. A policy π maps
a context state xt ∈ Xt to a distribution over the actions π(·|xt) ∈ ∆(A).
To simplify the notation, in this work we only consider the no decay-factor setting which is also used
in literature (e.g.,Lin et al. (2024)). We define the value function V π

M,t : Xt → R, the Q-function
Qπ

M,t : Xt ×A → R for policy π , and the Bellman operator Γ : RX×A → RX×A as follows:

V π
M,t(xt) = E

[
T∑

h=t

rh

∣∣∣∣∣xt

]
(1)

Qπ
M,t(xt, at) = E [rM (st, at)] + Ext+1∼TM,t(·|xt,at)

[
V π
M,t+1(xt+1)

]
(2)

(ΓQM,t)(xt, at) = rM (st, at) + Ext+1∼TM,t(·|xt,at)

[
max
a′

QM,t+1(xt+1, a
′)
]

(3)

Finally, the optimal value function and Q-function are given by V ∗
M,t(xt) = maxπ V

π
M,t(xt) and

Q∗
M,t(xt, at) = maxπ Q

π
M,t(xt, at) for ∀xt ∈ Xt, at ∈ A respectively.

2.2 ALGORITHM

This section formally presents the Q-target Pretrained Transformer (QTPT) algorithm. We first
construct the approximator for the Q-value function. To learn from the offline dataset D =

{(si1, ai1, ri1, . . . , siT , aiT , riT)}ni=1, we utilize a class of sequence functions Q̂ = (Q̂1 × · · · × Q̂T),
where each Q̂t ∈ Q̂t tries to approximate the optimal Q-value function at time step t. For instance,
a Transformer can be viewed as a model of sequential Q functions. For simplicity, we denote the
full Q-function approximator as Q̂ = (Q̂1, . . . , Q̂T) ∈ Q̂ and optimize it as follows:

min
θ∈Θ
LB(Q̂) = min

θ∈Θ

1

|B|T

|B|∑
i=1

T∑
t=1

(
Q̂t(x

i
t, a

i
t; θ)−

(
rit +max

a′
Q̂t+1(x

i
t+1, a

′; θ)
))2

, (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where B is a batch of trajectories from D and we parameterize the approximated Q-value function
is by θ. LB(Q̂θ) is the empirical Bellman error. The formal algorithm of Q-Target Pretrained
Transformer (QTPT) is stated in Algorithm 1. During the pretraining stage, the approximated Q-
value functions are learned in a way that minimizes the differences between the predicted Q-values
and the bootstrapped targets. At test time, actions are selected greedily.

2.3 ANALYSIS FRAMEWORK

Each approximated function Q̂t induces a time-dependent greedy policy πQ̂t
. The overall policy πQ̂

is defined as the sequence of time-dependent policies {πQ̂t
}Tt=1, greedily selecting actions at each

time step. Let Q̃ = argminQ∈Q̂ L(Q) be the final learned function minimizing expected Bellman
error on offline data, where L(Q) = EDT∼πβ

[(Q(x, a) − (ΓQ)(x, a))2]. Its induced policy πQ̃

greedily selects actions per {πQ̃t
}Tt=1 (omitting θ for readability). We define the expected cumula-

tive reward for policy π is EM∼Λ,x1∼ηM

[
V π
M,1(x1)

]
, and the optimal expected cumulative reward

is EM∼Λ,x1∼ηM

[
V ∗
M,1(x1)

]
. The suboptimality gap quantifies the expected cumulative reward dif-

ference between the optimal policy π∗ and the learned policy πQ̃. This gap can be decomposed into
two components: sample bias and model bias. Specifically:

SuboptΛ(π
∗, πQ̃) = SuboptΛ(π

∗, πQ̂∗)︸ ︷︷ ︸
Sample Bias

+SuboptΛ(πQ̂∗ , πQ̃)︸ ︷︷ ︸
Model Bias

,
(5)

where Q̂∗ = argminQ LB(Q). Sample bias arises from sub-optimal policy decisions due to the
static dataset’s inability to fully represent the true environment dynamics. Model bias stems from
the inherent limitations of both the model architecture and learning algorithm that prevent the learned
policy from reaching its theoretical optimal performance.

3 MAIN ANALYSIS AND RESULTS

To streamline the analysis of Eq. 5, we denote dπ
∗

M,t(xt, at) as the marginal distribution at time t for
the optimal policy in the environment M , and d

πβ

M,t(xt, at) for any behavior policy πβ . Define the
marginal occupancy as dπM,t(x) =

∑
a d

π
M,t(x, a). We first state three standard assumptions in the

reinforcement learning literature:

Assumption 3.1 (Bounded Rewards and Distributional Coverage). We assume the reward function
rM and the marginal state-action distributions dπ

∗

M,t and d
πβ

M,t satisfy the following conditions:

(a) (Bounded Rewards) The reward function is uniformly bounded: |rM (s, a)| ≤ 1 for all (s, a) ∈
S ×A.

(b) (Optimal Policy Concentrability) The behavior policy πβ provides sufficient support for the
optimal policy π∗: if dπ

∗

M,t(xt, at) > 0, then d
πβ

M,t(xt, at) > 0, for all t ∈ [T].
(c) (Lower-Bounded Occupancy) The occupancy density under πβ is bounded on its support:

L−1 := inf
(xt,at): d

πβ
M,t(xt,at)>0

d
πβ

M,t(xt, at), ∀t ∈ [T].

The bounded rewards assumption ensures that the reward is upper-bounded to avoid trivial solutions.
Optimal Policy Concentrability assumes that dπβ covers the trajectory of some optimal policy π∗,
and Lower-Bounded Occupancy ensures that the positive occupancy density under πβ is bounded
away from 0. Note that these two assumptions (see Assumptions 4.1 and 4.2 in Nguyen-Tang et al.
(2023)) ensure that an optimal policy is statistically learnable from offline data and are significantly
weaker than the uniform coverage parameter considered in the batch reinforcement learning litera-
ture (see Assumption 1 in Duan et al. (2021) and Chen & Jiang (2019)).

We define a Transformer-based Q function approximator TFθ(·). Elements in the history xt are
mapped into a fixed-dimensional embedding space, and the candidate action a is appended to the
end of this sequence. This token sequence is then fed into a standard decoder-only Transformer
architecture, and after processing, the final token produces a contextualized embedding, which is
passed through a linear projection layer to produce the scalar prediction TFθ(xt, a).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.1 BOUND OF SAMPLE BIAS

Denote the function bound of Q ∈ Q̂ as BQ = sup
x,a
∥Q(x, a) − (ΓQ)(x, a)∥2. We will use the

general notation Ln to denote the empirical loss calculated on n samples, which corresponds to the
LB in our Algorithm on a mini-batch B. We can now state the sample bias bound for QTPT.
Proposition 3.2. (Bound of Sample bias in QTPT) If for all tuples (Di

t−1, s
i
t, a

i
t, y

i
t), there exists

a constant B > 0 such that BQ̂∗ ≤ B. Per Assumption 3.1, with the probability at least 1 − δ, we
have

SuboptΛ(π
∗, πQ̂∗) ≤ O

(√
LT 2

[
(
2 log(2T/δ)

n
)1/4 +

c(Q̂, n)√
n

]
+
√
LTB

)
,

where c(Q̂, n) =
√
max{

√
n log |Q̂|, log |Q̂|}.

Compared to the worst-case generalization bounds in reinforcement learning literature that rely on
uniform covering numbers (see (Murphy, 2005)), our error bound improves the dependence on the
time horizon T from exponential to polynomial. Specifically,

√
LTB reflects the approximation

bias, matching the error in Assumption 2 of Duan et al. (2021) and extending to in-context, sequence-
model bound. We can further specify that B can be chosen to scale with the order of O(1/T) when
the function class possesses suitable complexity and the sample size n is large enough.

3.2 BOUND OF MODEL BIAS

We start with the simple stochastic linear bandit problem. At each time step t = 1, 2, ..., T , the
agent selects an action at ∈ Rd from a set of actionsAt. Upon taking action at, the agent receives a
reward rt = ⟨at, w∗⟩+ ϵt, where w∗ is an unknown parameter vector, and ϵt represents i.i.d. noise
with bounded variance. Without loss of generality, ∥at∥2 ≤ 1. We define the Gram matrix of actions
as Gt =

∑t
i=1 aia

⊤
i , and show the upper bound for the TFθ solved via Eq. 4 in Proposition 3.3.

