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ABSTRACT

Transformer-based language models have achieved state-of-the-art performance in
natural language generation (NLG) tasks, yet their internal mechanisms for syn-
thesizing task-relevant information remain insufficiently understood. While prior
studies suggest that intermediate layers often yield more generalizable represen-
tations than final layers, how this generalization ability emerges and propagates
across layers during training remains unclear. To address this gap, we propose
InfoRidge, an information-theoretic framework, to characterize how predictive
information—the mutual information between hidden representations and target
outputs—varies across depth. Estimating this quantity enables us to trace the flow
of task-relevant information throughout the model during training. Our experi-
ments across various models and datasets reveal a consistent non-monotonic trend:
predictive information peaks in upper-middle layers—forming a generalization
ridge—before declining in final layers, reflecting a transition between general-
ization and memorization. To further investigate this phenomenon, we introduce
residual scaling coefficients—trainable scalar parameters applied to each residual
block—which serve as functional probes for assessing the relative importance of
individual transformer layers. These coefficients reveal that, under distribution
shift, models downweight final layers and increasingly rely on ridge layers, high-
lighting their role in generalization. Together, these findings offer new insights
into the internal mechanisms of transformers and underscore the critical role of
intermediate layers in supporting generalization.

1 INTRODUCTION

Transformer-based language models have achieved remarkable performance in natural language
generation (NLG) tasks such as summarization, machine translation, and dialogue genera-
tion (Vaswani et al., 2017; Dong et al., 2022). Nevertheless, we lack a rigorous understanding
of how these models acquire and synthesize task-relevant information during training.

A growing body of research has shown that intermediate layers in deep neural networks often surpass
final layers in terms of representational quality and generalization performance (Liu et al., 2019b;
Voita et al., 2019; Ansuini et al., 2019; Ahrens et al., 2023; Uselis & Oh, 2025). In language models,
intermediate layers often encode richer semantic and more robust features than final layers (Fan
et al., 2024, Jin et al., 2024; Skean et al., 2025). However, questions still remain: In NLG, how does
information evolve across layers during training, and how are different layers of the network
Junctionally organized to support generalization versus memorization?

To investigate these questions, we propose InfoRidge, an information-theoretic framework, to an-
alyze information flow in language models. Building on matrix-based mutual information estima-
tion (Giraldo et al., 2014), our approach quantifies how predictive signals transform across layers
during training. We center our analysis on two complementary quantities: predictive information,
defined as the mutual information I(Z;;Y") between the hidden representation Z, at layer ¢ and the
next-token label Y, reflecting how much task-relevant information is preserved; incremental infor-
mation gain, denoted as I(AZ;;Y'), where AZj is the residual changes between successive layer ¢
and ¢ — 1, measuring the additional predictive information introduced by each transformer block.

Using InfoRidge, we uncover a non-monotonic trend: predictive information rises through the early
and middle layers, peaks in the upper-middle layers, and then declines in the later layers. We name
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this phenomenon the generalization ridge, where the model encodes the more generalizable task-
relevant information. This ridge marks a structural division of labor: intermediate layers concentrate
generalizable features that transfer across distributions, while later layers increasingly specialize in
task-specific memorization. Incremental information gain further shows that ridge layers introduce
the largest increases in predictive information, marking them as key contributors to the emergence
of the ridge. This analysis directly connects the information peak to generalizable behavior and
clarifies how generalization and memorization are distributed across depth.

To further validate this interpretation, we introduce residual scaling coefficients—Ilearnable scalar
parameters /3, applied to each residual block—while keeping all other model weights frozen, draw-
ing inspiration from prior work on layer-wise adaptation (Liu et al., 2019a; Menghani et al., 2024).
A higher (5, value indicates greater reliance on the corresponding layer’s output during prediction.
These coefficients act as functional probes, revealing how the model redistributes layer-wise impor-
tance under different data distribution. Under in-distribution training, deeper layers retain higher
residual weights, reflecting the model’s reliance on memorized, task-specific features. When evalu-
ated under distribution shift, models reduce reliance on late layers and increase reliance on the ridge,
further supporting its role in generalization.

To understand the formation of the generalization ridge, we analyze both attention patterns and
model capacity. Attention analysis shows ridge layers attend to tokens that capture broadly useful
features, aligning with the information peak. Beyond attention patterns, we also investigate the
conditions under which the ridge emerges. Our depth ablation results show that the ridge only
emerges beyond a certain depth threshold. Below this threshold, predictive information increases
monotonically, indicating that sufficient capacity is a prerequisite for generalization ridge to emerge.

Contributions. Our work provides a unified perspective on how predictive information is struc-
tured across depth in transformer-based language models for natural language generation tasks:

1. Our work tracks the evolution of predictive information throughout training, establishing a clear
connection between predictive information flow and generalization. It reveals a non-monotonic peak
in the middle layers, which we refer to as the generalization ridge. This pattern reflects a meaningful
transition in representational focus and aligns with stronger generalization behavior.

2. We introduce InfoRidge, an information-theoretic framework that applies matrix-based mutual
information estimation to autoregressive language models to analyze information flow.

3. We introduce residual scaling coefficients as trainable indicators of how models shift representa-
tional focus across layers during training, providing a causal, adaptive measure of generalization.

2 RELATED WORK

Understanding how information is encoded and transformed across layers has been studied through
probing classifiers (Alain & Bengio, 2016), attention flow (Vig & Belinkov, 2019), and information-
theoretic approaches such as the information bottleneck (Shwartz-Ziv & Tishby, 2017), mutual in-
formation estimation (Goldfeld, 2019), and matrix-based entropy (Giraldo et al., 2014), offering
different lenses to quantify representational capacity, abstraction, and invariance across layers.

