
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-AUGMENTED VISUAL CONTRASTIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Vision-Language Models (LVLMs) have demonstrated remarkable multi-
modal capabilities, but they inherit the tendency to hallucinate from their underlying
language models. While visual contrastive decoding has been proposed to mitigate
this issue, existing methods often apply generic visual augmentations that disre-
gard the specific context provided by the text query, limiting their effectiveness.
This study introduces a novel training-free decoding strategy that addresses these
limitations, featuring two key contributions. First, a self-augmentation prompting
strategy that leverages the intrinsic knowledge of the model to dynamically align
semantics between the query and the visual augmentation. Second, an adaptive
thresholding algorithm that adaptively adjusts next token candidate size based
on the output sparsity, utilizing full information from the logit distribution. Ex-
tensive experiments across four LVLMs and seven benchmarks demonstrate that
the proposed decoding significantly enhances factual consistency compared to
state-of-the-art decoding methods. This work highlights the importance of inte-
grating query-dependent augmentation and entropy-aware decoding for improving
effective generation of LVLMs. The source code will be released upon acceptance.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in language comprehension,
generation, and reasoning (Brown et al., 2020; Google, 2023; Touvron et al., 2023; Chiang et al.,
2023; OpenAI, 2023). By integrating visual encoding and projection, Large Vision-Language Models
(LVLMs) have extended these capabilities to multimodal applications such as visual perception and
planning (Li et al., 2022; Yu et al., 2022; Li et al., 2023a; Maaz et al., 2023; Ye et al., 2023; Zhang
et al., 2023a; Zhu et al., 2023; Huang et al., 2023). Despite their impressive performance, LVLMs
inherit critical limitations from their foundational language models. One of the most significant issues
is hallucination, a phenomenon of generating plausible but factually incorrect or nonsensical outputs.
This behavior is largely a byproduct of the auto-regressive training objective of the model, a process
that incentivizes a reliance on spurious correlations over a precise understanding of underlying facts
by maximizing token likelihood based on surface-level statistical patterns (Bender & Koller, 2020;
Huang et al., 2025).

Advanced decoding methods can significantly enhance the factual consistency by shaping how token
sequences are selected from output distributions at each generation step (Van der Poel et al., 2022;
Favero et al., 2024a). A prominent decoding strategy to reduce hallucination effect is Contrastive
Decoding (CD) (Li et al., 2023c), a technique that improves factuality by contrasting the outputs of
an expert model with those of a weaker, amateur counterpart (Zhang et al., 2023b; Chuang et al.,
2023). Motivated by this principle, Visual Contrastive Decoding (VCD) (Leng et al., 2024) was
introduced to improve the general perceptual capabilities of LVLMs by contrasting standard output
with an amateur logit generated from an input image degraded by random noise.

Subsequent research in VCD has primarily focused on determining which visual modifications or
hidden states with experimental heuristics can maximize the sample variance while maintaining
the semantics (Li et al., 2023b; Huang et al., 2024). However, these methods often overlook the
critical role of the input text query, which specifies which aspects of an image are relevant to the
user request. For instance, asking to identify an object in the image and solving a handwritten math
problem require entirely different capabilities and reasoning from the LVLM. While VACoDe (Kim
et al., 2024b) addressed this by estimating the divergence between logit distributions among the
predefined visual augmentation set at the first generation step in a brute-force manner, there are two
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fundamental limitations. First, first-token divergence is an empirical measure that does not always
assure a favorable augmentation choice for the entire generation sequence. Second, its dependence
on a single token renders it suitable for short, multiple-choice style answers but fundamentally limits
its effectiveness for complex tasks requiring open-ended generation and multi-step reasoning.

Moreover, a challenge in contrastive decoding arises from the subtraction of the amateur logit from
the expert logit (Li et al., 2023c). This operation can cause undesired effects that amplify the scores
of certain tokens; if the amateur model produces a negative logit value, it will have its final score
erroneously increased (Lyu et al., 2024). To mitigate this amplification effect, existing methods (Jin
et al., 2024) truncate the vocabulary set based on a threshold set proportionally to the maximum
value of the expert logit distribution. However, while this approach is effective at penalizing false
positives, its reliance on a single data point (i.e., the maximum logit) hinders it from utilizing the rich
information encoded in the full logit distribution, such as model confidence.