Proposition 3.3. (Bound of Model Bias in QTPT on Stochastic Linear Bandit) If the minimum
eigenvalue of the Gram matrix Gt satisfies λmin(Gt) ≥ αnt for some constant α > 0, then for the
Transfomer TFθ(·) at appropriate scale, with probability at least 1− δ, it satisfies

Subopt(πQ̂∗ , πQ̃) ≤ O

(
σ
√
T

√
d log T

αn

)
.

Proposition 3.3 highlights that QTPT’s model bias in the stochastic linear bandit setting, illustrating
clear dependencies on dimensionality d, horizon T , and dataset size n. This indicates that QTPT
effectively leverages offline data, with bias diminishing as data increases.

For finite-horizon MDPs, we establish the upper bound on the model bias term in Proposition 3.4.
Proposition 3.4. (Bound of Model Bias in QTPT on Finite-Horizon MDP) With probability at
least 1− δ, we have

SuboptΛ(πQ̂∗ , πQ̃) ≤ O
(
T 2
(1√

n
+

4
√
log T
4
√
n

))
.

Proposition 3.4 demonstrates that the model bias decreases in the sample size n at two distinct rates:
O(n−1/2) from the statistical complexity and O((log T)1/4(n)−1/4) from the Hoeffding’s inequal-
ity. This observation suggests that, given a sufficiently large sample size, the model’s deviation can
be contained with a high probability.

3.3 FINAL BOUND

Combining the sample bias bound (Proposition 3.2) and model bias bounds (Propositions 3.3, 3.4),
we obtain the following final bound of QTPT.
Proposition 3.5. (Upper Bound of QTPT) Assume that Assumptions 3.1 holds, for any environ-
ment (S,A, T,P, r, η), we assume Λtest/Λpre ≤ C where C > 0 is a constant. Combining Proposition
3.2, 3.3, and 3.4, with probability at least 1− δ, the suboptimality can be bounded as follows:
Stochastic Linear bandit:

SuboptΛtest
(π∗, πQ̃) ≤ C · O

(√
T log T√

n
+
√
LT 2

[
4
√
log T
4
√
n

+ c(Q̂,n)√
n

])
.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 2: Performance Comparison between QTPT and SPT in Linear Bandit Settings. Left: Subop-
timality gap over time for QTPT and SPT under Random and LinUCB policies, averaged over 1000
runs. QTPT consistently outperforms SPT, particularly with LinUCB. Right: Suboptimality gap
across varying data mix ratios (Random → Expert) for offline pretraining. QTPT maintains robust
performance with limited expert data, while SPT degrades significantly as expert ratio decreases.

Finite-Horizon MDP:

SuboptΛtest
(πQ̃) ≤ C · O

(√
LT 2

[
4
√
log T
4
√
n

+ c(Q̂,n)√
n

]
+ T 2

√
n
+ T 2 4

√
log T

4
√
n

)
.

The constant C defined in Proposition 3.5 describes the environment-level distribution shift between
the set of environments used during pretraining Λpre and those encountered during testing Λtest,
which can differ in aspects like the state transitions, reward structures and the size of action space,
for example. It reflects how well the pretraining data prepares the model for test environments.

Proposition 3.5 establishes theoretical guarantees for QTPT in both stochastic linear bandit and
general MDP settings. To better understand these bounds, we compare them with recent work by
Lin et al. (2024) Lin et al. (2024), who analyze SPT for stochastic linear bandits. Their analysis
decomposes the total regret into three components: statistical estimation bias, approximation bias
ϵreal (which is similar to ϵtf in our setting, see Section B.4 for details), and intrinsic expert bias ϵapprox.

When offline dataset is collected by random policy. In the stochastic linear bandit framework,
when using a purely random action-selection strategy, the regret bound in Theorem 9 of Lin et al.
(2024) degrades from O(

√
T log T) to O(T). Our analysis for the stochastic linear bandit case

achieves a tighter bound of O(
√
T log T/n), demonstrating that QTPT achieves lower asymptotic

regret than supervised-pretraining Transformers when trained on randomly generated data.

When offline dataset is collected by expert policy. Even when the offline trajectories are gener-
ated by LinUCB with O(

√
T log T) regret, our bound is competitive. The

√
n factor in our bound

corresponds to the generalization term in Theorem 3.2 of Antos et al. (2007), which analyzes batch
fitted Q-iteration in continuous-action MDPs. This alignment suggests that our suboptimality bound
follows the same inverse relationship with the offline sample size as in prior work.

3.4 DATA CRITERION IN WHICH QTPT WILL OUTPERFORM SPT

In this section, we analyze the properties of offline datasets and identify the conditions under which
QTPT outperforms SPT, focusing on how dataset characteristics influence policy learning. Inspired
by (Kumar et al., 2022), we first define the non-informative context set as follows:

Definition 3.6. (Non-informative Context) For an environment M and its optimal Q-function Q∗
M ,

the non-informative context set G contains all a ∈ A and x ∈ X such that νM (x, a) ≤ O(T−1),
where νM (x, a) = max

a′
Q∗

M (x, a′)−Q∗
M (x, a).

For any (x, a) pair in G, there is no alternative action a′ ∈ A such that the value of optimal Q
function being significantly improved. In this situation, simply following the behavior policy won’t
lead to meaningful damage in the output policy, and SPT yields similar behavior to QTPT. However,
when there exists a potential action that νM is large enough, via the step 6 in Algorithm 1, QTPT

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 3: Left: Comparison of average cumulative rewards (larger cumulative rewards denotes
superior performance) between QTPT and SPT, including the performance of expert and random
policies in Darkroom environment. Right: Comparison of average cumulative rewards between
QTPT and SPT, including the performance of expert and random policies in Dark key-to-door.

can capture and learn it into the output policy while SPT suffers from memorizing the behavior
policy. We formally state this observation in the following Proposition 3.7.
Proposition 3.7. Let G be the non-informative context set of an environment M with optimal Q
function Q∗

M . Assuming there exists a positive constant c such that for (x, a) ∈ (X × A) \ G,
νM (x, a) > c. Then, under some mild conditions, we have

SuboptΛ(π
∗, π̂QTPT) ≲ SuboptΛ(π

∗, π̂SPT).

4 NUMERICAL EXPERIMENTS

In this section, we benchmark the performance of the proposed QTPT to existing supervised-
learning-based algorithms and validate our theoretical findings through numerical experiments on a
stochastic linear bandit setting, markov decision processes, and math reasoning.

4.1 STOCHASTIC LINEAR BANDIT

We consider a stochastic linear bandit problem with dimension d = 5, arms A = 10, and horizon
T = 200. At each time t ∈ [200], an agent chooses action at and receives reward rt = ⟨at, θ∗⟩+ ϵt,
where ϵt ∼ N(0, 1.52) and the parameter θ∗ is sampled from uniform distribution [0, 1]d. The action
set At = A is fixed over time with actions i.i.d. drawn from the uniform distribution [0, 1]d.

Pretraining Data Collection For pretraining, we collect two distinct offline datasets: one generated
by selecting random actions and the other by using the LinUCB algorithm (see Section C.2 for
details). We compile 100, 000 trajectories for both cases.

Comparison and Implementation We evaluate the performance of Q-target Pretrained Transform-
ers (ours) and Supervised Pretrained Transformers (SPT). The SPT implementation follows the setup
in Lin et al. (2024). Transformer models are based on the GPT-2 architecture (Garg et al., 2022),
with 8 layers, 4 attention heads, and an embedding dimension of D = 256, using ReLU activation
(see Section C.6 for details.)

Figure 2a shows the resulting cumulative regret performance, demonstrating that QTPT outperforms
SPT on both random and LinUCB datasets. Additional ablation studies are provided in Section D.1.

We further compare QTPT and SPT under varying data qualities by mixing random and LinUCB-
generated trajectories during pretraining. As shown in Figure 2b, the performance of SPT degrades
significantly as the proportion of expert data decreases, indicating high sensitivity to data quality. In
contrast, QTPT maintains consistently low suboptimality gaps across all mixture ratios, demonstrat-
ing strong robustness under suboptimal supervision.