A growing body of research has shown that intermediate layers in deep networks often outperform
final layers in terms of representational quality and task performance (Ansuini et al., 2019; Yosinski
et al., 2014; Uselis & Oh, 2025; Ahrens et al., 2023; Ando et al., 2023). In language models, mid-
depth layers tend to capture richer semantic or robust features than output layers (Liu et al., 2019bj;
Voita et al., 2019; Jin et al., 2024; Fan et al., 2024). These findings challenge the assumption that
deeper layers always yield better representations. This pattern holds across settings such as transfer
learning (Yosinski et al., 2014), continual learning (Ahrens et al., 2023), and out-of-distribution gen-
eralization (Uselis & Oh, 2025). Recent work has evaluated representation quality using entropy,
curvature, and invariance (Skean et al., 2025), while other studies have studied embedding drift and
representational geometry (Merchant et al., 2020; Dar et al., 2022), analyzed memorization and fac-
tual recall (Haviv et al., 2022; Yu et al., 2023), and proposed adaptive inference mechanisms (Schus-
ter et al., 2022). However, the underlying causes and functional role of this phenomenon remain only
partially understood, motivating further investigation. Our work addresses this gap by tracing the
evolution of predictive information throughout training and establishing a clear connection between
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Figure 1: Overview of InfoRidge. (1) Extract internal representations at each layer and compute
residual changes between successive layers. (2) Extract the target token embedding. (3) Estimate
predictive information and incremental information gain.

predictive information flow and generalization. We reveal a consistent non-monotonic peak in the
middle layers—termed the generalization ridge—reflects a meaningful transition in representational
focus and aligns with stronger generalization behavior. Additionally, unlike prior work focused on
classification tasks, we extend the analysis of information flow to generation tasks by quantifying
the mutual information between hidden states and the next token. This enables us to understand how
generalization and memorization dynamics evolve during training from an information-theoretic
perspective.

3 INFORIDGE: INFORMATION ESTIMATION FRAMEWORK

We propose InfoRidge, an information-theoretic framework that uses mutual information to quantify
how predictive information propagates through transformers layers during training in NLG.

Motivating Insight. Prior work has shown that internal representations in deep neural networks
tend to align most closely with the true data distribution at an intermediate layer (He et al., 2024).
By employing the Wasserstein distance (Villani et al., 2008), this alignment is shown to reach a
minimum at a specific depth—referred to as the generalization funnel layer. At this point, the Min
Wasserstein Generalization Bound (He et al., 2024) ensures that the upper bound on the gener-
alization gap—defined as the expected difference between the population and empirical risks—is
minimized. This highlights the critical role of intermediate layers in supporting generalization.

Research Question. Despite the insight from prior studies of deep neural networks in classifica-
tion, it remains unclear whether this generalizes to Transformer-based language models in natural
language generation (NLG). This motivates our central question: In NLG, how does information
evolve across layers during training, and how are different layers of the network functionally
organized to support generalization versus memorization?

Hypothesis. Building on the insight, we hypothesize that there exists a specific intermediate trans-
former layer that encodes the most generalizable representations for next-token prediction, charac-
terized by maximal mutual information with the target label.

Hypothesis: Generalization Ridge

There exists an intermediate layer £* € {1, ..., L} such that the mutual information between the
hidden state and the target label peaks at that layer:

0" = arg mZaXI(Zg; Y).
We refer to this layer as the generalization ridge. This ridge layer aligns most strongly with

generalizable features and serve as robust predictors under distribution shift, whereas later layers
increasingly specialize in memorization.
\

J
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InfoRidge Overview. To empirically investigate this hypothesis, we propose InfoRidge, an infor-
mation estimation framework, that characterizes how predictive information evolves across trans-
former layers. Specifically, we estimate two key quantities:

* Predictive Information 1(Z,;Y'): the mutual information between the hidden state at layer
¢ and the target token. This quantity measures how much information about the true next
token is contained in the layer’s full representation. A high value indicates that the layer
encodes a strong and direct signal relevant to the prediction task.

* Incremental Information Gain 1(AZ;;Y): the information introduced by the residual
transformation at layer ¢, where AZ, = Z;, — Z,_1. This captures the additional predictive
signal gained through the residual transformation at layer ¢, isolating how much new task-
relevant information is introduced on top of the previous layer’s representation.

Together, these metrics allow us to track both the accumulation and transformation of task-relevant
information throughout the network.

Notation and Setup. We consider a transformer model with L residual blocks. Given an input

sequence x1.7 of length T, zz@ € R denotes the hidden state at the last token position of the ith
input sequence in layer ¢, for £ = 1,..., L. For next-token prediction, the ground-truth label is
denoted by y; € R, corresponding to the embedding of the true next token from the vocabulary V.

The residual transformation introduced at layer ¢ is defined as 5;:5” = zi(é) - 21(271).

Across a batch of IV sequences, we collect the representations:

Zo={NN, Y ={ul,, AZo={s"}Y,,

where all vectors are /o-normalized.

Computational Flow Overview. Figure | illustrates the workflow used to extract intermediate
representations for information analysis. In the first forward pass, a batch of N input sequences
z1.7 is fed into the transformer to obtain hidden states at each layer. From these, we extract the
final-token representations Z, and compute the residual changes AZ, by differencing consecutive
layer outputs. In the second forward pass, each input is concatenated with its ground-truth next
token y, and we extract the corresponding label embedding Y from the output of the embedding
layer. These representations are then used to compute two information-theoretic quantities: the
Predictive Information 1(Z;;Y), and the Incremental Information Gain I(AZ;;Y). We estimate
both I(Z,;Y) and I(AZy;Y) using Equation | and 2, detailed below.

