

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE GENERALIZATION RIDGE: INFORMATION FLOW IN NATURAL LANGUAGE GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer-based language models have achieved state-of-the-art performance in natural language generation (NLG), yet their internal mechanisms for synthesizing task-relevant information remain insufficiently understood. While prior studies suggest that intermediate layers often yield more generalizable representations than final layers, how this generalization ability emerges and propagates across layers during training remains unclear. To address this gap, we propose InfoRidge, an information-theoretic framework, to characterize how predictive information—the mutual information between hidden representations and target outputs—varies across depth. Estimating this quantity enables us to trace the flow of task-relevant information throughout the model during training. Our experiments across various models and datasets reveal a consistent non-monotonic trend: predictive information peaks in upper-middle layers—forming a **generalization ridge**—before declining in final layers, reflecting a transition between generalization and memorization. To further investigate this phenomenon, we introduce residual scaling coefficients—trainable scalar parameters applied to each residual block—which serve as functional probes for assessing the relative importance of individual transformer layers. These coefficients reveal that, under distribution shift, models downweight final layers and increasingly rely on ridge layers, highlighting their role in generalization. Together, these findings offer new insights into the internal mechanisms of transformers and underscore the critical role of intermediate layers in supporting generalization.

1 INTRODUCTION

Transformer-based language models generate text by predicting tokens autoregressively, and they have achieved remarkable performance across a wide range of natural-language uses (Vaswani et al., 2017; Dong et al., 2022). Nevertheless, we lack a rigorous understanding of how these models acquire and synthesize task-relevant information during training.

A growing body of research has shown that intermediate layers in deep neural networks often surpass final layers in terms of representational quality and generalization performance (Liu et al., 2019b; Voita et al., 2019; Ansuini et al., 2019; Ahrens et al., 2023; Uselis & Oh, 2025). In language models, intermediate layers often encode richer semantic and more robust features than final layers (Fan et al., 2024; Jin et al., 2024; Skean et al., 2025). However, questions still remain: ***In NLG, how does information evolve across layers during training, and how are different layers of the network functionally organized to support generalization versus memorization?***

To investigate these questions, we propose *InfoRidge*, an information-theoretic framework, to analyze information flow in language models. Building on matrix-based mutual information estimation (Giraldo et al., 2014), our approach quantifies how predictive signals transform across layers during training. We center our analysis on two complementary quantities: *predictive information*, defined as the mutual information $I(Z_\ell; Y)$ between the hidden representation Z_ℓ at layer ℓ and the next-token label Y , reflecting how much task-relevant information is preserved; *incremental information gain*, denoted as $I(\Delta Z_\ell; Y)$, where ΔZ_ℓ is the residual changes between successive layer ℓ and $\ell - 1$, measuring the additional predictive information introduced by each transformer block.

Using *InfoRidge*, we uncover a non-monotonic trend: predictive information rises through the early and middle layers, peaks in the upper-middle layers, and then declines in the later layers. We name

054 this phenomenon the **generalization ridge**, where the model encodes the more generalizable task-
 055 relevant information. This ridge marks a structural division of labor: intermediate layers concentrate
 056 generalizable features that transfer across distributions, while later layers increasingly specialize in
 057 task-specific memorization. Incremental information gain further shows that ridge layers introduce
 058 the largest increases in predictive information, marking them as key contributors to the emergence
 059 of the ridge. This analysis directly connects the information peak to generalizable behavior and
 060 clarifies how generalization and memorization are distributed across depth.

061 To further validate this interpretation, we introduce *residual scaling coefficients*—learnable scalar
 062 parameters β_ℓ applied to each residual block—while keeping all other model weights frozen, drawing
 063 inspiration from prior work on layer-wise adaptation (Liu et al., 2019a; Menghani et al., 2024).
 064 A higher β_ℓ value indicates greater reliance on the corresponding layer’s output during prediction.
 065 These coefficients act as functional probes, revealing how the model redistributes layer-wise impor-
 066 tance under different data distribution. Under in-distribution training, deeper layers retain higher
 067 residual weights, reflecting the model’s reliance on memorized, task-specific features. When eval-
 068 uated under distribution shift, models reduce reliance on late layers and increase reliance on the ridge,
 069 further supporting its role in generalization.

070 To understand the formation of the generalization ridge, we analyze both attention patterns and
 071 model capacity. Attention analysis shows ridge layers attend to tokens that capture broadly useful
 072 features, aligning with the information peak. Beyond attention patterns, we also investigate the
 073 conditions under which the ridge emerges. Our depth ablation results show that the ridge only
 074 emerges beyond a certain depth threshold. Below this threshold, predictive information increases
 075 monotonically, indicating that sufficient capacity is a prerequisite for generalization ridge to emerge.

076 **Contributions.** Our work provides a unified perspective on how predictive information is struc-
 077 tured across depth in transformer-based language models for natural language generation tasks:

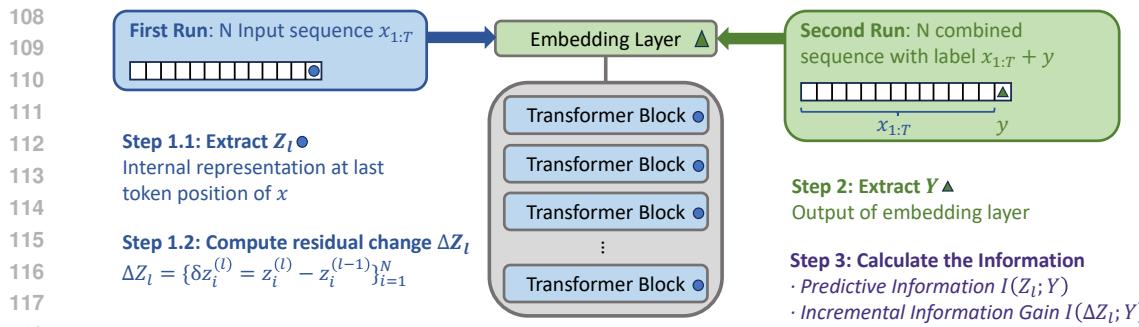
- 079 1. Our work tracks the evolution of predictive information throughout training, establishing a clear
 080 connection between predictive information flow and generalization. It reveals a non-monotonic peak
 081 in the middle layers, which we refer to as the **generalization ridge**. This pattern reflects a meaningful
 082 transition in representational focus and aligns with stronger generalization behavior.
- 083 2. We introduce InfoRidge, an information-theoretic framework that applies matrix-based mutual
 084 information estimation to autoregressive language models to analyze information flow.
- 085 3. We introduce residual scaling coefficients as trainable indicators of how models shift representa-
 086 tional focus across layers during training, providing a causal, adaptive measure of generalization.

088 2 RELATED WORK

091 Understanding how information is encoded and transformed across layers has been studied through
 092 probing classifiers (Alain & Bengio, 2016), attention flow (Vig & Belinkov, 2019), and information-
 093 theoretic approaches such as the information bottleneck (Shwartz-Ziv & Tishby, 2017), mutual in-
 094 formation estimation (Goldfeld, 2019), and matrix-based entropy (Giraldo et al., 2014), offering
 095 different lenses to quantify representational capacity, abstraction, and invariance across layers.

096 A growing body of research has shown that intermediate layers in deep networks often outperform
 097 final layers in terms of representational quality and task performance (Ansini et al., 2019; Yosinski
 098 et al., 2014; Uselis & Oh, 2025; Ahrens et al., 2023; Ando et al., 2023). In language models, mid-
 099 depth layers tend to capture richer semantic or robust features than output layers (Liu et al., 2019b;
 100 Voita et al., 2019; Jin et al., 2024; Fan et al., 2024). Transformer representations have long been
 101 observed to follow a structured progression from syntactic to semantic information, as shown by
 102 classical probing studies on linguistic knowledge and the reconstruction of the NLP pipeline (Liu
 103 et al., 2019b; Tenney et al., 2019). These findings challenge the assumption that deeper layers always
 104 yield better representations.

105 This pattern holds across settings such as transfer learning (Yosinski et al., 2014), continual learn-
 106 ing (Ahrens et al., 2023), and out-of-distribution generalization (Uselis & Oh, 2025). Furthermore,
 107 recent work has evaluated representation quality using entropy, curvature, and invariance (Skean
 et al., 2025), while other studies have examined embedding drift and representational geome-



try (Merchant et al., 2020; Dar et al., 2022), analyzed memorization and factual recall (Haviv et al., 2022; Yu et al., 2023), and introduced causal perspectives on layer importance through mediation analysis and targeted interventions (Vig et al., 2020; Meng et al., 2022). Training-dynamics studies investigated how earlier models develop and refine semantic features across depth, providing an additional perspective on the evolution of layer-wise representations (Merchant et al., 2020; Kumar et al., 2023). Correlational probes (e.g., linear probes (Alain & Bengio, 2016)) measure only whether a feature can be decoded from a representation, which reflects correlation but not causal influence. In contrast, causal methods intervene on internal activations to test how changing a component alters the model’s prediction, thereby identifying true causal contribution rather than mere feature presence. Our residual-scaling approach aligns with this causal perspective at the layer level.

However, the underlying causes and functional role of this phenomenon remain only partially understood, motivating further investigation. Our work addresses this gap by tracing the evolution of predictive information throughout training and establishing a clear connection between predictive information flow and generalization. We reveal a consistent non-monotonic peak in the middle layers—termed the *generalization ridge*—that reflects a meaningful transition in representational focus and aligns with stronger generalization behavior. Additionally, unlike prior work focused on classification tasks, we extend the analysis of information flow to generation tasks by quantifying the mutual information between hidden states and the next token. This enables us to understand how generalization and memorization dynamics evolve for next-token generation setting during training from an information-theoretic perspective.

3 INFORIDGE: INFORMATION ESTIMATION FRAMEWORK

We propose InfoRidge, an information-theoretic framework that uses mutual information to quantify how predictive information propagates through transformers layers during training in NLG.

Motivating Insight. Prior work has shown that internal representations in deep neural networks tend to align most closely with the true data distribution at an intermediate layer (He et al., 2024). By employing the Wasserstein distance (Villani et al., 2008), this alignment is shown to reach a minimum at a specific depth—referred to as the *generalization funnel layer*. At this point, the *Min Wasserstein Generalization Bound* (He et al., 2024) ensures that the upper bound on the generalization gap—defined as the expected difference between the population and empirical risks—is minimized. This highlights the critical role of intermediate layers in supporting generalization.

Research Question. Despite the insight from prior studies of deep neural networks in classification, it remains unclear whether this generalizes to *Transformer-based language models in natural language generation (NLG)*. This motivates our central question: **In NLG, how does information**

162 evolve across layers during training, and how are different layers of the network functionally
 163 organized to support generalization versus memorization?
 164

165 **Hypothesis.** Building on the insight, we hypothesize that there exists a specific intermediate trans-
 166 former layer that encodes the most generalizable representations for next-token prediction, charac-
 167 terized by maximal mutual information with the target label.