This stems from their training objectives: SPT relies on supervised behavior cloning and is sensitive
to demonstration quality, whereas QTPT, trained with Q-learning, leverages diverse trajectories more
effectively. Even with suboptimal offline data, Q-learning enables QTPT to generalize better across
the state–action space, avoiding sharp performance degradation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 4: Left: Comparison of average cumulative rewards between QTPT and SPT, including the
performance of expert and random policies in Miniworld environment. Right: Test accuracy (%)
on the GSM8k test set, evaluated across various data mixture ratios (Suboptimal to Expert).

We also conduct experiments to show that when test environment differs from training distribution,
QTPT empirically outperforms SPT by a significant margin. See Section D.2 for details.

4.2 MARKOV DECISION PROCESSES: DARKROOM, DARK KEY-TO-DOOR, MINIWORLD

We evaluate on three challenging MDPs: Darkroom, Dark Key-to-door, and Miniworld—standard
benchmarks for evaluating in-context reinforcement learning models(Laskin et al., 2022; Lee et al.,
2023). Results appear in Figures 3a, 3b, and 4a; setup details are in Appendix C.

QTPT outperforms SPT in most settings, except in Dark Key-to-door with expert data. This excep-
tion stems from extremely sparse rewards where Q-learning fails to propagate meaningful signals
during training (Andrychowicz et al., 2017; Van Hasselt et al., 2018). Unintuitively, random data
pretraining often surpasses expert data in Darkroom and Miniworld since random policies explore
broader state-action spaces, providing richer Q-learning signals than limited expert trajectories. This
supports Weltevrede et al. (2023) on data diversity’s role in zero-shot generalization.

4.3 MORE COMPLEX TASK: MATH REASONING

To demonstrate the broader applicability of QTPT, we extended our approach to mathematical rea-
soning tasks. In this domain, we compare QTPO (QTPT with Policy Optimization) against behavior
cloning, a standard supervised learning baseline. The specific adaptations for mathematical rea-
soning and the rationale for using QTPO instead of a direct application of QTPT are detailed in
Section D.3. The results, depicted in Figure 4b, show that QTPO consistently outperforms behavior
cloning across all evaluated data mixture ratios. QTPO achieves an average accuracy improvement
of 1.81%. This consistent enhancement is particularly noteworthy as our method operates exclu-
sively on a static offline dataset.

5 CONCLUSION AND FUTURE WORK

We propose the Q-target Pretrained Transformers (QTPT) algorithm, which learns effectively with-
out expert-level data. We theoretically analyze the optimality of QTPT and show Õ(T 2/

√
n) and

Õ(
√
T/n) in finite-horizon MDP and Linear Bandit problem respectively. We also demonstrate

QTPT outperforms SPT approaches when datasets contain specific number of non-informative con-
texts. Through experiments with both synthetic and real-world datasets, we observe that QTPT
consistently outperforms the existing methods, especially when the datasets are noisy or suboptimal.
While this work establishes a framework for combining Q-learning with ICRL, future challenges in-
clude extending the approach to other RL algorithms (e.g., PPO Schulman et al. (2017) and GRPO
Ramesh et al. (2024)), addressing the impact of distribution shifts between training and testing, and
verifying the performance of QTPT on a broader range of NLP tasks.

Reproducibility. The anonymous source code to this project is available in the supplementary.
The proofs to the main theory can be found in B.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochas-
tic bandits. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/
file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

András Antos, Csaba Szepesvári, and Rémi Munos. Fitted q-iteration in continuous action-space
mdps. Advances in neural information processing systems, 20, 2007.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
In International Conference on Machine Learning, pp. 1042–1051. PMLR, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Juncheng Dong, Weibin Mo, Zhengling Qi, Cong Shi, Ethan X. Fang, and Vahid Tarokh. Pasta: Pes-
simistic assortment optimization, 2023. URL https://arxiv.org/abs/2302.03821.

Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and rademacher complexity in batch reinforcement
learning. In International Conference on Machine Learning, pp. 2892–2902. PMLR, 2021.

Eyal Even-Dar and Yishay Mansour. Convergence of optimistic and incremental q-learning. Ad-
vances in neural information processing systems, 14, 2001.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes, 2023. URL https://arxiv.org/abs/
2208.01066.

Joey Hong, Anca Dragan, and Sergey Levine. Q-sft: Q-learning for language models via supervised
fine-tuning, 2024. URL https://arxiv.org/abs/2411.05193.

10

https://proceedings.neurips.cc/paper_files/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2302.03821
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2411.05193

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng
Tao. Q-value regularized transformer for offline reinforcement learning, 2024. URL https:
//arxiv.org/abs/2405.17098.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I. Jordan. Is q-learning provably effi-
cient?, 2018. URL https://arxiv.org/abs/1807.03765.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl?, 2022.
URL https://arxiv.org/abs/2012.15085.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pp. 267–274, 2002.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel :
Model-based offline reinforcement learning, 2021. URL https://arxiv.org/abs/2005.
05951.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning, 2021. URL https://arxiv.org/abs/2110.06169.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning, 2020. URL https://arxiv.org/abs/2006.04779.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning?, 2022. URL https://arxiv.org/abs/
2204.05618.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/
2005.01643.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining, 2024. URL https://arxiv.org/abs/2310.
08566.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization, 2020. URL https://
arxiv.org/abs/2006.03647.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
in context. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2791–2809, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
201. URL https://aclanthology.org/2022.naacl-main.201.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

11

https://arxiv.org/abs/2405.17098
https://arxiv.org/abs/2405.17098
https://arxiv.org/abs/1807.03765
https://arxiv.org/abs/2012.15085
https://arxiv.org/abs/2005.05951
https://arxiv.org/abs/2005.05951
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2204.05618
https://arxiv.org/abs/2204.05618
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2310.08566
https://arxiv.org/abs/2310.08566
https://arxiv.org/abs/2006.03647
https://arxiv.org/abs/2006.03647
https://aclanthology.org/2022.naacl-main.201

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and Shang-
tong Zhang. A survey of in-context reinforcement learning, 2025. URL https://arxiv.
org/abs/2502.07978.

Susan A Murphy. A generalization error for q-learning. Journal of Machine Learning Research, 6:
1073–1097, 2005.

Thanh Nguyen-Tang, Ming Yin, Sunil Gupta, Svetha Venkatesh, and Raman Arora. On instance-
dependent bounds for offline reinforcement learning with linear function approximation, 2023.
URL https://arxiv.org/abs/2211.13208.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl?, 2024. URL https://arxiv.org/abs/2406.09329.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve, 2024. URL https://arxiv.org/abs/2407.
18219.

Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa,
Haitham Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-free
rlhf, 2024. URL https://arxiv.org/abs/2405.20304.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702–11716, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl
on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold, 2024. URL
https://arxiv.org/abs/2406.14532.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent, 2023. URL https://arxiv.org/abs/2212.07677.

Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers can learn tempo-
ral difference methods for in-context reinforcement learning. International Conference on Learn-
ing Representations, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292, May
1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/
BF00992698.

Max Weltevrede, Matthijs TJ Spaan, and Wendelin Böhmer. The role of diverse replay for general-
isation in reinforcement learning. arXiv preprint arXiv:2306.05727, 2023.

12

https://arxiv.org/abs/2502.07978
https://arxiv.org/abs/2502.07978
https://arxiv.org/abs/2211.13208
https://arxiv.org/abs/2406.09329
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2405.20304
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2406.14532
https://arxiv.org/abs/2212.07677
https://aclanthology.org/2024.acl-long.510/
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2019. URL https://arxiv.org/abs/1911.11361.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Kunhe Yang, Lin F. Yang, and Simon S. Du. q-learning with logarithmic regret, 2021. URL https:
//arxiv.org/abs/2006.09118.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, pp. 7304–7312. PMLR, 2019.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Zifeng Zhuang, Kun Lei, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy op-
timization. ArXiv, abs/2302.11312, 2023. URL https://api.semanticscholar.org/
CorpusID:257079136.

13

https://arxiv.org/abs/1911.11361
https://arxiv.org/abs/2006.09118
https://arxiv.org/abs/2006.09118
https://api.semanticscholar.org/CorpusID:257079136
https://api.semanticscholar.org/CorpusID:257079136

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LIMITATIONS

1. There is a lack of further description about the number of distinct functions in the function
approximation class Q̂ .