These aforementioned limitations lead us to two main research questions. (1) How can the semantic
intent of a text query guide the selection of a visual augmentation to elicit a maximally informative
discrepancy for contrastive decoding? (2) Is there a correlation between a predictive confidence of
the model and the plausibility of its next-token candidates? To address these questions, this study
introduces Self-Augmented Visual Contrastive Decoding (SAVCD), a novel decoding strategy that
adaptively select which visual augmentation is best suited to be contextually relevant. Unlike prior
works (Kim et al., 2024b), SAVCD utilizes the intrinsic model knowledge to determine an optimal
visual modification out of the box. Furthermore, we introduce an improved thresholding algorithm,
Sparsity Adaptive Truncation (SAT), to overcome the limitations of existing plausibility constraints.
Where prior methods often fail to utilize full information from the logit, SAT dynamically determines
a threshold by utilizing the entire logit distribution as a proxy for the confidence of the output.
The proposed method integrates seamlessly into any LVLM without requiring any architectural
modifications or additional training. Extensive experiments and analysis verify that the proposed
methods significantly enhance factual consistency and reduce hallucinations across multiple models
and benchmarks. The contributions of this study are summarized as follows:

1. This work introduces SAVCD, a prompting strategy that leverages parametric knowledge of
the model to select a visual augmentation that is semantically relevant to the textual query,
thereby extracting a more informative discrepancy.

2. The proposed SAT improves the existing adaptive plausibility constraint by leveraging the
entropy of the expert logit and dynamically sets a threshold of token implausibilities.

3. Extensive experiments validate the effectiveness of the proposed method across 4 LVLMs
and 7 benchmarks. The results demonstrate that SAVCD significantly reduces hallucinations
while amplifying the relevance and informativeness in the response.

2 PRELIMINARIES

Auto-regressive Generation of LVLMs Suppose that fθ is an LVLM (Gong et al., 2023; Maaz
et al., 2023; Li et al., 2025a), parameterized by θ. The model operates on a vocabulary set V ,
and the set of all possible token sequences can be denoted by its Kleene closure, V∗ =

⋃
i≥0 Vi,

where i indicates the timestamp of the LVLM output. The function fθ : V∗ × Rh×w×3 → V∗ auto-
regressively generates a response from a given text query x ∈ V∗ and a visual input v ∈ Rh×w×3. At
each timestep t, the LVLM computes a logit distribution over the vocabulary for the next token yt,
conditioned on the inputs (x, v) and the sequence of previously generated tokens y<t. This yields the
probability distribution over the next token:

pθ(yt|v, x, y<t) ∝ exp (logitθ(yt|v, x, y<t)) . (1)

The next token is then selected from this distribution according to a chosen decoding method.
Decoding methods are broadly categorized into two families: deterministic search, including greedy
and beam search (Graves, 2012), and stochastic sampling, such as top-k, Nucleus (Holtzman et al.,
2019), Mirostat (Basu et al., 2020), and typical (Meister et al., 2023) sampling.

Hallucination Ideally, the generated response y should be factually accurate, relevant to the query x,
and faithful to the visual content v. However, current LVLMs often fail to meet these criteria, suffering
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from a critical issue known as hallucination (Rohrbach et al., 2018). This phenomenon stems from
multiple reasons, including imperfect learning and decoding (Ji et al., 2023), misalignment of vision
and language modalities (Tong et al., 2024), and failure of understanding the context (Daunhawer et al.,
2021). To address this issue, recent studies have suggested scaling the input image resolution (Liu
et al., 2024b; Chen et al., 2024b), combining another inductive bias of visual encoders (Li et al.,
2025b), post-hoc rectifying (Zhou et al., 2023), self-correction after generation (Yin et al., 2024),
and advanced decoding methods (Shi et al., 2024; Favero et al., 2024b). Among those approaches,
decoding-based methods are particularly promising since they enable real-time control, do not require
additional training, and are compatible with other hallucination mitigation strategies.