168 **Hypothesis: Generalization Ridge**

169 There exists an intermediate layer $\ell^* \in \{1, \dots, L\}$ such that the mutual information between the
 170 hidden state and the target label peaks at that layer:

$$172 \quad \ell^* = \arg \max_{\ell} I(Z_{\ell}; Y).$$

173 We refer to this layer as the **generalization ridge**. This ridge layer aligns most strongly with
 174 generalizable features and serve as robust predictors under distribution shift, whereas later layers
 175 increasingly specialize in memorization.
 176

177 **InfoRidge Overview.** To empirically investigate this hypothesis, we propose InfoRidge, an infor-
 178 mation estimation framework, that characterizes how predictive information evolves across trans-
 179 former layers. Specifically, we estimate two key quantities:
 180

- 181 • **Predictive Information** $I(Z_{\ell}; Y)$: the mutual information between the hidden state at layer
 182 ℓ and the target token. This quantity measures how much information about the true next
 183 token is contained in the layer’s full representation. A high value indicates that the layer
 184 encodes a strong and direct signal relevant to the prediction task.
- 185 • **Incremental Information Gain** $I(\Delta Z_{\ell}; Y)$: the information introduced by the residual
 186 transformation at layer ℓ , where $\Delta Z_{\ell} = Z_{\ell} - Z_{\ell-1}$. This captures the additional predictive
 187 signal gained through the residual transformation at layer ℓ , isolating how much new task-
 188 relevant information is introduced on top of the previous layer’s representation.
 189

190 Together, these metrics allow us to track both the accumulation and transformation of task-relevant
 191 information throughout the network.
 192

193 **Notation and Setup.** We consider a transformer model with L residual blocks. Given an input
 194 sequence $x_{1:T}$ of length T , $z_i^{(\ell)} \in \mathbb{R}^d$ denotes the hidden state at the last token position of the i th
 195 input sequence in layer ℓ , for $\ell = 1, \dots, L$. For next-token prediction, the ground-truth label is
 196 denoted by $y_i \in \mathbb{R}^d$, corresponding to the embedding of the true next token from the vocabulary \mathcal{V} .
 197 The residual transformation introduced at layer ℓ is defined as $\delta z_i^{(\ell)} = z_i^{(\ell)} - z_i^{(\ell-1)}$.
 198

199 Across a batch of N sequences, we collect the representations:
 200

$$201 \quad Z_{\ell} = \{z_i^{(\ell)}\}_{i=1}^N, \quad Y = \{y_i\}_{i=1}^N, \quad \Delta Z_{\ell} = \{\delta z_i^{(\ell)}\}_{i=1}^N,$$

202 where all vectors are ℓ_2 -normalized.
 203

204 **Computational Flow Overview.** Figure 1 illustrates the workflow used to extract intermediate
 205 representations for information analysis. In the first forward pass, a batch of N input sequences
 206 $x_{1:T}$ is fed into the transformer to obtain hidden states at each layer. From these, we extract the
 207 final-token representations Z_{ℓ} and compute the residual changes ΔZ_{ℓ} by differencing consecutive
 208 layer outputs. In the second forward pass, each input is concatenated with its ground-truth next
 209 token y , and we extract the corresponding label embedding Y from the output of the embedding
 210 layer. These representations are then used to compute two information-theoretic quantities: the
 211 *Predictive Information* $I(Z_{\ell}; Y)$, and the *Incremental Information Gain* $I(\Delta Z_{\ell}; Y)$. We estimate
 212 both $I(Z_{\ell}; Y)$ and $I(\Delta Z_{\ell}; Y)$ using Equation 1 and 2, detailed below.
 213

214 **Matrix-Based Mutual Information.** We apply the matrix-based framework (Giraldo et al., 2014)
 215 to estimate mutual information. Let \mathcal{U} be a random variable, from which we draw a set of vectors

216 $U = \{\mathbf{u}_i\}_{i=1}^N \subset \mathbb{R}^d$. A positive-definite Gram matrix $G_U \in \mathbb{R}^{N \times N}$ is computed using a Gaussian
 217 kernel κ with bandwidth set to 1 and the matrix is then trace-normalized to satisfy $\text{tr}(G_U) = 1$. The
 218 matrix-based Rényi entropy (with order $\alpha = 1$) is then given by:
 219

$$H(\mathcal{U}) \approx H(U) = -\text{tr}(G_U \log G_U). \quad (1)$$

220 Specifically, G_U is constructed with entries $(G_U)_{ij} = \exp\left(-\frac{\|\mathbf{u}_i - \mathbf{u}_j\|^2}{2\sigma^2}\right)$ and then trace-normalized.
 221

222 Let $G_{\mathcal{U}}$ and $G_{\mathcal{V}}$ be the trace-normalized Gram matrices for two random variables \mathcal{U} and \mathcal{V} , respectively.
 223 The mutual information between them is computed as:
 224

$$I(\mathcal{U}; \mathcal{V}) \approx I(G_{\mathcal{U}}; G_{\mathcal{V}}) = H(G_{\mathcal{U}}) + H(G_{\mathcal{V}}) - H(G_{\mathcal{U}} \circ G_{\mathcal{V}}), \quad (2)$$

225 where “ \circ ” denotes the Hadamard (elementwise) product. Mathematical details are in Appendix A.
 226

228 4 EXPERIMENTAL SETUP

230 **Models.** We evaluate four models: GPT-2 SMALL (117M) (Radford et al., 2019), GPT-2
 231 MEDIUM (345M) (Radford et al., 2019), QWEN-2.5 0.5B (Yang et al., 2024), and LLAMA 3.1
 232 8B (Meta AI, 2024). All models are fine-tuned on NLG tasks. Each model shares weights between
 233 the input token embedding and the output language modeling head.
 234

235 **Datasets.** We assess model behavior across three tasks casted into NLG problems:
 236 CLUTRR (Sinha et al., 2019), a relational reasoning benchmark; ECQA (Aggarwal et al., 2021),
 237 a commonsense QA benchmark; and Synthetic Arithmetic, a controlled dataset designed to disentangle
 238 task-relevant signal from noise. Dataset and implementation details are in Appendix B and C.

239 *Synthetic Arithmetic Dataset Construction.* We construct a synthetic dataset to separate signal learning
 240 from noise memorization. Each input is a sequence of 10 elements, where the signal follows an
 241 arithmetic progression modulo K , computed as $s_t = (s_0 + t \cdot d) \bmod K$ with $s_0 \in [0, K-1]$ and
 242 $d \in [1, K-1]$. Each element takes the form $S\{\text{signal}\}_N\{\text{noise}\}$, where noise is sampled from
 243 $\mathcal{U}_{\text{int}}(0, \text{noise_range}-1)$ (\mathcal{U}_{int} denotes the uniform distribution). The model is trained to predict
 244 the signal value of the final (10th) element using the preceding elements as input context. For exam-
 245 ple, with $K = 5$, $s_0 = 1$, and $d = 2$, a sample input might be $S1_N42\ S3_N77\dots S2_N37$, with
 246 the target signal being 4. By varying K , we can induce structured distribution shifts.
 247

248 5 GENERALIZATION RIDGE: LAYER-WISE MUTUAL INFORMATION 249 TRAINING DYNAMICS

251 Understanding how layers encode task-relevant information is key to uncovering the internal mech-
 252 anisms that support generalization in deep language models. In this section, we trace the evolu-
 253 tion of two complementary forms of mutual information—*Predictive Information* and *Incremental
 254 Information Gain*—across transformer depth and training time, revealing a consistent structure in
 255 information flow and highlighting the generalization–memorization trade-off.
 256

257 5.1 PREDICTIVE INFORMATION: INFORMATION PEAKS AT INTERMEDIATE LAYERS

258 We investigate how *predictive information*—defined as the mutual information between hidden rep-
 259 resentations and target labels—evolves across the depth of transformer models. Specifically, for
 260 each layer ℓ , we compute the matrix-based mutual information $I(Z_\ell; Y)$ between the hidden state
 261 Z_ℓ and the next-token ground truth Y . This quantity measures how much task-relevant signal is
 262 retained in the representation as it propagates through the network. By tracing $I(Z_\ell; Y)$ across lay-
 263 ers, we obtain a layer-wise trajectory of information flow, which reveals not only where predictive
 264 content is preserved but also how it is transformed or diminished as the model processes.
 265

266 Figure 2 tracks the trajectory of the predictive information $I(Z_\ell; Y)$ between the hidden rep-
 267 resentation at depth ℓ and the target label Y throughout training, while Table 1 reports the downstream
 268 accuracy obtained when we early exit after a given layer.¹ Additional results are in Appendix E.
 269

¹The in distribution split is generated with $K_{\text{id}}=13$; out of distribution splits use a uniformly-sampled $K_{\text{ood}} \in \{5, \dots, 25\} \setminus \{13\}$.

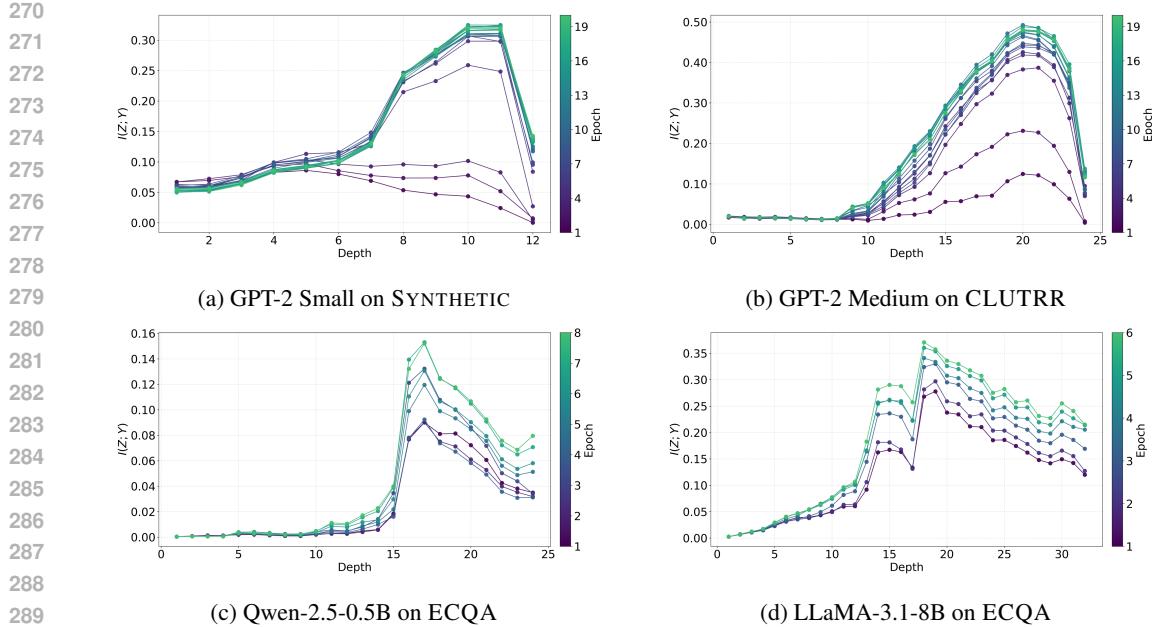


Figure 2: Evolution of predictive information $I(Z_\ell; Y)$, with lighter curves indicating later epochs. Each curve exhibits a three-phase trend: early layers rise, mid layers peak, and late layers decline.

Three-phase information dynamics. Across models and tasks, predictive information curves exhibit a consistent *three-phase* pattern:

Progressive Accrual (early layers). In the initial layers, $I(Z_\ell; Y)$ gradually increases, corresponding to basic feature extraction without substantial task-level comprehension. This aligns with the near-zero accuracy observed in Table 1 for these layers.

Information Peak (intermediate layers). $I(Z_\ell; Y)$ continues to rise through the mid-to-upper layer, typically peaking before the final few blocks. For the GPT-2 Small on Synthetic Arithmetic dataset, the peak reaches $I \approx 0.32$ in layers 10-11, coinciding with a jump from $\approx 0\%$ to 72% ID accuracy and 53% OOD accuracy. These layers appear to play a critical role in synthesizing abstract features that are essential for generalization.

Representational Compression (final layers). Beyond the peak, $I(Z_\ell; Y)$ decreases, even as in-distribution accuracy approaches 100%. The simultaneous drop in OOD accuracy indicates that the final layers tend to memorize training patterns, sacrificing generalization ability.