2. The coefficient C mentioned in Proposition 3.5 represents the difference between the pretraining
and test environments. Here, a detailed analysis of the specific expression of this coefficient is
lacking.

B PROOFS

B.1 PROOFS RELATED TO THE SAMPLE BIAS

Definition B.1 (Rademacher complexity). The Rademacher complexity of function class For a
generic real-valued function space F ⊆ RY and n fixed data points Y = {y1, · · · , yn} ∈ Yn,
the empirical Rademacher complexity is defined as follows:

R̂Y (F) = Eω

[
sup
f∈F

1

n

n∑
i=1

ωif(yi)|Y
]
,

where ωi are independent and identically distributed Rademacher random variables, ranging from
−1 to 1 and, thus, representing randomly assigned labels. Let ρ be the distribution of Y , we further
define the Rademacher complexity Rρ

n(F) := Eρ[R̂Y (F)], which measures the complexity of F
by the degree to which the functions in class F are correlated with the random noise wi.

This definition follows a similar structure in Duan et al. (2021). The Rademacher complexity pro-
vides a measure of the complexity of our function class, which will be crucial for bounding the
sample bias.

B.1.1 PROOF OF PROPOSITION 3.2

Proof. On the one hand, for a fixed Q ∈ Q̂ , considering the union bound, by Lemma G.1 and
Lemma G.6 in Duan et al. (2021),

Pr
[
|Ln(Q)− L(Q)| ≥ ϵn

]
≤ δ,

where ϵn = B2
Q

√
2 ln(2T/δ)

n +2BQR
πβ
n (Q̂) +B2

Q. Thus, with probability at least 1− δ, |Ln(Q)−
L(Q)| ≤ ϵn, and

L(Q̂∗) ≤ Ln(Q̂
∗) + ϵn ≤ Ln(Q

∗) + ϵn ≤ L(Q∗) + 2ϵn,

since L(Q∗) = 0, L(Q̂∗) ≤ 2ϵn.
On the other hand, by Assumption 3.1, it implies that dπβ

M,t(xt, at) ≥ L−1, when d
πβ

M,t(xt, at) > 0.
For any (t, xt, at),

dπ
∗

M,t(xt, at)

d
πβ

M,t(xt, at)
≤ 1

d
πβ

M,t(xt, at)
≤ L.

Thus, using Performance Difference Lemma by Lemma 6.1 in Kakade & Langford (2002), we have

SuboptΛ(π
∗, πQ̂∗) = EM∼Λ

∑T
t=1 Edπ∗

[
|(ΓQ̂∗)(xt, a)− Q̂∗(xt, a)|

]
≤
√
T
∑T

t=1 Edπ∗

[
|Q̂∗(xt, a)− (ΓQ̂∗)(xt, a)|2

]
≤ T
√
L

√
Ln(Q̂∗)

≤
√
LT
√
2ϵn

≤
√
L
[
2T 2(2 log(2T/δ)

n)1/4 +
√
2T 3/2

√
Rπβ

n (Q̂) + TB
]
,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

using Proposition 6.1 in literature Duan et al. (2021), we get the final results as

SuboptΛ(π
∗, πQ̂∗) ≤ O

(√
LT 2

[
(
2 log(2T/δ)

n
)1/4 +

√
max{

√
log |Q|

n
,
log |Q|

n
}
]
+
√
LTB

)
.

B.2 PROOFS RELATED TO THE MODEL BIAS

B.2.1 PROOF OF PROPOSITION 3.3

Proof. At iteration k, with current parameters w(k), compute y
i,(k)
t = rt +

maxa′∈At+1 Qw(k)(Di
t, s

i
t+1, a

′), note that yi,(k)t is now a fixed constant w.r.t. w. Thus, QTPT at
round t−1 solves the ordinary least-square problem ŵt−1 = argminw

∑n
i=1

∑t−1
u=1(⟨aiu, w⟩−riu)2.

A greedy policy then selects at = argmaxa∈At
⟨a, ŵt−1⟩. Define the estimation error term

EEt = supa∈At
|⟨a,w∗ − ŵ⟩|. We get the solution ŵt−1 = G−1

t−1

∑n
i=1

∑t−1
u=1 a

i
ur

i
u.

On the one hand, by Theorem 2 in Abbasi-Yadkori et al. (2011)Abbasi-yadkori et al. (2011), for
zero-mean, σ-sub-aussian noise ϵu, with probability at least 1− δ, we have

|ŵt−1 − w∗∥Gt−1
≤ σ

√
2 log

det(Gt−1)1/2

det(αnI)1/2δ
= βt−1

On the other hand, for any a,

|Qŵ −Q∗| = |⟨a, ŵ − w∗⟩| ≤ ∥a∥G−1
t−1
∥ŵ − w∗∥Gt−1

≤ βt−1√
λmin(Gt−1)

≤ βt−1√
αn(t− 1)

,

since det(Gt−1) = O((αn)d(t− 1)d), we have βt−1 = O(σ
√
d ln t).

Thus,

EEt = sup |Qŵ −Q∗| ≤ O(σ
√

d ln t

αnt
).

The cumulative suboptimality over T steps as

EM∼Λ

[T∑
t=1

(⟨a∗, w∗⟩ − ⟨at, ŵ⟩)
]
,

then we have

⟨a∗, w∗⟩ − ⟨at, ŵ⟩ =
[
⟨a∗, w∗⟩ − ⟨a∗, ŵ⟩

]
+
[
⟨a∗, ŵ⟩ − ⟨at, ŵ⟩

]
≤MBt,

Finally, we get that

Subopt(πQ̂∗ , πQ̃) ≤ 2E[
T∑

t=1

EEt] + ϵtf ≤ O(σ
√
T

√
d log(nT)

αn
),

where ϵtf is the Transformer approximation error (see Section B.4).

B.2.2 PROOF OF PROPOSITION 3.4

Proof. For simplicity, we abbreviate Q̂π
M,t as Q̂t. Let δ̂t(x, a) = Q̂t(x, a) − r −

Ext+1

[
maxa′ Q̂t+1(xt+1, a

′)
]
. Similarly, using the definitions of δ̃t and δ∗t , we can express Q̂

to Q̃ and Q∗ in terms of δ̂t. For function Q̂ = (Q̂, · · · , Q̂T), define

ϵ(Q̂) =
1

T

T∑
t=1

E
[
Q̂t − r − Ext+1 max

a′
Q̂t+1(xt+1, a

′)
]2

=
1

T

T∑
t=1

Eδ̂t(x, a)2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Similarly, using the definition of ϵ(Q̃), we can express Q̂ to Q̃ in terms of ϵ(Q̂). Since πQ̃(x) =

argmax
a′

Q̃(x, a′), we can show that

V
πQ̂∗

M (x)− V
πQ̃

M (x) ≤ V πQ̂∗ (x)− Q̃1(x, πQ̂∗(x)) + Q̃1(x, πQ̃(x))− V
πQ̃

M (x).

For any policy π, we have

Q̃1(x1, π(x1))− V π
M,1(x1)

=E

[
T∑

t=1

(
Q̃t(xt, at)− Eπ[Q̃t+1(xt+1, at+1) + rt|xt, at]

)∣∣∣x1, π

]

=E

[
T∑

t=1

(
Q̃t(xt, at)− rt − Q̃t+1(xt+1, at+1)

) ∣∣∣x1, π

]
.

We can show that∣∣∣E[T∑
t=1

δ̃t(xt, at)|x1, π
]∣∣∣ ≤

√√√√T

T∑
t=1

E
[
δ̃t(xt, at)2|x1, π

]
≤ T

√
ϵ(Q̃),

which implies that

Q̃1(x1, πQ̃(x1))− V
πQ̃

M,1(x1) = E
[T∑

t=1

δ̃t(xt, at)|x1, πQ̃

]
,

Q̃1(x1, πQ̂∗(x1))− V
πQ̂∗

M,1 (x1) ≥ E
[T∑

t=1

δ̃t(xt, at)|x1, πQ̂∗

]
.