Contrastive Decoding CD (Li et al., 2023c) tackled hallucination problems in the NLP domain by
contrasting the predictions of two different language models with different capacities. VCD (Leng
et al., 2024) extended the idea of CD with vision modality and introduced the contrastive counterpart
v′ by degrading visual content with random noise to v. It sequentially treats the logit from v′ as an
output of the amateur model, sampling the next token from:

pCD(y|v, v′, x) = softmax ((1 + α) · logitθ(y|v, x)− α · logitθ′(y|v′, x)) , (2)
where α denotes an amplification parameter. Recent studies have focused on curating a better
selection of the degradation to achieve maximal differentiation while preserving semantic integrity.
For instance, cropping the patch which is likely to cause hallucinations (Chen et al., 2024a), caption
substitute (Kim et al., 2024a), and visualization of the textual output (Park et al., 2025). While
most VCD methods rely on a shared underlying principle of query-agnostic input modifications,
VACoDe (Kim et al., 2024b) has introduced a dynamic visual augmentation strategy. This approach
attempts to be query-aware by using L2 distance between the expert and amateur logit distribution at
the first token generation as a score function to select an augmentation.

However, this reliance on a first-generated token has fundamental limitations. The overall semantics
of a task are not universally guaranteed to be reflected by first-token divergence, which is an empirical
proxy. One example of failure is when two logits have the same argmax but are distinct in terms of
overall entropy. In this case, the query could not be invalidated because, despite the distortion, the
model could still answer correctly, although the divergence remained large. This may be effective for
short-answer and multiple-choice questions, but it can be ineffective for other scenarios including
open-ended questions and multi-step reasoning.

3 SAVCD: SELF-AUGMENTED VISUAL CONTRASTIVE DECODING

To address the preceding limitations, we introduce SAVCD, a decoding method that identifies a
query-specific visual augmentation to apply for visual contrastive decoding by utilizing the rich
knowledge base of LVLM (Li et al., 2024). Unlike prior methods that rely on simple heuristics,
SAVCD leverages the world knowledge and common sense embedded in the LVLM to achieve a
semantic alignment between the query and the selected augmentation. This approach enables the
model to reason the underlying intent of a query and make a choice that elicits a more targeted and
informative discrepancy. Alg. 1 and Fig. 1 outline the proposed method.

3.1 SELF-AUGMENTATION SELECTION

SAS Prompting Self-Augmentation Selection (SAS) aims to employ parametric knowledge of
the LVLM to dynamically select the best task-optimal visual augmentation on the fly that amplifies
the output divergence. This is achieved through a structured SAS Prompt P , which comprises three
key components. First, the prompt contains explicit definitions of each visual augmentation and
corresponding effects, providing the model with the necessary operational knowledge. Second, to
minimize the risk of post hoc rationalization, the prompt is structured to elicit reasoning before
the final selection is made (Zelikman et al., 2024). Finally, inspired by few-shot learning tech-
niques (Brown et al., 2020; Patel et al., 2024), in-context learning (ICL) examples are included in the
prompt P to further condition the contextual knowledge (Alayrac et al., 2022). The textual output
is then processed by a parsing function g(·) : V∗ → V∗ × V∗, which separates the reasoning trace
r and final augmentation choice c. The contrasted image is obtained by feeding the v and the final
choice c to a predefined visual augmentation function A.

(r, c) = g(fθ(P, x)), v′ = A(c, v). (3)
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Self-Augmentation Selection Prompting Sparsity Adaptive Truncation
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Figure 1: Overview of the proposed augmentation choice process and sparsity adaptive truncation.

Subsequently, contrasted logit distribution is calculated from expert logit l = logitθ(yt|v, x, y<t)
and amateur logit l′ = logitθ(yt|A(c, v), x, y<t). The augmentation set is defined with random
crop, random mask, noise addition, color inversion, horizontal flip, and vertical flip. Note that
the generation configuration is set to greedy decoding for SAS Prompt P to ensure computational
efficiency, determinism, and reproducibility. While further optimized prompting techniques (Manakul
et al., 2023) and multiple combinations of different augmentations can be deployed, we limit the
scope to two prompting features and the aforementioned augmentation set in this work. Full prompt
is referred to the Appendix B.1.