Notably, this three-phase progression emerges consistently across both GPT-2 Small and GPT-2 Medium, indicating that the observed information dynamics are robust to architectural scale within the same model family.

Generalization Ridge: Memorization-Generalization Trade-off. The pronounced “information funnel” around intermediate layers reflects a key trade-off between generalization and memorization, which we term the “**generalization ridge**”. These layers maximize task-relevant information for

Table 1: Information Dynamics and Layer-wise Performance (GPT-2-S, Synthetic). OOD performance declines beyond the generalization ridge.

Layer	$I(Z; Y)$	Test Accuracy (%)		
		All	In-Dist.	Out-Dist.
Layer 1	0.0508	0.00	0.00	0.00
Layer 2	0.0513	0.00	0.00	0.00
Layer 3	0.0619	0.00	0.00	0.00
Layer 4	0.0822	0.00	0.00	0.00
Layer 5	0.0894	0.00	0.00	0.00
Layer 6	0.0989	0.00	0.00	0.00
Layer 7	0.1292	0.70	0.00	2.00
Layer 8	0.2431	18.35	0.00	38.90
Layer 9	0.2810	19.15	1.00	40.30
Layer 10	0.3209	62.45	71.90	53.50
Layer 11	0.3209	72.65	99.90	40.40
Layer 12	0.1402	71.45	100.00	38.60

generalization, while deeper layers increasingly compress and specialize representations, enhancing in-distribution memorization but reducing robustness. This positions intermediate layers as critical control points for managing this trade-off.

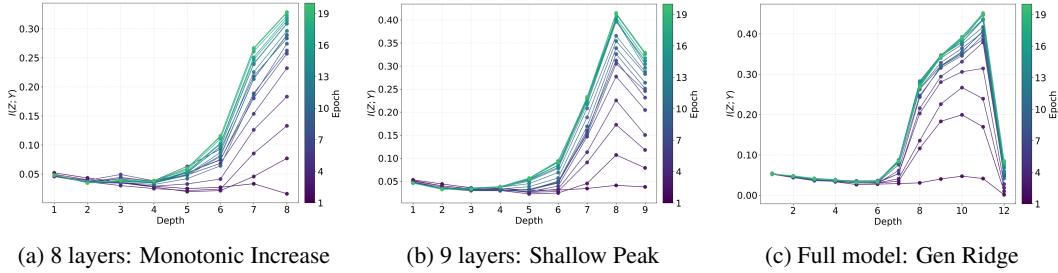


Figure 3: Truncating GPT-2 to 8 layers removes the MI peak; 9-layer variants begin to exhibit a shallow peak, and the full 12-layer model shows a pronounced decline.

Generalization Ridge Emerges Beyond a Depth Threshold We empirically vary the depth of GPT-2 Small models fine-tuned on the CLUTRR dataset to examine how model capacity shapes information dynamics, shown in Figure 3. When the model is truncated to 8 layers, $I(Z; Y)$ increases monotonically—indicating insufficient capacity to develop an information peak. Upon increasing the depth to 9 layers, a shallow peak emerges, signifying the threshold at which the model begins to distinguish generalized features from memorized signals. The full 12-layer model exhibits a clear peak followed by a decline, confirming that the generalization ridge emerges only beyond a certain capacity threshold. These results underscore the role of architectural depth in information dynamics and sufficient capacity is required for the generalization ridge to emerge.

Overfitting Adds Memorization in Final Layers

Overfitting Adds Memorization in Final Layers To probe overfitting dynamics, we intentionally fine-tuned the model beyond the optimal point. In Figure 4, we observe that the Predictive Information $I(Z_\ell; Y)$ rises again in the final layers—departing from the typical compression phase expected at this stage. Before overfitting, the top layers largely behave as pretrained decoders, focusing on surface-level patterns such as token co-occurrence, syntactic templates, or corpus biases, which are not strongly aligned with the task label—hence their initially low $I(Z_\ell; Y)$. After overfitting, however, the later-layer rise reflects a shift toward memorization, where the model begins to encode superficial shortcuts or redundant label-specific noise rather than useful task information.

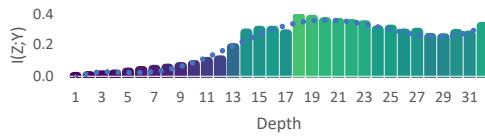


Figure 4: $I(Z_\ell; Y)$ rises in final layers during overfitting (LLaMA, ECQA).

Semantically Important Attention Peaks Where Information Peaks This discussion aims to provide an intuitive illustration of our generalization ridge hypothesis, highlighting how attention to task-relevant signal tokens shifts across layers (the generalizable information). Specifically, we computed average signal attention across layers, identified the layer with peak signal attention, and compared it to final-layer signal and last-token attention, results are in Table 2. Signal tokens are defined as task-relevant tokens that the model must focus on to solve the task—for the synthetic dataset, these are tokens that appear after the character ‘S’; for CLUTRR, kinship-related entities; and for ECQA, the token corresponding to the correct answer option. This allows us to quantify where in the network attention to semantically important information is concentrated. Our findings show a pattern that supports our hypothesis: (1) Mid-to-late layers peak in signal attention, coinciding with the predictive information ridge (Figure 2), indicating where generalizable representations are strongest. (2) Final layers show reduced attention to signal tokens, suggesting a shift toward memorization to specific data point rather than predictive information abstraction. For example, in Qwen-2.5-0.5B on ECQA, signal attention peaks at Layer 17 (0.2458) but drops to 0.0066 in the final layer, where last-token attention dominates (0.1697). Additional results are in Appendix F.

378
 379 Table 2: Average attention statistics: (1) average attention scores over all tokens, (2) average attention
 380 to signal tokens, (3) the maximum signal attention and its corresponding layer, (4) signal token
 381 attention in the final layer and (5) last token attention in the final layer.

Model	Dataset	Avg. Attn (All)	Avg. Attn (Signal)	Layer w/ Highest Avg. Signal	Final Avg. Signal	Final Avg. Last
GPT-2 Small	Synthetic	0.0227	0.0483	10 (0.0758)	0.0573	0.0400
GPT-2 Medium	CLUTRR	0.0086	0.0155	19 (0.0453)	0.0147	0.0889
Qwen-2.5-0.5B	ECQA	0.0225	0.0257	17 (0.2458)	0.0066	0.1697
LLaMA-3.1-8B	ECQA	0.0220	0.0379	21 (0.1276)	0.0168	0.3904

386 *We remove the first token attention score to mitigate attention sink effects.

387
 388
 389 **5.2 INCREMENTAL INFORMATION GAIN: INFORMATION CONCENTRATES AT INTERMEDIATE**
 390 **LAYERS**

391 To understand how information accumulates across the network, we compute *Incremental Information*
 392 $I(\Delta Z_\ell; Y)$ —the mutual information between each residual transition and the target
 393 label embedding. As shown in Figure 5, the resulting layer-wise gains reveal that intermediate layers
 394 yield the highest information increases. This concentration of information gain further underscores
 395 their central role in encoding those task-relevant features that are essential for supporting generalization.
 396 For additional illustration, a detailed case study that decodes Δz via the LM head is provided
 397 in Appendix G, highlighting fine-grained token-level shifts and variations observed across layers.
 398 The Incremental Information Gain analysis reveals a clear pattern: middle transformer blocks
 399 are key to encoding generalizable task-relevant information, thereby forming a *generalization*
 400 *ridge*. Conversely, later layers contribute little additional predictive signal, and in some
 401 cases, actively reduce alignment with the target embeddings. This diminishing contribution
 402 in later layers may suggest a shift from general reasoning to memorization of training-specific
 403 patterns. This trend underscores a fundamental
 404 trade-off in transformer training dynamics.

395 Figure 5: Middle blocks are key to encoding generalizable information (GPT-2-S, Synthetic).

410 **6 RESIDUAL SCALING DYNAMICS VIA LEARNABLE β COEFFICIENTS**
 411

412 To deepen our understanding of the Generalization Ridge hypothesis, we examine how modulating
 413 the contribution of individual transformer blocks affects information flow, and propose a corollary
 414 that links layer-wise contribution to generalization performance under distribution shift.

415 **Corollary** (Residual Scaling). *Post-peak residual blocks (i.e., layers beyond the generalization*
 416 *ridge) may encode memorized signals. Suppressing these layers’ contribution via learned resi-*
 417 *dual scaling improves out-of-distribution generalization, while amplifying them degrades it.*

418 We introduce a *residual scaling mechanism* with learnable scalar coefficient parameters (Algo-
 419 rithm 1), inspired by prior work on adaptive residual modulation (Liu et al., 2019a; Menghani et al.,
 420 2024). Transformer architectures inherently employ residual connections to iteratively refine
 421 representations. To isolate and quantify the contribution of each transformer block, we scale these
 422 residual connections with layer-specific scaling factors $\beta_\ell \in \mathbb{R}_{\geq 0}$, with definition below. Each β_ℓ
 423 controls the strength of the residual contribution from layer ℓ , enabling the model to adaptively
 424 emphasize or suppress specific blocks:

$$z^{(\ell)} = z^{(\ell-1)} + \beta_\ell \cdot \text{block}^{(\ell)}(z^{(\ell-1)}), \quad \beta_\ell \in \mathbb{R}_{\geq 0}.$$

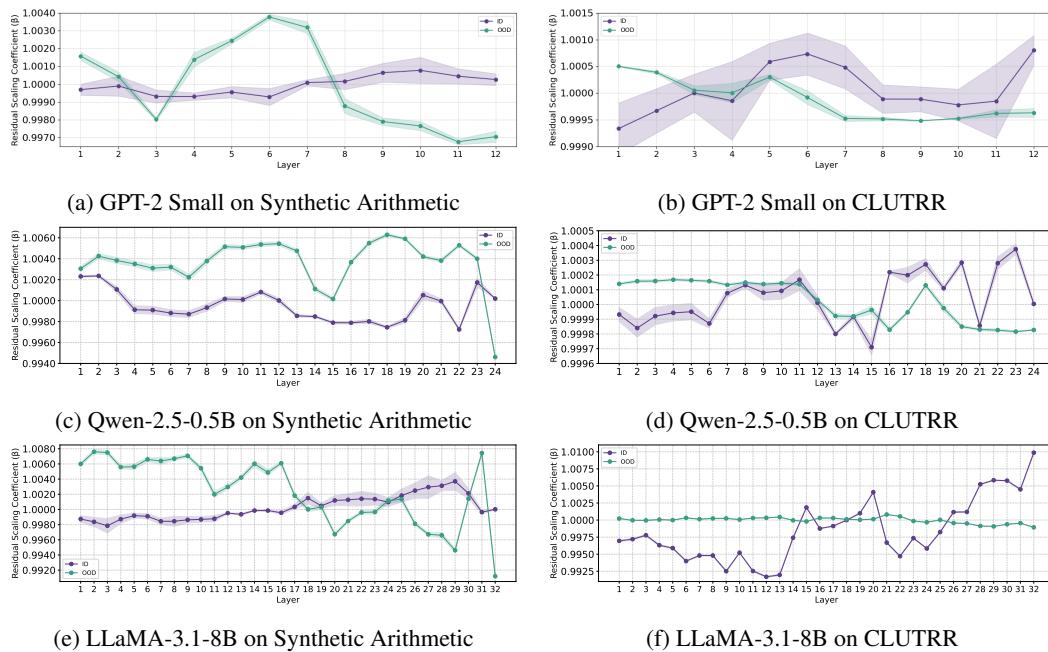
425 **Definition** (Residual Scaling Coefficient). β_ℓ is a learnable scalar parameter associated with trans-
 426 former layer ℓ , which modulates the contribution of that layer’s residual output to the model’s for-
 427 ward pass.