Matrix-Based Mutual Information. We apply the matrix-based framework (Giraldo et al., 2014)
to estimate mutual information. Let I/ be a random variable, from which we draw a set of vectors
U = {u;}¥, C R4 A positive-definite Gram matrix Gy € RV*¥ is computed using a Gaussian
kernel x with bandwidth set to 1 and the matrix is then trace-normalized to satisfy tr(Gy) = 1. The
matrix-based Rényi entropy (with order av = 1) is then given by:

HU)~ H({U) = —tr(Gy log Gy). (1)
Specifically, G is constructed with entries (G );; = exp (— %) and then trace-normalized.

Let Gy and Gy be the trace-normalized Gram matrices for two random variables I/ and V), respec-
tively. The mutual information between them is computed as:

IU;V) = 1(Gu; Gv) = H(Gu) + H(Gv) — H(Gu © Gy), 2)
where “o” denotes the Hadamard (elementwise) product. Mathematical details are in Appendix A.

4 EXPERIMENTAL SETUP

Models. We evaluate four models: GPT-2 SMALL (117M) (Radford et al., 2019), GPT-2
MEDIUM (345M) (Radford et al., 2019), QWEN-2.5 0.5B (Yang et al., 2024), and LLAMA 3.1
8B (Meta Al 2024). All models are fine-tuned on NLG tasks. Each model shares weights between
the input token embedding and the output language modeling head.
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Datasets. We assess model behavior across three tasks reformulated as NLG problems:
CLUTRR (Sinha et al., 2019), a relational reasoning benchmark; ECQA (Aggarwal et al., 2021),
a commonsense QA benchmark; and Synthetic Arithmetic, a controlled dataset designed to disen-
tangle task-relevant signal from noise. Dataset and implementation details are in Appendix B and C.

Synthetic Arithmetic Dataset Construction. We construct a synthetic dataset to separate signal learn-
ing from noise memorization. Each input is a sequence of 10 elements, where the signal follows an
arithmetic progression modulo K, computed as s; = (sg + t - d) mod K with sg € [0, K—1] and
d € [1, K—1]. Each element takes the form S{signal} N{noise}, where noise is sampled from
Uin(0,noise_range—1) (Ui denotes the uniform distribution). The model is trained to predict
the signal value of the final (10th) element using the preceding elements as input context. For exam-
ple, with K = 5, sy = 1, and d = 2, a sample input might be S1_N42 S3_N77...S2.N37, with
the target signal being 4. By varying K, we can induce structured distribution shifts.

5 GENERALIZATION RIDGE: LAYER-WISE MUTUAL INFORMATION
TRAINING DYNAMICS

Understanding how layers encode task-relevant information is key to uncovering the internal mech-
anisms that support generalization in deep language models. In this section, we trace the evolu-
tion of two complementary forms of mutual information—Predictive Information and Incremental
Information Gain—across transformer depth and training time, revealing a consistent structure in
information flow and highlighting the generalization—-memorization trade-off.

5.1 PREDICTIVE INFORMATION: INFORMATION PEAKS AT INTERMEDIATE LAYERS

We investigate how predictive information—defined as the mutual information between hidden rep-
resentations and target labels—evolves across the depth of transformer models. Specifically, for
each layer ¢, we compute the matrix-based mutual information I(Zy;Y") between the hidden state
Zy and the next-token ground truth Y. This quantity measures how much task-relevant signal is
retained in the representation as it propagates through the network. By tracing I(Zy;Y") across lay-
ers, we obtain a layer-wise trajectory of information flow, which reveals not only where predictive
content is preserved but also how it is transformed or diminished as the model processes.
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Figure 2: Evolution of predictive information I(Z,;Y"), with lighter curves indicating later epochs.
Each curve exhibits a three-phase trend: early layers rise, mid layers peak, and late layers decline.
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Figure 2 tracks the trajectory of the predictive information I(Zy;Y") between the hidden represen-
tation at depth ¢ and the target label Y throughout training, while Table | reports the downstream
accuracy obtained when we early exit after a given layer.! Additional results are in Appendix E.

Three-phase information dynamics. Across models and tasks, predictive information curves ex-
hibit a consistent three-phase pattern:

Progressive Accrual (early layers). In the ini-
tial layers, [ (ZHY) gradually increases, cor-  Taple 1: Information Dynamics and Layer-wise
responding to basic feature extraction with-  performance (GPT-2-S, Synthetic). OOD perfor-

out substantial task-level comprehension. This mance declines beyond the generalization ridge.
aligns with the near-zero accuracy observed in

Table | for these layers. Layer L(Z;Y) Test Accuracy (%)
Information Peak (intermediate layers). All  In-Dist. Out-Dist.
I1(Z4;Y) continues to rise through the mid-to- Layer 1 00508 0.00 0.00 0.00
upper layer, typically peaking before the final Layer 2 0.0513  0.00 0.00 0.00
few blocks. For the GPT-2 Small on Synthetic ~ Layer 3 0.0619  0.00 0.00 0.00
Arithmetic dataset, the peak reaches I ~ 0.32 Layer 4 0.0822  0.00 0.00 0.00
in layers 10-11, coinciding with a jump from  Layer5 ~ 0.0894  0.00  0.00 0.00
~ 0% to 72% ID accuracy and 53% OOD  Laver6 00989 000 0.0 0.00
.- Layer 7 0.1292 0.70 0.00 2.00
accuracy. These layers appear to play a critical Layer 8 02431 1835 0.00 38.90
role in synthesizing abstract features that are Layer 9 02810  19.15 1.00 40.30
essential for generalization. Layer 10 0.3209 6245  71.90 53.50

. . Layer 11 0.3209 72.65 99.90 40.40
Representational Compression (final layers). Layer 12 0.1402 7145  100.00 38.60

Beyond the peak, I(Z;;Y") decreases, even as
in-distribution accuracy approaches 100%. The
simultaneous drop in OOD accuracy indicates
that the final layers tend to memorize training patterns, sacrificing generalization ability.