Hence,

V
πQ̂∗

M,1 (x)− V
πQ̃

M,1(x) ≤ E
[T∑

t=1

δ̃t(xt, at)|x1, πQ̃

]
− E

[T∑
t=1

δ̃t(xt, at)|x1, πQ̂∗

]
≤ 2T

√
ϵ(Q̃).

since δ̂t(x, a)
2 − δ̃t(x, a)

2 ∈ [−2T 2, 2T 2], using Massart Finite Class Lemma, with probability at
least 1− δ, there exist a constant c such that for any π,

Eδ̃t(x, a)2 − Eδ̂t(x, a)2

≤ 1
n

∑
(xt,at,rt,xt+1)∼Dt

(δ̃t(s, a)
2 − δ̂t(x, a)

2) + 2Rn((δ̃t)
2 − (δ̂t)

2|Q̂t) + 2T 2
√

2 log(2/δ)
n

≤ 2T 2
√

2 log(2/δ)
n + cTRn(Q̂t)

≤ 2T 2
√

2 log(2/δ)
n + 2cT 2

√
2 log |Qt|

n .

Since

ϵ(Q̃)− ϵ(Q̂) =
1

T

T∑
t=1

(
Eδ̃t(x, a)2 − Eδ̂t(x, a)2

)
,

since ϵ(Q̂) indicates the capacity of Transformers approximation (see Section B.4 for details), we
can get that

ϵ(Q̃) ≤ ϵ(Q̂) + 2T 2
√

2 log(2T/δ)
n + 2cT

T∑
t=1

√
2 log |Q̂t|

n

≤ ϵtf + 2T 2
√

2 log(2T/δ)
n + 2cT

T∑
t=1

√
2 log |Q̂t|

n ,

Thus,
V

πQ̂∗

M,1 (x1)− V
πQ̃

M,1(x1)

≤ T 2
(√

2(2 log(2T/δ)
n)1/4 +

√
2c

√
2 sup log |Q̂t|

n

)
+ ϵtf

= O
(
T 2
(
n−1/2 + (log T)1/4n−1/4

))
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2.3 PROOF OF PROPOSITION 3.5

Proof. Since∫
Λtest(M)Ex1∼ηM

[
V ∗
M,1(x1)−V

πQ̃

M,1(x1)
]
dM ≤ C

∫
Λpre(M)Ex1∼ηM

[
V ∗
M,1(x1)−V

πQ̃

M,1(x1)dM,

thus
SuboptΛtest

(π∗, πQ̃) ≤ C · SuboptΛpre
(π∗, πQ̃).

When Λpre = Λtest, its upper bound follows by directly adding the results of Proposition 3.2, 3.3 and
3.4.

B.3 PROOFS RELATED TO THE COMPARISON OF QTPT AND SPT

B.3.1 PROOF OF PROPOSITION 3.7

At first, we need to prove a result on non-informative context states, which is inspired by Lemma
B.10 in (Kumar et al., 2022). For simplify, when G be the non-informative context set, define
GA, GX be the separate sets to represent all unique context states and actions present in G, i.e.
GA = {a|∃x, (x, a) ∈ G}, GX = {x|∃a, (x, a) ∈ G}.
For an environment M and ∀a ∈ A \ GA, νM (x, a) ≃ ∆M (x). For (x, a) ∈ G, there exists a
constant ϵ > 0 that satisfies νM (x, a) ≤ ϵ

T .
Lemma B.2. Consider a fixed environment M , policy π̂QTPT is obtained from the QTPT algorithm.

There exists a non-informative context set G satisfying |X \GX | ≥ n0, and let ∀a ∈ A, dπ∗
M (a|x)

d
πβ
M (a|x)

≤

α0 < 2, where d
πβ

M (a|x) is the conditional action distribution at context state x, α0 is a constant.
Q̃ is the learned Q-value, since Q̃ can only differ from Q∗, there exists ϵ0 > 0, s.t. |Q̃(x, a) −
Q∗(x, a)| ≤ ϵ0. Then, the probability that the policy π̂QTPT doesn’t choose the action in GA at
context state x is upper bounded as

P[π̂QTPT(x) /∈ GA]

≤ exp
(
− n0

α2
0

2(α0 − 1)
× [
|GA|n∆(x)

n0
− 1

α0
]2
)

where n(x, a) be the expected number of visit (x, a) in dataset D, n∆ corresponds to the maximum
value of n(x, a) s.t.

ϵ

T
≥ ∆M (x)− 2ϵ0.

Proof.

P[π̂QTPT(x) /∈ GA] = PM [∃a /∈ GA, ∀ag ∈ GA, Q̂(x, a) ≥ Q̂(x, ag)]

≤ PM [∃a /∈ GA,∀ag ∈ GA, Q̂(x, a)−Q∗(x, a) ≥ Q̂(x, ag)−Q∗(x, ag)
+∆M (x)− ϵ/T]

≤ PM [∩ag∈GA{ϵ/T ≥ ∆M (x)− 2ϵ0}]
≤ PM [∩a∈GA{n(x, a) ≤ n∆}]

where n∆ corresponds to the maximum value of n(x, a) s.t.
ϵ

T
≥ ∆M (x)− 2ϵ0

consider the action sampled from d
πβ

M (a|x) belong to the set GA or not,
PM [∩ag∈GA{n(x, a) ≤ n∆}] ≤ PM [

∑
ag∈GA

n(x, a) ≤ |GA|n∆(x)]

≤ PM [

∑
ag∈GA

n(x,a)

n0
≤ |GA|n∆(x)

n0
]

≤ exp
(
− n0KL

(
Bern(|GA|n∆(x)

n0
)||Bern(1/α0)

))
since KL(p+ ϵ||p) ≥ ϵ2

2p(1−p) , if p ≥ 1/2, p = 1/α0, we have

PM [∩a∈GA{n(x, a) ≤ n∆(x)}] ≤ exp
(
− n0

α2
0

2(α0 − 1)
× [
|GA|n∆(x)

n0
− 1

α0
]2
)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Combining the result of Lemma B.2, for an appropriate value of c and under some mild conditions,
we have the result of Proposition 3.7, which states the comparison of QTPT and SPT when a few
informative context states are in some given trajectories.

Proof. Suppose there exists pM ∈ [0, 1] s.t. for any policy π, the average occupancy of states which
is not in non-informative set G is bounded as

T∑
t=1

∑
x/∈GX

dπM,t(x) ≤ pM .

Any given environment M ∼ Λ such that supx∈X {dπ
∗

M (x)/d
πβ

M (x)} = m be a generalization pa-
rameter which is independent of T , and L0 ≤ 1 + 1/n. A non-informative context set G is given
such that |X \GX | ≥ n0. For learning algorithm that return a policy π̂∗, the suboptimality is given:

Subopt(π∗, π̂∗)
=

∑
x d

π∗

M (x)(V π∗

M,1(x)− V π̂∗

M,1(x))

≤ m
[∑
x/∈GX

dπ̂
∗

M (x)(Q∗(x;π∗)−Q∗(x; π̂∗))︸ ︷︷ ︸
term 1

+
∑

x∈GX

dπ̂
∗

M (x)(Q∗(x;π∗)−Q∗(x; π̂∗))︸ ︷︷ ︸
term 2

]
,

On the one hand, consider the part of x /∈ GX (named term 1), we can construct a new MDP where
r(x, a) = r(x, π∗(x)) for all actions and ∀x ∈ GX . Denote the suboptimality of this MDP be
Suboptx/∈GX

(π∗, π̂∗), then we have

Subopt(π∗, π̂∗) = Suboptx/∈GX
(π∗, π̂∗)

This can be bounded as in Proposition 3.4 , except with the dependence on all context states X
replaced by X \GX . We get that

term 1 ≲ pMT 2(
1√
n
+

4
√
log T
4
√
n

)

On the other hand, consider the part of x ∈ GX (named term 2),

term 2 =
∑

x∈GX

∑
a∈GA

W (x, a, π∗) +
∑

x∈GX

∑
a/∈GA

W (x, a, π∗)

where W (x, a, π∗) = dπ̂
∗

M (x, a)(Q∗(x;π∗)−Q∗(x, a)). Since∑
a∈GA

W (x, a, π∗) ≤ dπ̂
∗

M (x)P[π̂∗(x) ∈ GA] ·
ϵ

T
,

∑
a/∈GA

W (x, a, π∗) ≤ dπ̂
∗

M (x)P[π̂∗(x) /∈ GA] · c,

using Lemma B.2, and note that in this case, we are interested in the setting where L0 ≃ 1+O(1/n),
we can get that ∑

x∈GX

dπ̂
∗

M (x)P[π̂∗(x) /∈ GA] · c ≲ (1− pM)fQTPT(n, c),

where f = c·exp(−n0× (n+1)2

2n ×[|GA|n∆(x)
n0

−n+1
n]2) is an exponential function of−n. Meanwhile,

the corresponding term for SPT is ∑
s∈GX

dπ̂
∗

M (s)P[π̂∗(s) /∈ GA] · c

≲(1− pM)c · 1
n

=(1− pM)gSPT(n, c).