428 We freeze model weights and optimize only the residual scaling coefficient parameters β_ℓ , which are
 429 initialized to 1. These scalars are trained separately on the (a) in-distribution (ID) split and (b) out-

432 **Algorithm 1** Residual Scaling: Probing the Contribution of Transformer Blocks to the Generalization–Memorization Trade-off.

434 **Require:** Pretrained Transformer with L layers, dataset \mathcal{D} , learning rate η
 435 1: Initialize $\beta_1, \dots, \beta_L \leftarrow 1.0$ (trainable); freeze other weights
 436 2: **for** each training step **do**
 437 3: Sample batch $(x, y) \sim \mathcal{D}$
 438 4: $z^{(0)} \leftarrow \text{Embedding}(x)$
 439 5: **for** $\ell = 1$ to L **do**
 440 6: $r^{(\ell)} \leftarrow \text{block}^{(\ell)}(z^{(\ell-1)})$
 441 7: $z^{(\ell)} \leftarrow z^{(\ell-1)} + \beta_\ell \cdot r^{(\ell)}$
 442 8: **end for**
 443 9: Compute loss $\mathcal{L}(z^{(L)}, y)$
 444 10: Update β_1, \dots, β_L using gradient descent
 11: **end for**

447
 448 of-distribution (OOD) split. Since no other parameters are updated, the learned β_ℓ serve as a direct
 449 diagnostic of the extent to which each layer should be amplified or attenuated to suit the data regime,
 450 revealing which layers remain stable across regimes and which adapt strongly to distributional shifts.



473 Figure 6: Residual scaling coefficients β_L across all transformer layers. ID training emphasizes later
 474 layers, while OOD training shifts weight toward middle layers, aligning with the generalization
 475 ridge. Curve shows the mean across 5 independent run, and the shaded region denotes $1-\sigma$ error bar.

476
 477 As shown in Figure 6, optimizing the residual scaling coefficient parameters on in-distribution data
 478 consistently yields $\beta_L > 1$, indicating that in-distribution performance benefits from amplifying
 479 the contribution of the final transformer layers. This observation suggests that these deeper layers
 480 specialize in memorizing features specific to the training distribution. In contrast, when trained on
 481 OOD settings, the learned coefficients exhibit $\beta_L < 1$, revealing that the model achieves better
 482 generalization by downweighting the influence of the final layers. Suppressing the contribution of
 483 these memorization-heavy components shifts the reliance back toward intermediate layers, which
 484 encode more generalizable and transferable signals. This pattern holds consistently across models,
 485 reinforcing the interpretation that model depth reflects a functional stratification. Intermediate layers
 concentrate generalizable information that supports generalization, whereas deeper layers become

486 increasingly specialized in memorized patterns tied to the training distribution. Together, these
 487 findings offer empirical evidence for the generalization ridge hypothesis, revealing that information
 488 flow in transformers reflects a trade-off between generalizable signals and memorized, distribution-
 489 specific features.

491 7 CONCLUSION

493 We introduce InfoRidge, an information-theoretic framework designed to trace and quantify how
 494 information evolves across layers in transformer-based language models for natural language
 495 generation. By estimating both predictive information and incremental information gain, we systemat-
 496 ically characterize the layerwise dynamics of information flow, offering a principled view of how
 497 signals are refined, amplified, or diminished as they propagate through the network. Our findings
 498 reveal a consistent *generalization ridge* emerging in intermediate layers, where mutual information
 499 between the hidden representation and the target label reaches its peak before gradually declin-
 500 ing. This phenomenon reflects a fundamental trade-off between generalization and memorization
 501 as information flows deeper into the model. Residual scaling experiments further corroborate this
 502 interpretation, demonstrating the functional specialization of different layers—where intermediate
 503 blocks play a key role in supporting generalization, while deeper layers increasingly focus on mem-
 504 orization. Taken together, these findings position InfoRidge as a comprehensive framework for
 505 diagnosing how language models internally manage information during natural language genera-
 506 tion, while also revealing the structural mechanisms that govern the balance between generalization
 507 and memorization in transformer architectures.

508 **Ethics Statement.** This work adheres to the Code of Ethics. Our experiments use only open-
 509 source models and publicly available datasets under their respective open licenses, with no involve-
 510 ment of human subjects or sensitive data. We identify no foreseeable ethical risks.

512 **Reproducibility Statement.** We ensure reproducibility by providing experimental and implemen-
 513 tation details in Section 4 and Appendices B–C. Full results with statistical significance are in Ap-
 514 pendix E, and anonymous source code is included as supplementary material.

516 REFERENCES

518 Shourya Aggarwal, Divyanshu Mandowara, Vishwajeet Agrawal, Dinesh Khandelwal, Parag Singla,
 519 and Dinesh Garg. Explanations for commonsenseqa: New dataset and models. In *Proceedings*
 520 *of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Inter-
 521 national Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp.
 522 3050–3065, 2021.

523 Kyra Ahrens, Hans Hergen Lehmann, Jae Hee Lee, and Stefan Wermter. Read between the lay-
 524 ers: Leveraging multi-layer representations for rehearsal-free continual learning with pre-trained
 525 models. *arXiv preprint arXiv:2312.08888*, 2023.

526 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
 527 probes. *arXiv preprint arXiv:1610.01644*, 2016.

529 Atsushi Ando, Ryo Masumura, Akihiko Takashima, Satoshi Suzuki, Naoki Makishima, Keita
 530 Suzuki, Takafumi Moriya, Takanori Ashihara, and Hiroshi Sato. On the use of modality-specific
 531 large-scale pre-trained encoders for multimodal sentiment analysis. In *2022 IEEE Spoken Lan-
 532 guage Technology Workshop (SLT)*, pp. 739–746. IEEE, 2023.

533 Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
 534 data representations in deep neural networks. *Advances in Neural Information Processing Sys-
 535 tems*, 32, 2019.

536 Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing transformers in embedding
 537 space. *arXiv preprint arXiv:2209.02535*, 2022.

538 Chunyuan Deng, Ruidi Chang, and Hanjie Chen. Learning distribution-wise control in representa-
 539 tion space for language models. *arXiv preprint arXiv:2506.06686*, 2025.

540 Chenhe Dong, Yinghui Li, Haifan Gong, Miaoxin Chen, Junxin Li, Ying Shen, and Min Yang. A
 541 survey of natural language generation. *ACM Computing Surveys*, 55(8):1–38, 2022.
 542

543 Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
 544 and Zhongyuan Wang. Not all layers of llms are necessary during inference. *arXiv preprint*
 545 *arXiv:2403.02181*, 2024.

546 Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of entropy from data
 547 using infinitely divisible kernels. *IEEE Transactions on Information Theory*, 61(1):535–548,
 548 2014.

549 Ziv Goldfeld. Estimating information flow in deep neural networks. In *International Conference on*
 550 *Machine Learning*, 2019.

551 Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster, Yoav Goldberg, and Mor Geva. Understanding
 552 transformer memorization recall through idioms. *arXiv preprint arXiv:2210.03588*, 2022.

553 Haiyun He, Christina Lee Yu, and Ziv Goldfeld. Information-theoretic generalization bounds for
 554 deep neural networks. *arXiv preprint arXiv:2404.03176*, 2024.

555 Karl Moritz Hermann, Tomás Kocišký, Edward Grefenstette, Lasse Espeholt, Will Kay,
 556 Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend.
 557 In *NIPS*, pp. 1693–1701, 2015. URL <http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend>.

558 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 559 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 560 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

561 Jing Huang, Zhengxuan Wu, Christopher Potts, Mor Geva, and Atticus Geiger. Ravel: Evaluat-
 562 ing interpretability methods on disentangling language model representations. *arXiv preprint*
 563 *arXiv:2402.17700*, 2024.

564 Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan
 565 Zhao, Kai Mei, Yanda Meng, Kaize Ding, et al. Exploring concept depth: How large language
 566 models acquire knowledge and concept at different layers? *arXiv preprint arXiv:2404.07066*,
 567 2024.

568 Tanishq Kumar, Blake Bordelon, Samuel J Gershman, and Cengiz Pehlevan. Grokking as the trans-
 569 ition from lazy to rich training dynamics. In *The twelfth international conference on learning*
 570 *representations*, 2023.

571 Fenglin Liu, Meng Gao, Yuanxin Liu, and Kai Lei. Self-adaptive scaling for learnable residual
 572 structure. In *Proceedings of the 23rd Conference on Computational Natural Language Learning*
 573 (*CoNLL*), pp. 862–870, 2019a.

574 Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith. Linguistic
 575 knowledge and transferability of contextual representations. In *Proceedings of NAACL-HLT*, pp.
 576 1073–1094, 2019b.

577 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 578 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.

579 Gaurav Menghani, Ravi Kumar, and Sanjiv Kumar. Laurel: Learned augmented residual layer. *arXiv*
 580 *preprint arXiv:2411.07501*, 2024.

581 Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and Ian Tenney. What happens to bert embed-
 582 dings during fine-tuning? *arXiv preprint arXiv:2004.14448*, 2020.

583 Meta AI. Meta llama 3.1 8b. <https://huggingface.co/meta-llama/Llama-3.1-8B>,
 584 2024. Accessed: 2025-05-12.

585 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 586 models are unsupervised multitask learners. 2019.

594 Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
 595 pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for*
 596 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1073–1083, Vancouver, Canada, July
 597 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL <https://www.aclweb.org/anthology/P17-1099>.

598

599 Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
 600 tion. *arXiv preprint arXiv:1703.00810*, 2017.

601

602 Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. Clutrr: A
 603 diagnostic benchmark for inductive reasoning from text. *Empirical Methods of Natural Language*
 604 *Processing (EMNLP)*, 2019.

605

606 Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
 607 Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. *arXiv*
 608 *preprint arXiv:2502.02013*, 2025.

609

610 Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. *arXiv*
 611 *preprint arXiv:1905.05950*, 2019.

612

613 Arnas Uselis and Seong Joon Oh. Intermediate layer classifiers for ood generalization. *arXiv*
 614 *preprint arXiv:2504.05461*, 2025.

615

616 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 617 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 618 *tion processing systems*, 30, 2017.

619

620 Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
 621 model. *arXiv preprint arXiv:1906.04284*, 2019.

622

623 Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
 624 Huang, Yaron Singer, and Stuart Shieber. Causal mediation analysis for interpreting neural nlp:
 625 The case of gender bias. *arXiv preprint arXiv:2004.12265*, 2020.

626

627 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.

628

629 Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
 630 transformer: A study with machine translation and language modeling objectives. *arXiv preprint*
 631 *arXiv:1909.01380*, 2019.

632

633 Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. Interpretabil-
 634 ity at scale: Identifying causal mechanisms in alpaca. *Advances in neural information processing*
 635 *systems*, 36:78205–78226, 2023.

636

637 Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Man-
 638 ning, and Christopher Potts. Reft: Representation finetuning for language models. *Advances in*
 639 *Neural Information Processing Systems*, 37:63908–63962, 2024.

640

641 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 642 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 643 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 644 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 645 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 646 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 647 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 648 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 649 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

650

651 Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
 652 neural networks? *Advances in neural information processing systems*, 27, 2014.

653

654 Qinan Yu, Jack Merullo, and Ellie Pavlick. Characterizing mechanisms for factual recall in language
 655 models. *arXiv preprint arXiv:2310.15910*, 2023.