Notably, this three-phase progression emerges consistently across both GPT-2 Small and GPT-2
Medium, indicating that the observed information dynamics are robust to architectural scale within
the same model family.

Generalization Ridge: Memorization-Generalization Trade-off. The pronounced “information
funnel” around intermediate layers reflects a key trade-off between generalization and memorization,
which we term the “generalization ridge”. These layers maximize task-relevant information for
generalization, while deeper layers increasingly compress and specialize representations, enhancing
in-distribution memorization but reducing robustness. This positions intermediate layers as critical
control points for managing this trade-off.

6
Depth

(a) 8 layers: Monotonic Increase (b) 9 layers: Shallow Peak (c) Full model: Gen Ridge

Figure 3: Truncating GPT=2 to 8§ layers removes the MI peak; 9-layer variants begin to exhibit a
shallow peak, and the full 12-layer model shows a pronounced decline.

Generalization Ridge Emerges Beyond a Depth Threshold We empirically vary the depth of
GPT-2 Small models fine-tuned on the CLUTRR dataset to examine how model capacity shapes in-

'The in distribution split is generated with K;q=13; out of distribution splits use a uniformly—sampled
Kood € {5,...,25}\ {13}.
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formation dynamics, shown in Figure 3. When the model is truncated to 8 layers, I(Z;Y") increases
monotonically—indicating insufficient capacity to develop an information peak. Upon increasing
the depth to 9 layers, a shallow peak emerges, signifying the threshold at which the model begins to
distinguish generalized features from memorized signals. The full 12-layer model exhibits a clear
peak followed by a decline, confirming that generalization ridge emerges only beyond a certain ca-
pacity threshold. These results underscore the role of architectural depth in information dynamics
and sufficient capacity is required for generalization ridge to emerge.

Overfitting Adds Memorization in Final
Layers To probe overfitting dynamics, we in-
tentionally fine-tuned the model beyond the

0.4
? 0.2
optimal point. In Figure 4, we observe that £ _.....mll'l'l"' IIIII"II"'I'
the Predictive Information I(Z,; Y') rises again o0 L3 5 7 9 1113 15 17 19 21 23 25 27 29 31
in the final layers—departing from the typi- Depth

cal compression phase expected at this stage.

This reversal may suggest that the model begins o )

to memorize superficial shortcuts or redundant Figure 4: [ (Zg;Y) rises in final layers during
label-specific noise rather than learning useful overfitting (LLaMA, ECQA).

information.

Signal Attention Peaks Where Information Peaks This discussion aims to provide an intuitive
illustration of our generalization ridge hypothesis, highlighting how attention to task-relevant signal
tokens shifts across layers (the generalizable information). Specifically, we computed average signal
attention across layers, identified the layer with peak signal attention, and compared it to final-layer
signal and last-token attention, results are in Table 2. Signal tokens are defined as task-relevant to-
kens that the model must focus on to solve the task—for the synthetic dataset, these are tokens that
appear after the character ‘S’; for CLUTRR, kinship-related entities; and for ECQA, the token cor-
responding to the correct answer option. This allows us to quantify where in the network attention
to semantically important information is concentrated. Our findings show a pattern that supports
our hypothesis: (1) Mid-to-late layers peak in signal attention, coinciding with the predictive in-
formation ridge (Figure 2), indicating where generalizable representations are strongest. (2) Final
layers show reduced attention to signal tokens, suggesting a shift toward memorization to specific
data point rather than predictive information abstraction. For example, in Qwen-2.5-0.5B on ECQA,
signal attention peaks at Layer 17 (0.2458) but drops to 0.0066 in the final layer, where last-token
attention dominates (0.1697). Additional results are in Appendix F.

Table 2: Average attention statistics: (1) average attention scores over all tokens, (2) average atten-
tion to signal tokens, (3) the maximum signal attention and its corresponding layer, (4) signal token
attention in the final layer and (5) last token attention in the final layer.

Model Dataset  Avg. Attn (All) Avg. Attn (Signal) Layer w/ Highest Avg. Signal Final Avg. Signal Final Avg. Last
GPT-2 Small Synthetic 0.0227 0.0483 10 (0.0758) 0.0573 0.0400
GPT-2 Medium CLUTRR 0.0086 0.0155 19 (0.0453) 0.0147 0.0889
Qwen-2.5-0.5B  ECQA 0.0225 0.0257 17 (0.2458) 0.0066 0.1697
LLaMA-3.1-8B  ECQA 0.0220 0.0379 21 (0.1276) 0.0168 0.3904

*We remove the first token attention score to mitigate attention sink effects.

5.2 INCREMENTAL INFORMATION GAIN: INFORMATION CONCENTRATES AT INTERMEDIATE
LAYERS

To understand how information accumulates across the network, we compute Incremental Infor-
mation Gain (I(AZy; Y ))—the mutual information between each residual transition and the tar-
get label embedding. As shown in Figure 5, the resulting layer-wise gains reveal that interme-
diate layers yield the highest information increases. This concentration of information gain fur-
ther underscores their central role in encoding those task-relevant features that are essential for
supporting generalization. For additional illustration, a detailed case study that decodes Az via
the LM head is provided in Appendix G, highlighting fine-grained token-level shifts and varia-
tions observed across layers. The Incremental Information Gain analysis reveals a clear pattern:
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middle transformer blocks are key to en- 04 I
coding generalizable task-relevant information, o 2 o2 IR o
thereby forming a generalization ridge. Con-  %°7

versely, later layers contribute little additional ~ =c

predictive signal, and in some cases, actively 005 - . l l '

reduce alignment with the target embeddings. ® o1 152 253 354 4o5 556 657 758 858 9510 10sum1

Residual Transition

This diminishing contribution in later layers
may suggest a shift from general reasoning
to memorization of training-specific patterns. Figure 5: Middle blocks are key to encoding gen-
This trend underscores a fundamental trade-off ~eralizable information (GPT-2-S, Synthetic).

in transformer training dynamics.