By controlling c and pM for some appropriate values, we have the comparison of QTPT and SPT
as follows:

SuboptΛ(π
∗, π̂QTPT)

SuboptΛ(π
∗, π̂SPT)

≃
m
[
pMT 2(1√

n
+

4
√
log T
4
√
n

) + (1− pM)f
]

pM
T
n + (1− pM)g

,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

setting pM = 1
T
√
T

, we get that

SuboptΛ(π̂QTPT) ≲ SuboptΛ(π̂SPT).

B.4 TRANSFORMERS APPROXIMATION

Proposition B.3. (Transformers Approximation of QTPT) For any small ϵtf > 0, there exists a
transformer TFθ(·) with an appropriate scale, such that we have∣∣∣TFθ(xt, a)− Q̃t(xt, a)

∣∣∣ ≤ ϵtf, ∀t ∈ [T].

Proof. Embedding and Extraction Mappings

For each t ∈ [T], we construct two tokens

h2(t−1) =

 st
0|A|+1

pos2(t−1)

 =

ha
2(t−1)

hb
2(t−1)

hc
2(t−1)

 , h2t−1 =

 0|S|
at
rt

pos2t−1

 =

ha
2t−1

hb
2t−1

hc
2t−1


where pos is the position embedding , st, at are represented using one-hot embedding, hb

2t−1
is used to store the policy at time t given current state st. we add an empty token h2T =
[0|S|+|A|+1 pos2T]

T to store intermediate calculations. We also include in the tokens the posi-
tion embedding posi = (i, i2, 1)T for i ∈ [2T]. We define the token matrix Ht = [h0, · · · , h2t−1] ∈
RDdim×2t, Ddim = |S|+ |A|+ 4 for all t ∈ [T].

Pretraining

During pretraining the Transformer TFθ takes in Hpre
T = [h0, · · · , h2T−1] as the input matrix, and

generates Hpost
T = TFθ(H

pre
T) as the output. from each t, suppose the linear extraction map G ,

hout
t = Hpost

T [:, 2t− 1], Q̂θ(xt, at) = [Ghout
t]at

, where [Gh]a be the logit of line a.
Calculating yt = rt + maxa′ Q̂θ(xt+1, a

′), we then updating the parameter θ ∈ Θ by gradient
descent method.

Rollout

At online deployment time, we initialize an empty context dataset D0. At each timestep t ∈ [T],
given the accumulated context Dt−1 and the current state st, we construct the token matrix
Hpre

roll,t = [h0, · · · , h2(t−1)−1, h2(t−1)], and generates Hpost
roll,t = TFθ̂(H

pre
roll,t), from the last out-

put token corresponding to the current state, hout
roll,t = Hpost

roll,t[:, 2t−1], we compute the action logits
via the extraction map G as {[Gahout

roll,t]}a∈A. The agent selects the action at according to a greedy
policy over these logits at = argmaxa[Gahout

roll,t]. After selecting, the agent executes the action,
observes the reward rt and the next state st+1, then construct the new token h2(t−1)+1 and append
it to the context dataset Dt.
Given the input token matrix Hpre

roll,t, we construct a Transformer that implements the following
steps on the last token. For each token hpre

2t−1, the Transformer implements the following step-by-
step structured transformations:

hpre,a
2t−1

hpre,b
2t−1

hpre,c
2t−1

 Step 1−−−→

 hpre,a
2t−1
0A
rt

pos2t−1

 Step 2−−−→


hpre,a
2t−1

max
a′

Q̂θ(xt+1, a
′)

rt
pos2t−1



Step 3−−−→


hpre,a
2t−1

yt = rt +max
a′

Q̂θ(xt+1, a
′)

⋆
pos2t−1

 Step 4−−−→

hpost,a
2t−1

hpost,b
2t−1

hpost,c
2t−1



19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

given the current context xt = (Dt−1, st), the Transformer TFθ(·) outputs a token hout
2t−1, from

which the Q-values Q̂θ(xt, a) are extracted. Each step is defined as below:

Step 1 (Reward Extraction)

There exists a attention-only Transformer TFθ(·) that implements Step 1.

Proof of Step 1 We prove this step by constructing a Transformer that add rt from hb
2t−1 to hb

2t+1.
We can construct a two-layer attention-only Transformer with Q

(1)
1,2,K

(1)
1,2 , V

(1)
1,2 , such that for all

i ≤ 2t− 1,

Q
(1)
1 h

(0)
i =

[
1
i

]
, K

(1)
1 h

(0)
i =

[
i+ 2
−1

]
, V

(1)
1 h

(0)
2t−1 =

0|S|
0|A|
rt

 , V
(1)
1 h

(0)
2t =

0|S|
0|A|
0

 ,

and we choose Q(1)
2 = Q

(1)
1 , V

(1)
2 = −V (1)

1 , K(1)
2 h

(0)
i =

[
i+ 1
−1

]
, summing up the heads, we obtain

the update on a subset of coordinates in h
(0),b
2t+1 as

0|S|+|A|+1 → 0|S|+|A|+1 +

2∑
j=1

2t+1∑
i=1

σ(⟨Q(1)
j h

(0)
2t+1,K

(1)
j h

(0)
i ⟩)Vjh

(0)
i =

1

2t+ 1

0|S|
0|A|
rt


We then use another attention layer to multiply the updated vectors by a factor of 2t+ 1.

Choosing Q
(2)
1 h

(1)
i =

√
2t+ 1 · ei, K(2)

1 h
(1)
j =

√
2t+ 1 · ej , V (2)

1 h
(1)
2t+1 = 1

2t+1

[
0S
0A
rt

]
, and noting

that ⟨Q(2)
1 h

(1)
i ,K

(2)
1 h

(1)
j ⟩ = 2t+ 1, when j = i and otherwise 0.

Step 2 (Future Q-Value Lookup)

Attend to the next state token hpre
2t , and extract the maximum predicted maxa′ Q̂θ(xt+1, a

′). There
exists a Transformer TFθ(·) that implements Step 2.

Proof of Step 2

Given (Q̂θ)T = 0, we start with constructing an-attention layer, and
{Qjt,s}2s=1,{Kjt,s}2s=1,{Vjt,s}2s=1 such that for all i ≤ 2t− 1 and j ≤ i,

Q
(1)
jt,1h

(0)
i =

[
xt

−i
3T

]
, K

(1)
jt,1h

(0)
i =

Q̂t(·, aj)
3T
j

 , V
(1)
jt,1h

(0)
i =

[
0

iejt
0

]
, Q

(1)
jt,2h

(0)
i =

[−xt

−i
3T

]
,

K
(1)
jt,2 = K

(1)
jt,1, V (1)

jt,2 = −V (1)
jt,1.

where ejt is a one-hot vector supported on some entry of hc . Summing up two heads gives the
update for i ≤ 2t− 1,

0→ 0 +
[
σ(⟨Q(1)

jt,1h
(0)
i ,K

(1)
jt,1h

(0)
i ⟩)− σ(⟨Q(1)

jt,2h
(0)
i ,K

(1)
jt,2h

(0)
i ⟩)

]
ejt = Q̂t(xt, aj)ejt

Denote the resulting token vector by h
(1)
i .

Next, we construct a MLP layer, s.t for any x ∈ X on the corresponding coordinates we have

W
(2)
1 h

(1)
i =



...
Q̂t(x, a1)

Q̂t(x, a2)− Q̂t(x, a1)
...

Q̂t(x, a|A|)− Q̂t(x, a|A|−1)
...


20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where ak denotes the kth action, and

W
(2)
2 σ(W

(2)
1 h

(1)
i) = σ(Q̂t(x, a1)) +

A∑
k=2

σ(Q̂t(x, ak)− Q̂t(x, ak−1)) = max
a∈A

Q̂t(x, a).