648 **A MATHEMATICAL DETAILS FOR MATRIX-BASED INFORMATION
649 ESTIMATION AND THEORETICAL FOUNDATIONS**
650

651 We employ the matrix-based Rényi entropy [Giraldo et al. \(2014\)](#) to estimate mutual information
652 between representations and labels, leveraging kernel Gram matrices to capture sample similarity.
653

654 **A.1 MATRIX-BASED ENTROPY ESTIMATION**
655

656 Let $U = \{u_i\}_{i=1}^N \subset \mathbb{R}^d$ denote ℓ_2 -normalized representations obtained from a specific transformer
657 layer, a residual update, or the embedding of the target label. A Gaussian kernel Gram matrix
658 $G_U \in \mathbb{R}^{N \times N}$ is constructed as: $(G_U)_{ij} = \exp\left(-\frac{\|u_i - u_j\|^2}{2\sigma^2}\right)$, with bandwidth $\sigma = 1$. The matrix
659 is then trace-normalized to ensure $\text{tr}(G_U) = 1$.
660

661 The matrix-based Rényi entropy of order $\alpha = 1$ is defined as:
662

663
$$H(U) = -\text{tr}(G_U \log G_U).$$

664

665 This expression can be interpreted in terms of the eigenvalue spectrum $\{\lambda_k\}$ of G_U , since G_U is
666 positive semi-definite and trace-normalized:
667

668
$$H(U) = -\sum_{k=1}^N \lambda_k \log \lambda_k.$$

669
670

671 The entropy thus reflects the dispersion of the eigenvalues. A more uniform spectrum (i.e., higher
672 entropy) suggests more diversity in the representation space, while a sharply peaked spectrum (i.e.,
673 low entropy) indicates redundancy or compression.
674

675 **A.2 MUTUAL INFORMATION ESTIMATION**
676

677 To estimate the mutual information between two random variables U and V , we compute their Gram
678 matrices G_U and G_V , and form the joint similarity matrix via element-wise (Hadamard) product:
679 $G_{UV} = G_U \circ G_V$. After trace-normalization, mutual information is estimated by: $I(U; V) =$
680 $H(U) + H(V) - H(U, V)$, where $H(U, V) = -\text{tr}(G_{UV} \log G_{UV})$. The eigenvalue spectrum of
681 G_{UV} governs the joint entropy term; its shape reflects how much of the structure in U and V aligns.
682 A more concentrated spectrum in G_{UV} relative to G_U and G_V implies stronger dependence and
683 thus higher mutual information.
684

685 **A.3 MIN WASSERSTEIN GENERALIZATION BOUND (HE ET AL., 2024)**
686

687 We restate the generalization bound proposed by He et al. ([He et al., 2024](#)), which characterizes
688 generalization in terms of the Wasserstein distance between internal representations.
689

690 Suppose that the loss function $\tilde{\ell} : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$ is ρ_0 -Lipschitz, and the activation function
691 $\phi_\ell : \mathbb{R} \rightarrow \mathbb{R}$ is ρ_ℓ -Lipschitz for each $\ell = 1, \dots, L$. Then:
692

693
$$\text{gen}(P_{W|\mathcal{D}_n}, P_{X,Y}) \leq \min_{\ell} \frac{\rho_0}{n} \sum_{i=1}^n \mathbb{E}_W \left[\left(1 \vee \prod_{j=\ell+1}^L \rho_j \|W_j\|_{\text{op}} \right) \cdot \mathcal{W}_1(P_{T_{\ell,i}, Y_i|W}(\cdot|W), P_{T_{\ell,Y|W}}(\cdot|W)) \right] \quad (3)$$

694

695 This result shows that generalization can be tightly controlled by the Wasserstein distance ([Villani et al., 2008](#))
696 between representations at a specific layer—referred to the generalization funnel layer.
697

698 **Connection to Our Work.** The *Min Wasserstein Generalization Bound* ([He et al., 2024](#)) provides
699 a theoretical foundation for our study by characterizing generalization in terms of distributional
700 alignment at an intermediate layer. It motivates our analysis of information flow by suggesting that
701 information is peaked at a specific layer—the generalization funnel. Our InfoRidge builds on this
702 insight by quantifying predictive information across layers, and reveals that a specific intermediate
703 layer exhibits peak mutual information and correlates with better generalization performance.
704

702 **B DATASET OVERVIEW AND STATISTICS**
703704 To evaluate information flow and generalization dynamics across model layers, we conduct experiments
705 on three datasets with varying levels of complexity and structure: CLUTRR, ECQA, and a
706 custom-designed Synthetic Arithmetic dataset. Table B.1 summarizes key dataset statistics.
707708 **B.1 DATASET OVERVIEW**
709710 **Table 3: Dataset Statistics**
711

712 Dataset	#Train	Train Seq. Len	#Val	Val Seq. Len	#Test	Test Seq. Len
713 CLUTRR	9,074	30	2,020	29	1,146	70
714 ECQA	7,598	21	1,090	21	2,194	21
715 Synthetic Arithmetic	10,000	9	2,000	9	2,000	9

716 **B.2 CLUTRR**
717719 CLUTRR (Compositional Language Understanding and Text-based Relational Reasoning) (Sinha
720 et al., 2019) is a diagnostic benchmark for evaluating relational inference in language models. Each
721 example contains a story describing family relations, and the task is to infer the missing relationship
722 between two entities. The distribution shift stems from clause lengths that are absent in the training
723 set but present during evaluation. We use the task split “gen_train23.test2to10”, where the model is
724 trained on clause lengths 2 and 3 and evaluated on lengths 2 through 10.
725726 **B.3 ECQA**
727728 ECQA (Explanations for CommonsenseQA) (Aggarwal et al., 2021) is a commonsense multiple-
729 choice question-answering dataset, where each question is accompanied by 5 answer options.
730731 **B.4 SYNTHETIC ARITHMETIC DATASET**
732733 We construct a synthetic diagnostic dataset to disentangle task-relevant signal learning from spuri-
734 ous noise memorization in a controlled setting. Each sample consists of a sequence of 10 symbolic
735 elements, where the signal component follows an arithmetic progression modulo K , and the remain-
736 der of each element is independently corrupted with random noise. By varying the modulus K , we
737 systematically control task complexity and introduce structured shifts in the data distribution.
738739 **Synthetic Arithmetic Dataset Construction.** At each position t , the signal value is computed as:
740

741
$$s_t = (s_0 + t \cdot d) \bmod K, \quad \text{with } s_0 \in [0, K-1], \quad d \in [1, K-1].$$

742 Each element in the sequence is represented as a string of the form:
743

744
$$S\{signal\}N\{noise\}, \quad \text{where noise} \sim \mathcal{U}_{\text{int}}(0, \text{noise_range}-1).$$

745 Here \mathcal{U}_{int} denotes the uniform distribution. The model is trained to predict the signal value of the
746 final (10th) element, using the preceding elements as input context.
747748 For example, with $K = 5$, $s_0 = 1$, and $d = 2$, a sample might look like:
749750
$$S1_N42\ S3_N77\ S0_N18\ S2_N56\ S4_N90\ S1_N11\ S3_N65\ S0_N23\ S2_N37$$
751 Each element encodes both a signal (the number following S) and a noise component (the number
752 following N). The target is 4, corresponding to the signal of the final (10th) item in the sequence.
753754 **C IMPLEMENTATION DETAILS**
755756 This appendix outlines implementation details in our experiments.
757

756 C.1 PROMPT CONSTRUCTION
757758 All tasks are cast into a next-token generation format. The model receives a prompt and generate
759 the next token. Below are construction strategies and examples for each dataset:

760

761 **CLUTRR** Each input example in CLUTRR consists of a short narrative describing a set of family
762 relationships, along with a query involving a pair of entities. We construct prompts by concatenating
763 the narrative and a structured natural language question derived from the query tuple. The model is
764 trained to predict the correct relationship as the next token.765 **Prompt:**

766

767 Story: [Alice] is [Bob]’s mother. [Bob] is [Charlie]’s father.

768

Query: What is the relationship between Alice and Charlie? Answer:

769

Target: grandmother

770

771 **ECQA (Explanation-augmented Commonsense QA)** Each ECQA instance consists of a
772 multiple-choice question with five candidate answers. We format the prompt by presenting the
773 question followed by all five options (labeled A–E), and conclude with an explicit answer query.
774 The model is trained to predict the correct answer letter as the next token.

775

Prompt:

776

Question: What do people usually do at a birthday party?

777 Options:

778

- A. Sleep
- B. Celebrate
- C. Cook
- D. Exercise
- E. Drive

782

Answer:

783

Target: B

784

785 **Synthetic Arithmetic** Each synthetic sample consists of a sequence of 10 symbolic elements,
786 where each element is formatted as $S\{\text{signal}\}_N\{\text{noise}\}$. The signal values follow an arithmetic
787 progression modulo K , and the noise values are independently sampled from a uniform distribution
788 with a fixed range of 100. During training, the modulus K is set to 13. For evaluation, test sequences
789 are generated using values of K from the range [5, 26] excluding 13 to simulate a distribution shift.
790 In the residual β_ℓ analysis, we use $K = 13$ for in-distribution (ID) training and $K = 17$ for out-
791 of-distribution (OOD) training, allowing for a controlled comparison between generalization and
792 memorization behavior. The model receives the first 9 tokens as input and is trained to predict the
793 signal component of the 10th token.

794

Prompt:

795

S1_N42 S3_N88 S5_N20 S7_N10 S9_N65 S11_N43 S0_N99 S2_N38 S4_N77

796

Target: 6

797

This controlled format enables manipulation of distributional properties by varying the modulus K .

800

C.2 FINETUNING SETTINGS

801

We fine-tuned all layers end-to-end using AdamW (learning rate 5×10^{-6} , weight decay 0.01) with
802 a linear schedule (warmup ratio 0.1) and early stopping on validation loss. Training converged in all
803 settings.

804

C.3 INFORMATION ESTIMATION

805

To estimate mutual information, we subsample between 50 and 200 test examples depending on
806 model and task to achieve a stable result.