6 RESIDUAL SCALING DYNAMICS VIA LEARNABLE 3 COEFFICIENTS

To deepen our understanding of the Generalization Ridge hypothesis, we examine how modulating
the contribution of individual transformer blocks affects information flow, and propose a corollary
that links layer-wise contribution to generalization performance under distribution shift.

Corollary (Residual Scaling). Post-peak residual blocks (i.e., layers beyond the generalization
ridge) may encode memorized signals. Suppressing these layers’ contribution via learned resid-
ual scaling improves out-of-distribution generalization, while amplifying them degrades it.

We introduce a residual scaling mechanism with learnable scalar coefficient parameters (Algo-
rithm 1), inspired by prior work on adaptive residual modulation (Liu et al., 2019a; Menghani et al.,
2024). Transformer architectures inherently employ residual connections to iteratively refine rep-
resentations. To isolate and quantify the contribution of each transformer blocks, we scale these
residual connections with layer-specific scaling factors 5, € R>(, with definition below. Each 3,
controls the strength of the residual contribution from layer ¢, enabling the model to adaptively
emphasize or suppress specific blocks:

20 = (-1 4 3, block(e)(z(z_l)), Be € R>g.

Definition (Residual Scaling Coefficient). Sy is a learnable scalar parameter associated with trans-
Sformer layer ¢, which modulates the contribution of that layer’s residual output to the model’s for-
ward pass.

Algorithm 1 Residual Scaling: Probing the Contribution of Transformer Blocks to the Generaliza-
tion-Memorization Trade-off.

Require: Pretrained Transformer with L layers, dataset D, learning rate n
1: Initialize 1, ..., Br < 1.0 (trainable); freeze other weights
2: for each training step do

3: Sample batch (x,y) ~ D

4 20 < Embedding(z)

5: for { =1to L do

6: 0 block® (-1
7. A0 =D 4 g, (0
8: end for

9: Compute loss £(z(5), y)
10:  Update 3y, ..., 81, using gradient descent
11: end for

We freeze model weights and optimize only the residual scaling coefficient parameters 3y, which are
initialized to 1. These scalars are trained separately on the (a) in-distribution (ID) split and (b) out-
of-distribution (OOD) split. Since no other parameters are updated, the learned S5, serve as a direct
diagnostic of the extent to which each layer should be amplified or attenuated to suit the data regime,
revealing which layers remain stable across regimes and which adapt strongly to distributional shifts.

As shown in Figure 6, optimizing the residual scaling coefficient parameters on in-distribution data
consistently yields Sy, > 1, indicating that in-distribution performance benefits from amplifying
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the contribution of the final transformer layers. This observation suggests that these deeper layers
specialize in memorizing features specific to the training distribution. In contrast, when trained on
OOD settings, the learned coefficients exhibit 3;, < 1, revealing that the model achieves better
generalization by downweighting the influence of the final layers. Suppressing the contribution of
these memorization-heavy components shifts the reliance back toward intermediate layers, which
encode more generalizable and transferable signals. This pattern holds consistently across models,
reinforcing the interpretation that model depth reflects a functional stratification. Intermediate layers
concentrate generalizable information that supports generalization, whereas deeper layers become
increasingly specialized in memorized patterns tied to the training distribution. Together, these
findings offer empirical evidence for the generalization ridge hypothesis, revealing that information
flow in transformers reflects a trade-off between generalizable signals and memorized, distribution-
specific features.
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Figure 6: Residual scaling coefficients 3y across all transformer layers. ID training emphasizes later
layers, while OOD training shifts weight toward middle layers, aligning with the generalization
ridge. Curve shows the mean across 5 independent run, and the shaded region denotes 1-o error bar.

7 CONCLUSION

We introduce InfoRidge, an information-theoretic framework designed to trace and quantify how
information evolves across layers in transformer-based language models for natural language gen-
eration. By estimating both predictive information and incremental information gain, we systemat-
ically characterize the layerwise dynamics of information flow, offering a principled view of how
signals are refined, amplified, or diminished as they propagate through the network. Our findings
reveal a consistent generalization ridge emerging in intermediate layers, where mutual information
between the hidden representation and the target label reaches its peak before gradually declin-
ing. This phenomenon reflects a fundamental trade-off between generalization and memorization
as information flows deeper into the model. Residual scaling experiments further corroborate this
interpretation, demonstrating the functional specialization of different layers—where intermediate
blocks play a key role in supporting generalization, while deeper layers increasingly focus on mem-
orization. Taken together, these findings position InfoRidge as a comprehensive framework for
diagnosing how language models internally manage information during natural language genera-
tion, while also revealing the structural mechanisms that govern the balance between generalization
and memorization in transformer architectures.
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Ethics Statement. This work adheres to the Code of Ethics. Our experiments use only open-
source models and publicly available datasets under their respective open licenses, with no involve-
ment of human subjects or sensitive data. We identify no foreseeable ethical risks.

Reproducibility Statement. We ensure reproducibility by providing experimental and implemen-
tation details in Section 4 and Appendices B—C. Full results with statistical significance are in Ap-
pendix E, and anonymous source code is included as supplementary material.
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A MATHEMATICAL DETAILS FOR MATRIX-BASED INFORMATION
ESTIMATION AND THEORETICAL FOUNDATIONS

We employ the matrix-based Rényi entropy Giraldo et al. (2014) to estimate mutual information
between representations and labels, leveraging kernel Gram matrices to capture sample similarity.