3.2 RETHINKING ADAPTIVE PLAUSIBILITY CONSTRAINT

CD-based methods encourage the generation of implausible tokens since the output distribution from
contrasted visual input v′ still involves the underlying semantics of v (Li et al., 2023c). This can
cause the two distributions to not cooperate properly, resulting in the reward of undesirable tokens.
Adaptive Plausibility Constraint (APC) (Li et al., 2023c; Leng et al., 2024) addresses this challenge
with a controllable hyperparameter β ∈ [0, 1], setting a threshold proportional to the logarithm of the
maximum probability of the new token, formulated as:

VAPC = {yt ∈ V | pθ(yt|v, x, y<t) ≥ β ·max
w∈V

pθ(w|v, x, y<t)}. (4)

However, since this thresholding mechanism is based solely on the maximum logit value and the
meaning of a logit value is relative to the other logits in the distribution, it is a confidence-agnostic
filter. Although this approach penalizes false positives by truncating the sample space, it becomes
unreliable in low-confidence states, when the risk of discarding the correct token from the candidate
set is high (Guo et al., 2017; Wenkel et al., 2021). This deficiency arises because APC disregards
the rich signal encoded in the full output distribution. The entropy of logit distribution provides a
more robust and holistic measure of model uncertainty which can be leveraged for a more effective
filtering of the candidate set.

Model uncertainty, characterized by the value of output entropy, is a recognized correlate of model
errors (Manakul et al., 2023). When the logit distribution is highly entropic, a more lenient threshold
is required to create a sufficiently inclusive candidate set and avoid erroneously discarding the
context-relevant tokens. Conversely, in low-entropy scenarios where the model is confident (Tornetta,
2021) with a sparse output distribution, a more restrictive threshold is required to retain pivotal
tokens with high probability and to refine the candidate set by taking over the probability mass from
filtered tokens (Li et al., 2023c). This inverse proportionality heuristic improves generation fidelity
by minimizing the risk of sampling erroneous, low-probability tokens on the tail of the distribution.

To enable the confidence-aware thresholding, the proposed method extends APC to SAT, a method
that dynamically adjusts the plausibility constraint based on the sparsity of the output distribution.
The method leverages the principle that a sparsity is inversely related to its uncertainty, quantified
by Shannon Entropy H : Rd → [0, log2 d] (Shannon, 1948), which maps a probability distribution
p over its dimension d to its uncertainty, calculated as H(p) = −

∑|V|−1
i=0 pi log2 pi. To implement

an inversely proportional relationship where higher entropy yields a smaller threshold, a decayed
entropy function Hdecay : R|V| → (0, 0.5] is formulated to compute the threshold value:

Hdecay(p) = σ

−γ |V|−1∑
i=0

pi log2 pi

 , (5)

where σ and γ < 0 denote a sigmoid function and a scaling parameter, respectively. The choice
of a sigmoidal decay is deliberate, as other decaying functions, such as exponential or polyno-
mial (Provencher, 1976; Borichev & Tomilov, 2010), could be potentially considered, but they lack
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Algorithm 1 SAVCD: Self-Augment Visual Contrastive Decoding

Require: input image v, text query x, LVLM fθ, augmentation function A, SAS Prompt P , vocabu-
lary set V , hyperparameter α.