810 C.4 RESIDUAL SCALING WITH LEARNABLE β_ℓ PARAMETERS
811812 We introduce a vector of learnable scalar weights $\beta = \{\beta_1, \dots, \beta_L\}$ applied to residual connections
813 in a frozen transformer:

814
815
$$z^{(\ell)} = z^{(\ell-1)} + \beta_\ell \cdot \text{Block}^{(\ell)}(z^{(\ell-1)}).$$

816

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
170100
170101
170102
170103
170104
170105
170106
170107
170108
170109
170110
170111
170112
170113
170114
170115
170116
170117
170118
170119
170120
170121
170122
170123
170124
170125
170126
170127
170128
170129
170130
170131
170132
170133
170134
170135
170136
170137
170138
170139
170140
170141
170142
170143
170144
170145
170146
170147
170148
170149
170150
170151
170152
170153
170154
170155
170156
170157
170158
170159
170160
170161
170162
170163
170164
170165
170166
170167
170168
170169
170170
170171
170172
170173
170174
170175
170176
170177
170178
170179
170180
170181
170182
170183
170184
170185
170186
170187
170188
170189
170190
170191
170192
170193
170194
170195
170196
170197
170198
170199
170200
170201
170202
170203
170204
170205
170206
170207
170208
170209
170210
170211
170212
170213
170214
170215
170216
170217
170218
170219
170220
170221
170222
170223
170224
170225
170226
170227
170228
170229
170230
170231
170232
170233
170234
170235
170236
170237
170238
170239
170240
170241
170242
170243
170244
170245
170246
170247
170248
170249
170250
170251
170252
170253
170254
170255
170256
170257
170258
170259
170260
170261
170262
170263
170264
170265
170266
170267
170268
170269
170270
170271
170272
170273
170274
170275
170276
170277
170278
170279
170280
170281
170282
170283
170284
170285
170286
170287
170288
170289
170290
170291
170292
170293
170294
170295
170296
170297
170298
170299
170300
170301
170302
170303
170304
170305
170306
170307
170308
170309
170310
170311
170312
170313
170314
170315
170316
170317
170318
170319
170320
170321
170322
170323
170324
170325
170326
170327
170328
170329
170330
170331
170332
170333
170334
170335
170336
170337
170338
170339
170340
170341
170342
170343
170344
170345
170346
170347
170348
170349
170350
170351
170352
170353
170354
170355
170356
170357
170358
170359
170360
170361
170362
170363
170364
170365
170366
170367
170368
170369
170370
170371
170372
170373
170374
170375
170376
170377
170378
170379
170380
170381
170382
170383
170384
170385
170386
170387
170388
170389
170390
170391
170392
170393
170394
170395
170396
170397
170398
170399
170400
170401
170402
170403
170404
170405
170406
170407
170408
170409
170410
170411
170412
170413
170414
170415
170416
170417
170418
170419
170420
170421
170422
170423
170424
170425
170426
170427
170428
170429
170430
170431
170432
170433
170434
170435
170436
170437
170438
170439
170440
170441
170442
170443
170444
170445
170446
170447
170448
170449
170450
170451
170452
170453
170454
170455
170456
170457
170458
170459
170460
170461
170462
170463
170464
170465
170466
170467
170468
170469
170470
170471
170472
170473
170474
170475
170476
170477
170478
170479
170480
170481
170482
170483
170484
170485
170486
170487
170488
170489
170490
170491
170492
170493
170494
170495
170496
170497
170498
170499
170500
170501
170502
170503
170504
170505
170506
170507
170508
170509
170510
170511
170512
170513
170514
170515
170516
170517
170518
170519
170520
170521
170522
170523
170524
170525
170526
170527
170528
170529
170530
170531
170532
170533
170534
170535
170536
170537
170538
170539
170540
170541
170542
170543
170544
170545
170546
170547
170548
170549
170550
170551
170552
170553
170554
170555
170556
170557
170558
170559
170560
170561
170562
170563
170564
170565
170566
170567
170568
170569
170570
170571
170572
170573
170574
170575
170576
170577
170578
170579
170580
170581
170582
170583
170584
170585
170586
170587
170588
170589
170590
170591
170592
170593
170594
170595
170596
170597
170598
170599
170600
170601
170602
170603
170604
170605
170606
170607
170608
170609
170610
170611
170612
170613
170614
170615
170616
170617
170618
170619
170620
170621
170622
170623
170624
170625
170626
170627
170628
170629
170630
170631
170632
170633
170634
170635
170636
170637
170638
170639
170640
170641
170642
170643
170644
170645
170646
170647
170648
170649
170650
170651
170652
170653
170654
170655
170656
170657
170658
170659
170660
170661
170662
170663
170664
170665
170666
170667
170668
170669
170670
170671
170672
170673
170674
170675
170676
170677
170678
170679
170680
170681
170682
170683
170684
170685
170686
170687
170688
170689
170690
170691
170692
170693
170694
170695
170696
170697
170698
170699
170700
170701
170702
170703
170704
170705
170706
170707
170708
170709
170710
170711
170712
170713
170714
170715
170716
170717
170718
170719
170720
170721
170722
170723
170724
170725
170726
170727
170728
170729
170730
170731
170732
170733
170734
170735
170736
170737
170738
170739
170740
170741
170742
170743
170744
170745
170746
170747
170748
170749
170750
170751
170752
170753
170754
170755
170756
170757
170758
170759
170760

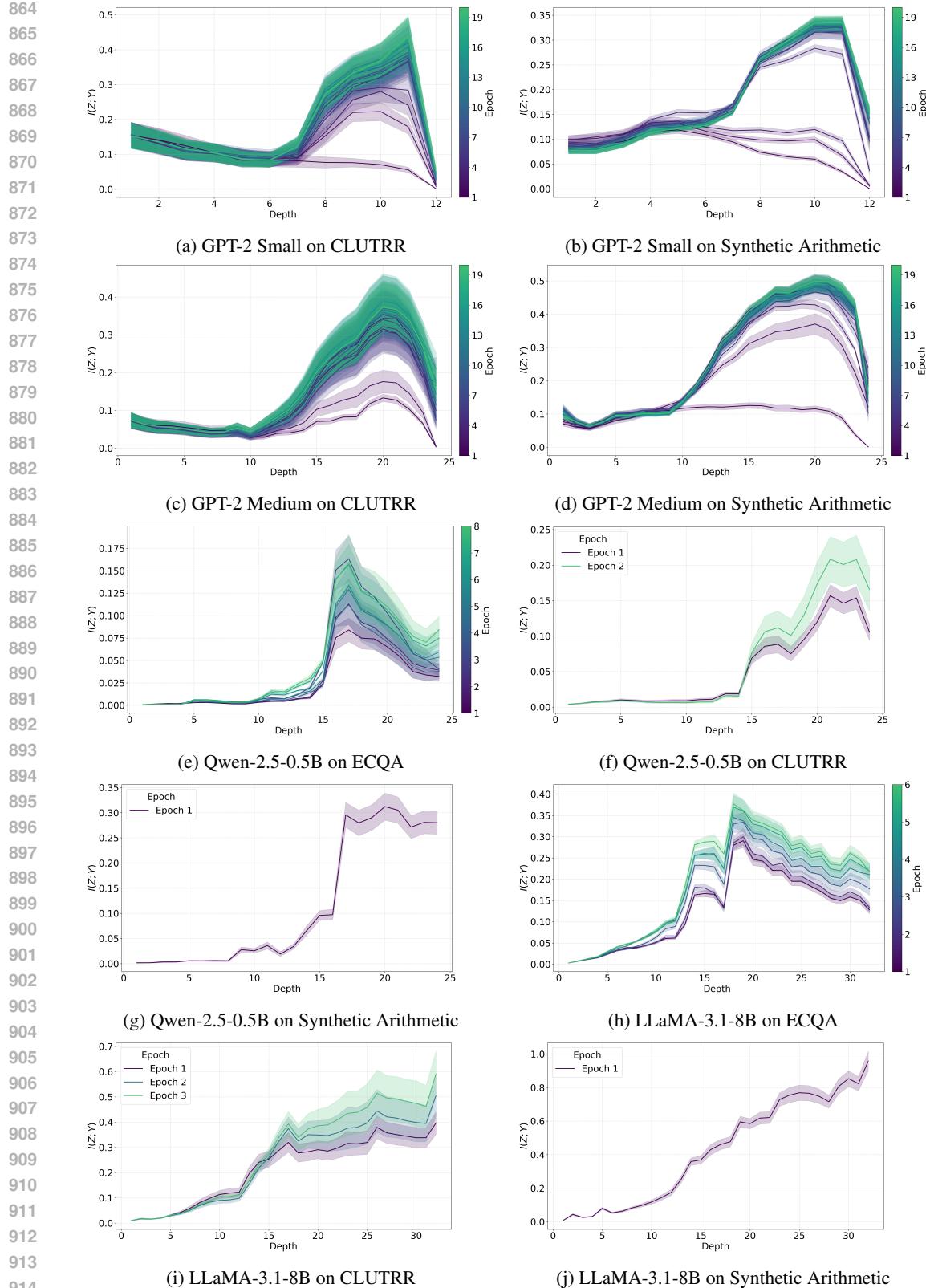
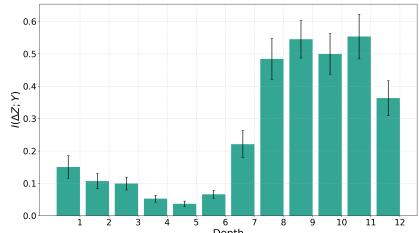
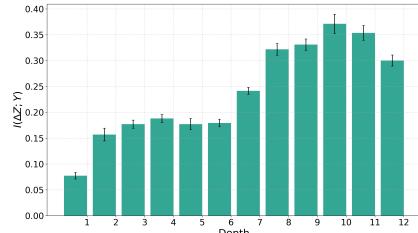


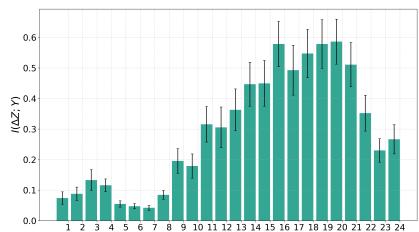
Figure 7: Predictive information $I(Z; Y)$ across different models and datasets exhibits an information peak, indicating a generalization ridge. In cases where the task is too simple relative to model capacity—such as the synthetic arithmetic task with LLaMA—this trend reflects an overfitting regime. Lighter line colors represent later training epochs. Each curve shows the mean across 5 random seeds (0, 1, 2, 3, 42), and the shaded region denotes a 2-sigma (~96%) confidence interval.

918 E.2 INCREMENTAL INFORMATION GAIN
919920 In addition to predictive information $I(Z^{(\ell)}; Y)$, we compute the incremental information gain
921 $I(\Delta Z^{(\ell)}; Y)$ at each layer. This quantifies the information contribution for each transformer block.
922

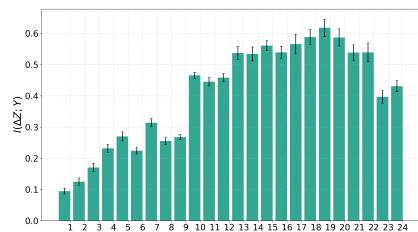
(a) GPT-2 Small on CLUTRR



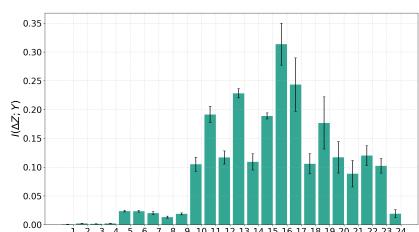
(b) GPT-2 Small on Synthetic Arithmetic



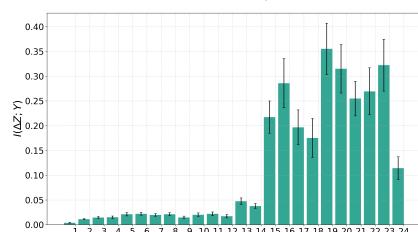
(c) GPT-2 Medium on CLUTRR



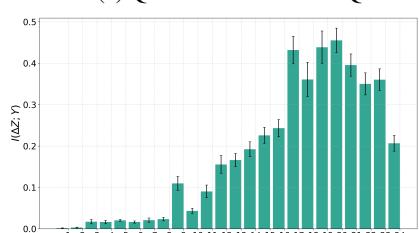
(d) GPT-2 Medium on Synthetic Arithmetic



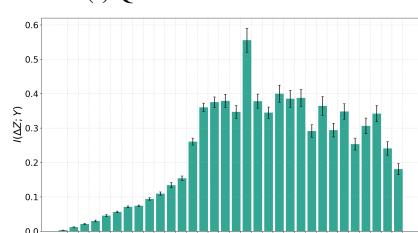
(e) Qwen-2.5-0.5B on ECQA



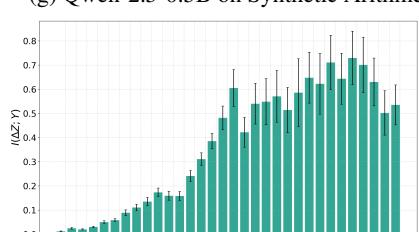
(f) Qwen-2.5-0.5B on CLUTRR



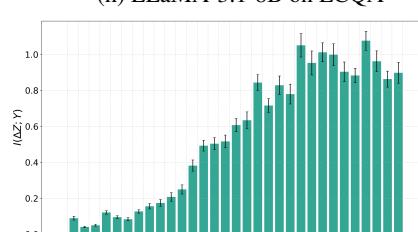
(g) Qwen-2.5-0.5B on Synthetic Arithmetic