A.1 MATRIX-BASED ENTROPY ESTIMATION

Let U = {u;}}¥, C R denote ¢-normalized representations obtained from a specific transformer
layer, a residual update, or the embedding of the target label. A Gaussian kernel Gram matrix

P . 2 . . .
Gy € RV*N is constructed as: (Gy)ij = exp (7%) , with bandwidth o = 1. The matrix
is then trace-normalized to ensure tr(Gy) = 1.

The matrix-based Rényi entropy of order o = 1 is defined as:

H(U) = —tr(Gy log Gy).

This expression can be interpreted in terms of the eigenvalue spectrum {\;} of Gy, since Gy is
positive semi-definite and trace-normalized:

N
H(U) == Aclog Ay
k=1

The entropy thus reflects the dispersion of the eigenvalues. A more uniform spectrum (i.e., higher
entropy) suggests more diversity in the representation space, while a sharply peaked spectrum (i.e.,
low entropy) indicates redundancy or compression.

A.2 MUTUAL INFORMATION ESTIMATION

To estimate the mutual information between two random variables U and V', we compute their Gram
matrices Gy and Gy, and form the joint similarity matrix via element-wise (Hadamard) product:
Guy = Gy o Gy. After trace-normalization, mutual information is estimated by: I(U;V) =
HWU)+ H(V)—- H(U,V), where H(U,V) = —tr(Gyv log Gyy ). The eigenvalue spectrum of
Gyv governs the joint entropy term; its shape reflects how much of the structure in U and V' aligns.
A more concentrated spectrum in Gy relative to Gy and Gy implies stronger dependence and
thus higher mutual information.

A.3 MIN WASSERSTEIN GENERALIZATION BOUND (HE ET AL., 2024)

We restate the generalization bound proposed by He et al. (He et al., 2024), which characterizes
generalization in terms of the Wasserstein distance between internal representations.

Suppose that the loss function (:YxY — R>q is po-Lipschitz, and the activation function
¢¢ : R — Ris py-Lipschitz foreach ¢ = 1,..., L. Then:

n L
gen(PW\DWPXX)SmZiH% > Ew [(1\/ 11 lelelop) Wi (Pry iy w (W), Pryiw (W) 3)
i=1 j=l+1

This result shows that generalization can be tightly controlled by the Wasserstein distance (Villani
et al., 2008) between representations at a specific layer—referred to the generalization funnel layer.

Connection to Qur Work. The Min Wasserstein Generalization Bound (He et al., 2024) provides
a theoretical foundation for our study by characterizing generalization in terms of distributional
alignment at an intermediate layer. It motivates our analysis of information flow by suggesting that
information is peaked at a specific layer—the generalization funnel. Our InfoRidge builds on this
insight by quantifying predictive information across layers, and reveals that a specific intermediate
layer exhibits peak mutual information and correlates with better generalization performance.
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B DATASET OVERVIEW AND STATISTICS

To evaluate information flow and generalization dynamics across model layers, we conduct exper-
iments on three datasets with varying levels of complexity and structure: CLUTRR, ECQA, and a
custom-designed Synthetic Arithmetic dataset. Table B.1 summarizes key dataset statistics.

B.1 DATASET OVERVIEW

Table 3: Dataset Statistics

Dataset #Train Train Seq. Len #Val Val Seq. Len #Test Test Seq. Len
CLUTRR 9,074 30 2,020 29 1,146 70
ECQA 7,598 21 1,090 21 2,194 21
Synthetic Arithmetic 10,000 9 2,000 9 2,000 9

B.2 CLUTRR

CLUTRR (Compositional Language Understanding and Text-based Relational Reasoning) (Sinha
et al., 2019) is a diagnostic benchmark for evaluating relational inference in language models. Each
example contains a story describing family relations, and the task is to infer the missing relationship
between two entities. The distribution shift stems from clause lengths that are absent in the training
set but present during evaluation. We use the task split “gen_train23_test2to10”, where the model is
trained on clause lengths 2 and 3 and evaluated on lengths 2 through 10.

B.3 ECQA

ECQA (Explanations for CommonsenseQA) (Aggarwal et al., 2021) is a commonsense multiple-
choice question-answering dataset, where each question is accompanied by 5 answer options.

B.4 SYNTHETIC ARITHMETIC DATASET

We construct a synthetic diagnostic dataset to disentangle task-relevant signal learning from spuri-
ous noise memorization in a controlled setting. Each sample consists of a sequence of 10 symbolic
elements, where the signal component follows an arithmetic progression modulo K, and the remain-
der of each element is independently corrupted with random noise. By varying the modulus K, we
systematically control task complexity and introduce structured shifts in the data distribution.

Synthetic Arithmetic Dataset Construction. At each position ¢, the signal value is computed as:
st = (so+t-d)mod K, withso € [0,K-1], de[l,K-1].
Each element in the sequence is represented as a string of the form:
S{signal} N{noise}, where noise ~ Ui (0,noise_range-1).

Here Ui, denotes the uniform distribution. The model is trained to predict the signal value of the
final (10th) element, using the preceding elements as input context.

For example, with K = 5, sg = 1, and d = 2, a sample might look like:
S1.N42 S3.N77 SON18 S2.N56 S4.N90 S1_ N1l S3.N65 SO.N23 S2_N37

Each element encodes both a signal (the number following S) and a noise component (the number
following N). The target is 4, corresponding to the signal of the final (10th) item in the sequence.