Step 3 (TD Target Construction)

Combine rt and maxa′ Q̂(xt+1, a
′) to form the TD target:

yt = rt +max
a′

Q̂(xt+1, a
′).

There exists a Transformer TFθ(·) that implements Step 3.

Proof of Step 3

The proof is similar to that of the literature Wang et al. (2024a). Let

Q
(1)
1 h

(0)
i = K

(1)
1 h

(0)
i =

[
0
1
0

]
, V

(1)
1 h

(0)
2t−1 =

[
0|S|
rt
0

]
,

Q
(1)
2 h

(0)
i = K

(1)
2 h

(0)
i =

[
0
0
1

]
, V

(1)
2 h

(0)
2t =

 0|S|
maxa′ Q̂θ(xt+1, a

′)
0

 ,

then we have that

h
(1)
2t−1 =

2∑
j=1

2t∑
i=1

σ(⟨Q(1)
j h

(0)
2t−1,K

(1)
j h

(0)
i ⟩)V

(1)
j h

(0)
i =


0|S|
rt

maxa′ Q̂θ(xt+1, a
′)

0

 ,

define a MLP layer with W
(2)
1 =

[
0 0 0
0 1 0
0 0 1

]
, W

(2)
2 = [0 1 1]. We can get that

W
(2)
2 σ(W

(2)
1 h

(1)
2t−1) = rt +max

a′
Q̂θ(xt+1, a

′).

Step 4 (Q-Value Update):

There exists a small MLP head (two-layer feed-forward network) which updates h2t−1 to regress
the Q-value prediction Q̂(xt, at) towards the TD target yt.

Proof of Step 4

The proof is related to the literature von Oswald et al. (2023). Let

Q
(1)
1 h

(0)
i = K

(1)
1 h

(0)
i =

010
0

 , V
(1)
1 h

(0)
2t−1 =


0|S|

Q̂θ(xt, at)
0
0

 ,

Q
(1)
2 h

(0)
i = K

(1)
2 h

(0)
i =

001
0

 , V
(1)
2 h

(0)
2t−1 =

0|S|
0
yt
0



combining two attention heads, we get that h
(1)
2t−1 =


0|S|

Q̂θ(xt, at)
yt
0

 . define a MLP layer with

W
(2)
1 =

· · ·0 1 0 0
0 0 1 0
· · ·

, W (2)
2 = [0 1− α α 0], where α be a coefficient. We have that

W
(2)
2 σ(W

(2)
1 h

(1)
2t−1) = (1− α)Q̂θ(xt, at) + αyt.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C EXPERIMENT DETAILS

C.1 COMPUTING RESOURCES

All experiments are conducted on two NVIDIA A100 GPUs (40GB each).

C.2 LINUCB ALGORITHM

Let T denote the time horizon and λ, α > 0 be input parameters. At each time step t ∈ {1, 2, ..., T},
the LinUCB algorithm operates through the following steps:

1. Compute the ridge estimator for the weight vector:

wt
ridge,λ = arg min

w∈Rd

 1

2t

t−1∑
j=1

(rj − ⟨aj ,w⟩)2 +
λ

2t
∥w∥22


2. For each action i ∈ [A], compute the upper confidence bound:

v∗t,i = ⟨at,i,wt
ridge,λ⟩+ α

√
a⊤t,iA

−1
t at,i,

where At = λId +
∑t−1

j=1 aja
⊤
j .

3. Select the action at,j by:
j := argmax

i∈[A]
v∗t,i.

C.3 DARKROOM ENVIRONMENT

Darkroom is considered as a complex Markov decision process (MDP) problem and is utilized as a
standard benchmark for evaluating in-context learning Laskin et al. (2022); Lee et al. (2023). In this
experiment, the agent must locate an unknown goal within a 10 × 10 darkroom. The agent receives
a reward of 1 only when it reaches the goal. At each step, the agent can choose from five possible
actions: move up, down, left, right, or stay still. If the agent is not at the goal, it receives a reward
of 0. The horizon for the Darkroom environment is set to 100 steps. We summarize the details as
follows:

Pretraining Data Collection Similar to the stochastic linear bandit problem, we consider two
types of policies: A random policy, which selects an action randomly at each position, and an
expert policy, which chooses legal actions to avoid crashing into walls and will stay still once the
agent receives a reward of 1. To test whether the pretrained model can generalize to unseen RL
problems in context, we collect datasets from 80 out of the total 100 goals, reserving the remaining
20 for testing. For each training goal, we run both the random and expert policies, collecting 1k
trajectories from each policy. This leads to a total of 80k trajectories for the random policy and 80k
trajectories for the expert policy, resulting in 160k context trajectories in the pretraining dataset.

Comparison and Implementation We evaluate QTPT and SPT under two settings: pretraining
on purely random data and on purely expert data. The models are evaluated on an unseen task,
where the target goal is not included in the pretraining dataset. The model architecture is identical
to that used in the stochastic linear bandit experiments (see Section C.6).

C.4 DARK KEY-TO-DOOR ENVIRONMENT

The Dark Key-to-Door environment extends the complexity of the Darkroom setting by introducing
a hierarchical task structure with sparse rewards. In this environment, the agent must sequentially
accomplish two objectives: first locate an invisible key to receive a reward of r = 1, then find
and open an invisible door to receive an additional reward of r = 1. This creates a challenging
sparse reward scenario where the agent must learn to complete subtasks in the correct order. The
environment consists of a 9 × 9 grid, and each episode is limited to 50 steps. At the beginning of
each episode, the agent is reset to position (0, 0), while the key and door locations are randomly
generated across different episodes. Since door and key can be placed in any positions, there are
total 81× 81 = 6561 distinct tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Pretraining Data Collection To capture diverse exploration strategies, we collect our pretraining
data using two distinct behavioral policies. The expert policy employs a systematic spiral search
pattern, ensuring comprehensive coverage of the environment while efficiently locating the key and
door. In contrast, the random policy selects actions uniformly at random, providing diverse but
generally suboptimal exploration patterns. To ensure a balanced representation of both behaviors,
we collect 80k trajectories from each policy type. The pretraining dataset is partitioned into 5249
tasks, which represents approximately 80% (65610.8 ≈ 5249) of the total tasks. The remaining
1312 tasks are held out for testing and are thus considered unseen.

Comparison and Implementation We evaluate the performance of our QTPT and SPT models
under two distinct pretraining configurations: one trained exclusively on random policy data and
the other trained exclusively on expert policy data. The evaluation, conducted on unseen tasks,
specifically assesses the models’ ability to generalize the underlying hierarchical task structure and
adapt to new key-door configurations during in-context learning. To ensure a fair comparison across
environments and configurations, the model architecture is kept consistent with that of previous
experiments.

C.5 MINIWORLD ENVIRONMENT

To evaluate QTPT’s effectiveness in visual domains, we employ the Miniworld (Lee et al., 2023)
navigation benchmark, which presents a visually grounded navigation task. In this environment,
agents must navigate to the correct colored target box among four boxes positioned at the corners
of the environment. The agent receives 25 × 25 RGB observations with directional conditioning,
providing rich visual information that requires the model to process high-dimensional sensory input.
The agent has access to three discrete actions: turn left, turn right, and move forward, which creates a
more realistic navigation scenario compared to grid-world abstractions. The agent receives a reward
of r = 1 only when positioned near the target box, with all other states yielding zero reward. Each
episode is constrained to 50 timesteps, requiring efficient navigation strategies.

Pretraining Data Collection We construct our pretraining dataset using two complementary data
collection strategies to capture both optimal and suboptimal navigation behaviors. The expert policy
demonstrates intelligent navigation by selecting legal actions that avoid wall collisions and environ-
mental boundaries, and crucially, the agent remains stationary once it successfully reaches the target
and receives the reward signal. This policy represents efficient goal-directed behavior in the visual
navigation domain. The random policy, conversely, selects actions uniformly at random, generating
diverse but often inefficient exploration trajectories that cover various parts of the state space. We
collect 24k trajectories from each policy type for training.

Comparison and Implementation The evaluation protocol examines QTPT and SPT perfor-
mance under both pure random data pretraining and pure expert data pretraining conditions. The
model architecture incorporates appropriate visual encoding mechanisms while maintaining consis-
tency with the core transformer structure used in other experimental settings.