(h) LLaMA-3.1-8B on ECQA



(i) LLaMA-3.1-8B on CLUTRR

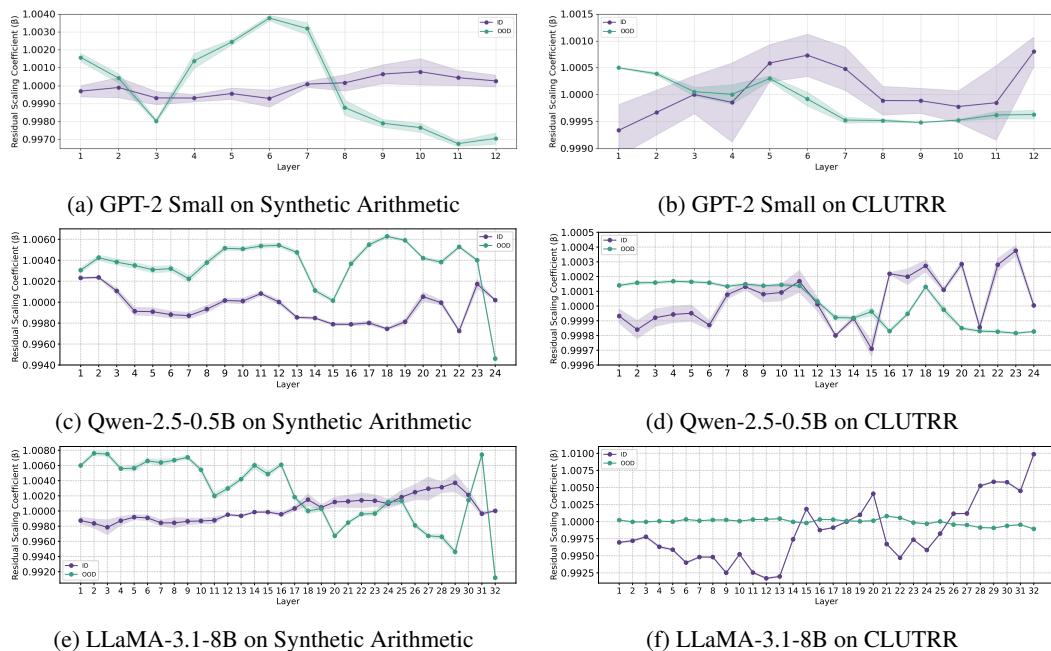


(j) LLaMA-3.1-8B on Synthetic Arithmetic

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Figure 8: Incremental information gain $I(\Delta Z; Y)$ across different models and datasets with $\sim 96\%$ CI error bars. Across all models, we observe that the largest incremental information gain consistently occurs in intermediate layers—further supporting the emergence of a generalization ridge.

972 E.3 RESIDUAL SCALING
973

974 We introduce a *residual scaling mechanism* with learnable scalar coefficient parameters, inspired
975 by prior work on adaptive residual modulation (Liu et al., 2019a; Menghani et al., 2024). Similar
976 ideas of modulating internal computation have also been explored in parameter-efficient fine-tuning
977 (PEFT) (Houlsby et al., 2019), Representation-Efficient Fine-Tuning (REFT) (Wu et al., 2024) and
978 interpretability-driven control (Huang et al., 2024; Deng et al., 2025; Meng et al., 2022; Wu et al.,
979 2023). We present the complete set of residual scaling results, detailing the learned β_ℓ values across
980 all transformer layers. These values reflect the relative contribution of each layer after optimizing
981 the residual scaling coefficients while keeping all other model parameters frozen. β_ℓ are trained
982 on in-distribution (ID) and out-of-distribution (OOD) data. We observe that in the ID setting, later
983 layers tend to receive higher weights, consistent with memorization behavior. In contrast, OOD
984 training consistently downweights final layers and shifts importance toward the middle of the net-
985 work, aligning with the generalization ridge identified through InfoRidge.
986



1007 Figure 9: Residual scaling coefficients β_ℓ across all transformer layers. ID training emphasizes later
1008 layers, while OOD training shifts weight toward middle layers, aligning with the generalization
1009 ridge observed via InfoRidge. Each curve shows the mean across five random seeds (0, 1, 2, 3, 42),
1010 and the shaded region denotes 1-sigma error bar.
1011

1012 F ATTENTION DYNAMICS ACROSS LAYERS CASE STUDY
1013

1014 To verify whether generalization ridge layer indeed correspond to semantically meaningful process-
1015 ing, we visualize the attention patterns as a more interpretable signal of where the model focuses.
1016 As shown in Figure 10, we visualize attention maps across layers.
1017

1018 In early layers (e.g., Layer 1), attention is diffuse and biased toward final tokens—reflecting reliance
1019 on position rather than true predict signals.
1020

1021 By generalization ridge layers (e.g., Layer 11), attention becomes more targeted, concentrating on
1022 predictive tokens. This shift marks a transition from positional attention to semantically meaningful
1023 focus, suggesting that intermediate layers are increasingly capable of isolating task-relevant infor-
1024 mation from irrelevant content.
1025

1025 In the final layers, attention regresses toward final tokens. This reversion is aligned with the observed
decline in $I(Z_\ell; Y)$. The resurgence of attention towards terminal tokens indicates a potential memo-

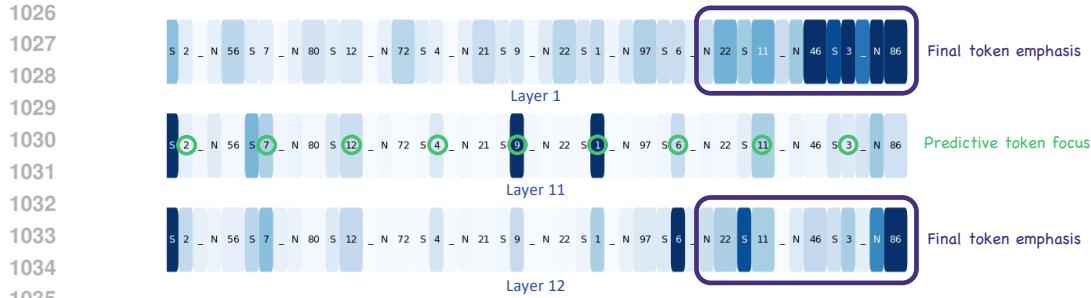


Figure 10: Attention map across layers (GPT-2 Small, Synthetic). At the generalization ridge layers, attention becomes more targeted, focusing on predictive tokens.

rirization scenario, where the model re-engages superficial positional strategies, possibly memorizing noise rather than further refining the generalized extraction of predictive signals.

This attention trajectory further supports the generalization ridge hypothesis, highlighting a trade-off between generalization and memorization in the model’s representational strategy.

G INCREMENTAL INFORMATION GAIN CASE STUDY

To further illustrate how intermediate layers contribute to generalization, we analyze the semantic content introduced by residual transitions at different depths. Specifically, we decode the residual transition δz at each layer using the language modeling (LM) head, projecting the incremental representation back into token space.

This analysis allows us to inspect the linguistic shift introduced by each transformer block in isolation, and to assess whether the changes correspond to task-relevant predictions or superficial noises.

G.1 METHODOLOGY

For a fixed input, we compute residual transitions $\delta z^{(\ell)}$ at each layer and pass them through the model’s final linear projection (LM head) followed by a softmax. We record the top predicted tokens and their probabilities, and it reflects the directional change applied by layer ℓ .

G.2 OBSERVATIONS

We decode residual transitions across layers and report the top shifted tokens by projecting $\Delta Z^{(\ell)}$ through the LM head. These shifts provide insight into how each layer modifies the model’s internal prediction trajectory.

Layer 9 → 10: The top shifted tokens include `GNine`, `G10`, `G4`, `G8`, and `8`, which are all numerically aligned with the target prediction space in the synthetic arithmetic task. This indicates that the model is beginning to refine task-relevant numerical features at this depth.

Layer 10 → 11: The shifted tokens become partially diluted, featuring punctuation and less informative symbols such as `,`, `G`, and `.`, alongside occasional task-relevant entries like `G12` and `G4`. This indicates a transitional phase where the model continues to refine meaningful task-relevant features, yet begins to exhibit noise from frequent but semantically uninformative, such as punctuation, tokens.

Layer 11 → 12: At the final layer transition, the top 5 shifted tokens become largely uninterpretable, including `Gcanaver`, `soDeliveryDate`, `enegger`, `76561`, and `ILA`. Conversely, the most negatively shifted tokens—`G4`, `G3`, `G5`, `G6`, `G1`—correspond to plausible numerical predictions that were actively suppressed. This supports the hypothesis that final layers may overwrite generalizable abstractions with memorized or noise signals.

These patterns are consistent with our mutual information analysis, which identifies intermediate layers as better semantically aligned with the prediction target—forming a ridge of generalization.

1080
1081

G.3 IMPLICATION

1082
1083
1084
1085

These decoding results reinforce our interpretation of the generalization ridge: intermediate layers contribute the most semantically informative updates to the model’s representation. The residual transitions thus serve as a useful lens for understanding how and where semantic meaning is introduced during forward propagation.

1086

1087
1088

H ACTIVATION PATCHING EXPERIMENT

1089
1090
1091

To assess which residual blocks causally support OOD prediction, we conduct a targeted activation-patching experiment. Let the model contain L residual blocks with hidden states $Z_\ell \in \mathbb{R}^d$, and let t^* denote the final context token (the last token before next-token prediction). For every OOD sequence x_{ood} , we pair it with an ID sequence x_{id} sharing the same token structure. For each depth $\ell \in \{1, \dots, L\}$, we compute two forward passes: a standard OOD pass and a patched pass in which we replace only the hidden state of token t^* at depth ℓ according to $Z_\ell(x_{\text{ood}}, t^*) \leftarrow Z_\ell(x_{\text{id}}, t^*)$. All other activations remain unchanged. Let $\text{logit}_{\text{base}}$ denote the logit assigned to the correct next token under the baseline OOD pass, and let $\text{logit}_{\text{patch}}^{(\ell)}$ denote the corresponding logit under layer- ℓ patching. We measure causal impact using the logit drop $\Delta_\ell = \text{logit}_{\text{base}} - \text{logit}_{\text{patch}}^{(\ell)}$, where a positive value indicates that depth ℓ provides information necessary for correct OOD prediction.

1092
1093
1094
1095
1096
1097
1098

Table 5 reports the averaged logit drop for all $\ell = 1, \dots, 12$ (GPT-2 Small on Synthetic Dataset). The effects are negligible for layers 1–8, begin rising around layer 9, increase sharply at layer 10, peak at layer 11, and decline again at layer 12. This rise–peak–fall pattern closely matches the ridge structure observed in Figure 2, where $I(Z_\ell; Y)$ increases through mid-to-late depth, reaches a maximum in the ridge region, and then decreases. The activation-patching experiment therefore provides supporting causal evidence that the ridge layers identified by IndoRidge are necessary for successful OOD generalization.

1100
1101
1102
1103
1104
1105
1106
1107
1108

Table 5: Average logit drop Δ_ℓ (baseline logit - patched logit). Larger values indicate greater causal contribution to OOD prediction.