C IMPLEMENTATION DETAILS

This appendix outlines implementation details in our experiments.
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C.1 PROMPT CONSTRUCTION

All tasks are cast into a next-token generation format. The model receives a prompt and generate
the next token. Below are construction strategies and examples for each dataset:

CLUTRR Each input example in CLUTRR consists of a short narrative describing a set of family
relationships, along with a query involving a pair of entities. We construct prompts by concatenating
the narrative and a structured natural language question derived from the query tuple. The model is
trained to predict the correct relationship as the next token.

Prompt:

Story: [Alice] is [Bob]’s mother. [Bob] is [Charlie]’s father.
Query: What is the relationship between Alice and Charlie? Answer:

Target: grandmother

ECQA (Explanation-augmented Commonsense QA) Each ECQA instance consists of a
multiple-choice question with five candidate answers. We format the prompt by presenting the
question followed by all five options (labeled A-E), and conclude with an explicit answer query.
The model is trained to predict the correct answer letter as the next token.

Prompt:

Question: What do people usually do at a birthday party?
Options:

A. Sleep

B. Celebrate

C. Cook

D. Exercise

E. Drive

Answer:

Target: B

Synthetic Arithmetic Each synthetic sample consists of a sequence of 10 symbolic elements,
where each element is formatted as S{signal} N{noise}. The signal values follow an arithmetic
progression modulo K, and the noise values are independently sampled from a uniform distribution
with a fixed range of 100. During training, the modulus K is set to 13. For evaluation, test sequences
are generated using values of K from the range [5, 26] excluding 13 to simulate a distribution shift.
In the residual 3, analysis, we use K = 13 for in-distribution (ID) training and K = 17 for out-
of-distribution (OOD) training, allowing for a controlled comparison between generalization and
memorization behavior. The model receives the first 9 tokens as input and is trained to predict the
signal component of the 10th token.

Prompt:
S1_.N42 S3_N88 S5.N20 S7_-N10 S9_N65 S11_N43 SO_N99 S2_N38 S4_N77
Target: 6
This controlled format enables manipulation of distributional properties by varying the modulus K.
C.2 FINETUNING SETTINGS
We fine-tuned all layers end-to-end using AdamW (learning rate 5 x 106, weight decay 0.01) with

a linear schedule (warmup ratio 0.1) and early stopping on validation loss. Training converged in all
settings.

C.3 INFORMATION ESTIMATION

To estimate mutual information, we subsample between 50 and 200 test examples depending on
model and task, in order to avoid excessive memory usage from large Gram matrices.
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C.4 RESIDUAL SCALING WITH LEARNABLE 3; PARAMETERS

We introduce a vector of learnable scalar weights 5 = {81, ..., 8} applied to residual connections
in a frozen transformer:

20 = 2(=D 4 5, Block® (24~ 1),

* All transformer weights are frozen; only /3, parameters are trained.
 Each transformer block’s residual output is modulated by (3, via forward hooks.

* [ are initialized to 1 and updated using gradient descent without altering the architecture.

Training and Evaluation Settings We per-

form residual j, training on top of a model Taple 4: Performance (%) of different models
that has already been fine-tuned on the target g4cross datasets.

dataset, keeping all previously learned weights

frozen and optimizing only the 3, parameters ~pqo oo CLUTRR Synthetic ECQA
using HuggingFace’s Trainer API. We sweep

over batch sizes from 4 to 32 depending on g5¥§ igihm ;23? gégg _
GPU memory constraints, and tune the learning Qwen-2.5-0.5B 31.94 83.20 5706
rate between 5 x 107° and 5 x 1075, We train 17 ,MA-3.1-8B 5768 94.00 7739

for 3-10 epochs based on model capacity and
task complexity. Optimization is performed us-
ing the AdamW optimizer with a weight decay of 0.01. Evaluation is conducted by comparing the
next predicted token with the next ground-truth target token.

D COMPUTE AND LICENSING DETAILS
Computing Resources Experiments were conducted on an NVIDIA RTX A6000 GPU (48GB).

Model Licenses The GPT-2 Small (Radford et al., 2019) and GPT-2 Medium (Radford et al.,
2019) models are released under the MIT License and are available via Hugging Face Transformers.
The Qwen-2.5 0.5B (Yang et al., 2024) model is provided by Alibaba Group under the Apache
2.0 License. The LLaMA-3.1 8B (Meta Al, 2024) model is made available by Meta under a non-
commercial research license and accessed via Hugging Face.

Dataset Licenses CLUTRR (Sinha et al., 2019) is released under a CC BY 4.0 license as part
of EMNLP 2019. The ECQA (Aggarwal et al., 2021) dataset is also released under a CC BY 4.0
license by its authors as part of EMNLP 2021. The Synthetic Arithmetic dataset is custom-designed
by the authors and does not rely on any external or licensed data sources.

All assets were used in compliance with their respective licenses, and no proprietary or restricted
resources were employed in our experiments.

E FULL QUANTITATIVE RESULTS WITH CONFIDENCE ESTIMATES

To provide a comprehensive view of model behavior, we report the full experimental results for all
models and datasets. This includes predictive information trends (I (Z;Y")), incremental information
gain (I(AZ;Y)) and residual scaling effects (5,), with statistical significance reporting.