C.6 IMPLEMENTATION DETAIL

Both Transformer models are based on the GPT-2 architecture (Garg et al., 2022), featuring 8 layers,
4 attention heads, and an embedding dimension of D = 256, with ReLU activation functions. The
training process is implemented with a batch size of 32 using the Adam optimizer. The learning rate
schedule follows a cosine decay with a linear warmup for the first 2,000 training steps, where the
peak learning rate is set to 5 × 10−6 and the minimum learning rate is 1 × 10−7. Weight decay is
set to 0.001.

Each model is pretrained for 50 epochs on the collected datasets. After pretraining, the models
are evaluated on a test set to assess their effectiveness in the context of the stochastic linear bandit
problem.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDY ON THE STOCHASTIC LINEAR BANDIT PROBLEM

We also consider using ’softmax’ operation when computing the Q-target in experiments. To evalu-
ate the robustness of QTPT, we conducted ablation experiments examining several key factors: The
impact of using either ’softmax’ or ’hardmax’, the effect of incorporating a double DQN framework
for network updates, and the differences between ReLU and softmax activation functions in com-
puting attention scores. Note that our original implementation combines ’softmax’, ReLU, and a
double DQN framework.

Table 1: Comparison of results for different configurations of QTPT.

Random Data Results Default Double DQN Softmax + Hardmax ReLU-Attn + Softmax-Attn

Results 30.9 34.01 32.48 197.26

Expert Data Results Default Double DQN Softmax + Hardmax ReLU-Attn + Softmax-Attn

Results 39.4 45.76 53.73 203.74

In addition, we vary the embedding dimension, number of layers, and number of attention heads to
evaluate the model’s performance under different configurations. Note that the original configuration
consists of 8 layers, 4 attention heads, and an embedding dimension of 256, pretrained on purely
random data.

Table 2: Results for varying embedding dimensions.

Embedding Dimension 16 32 64 128 256

Results 135.7 54.0 40.5 33.3 30.9

Table 3: Results for varying number of attention heads.

Number of Heads 1 2 4 8 16

Results 34.2 30.2 30.9 29.3 31.4

Table 4: Results for varying number of layers.

Number of Layers 1 2 4 8

Results 122.3 33.6 31.0 30.9

D.2 EXPERIMENTS ON NON-STATIONARY ENVIRONMENT.

We aim to demonstrate the robustness of QTPT by evaluating its performance in non-stationary
environments.

Experiment Setup: The pretraining phase remains consistent with the process described in Sec-
tion 4. Yet, in the test phase, we introduce two different settings:

• Stationary: The parameter θ∗ is sampled from a uniform distribution [0, 1]d, which
matches the conditions of the pretraining stage;

• Non-stationary: The parameter θ∗ is sampled from a standard Gaussian distribution
N(0, 1)d and rescaled to lie within the range [0, 1]d. The rescaling is performed using
the transformation:

θscaled =
θ − θmin

θmax − θmin
,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where θmin and θmax represent the minimum and maximum values of the sampled θ. In
our experimental setup, we sample 1000 values from the Gaussian distribution and take the
minimum and maximum from these samples for rescaling.

Figure 5 demonstrates that QTPT achieves superior performance in the non-stationary environment
compared to the stationary setting. While SPT maintains relatively consistent performance across
both environments, it significantly underperforms compared to Q-learning, especially under non-
stationary conditions. These results highlight QTPT’s enhanced adaptability to changing environ-
mental dynamics and robustness to distributional shifts in the underlying parameters. Notably, the
performance gap between QTPT and SPT widens considerably in the non-stationary setting, with
QTPT maintaining strong performance while SPT’s effectiveness diminishes.

Figure 5: Comparison of Pretrained Transformer Performance Using Q-learning and Supervised
Learning in Stationary and Non-stationary Environments. The shaded regions represent the standard
deviation of the suboptimality estimates based on 1000 simulation runs.

D.3 MORE COMPLEX TASK: MATH REASONING

Algorithm 2 QTPT with Policy Optimization (QTPO)

1: Estimate behavior policy π̂β by behavior cloning on offline dataset D
2: Training the Value function V̂πβ

and advantage function Âπβ
together by dueling architecture

using QTPT on offline dataset D.
3: Initialize k = 0 and set πk ← π̂β

4: for i = 0, 1, 2, · · · , I do
5: Update the policy π by maximizing Lk(π)
6: if J(π) > J(πk) then
7: Set k = k + 1&πk ← π
8: end if
9: end for

To demonstrate the broader applicability of QTPT, we extended our approach to mathematical rea-
soning tasks. Each math problem serves as a distinct environment, where generated tokens represent
states, the full sequence forms the context-state, and token selection constitutes actions. The reward
signal is derived from binary correctness or step-by-step reasoning accuracy. Our method showed
consistent performance improvements over supervised learning baselines in these tasks.

A key challenge emerged during preliminary experiments is that when learning a Q-function from
offline data alone, and only use the Q-function to generate token, the model frequently produced
degenerate outputs (e.g., generating repetitive tokens). We hypothesize that this is due to semantic
distortion caused by the Bellman update. Specifically, the output in language models consists of
token probabilities, and applying cumulative reward-based reasoning to these probabilities disrupts

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

their linguistic coherence, as it is unconventional to treat them as a direct sum of the reward and the
probability of the next token.

To address this challenge, we adopt an actor-critic framework in which the Q-function learned by
QTPT is not used directly for token generation but to refine the policy. In the offline setting, we
modified the Proximal Policy Optimization (PPO) algorithm, drawing inspiration from Behavior
Proximal Policy Optimization (BPPO)Zhuang et al. (2023), and incorporated an iterative refine-
ment process, which we name QTPT with Policy Optimization(QTPO). The details are provided in
Algorithm 2. where

Lk(π) = Es∼ρD(.), a∼πk(.||s)

[
min

(
π(a|s)
πk(a|s)

Â(s, a), clip
(

π(a|s)
πk(a|s)

, 1− ϵ, 1 + ϵ

)
Â(s, a)

)]
(6)

and the objective J(π) is the total accuracy on the offline dataset.

Data Preparation We evaluated our method on the GSM8K dataset Cobbe et al. (2021), utilizing
reward labels and training data from Math-Shepherd Wang et al. (2024b). The experimental setup
involved two distinct data categories:

• Expert Data, consisting of samples with correct final answers
• Suboptimal Data, comprising samples with incorrect answers.

Each category contained 50,000 samples.

Implementation and Comparison We initialized both the policy and Q-function models using
the Qwen-2.5-1.5B-instruct model. These models were then trained using Low-Rank Adaptation
(LoRA) with the following hyperparameters: rank=8, lora alpha=32, and dropout=0.1. We evalu-
ated performance on the unseen GSM8k test set. This evaluation compared QTPO against direct
behavior cloning, using models trained on various mixtures of expert and imperfect data.

Results The results of these comparisons are presented in the figure 4b. QTPO consistently
outperformed behavior cloning across all settings, achieving an average accuracy improvement of
1.81%. This consistent enhancement is particularly noteworthy as our method relies exclusively on
a static offline dataset.

26

	Introduction
	Related Work

	Model Setting
	Preliminaries
	Algorithm
	Analysis Framework

	Main Analysis and Results
	Bound of Sample Bias
	Bound of Model Bias
	Final Bound
	Data Criterion in which QTPT will outperform SPT

	Numerical Experiments
	Stochastic Linear Bandit
	Markov Decision Processes: Darkroom, Dark Key-to-door, Miniworld
	More complex task: Math Reasoning

	Conclusion and Future Work
	Limitations
	Proofs
	Proofs Related to The Sample Bias
	Proof of Proposition 3.2

	Proofs Related to the Model Bias
	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Proposition 3.5

	Proofs Related to the Comparison of QTPT and SPT
	Proof of Proposition 3.7

	Transformers approximation

	Experiment Details
	Computing Resources
	LinUCB Algorithm
	Darkroom Environment
	Dark Key-to-Door Environment
	Miniworld Environment
	Implementation Detail

	Additional Experiments
	Ablation Study on the Stochastic Linear Bandit Problem
	Experiments on Non-stationary Environment.
	More Complex Task: Math Reasoning