1: c← fθ(P, x) ▷ Identify augmentation c from given x
2: t← 0 ▷ Initiate t
3: while t < T do
4: l← logitθ(yt|v, x, y<t) ▷ Set expert logit l
5: l′ ← logitθ(yt|A(c, v), x, y<t) ▷ Set amateur logit l′
6: lCD ← (1 + α) · l − α · l′ ▷ Set contrasted logit
7: βSAT

t ← Hdecay (softmax(l)) ▷ Set SAT parameter βt from Eq. 5
8: VSAT ← {yt ∈ V | pθ(yt|v, x, y<t) ≥ βSAT

t ·maxw′∈V pθ(w
′|v, x, y<t)} ▷ Set threshold

9: lCD[i]← −∞ for all i /∈ VSAT ▷ Apply vocabulary truncation
10: yt ∼ softmax(lCD) ▷ Token sample
11: t← t+ 1
12: end while
13: return {y0, ..., yT−1}

the versatility of a sigmoid. The curve of the sigmoid function is naturally bounded to (0, 1), and
its lower plateau creates a stable, consistent threshold for low confidence distributions, and precise
controllability over the single steepness parameter γ of the decay for mid-range entropy. Furthermore,
by ensuring the threshold remains strictly less than 1, SAT prevents the candidate set from collapsing
to a single token, guaranteeing that the decoding process remains distinct from greedy decoding.

The proposed SAT method introduces a dynamic threshold βSAT
t , which is calculated by incorporating

the entropy of the logit distribution: βSAT
t = Hdecay(softmax(logitθ(yt|v, x, y<t))). The next-token

candidate set, VSAT, is then constructed by filtering the vocabulary set with this adaptive threshold:
VSAT = {yt ∈ V | pθ(yt|v, x, y<t) ≥ βSAT

t ·maxw∈V pθ(w|v, x, y<t)}. To exclude the implausible
tokens, −∞ is assigned to logit elements which are not involved in VSAT. Finally, the contrasted
probability distribution is obtained by combining Equations 2 to 5:

pCD(yt|v, x, y<t) =

{
softmax((1 + α) · l − α · l′), if yt ∈ VSAT

0. otherwise
(6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmark and Model Selection Following standard practices in the literature (Leng et al., 2024;
Kim et al., 2024b), three foundation model families are selected to evaluate the effectiveness of
SAVCD: LLaVA-1.5 (Liu et al., 2024a), Qwen-VL (Bai et al., 2023), and InstructBLIP (Dai et al.,
2023) with vicuna-v1.1 (Chiang et al., 2023). 7B and 13B variants are selected for LLaVA-1.5, and
7B variants are chosen for the other model families. The evaluations are divided into two categories:
discriminative and generative benchmarks. Discriminative benchmarks assess the factuality of visual
recognition in the form of binary or multiple choice questions, while generative benchmarks evaluate
broader capabilities by requiring open-ended responses and judge with proprietary models (Zheng
et al., 2023; Gu et al., 2024; Ali et al., 2025). The selected discriminative benchmarks include
POPE (Li et al., 2023d) constructed on MSCOCO (Lin et al., 2014), and A-OKVQA (Schwenk
et al., 2022) dataset, MME-Perception (MME-P) (Fu et al., 2024), and MMVP (Tong et al., 2024).
MMHal-Bench (Sun et al., 2023), LLaVA-Bench (In-the-Wild) (Liu et al., 2023), MM-Vet (Yu et al.,
2023) are selected for generative benchmarks. The ablation studies were focused on the LLaVA-1.5
model family and the MME-P benchmark. This selection represents a methodological choice, as
LLaVA-1.5 not only provides the strongest performance among the model families but also being one
of the most widespread adoption within the open-source community, while MME-Perception offers
the largest testbed among ones with diverse categories.

Implementation Details Unless explicitly stated otherwise, the CD hyperparameters are set to
α = 1, β = 0.1 for APC, and the SAT hyperparameter was set to γ = −0.5. Including automated
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Table 1: Discriminative benchmark results on MME (Fu et al., 2024), MMVP (Tong et al., 2024), and
POPE (Li et al., 2023d) constructed on COCO (Lin et al., 2014), and A-OKVQA (Schwenk et al.,
2022). Avg. ∆ denotes averaged gain against Multinomial sampling across benchmarks.