E.1 PREDICTIVE INFORMATION

To estimate mutual information between hidden representations and target labels, we compute
matrix-based mutual information following the methodology in Appendix A. Due to the high mem-
ory cost of computing N x N Gram matrices, we subsample between 50 and 100 test examples per
experiment and report results with statistical significance based on multiple random seeds.
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Figure 7: Predictive information I(Z;Y") across different models and datasets exhibits an infor-
mation peak, indicating a generalization ridge. In cases where the task is too simple relative to
model capacity—such as the synthetic arithmetic task with LLaMA—this trend reflects an overfit-
ting regime. Lighter line colors represent later training epochs. Each curve shows the mean across 5
random seeds (0, 1, 2, 3, 42), and the shaded region denotes a 2-sigma ("96%) confidence interval.
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E.2 INCREMENTAL INFORMATION GAIN

In addition to predictive information I(Z OF Y’), we compute the incremental information gain
I(AZ®);Y) at each layer. This quantity the information contribution for each transformer blocks.
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Figure 8: Incremental information gain I (A Z;Y) across different models and datasets with "96% CI
error bars. Across all models, we observe that the largest incremental information gain consistently
occurs in intermediate layers—further supporting the emergence of a generalization ridge.
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E.3 RESIDUAL SCALING

We introduce a residual scaling mechanism with learnable scalar coefficient parameters, inspired
by prior work on adaptive residual modulation (Liu et al., 2019a; Menghani et al., 2024). Similar
ideas of modulating internal computation have also been explored in parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019), Representation-Efficient Fine-Tuning (REFT) (Wu et al., 2024) and
interpretability-driven control (Huang et al., 2024; Deng et al., 2025; Meng et al., 2022; Wu et al.,
2023). We present the complete set of residual scaling results, detailing the learned /3, values across
all transformer layers. These values reflect the relative contribution of each layer after optimizing
the residual scaling coefficients while keeping all other model parameters frozen. [, are trained
on in-distribution (ID) and out-of-distribution (OOD) data. We observe that in the ID setting, later
layers tend to receive higher weights, consistent with memorization behavior. In contrast, OOD
training consistently downweights final layers and shifts importance toward the middle of the net-
work, aligning with the generalization ridge identified through InfoRidge.
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Figure 9: Residual scaling coefficients 3, across all transformer layers. ID training emphasizes later
layers, while OOD training shifts weight toward middle layers, aligning with the generalization
ridge observed via InfoRidge. Each curve shows the mean across five random seeds (0, 1, 2, 3, 42),
and the shaded region denotes 1-sigma error bar.

F ATTENTION DYNAMICS ACROSS LAYERS CASE STUDY

To verify whether generalization ridge layer indeed correspond to semantically meaningful process-
ing, we visualize the attention patterns as a more interpretable signal of where the model focuses.
As shown in Figure 10, we visualize attention maps across layers.

In early layers (e.g., Layer 1), attention is diffuse and biased toward final tokens—reflecting reliance
on position rather than true predict signals.

By generalization ridge layers (e.g., Layer 11), attention becomes more targeted, concentrating on
predictive tokens. This shift marks a transition from positional attention to semantically meaningful
focus, suggesting that intermediate layers are increasingly capable of isolating task-relevant infor-
mation from irrelevant content.

In the final layers, attention regresses toward final tokens. This reversion is aligned with the observed
decline in I(Zy; Y'). The resurgence of attention towards terminal tokens indicates a potential memo-
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Figure 10: Attention map across layers (GPT-2 Small, Synthetic). At the generalization ridge layers,
attention becomes more targeted, focusing on predictive tokens.

rization scenario, where the model re-engages superficial positional strategies, possibly memorizing
noise rather than further refining the generalized extraction of predictive signals.

This attention trajectory further supports the generalization ridge hypothesis, highlighting a trade-off
between generalization and memorization in the model’s representational strategy.

G INCREMENTAL INFORMATION GAIN CASE STUDY

To further illustrate how intermediate layers contribute to generalization, we analyze the semantic
content introduced by residual transitions at different depths. Specifically, we decode the resid-
ual transition §z at each layer using the language modeling (LM) head, projecting the incremental
representation back into token space.

This analysis allows us to inspect the linguistic shift introduced by each transformer block in isola-
tion, and to assess whether the changes correspond to task-relevant predictions or superficial noises.

G.1 METHODOLOGY

For a fixed input, we compute residual transitions dz(*) at each layer and pass them through the
model’s final linear projection (LM head) followed by a softmax. We record the top predicted
tokens and their probabilities, and it reflects the directional change applied by layer /.

G.2 OBSERVATIONS

We decode residual transitions across layers and report the top shifted tokens by projecting AZ )
through the LM head. These shifts provide insight into how each layer modifies the model’s internal
prediction trajectory.

Layer 9 — 10: The top shifted tokens include GNine, G10, G4, G8, and 8, which are all numerically
aligned with the target prediction space in the synthetic arithmetic task. This indicates that the model
is beginning to refine task-relevant numerical features at this depth.

Layer 10 — 11: The shifted tokens become partially diluted, featuring punctuation and less infor-
mative symbols such as ,, G, and ., alongside occasional task-relevant entries like G12 and G4.
This indicates a transitional phase where the model continues to refine meaningful task-relevant fea-
tures, yet begins to exhibit noise from frequent but semantically uninformative, such as punctuation,
tokens.

Layer 11 — 12: At the final layer transition, the top 5 shifted tokens become largely uninterpretable,
including Gcanaver, soDeliveryDate, enegger, 76561, and ILA. Conversely, the most
negatively shifted tokens—G4, G3, G5, G6, G1—correspond to plausible numerical predictions that
were actively suppressed. This supports the hypothesis that final layers may overwrite generalizable
abstractions with memorized or noise signals.

These patterns are consistent with our mutual information analysis, which identifies intermediate
layers as better semantically aligned with the prediction target—forming a ridge of generalization.
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G.3 IMPLICATION
These decoding results reinforce our interpretation of the generalization ridge: intermediate layers
contribute the most semantically informative updates to the model’s representation. The residual

transitions thus serve as a useful lens for understanding how and where semantic meaning is intro-
duced during forward propagation.

H VUSE OF LARGE LANGUAGE MODELS.

Large language models (LLMSs) were used solely as assistive tools for proofreading and improving
clarity of writing.
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