1109
1110
1111

Layer ℓ	1	2	3	4	5	6	7	8	9	10	11	12
Δ_ℓ	-0.1037	-0.1039	-0.0327	-0.5405	-5.1663	-8.3992	-5.8914	-15.0996	-3.0998	9.3148	17.2022	15.5943

1112

1113
1114

I EXTENDING PREDICTIVE INFORMATION TO MULTI-TOKEN OUTPUTS

1115
1116
1117

To complement our single-token analysis, we further evaluate information flow under multi-token outputs using the CNN/Daily Mail summarization dataset (1.0.0, test) (See et al., 2017; Hermann et al., 2015).

1118
1119
1120
1121
1122
1123

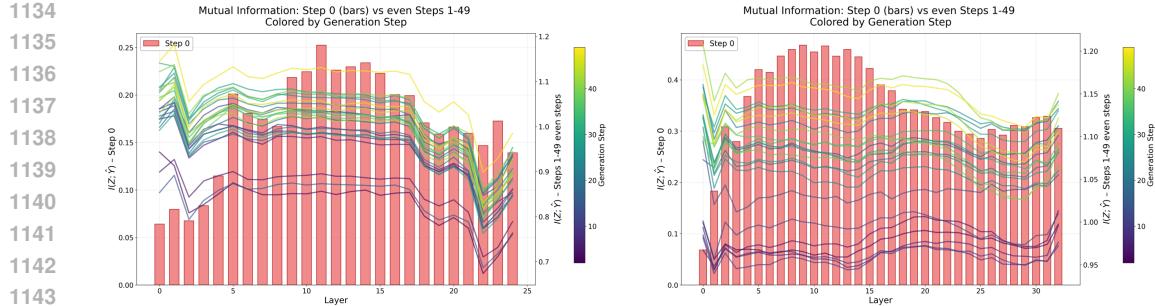
Autoregressive next-token information. We follow the model’s natural decoding process. We analyze $I(Z_\ell^{(t)}; \hat{Y}^{(t+1)})$ since there is no deterministic gold answer for each intermediate step in NLG, where for each generation step t , $Z_\ell^{(t)}$ is the hidden state of current token at layer ℓ and $\hat{Y}^{(t+1)}$ is the embedding of model’s predicted token at step $t + 1$.

1124
1125
1126
1127
1128
1129
1130
1131
1132

Across steps, the pattern is consistent (Figure 11): information rises from early layers, peaks in the middle layers, and then declines toward top layers. This gives a clear information ridge, indicating that intermediate layers encode the most stable and task-relevant core information that supports the model’s decision-making (generalization). In particular, high $I(Z_\ell^{(t)}; \hat{Y}^{(t+1)})$ at these layers means the model’s predictive direction is most strongly determined by that layer: layers whose representations consistently constrain the next-token prediction across many contexts must encode the shared, invariant structure that the model relies on to generalize. In contrast, upper layers exhibit behavior that might be related to pretrained surface patterns from corpus such as token co-occurrence, causing the representation to drift away from this decision-relevant structure (memorization).

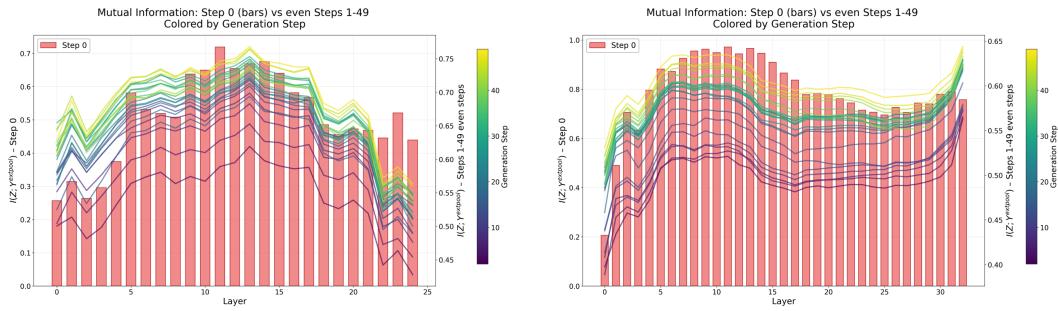
1133

The first step is a notable outlier: it is the only step that conditions solely on the input prompt, and shows the sharpest and most pronounced ridge. Generating the first token requires a global transition



(a) Qwen-2.5-0.5B on CNN/Daily Mail for 50 generation steps.

(b) LLaMA-3.1-8B on CNN/Daily Mail for 50 generation steps.

Figure 11: $I(Z_\ell^{(t)}; \hat{Y}^{(t+1)})$ across layers (x-axis) and generation steps (y-axis), where the left y-axis shows first step mutual information (bars) and the right y-axis shows mutual information for the rest steps.

(a) Qwen-2.5-0.5B on CNN/Daily Mail for 50 generation steps.

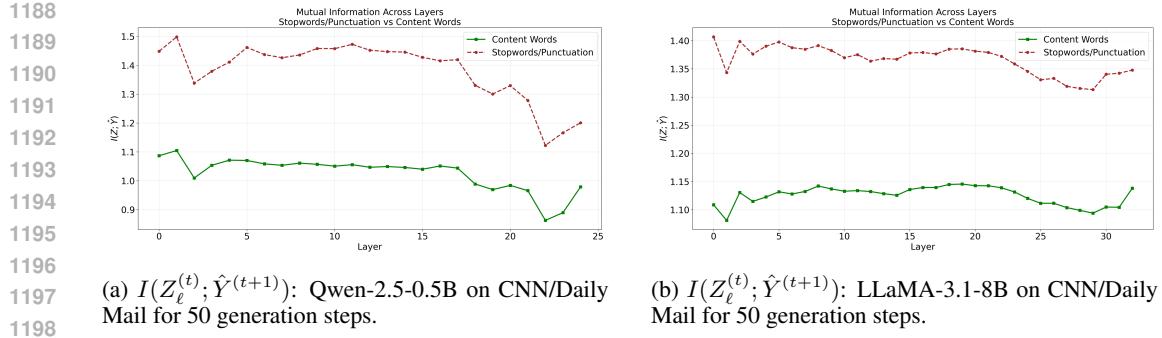
(b) LLaMA-3.1-8B on CNN/Daily Mail for 50 generation steps.

Figure 12: $I(Z_\ell^{(t)}; Y^{\text{pool}})$ across layers (x-axis) and generation steps (y-axis), where the left y-axis shows first step mutual information (bars) and the right y-axis shows mutual information for the rest steps.

from the prompt into the answer trajectory, which heavily engages the abstract, decision-relevant subspace in the middle layers. Crucially, this is also the point where information compression is most extreme, the model must condense all prompt-level semantics into a single initial token decision, therefore forms a substantial ridge. Once generation begins, later generation steps move into a more regular autoregressive regime, where each hidden state already contains a compressed summary of all previously generated content, and the continuation depends more on local context than on global restructuring. Consequently, the depth profiles become flatter and more stable across steps, although the mid-layer ridge remains visible.

Pooled-answer information. We quantify how much information each layer carries about the gold answer by computing $I(Z_\ell^{(t)}; Y^{\text{pool}})$, where Y^{pool} is a fixed target vector obtained by average-pooling the embedding-layer representations of all ground-truth answer tokens. Across models and steps (Figure 12), a consistent pattern emerges: intermediate layers are where the hidden state is most strongly aligned with the gold-answer.

Taken together, the two constructions reveal a coherent picture of depth specialization in multi-token generation. Intermediate layers are simultaneously the most informative about the model’s next-token decisions and the most aligned with the global answer. Thus, the two observed ridges are complementary projections of a single underlying phenomenon: intermediate layers concentrated most meaningful and decision-relevant information. In contrast, upper layers increasingly reflect pretrained corpus-specific surface patterns, causing the representation to drift away from this decision-relevant structure.



1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 13: Mutual information comparing stopwords/punctuation against content words, showing that both stopwords/punctuation have consistently higher MI.

We also plot the mutual information comparing stopwords/punctuation against content words, showing that both stopwords/punctuation have consistently higher MI (Figure 13). These tokens are more predictable because they follow strict grammatical and structural patterns, whereas content words depend more on semantic context and therefore exhibit greater variability.

J NON-FINETUNED SCENARIO

Beyond fine-tuning scenarios, we also computed predictive-information $I(Z_\ell; Y)$ curves in a non-training zero-shot regime and observed the same mid-layer information peak pattern, see Figure 14

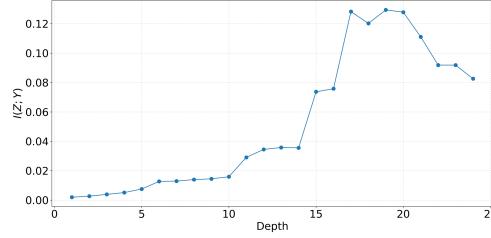


Figure 14: GSM8K on Qwen2.5-0.5B shows an intermediate-layer MI rise and late-layer decline.

K KERNEL ABLATION

The matrix-based MI estimator requires a positive-definite Gram matrix, for which the Gaussian kernel is the standard choice. To assess robustness with respect to kernel selection, we additionally test the Laplacian and Polynomial kernels. While these kernels introduce quantitative shifts in the magnitude, the trend—including the rise–peak–decline structure and the location of the ridge—remains unchanged (Figure 15).

Polynomial Kernel. Given a set of normalized representations $U = \{u_i\}_{i=1}^N$, the polynomial kernel Gram matrix is defined as

$$(G_U^{\text{poly}})_{ij} = (u_i^\top u_j + c_0)^p, \quad (4)$$

where p is the polynomial degree and c_0 is a constant bias term.

Laplacian Kernel. Given the same representation set $U = \{u_i\}_{i=1}^N$, the Laplacian kernel Gram matrix is defined as

$$(G_U^{\text{lap}})_{ij} = \exp(-\gamma \|u_i - u_j\|_1), \quad (5)$$

where $\gamma > 0$ is a kernel coefficient and $\|\cdot\|_1$ denotes the ℓ_1 distance.

1242

1243

1244

1245

1246

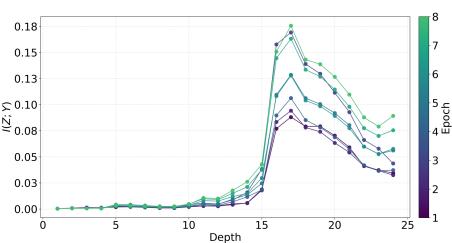
1247

1248

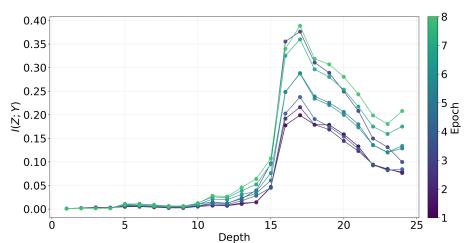
1249

1250

1251



(a) Gaussian Kernel: Qwen-2.5-0.5B on ECQA.



(b) Polynomial Kernel: Qwen-2.5-0.5B on ECQA.

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

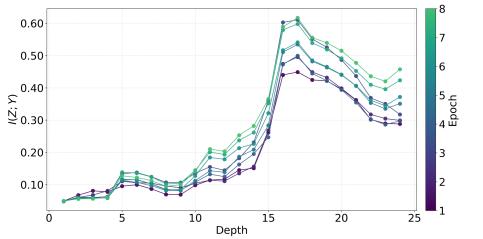
1263

1264

1265

L USE OF LARGE LANGUAGE MODELS.

Large language models (LLMs) were used solely as assistive tools for proofreading and improving clarity of writing.



(c) Laplacian Kernel: Qwen-2.5-0.5B on ECQA..

Figure 15: Different kernel shows similar pattern.

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295