Model Method
POPE-MSCOCO POPE-AOKVQA

MME-P↑ MMVP↑ Avg. ∆
Acc.↑ F1↑ Acc.↑ F1↑

LLaVA-1.5-7B

Multinomial 82.07±1.83 80.48±1.66 79.81±4.12 79.86±3.26 1278.42±30.30 32.40±4.73 -
VCD 83.66±1.97 82.55±1.76 80.51±4.49 81.11±3.56 1323.67±20.84 34.00±3.89 +10.86%
VACoDe 84.29±2.41 83.59±2.11 80.86±4.97 81.87±3.90 1372.50±13.78 36.67±2.87 +9.52%
SAVCD 82.93±1.77 83.57±1.63 82.80±4.75 83.20±3.86 1431.30±13.87 36.00±3.09 +14.32%

LLaVA-1.5-13B

Multinomial 83.86±1.51 81.02±1.33 80.97±3.51 80.79±2.84 1351.69±30.30 31.60±4.82 -
VCD 83.86±1.72 82.68±1.53 81.93±3.65 82.16±2.94 1372.77±30.54 31.60±4.81 +6.33%
VACoDe 84.86±1.90 84.17±1.68 82.34±3.90 83.08±3.02 1434.09±12.79 32.13±3.25 +8.03%
SAVCD 85.37±1.42 83.96±1.32 84.25±3.64 84.13±3.04 1462.18±18.21 34.80±1.19 +11.59%

Qwen-VL

Multinomial 75.72±0.79 72.07±0.85 76.64±2.50 74.68±2.16 1311.79±23.42 17.33±2.54 -
VCD 77.98±0.79 75.42±0.77 78.85±2.62 77.73±2.77 1415.12±21.31 21.33±2.62 +5.05%
VACoDe 78.35±0.93 76.08±0.86 78.98±3.07 78.02±2.77 1412.43±10.27 22.13±3.75 +7.49%
SAVCD 77.58±0.65 74.71±0.64 78.23±2.69 76.78±2.36 1442.36±11.87 26.67±1.63 +6.69%

InstructBLIP

Multinomial 68.70±1.74 69.34±1.42 65.52±3.00 68.36±1.91 973.66±41.81 19.20±1.52 -
VCD 71.99±1.27 72.77±1.11 69.26±3.03 72.23±2.03 1079.39±46.30 18.93±2.77 +12.33%
VACoDe 73.29±1.50 74.26±1.17 70.01±3.28 73.40±2.21 1090.88±33.01 21.87±1.10 +10.98%
SAVCD 82.86±1.94 82.34±1.62 72.09±3.76 75.37±2.51 1198.53±17.95 16.13±3.18 +18.78%

Table 2: Generative benchmark results on LLaVA-Bench (In-the-Wild) (Liu et al., 2023), MM-Vet (Yu
et al., 2023), and MMHal-Bench Sun et al. (2023).

Model Method
MMHal-Bench

MM-Vet↑ LLaVA-Bench↑ Avg. ∆
Avg. Score↑ Hal. Rate↓

LLaVA-1.5-7B

Multinomial 2.27±0.08 0.65±0.02 27.74±2.01 58.48±2.17 -
VCD 2.32±0.09 0.65±0.02 31.14±1.15 69.08±2.07 +2.82%
VACoDe 2.32±0.09 0.64±0.03 29.88±1.94 69.12±2.48 +6.14%
SAVCD 2.55±0.11 0.59±0.03 31.14±0.95 69.22±1.80 +6.97%

LLaVA-1.5-13B

Multinomial 2.35±0.18 0.65±0.05 31.20±1.78 69.48±2.78 -
VCD 2.37±0.24 0.64±0.07 35.00±1.61 73.62±1.40 +1.11%
VACoDe 2.52±0.16 0.61±0.03 34.18±0.98 74.56±1.62 +4.78%
SAVCD 2.53±0.09 0.60±0.03 36.62±1.33 76.24±0.83 +6.04%

Qwen-VL

Multinomial 2.21±0.12 0.50±0.02 31.70±1.76 35.98±1.56 -
VCD 2.17±0.08 0.51±0.03 34.04±1.21 38.78±0.58 +9.21%
VACoDe 2.21±0.13 0.50±0.03 35.42±1.36 39.18±1.75 +10.47%
SAVCD 2.15±0.06 0.50±0.02 35.98±1.00 39.84±0.73 +17.09%

InstructBLIP

Multinomial 1.89±0.16 0.69±0.05 23.06±0.59 53.24±2.01 -
VCD 1.99±0.14 0.70±0.04 28.18±1.35 58.30±1.38 +4.99%
VACoDe 2.03±0.07 0.68±0.02 27.40±0.51 56.82±3.06 +9.17%
SAVCD 2.16±0.13 0.64±0.05 31.14±0.95 56.98±2.13 +17.08%

judging of generative benchmarks, all API calls to proprietary models were made using OpenAI
gpt-4o-mini with temperature 0 for deterministic results and reproducibility. All main experiments
were conducted over five runs, and ablation studies over three runs with different random seeds, with
results reported as the average and standard deviation to account for the inherent randomness from
the augmentation process and multinomial sampling.

4.2 EXPERIMENTAL RESULTS

Main Results Tab. 1 and 2 summarize the averaged performance and standard deviations for all
evaluated settings. The final column in each table, denoted as Avg. ∆, reports the average performance
gain over the multinomial sampling baseline for each method and combination. For this calculation,
the accuracy score is used for POPE and the average score is used for MMHal-Bench. For each
configuration, the best-performing method is highlighted in bold, and ties are resolved in favor of the
method exhibiting lower variance across runs. SAVCD achieves remarkable performance gains across
both benchmark categories, ranging from 6.69% to 18.78% relative to the multinomial sampling.

To further probe the effectiveness of SAVCD, a token-level analysis was conducted to verify how the
proposed method mitigates hallucinations by examining the output logits of LLaVA-1.5-7B. Fig. 2
illustrates two examples of logit values of LLaVA-1.5-7B with SAVCD on MM-Vet (Yu et al., 2023)
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Expert _No

Amateur _No

Final token _Yes

Expert
logit

24.14

24.14

23.56

Amateur
logit

24.70

24.70

23.00

Final logit
23.58

23.58

24.12

0.265

Query:
Is the wind blowing the flag?

Expert _The _image _features _a _painting _of _a _dog _dog ...

Amateur _The _image _features _a _painting _of _a _blue _dog ...

Final _The _image _features _a _painting _of _a _brown _dog ...

Expert logit
26.69 22.98 22.36 25.06 16.25 21.34 23.09 15.13 19.33 ...

26.69 22.98 22.36 25.06 16.25 21.34 23.09 6.50 19.33 ...

26.69 22.98 22.36 25.06 16.25 21.34 23.09 14.14 19.33 ...

Amateur logit
26.69 23.47 22.53 25.36 15.37 21.73 23.41 14.73 17.98 ...

26.69 23.47 22.53 25.36 15.37 21.73 23.41 15.36 17.98 ...

26.69 23.47 22.53 25.36 15.37 21.73 23.41 8.68 17.98 ...

Final logit
26.69 22.50 22.19 24.77 17.13 20.95 22.78 15.52 20.67 ...

26.69 22.50 22.19 24.77 17.13 20.95 22.78 -inf 20.67 ...

26.69 22.50 22.19 24.77 17.13 20.95 22.78 19.59 20.67 ...

0.42 0.39 0.24 0.46 0.12 0.35 0.46 0.08 0.30 ...

Query:
Describe this photo in detail

Figure 2: Qualitative examples of SAVCD on MM-Vet (Yu et al., 2023) and LLaVA-Bench (Liu et al.,
2023), and corresponding logit distributions and SAT thresholds by timestamp.

and LLaVA-Bench (Liu et al., 2023). Amateur and Expert logit indicate the selected token with and
without augmentation, and the final token, highlighted with gray, is the token that corresponds to the
argmax of the contrasted logit. Note that the applied augmentations are stylized for visual clarity.

These examples provide three important observations. (1) The example to the left shows a case of
failure correction where the contrastive process between two logits successfully elevates the score
for the correct Yes token, making it the final answer. (2) The example on the right evidences
hallucination penalty, where random noise triggered hallucination of generating blue token from
the amateur logit. It is penalized through subtraction, causing its final score to fall below the SAT
threshold and be removed from the candidate set. (3) Adaptive nature of the SAT threshold βSAT is
observed, with a higher threshold applied to common tokens (e.g., articles, prepositions) and a lower
threshold applied to informative, lower-confidence tokens (e.g., painting, red-boxed token). These
findings highlight a clear validation of both core components of SAVCD, confirming that not only
contextually relevant augmentation selection with model knowledge can effectively amplify the output
divergence by invalidating the premise of the question, but also the efficacy of confidence-aware SAT.

Table 3: Decoding throughput (token/s) and la-
tency (ms/token). # Param and # tokens indicate
model size and number of generated tokens for
multimodal query, respectively.

Decoding # Param # tokens token/s↑ ms/token↓

VCD 7B 9914 18.50 54.06
13B 8785 14.01 71.38

VACoDe 7B 8418 16.97 58.93
13B 8568 13.03 76.76

SAVCD− 7B 8346 17.39 57.50
13B 8793 11.37 87.92

SAVCD+ 7B 10163 15.08 66.32
13B 8805 11.33 88.26

Computational Overhead The computa-
tional cost of SAVCD was evaluated by compar-
ing throughput (token/s) and latency (ms/token)
against other CD-based methods. The analy-
sis used the LLaVA-Bench with the LLaVA-1.5
family on an NVIDIA A100 GPU. Detailed re-
sults are presented in Tab. 3. The superscript
+ on SAVCD denotes the full prompt configu-
ration that includes reasoning and ICL, while
− denotes a lightweight configuration without
both components. The results show that the
primary computational bottleneck for both adap-
tive methods is the augmentation choice process.
VACoDe is a brute-force that requires a separate
forward pass for each predefined augmentation,
which includes the full set of visual tokens, resulting in an overhead that scales linearly with the
size of the augmentation set. On the other hand, SAVCD demonstrates architectural advantage
by requesting a single text-only generation pass, bypassing the main computational expenses of
visual tokens, which constitute the majority of the input. This architectural feature enables a flexible
trade-off between performance and latency. While the full prompting incurs a cost comparable to
VACoDe, the cost-optimized prompting exhibits substantially higher efficiency. This confirms that
SAVCD provides a more scalable and controllable framework for query-aware contrastive decoding.

4.3 ABLATION STUDY AND ANALYSES

Augmentation Selection A detailed investigation of the augmentation choice made by the LLaVA-
1.5 family is presented in Fig. 3 with different patterns by model capacities. For comparison, the
choices from gpt-4o-mini are also included to provide a practical upper bound and will be denoted as
the “Oracle” for notation convenience throughout the remainder of this paper. The results reveal that
the distribution of selections varies significantly across different benchmarks. A notable contrast is
found between the sparsest POPE and the most uniform MMVP. For POPE, random mask accounts
for 87.6% of all selections. This strong preference arises because the queries related to object

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

LLaVA-Bench MME MM-Vet MMHal-Bench MMVP POPE
0

20

40

60

80

100

Ch
oi

ce
 P

er
ce

nt
ag

e 
(%

)

41%

12% 13% 19%
6%

40%

48% 50%
27% 37%

11%

10%

25% 19%

25%
30%

87%

8% 13% 14%
26% 18%

13% 11% 5% 4%

12%

26%
40%

11%
10%

58%
42%

76%
67%

67%
99%

4%
17% 10%

13% 18%
9% 7%

5%4%
10%

66% 47%
50%

36% 7%

16%

21% 30%

35%
58%

98%

10% 5%
17% 11%

Model Choice Distribution Comparison

Model
LLaVA-7B LLaVA-13B Oracle

Augmentation Choice
Noise Horizontal Flip Vertical Flip Random Crop Random Mask Color Inversion

Figure 3: Distribution of self-augmentation choice across model
size and benchmarks. Oracle indicates gpt-4o-mini decisions.

Table 4: Comparison with single
augmentations with LLaVA-1.5-
7B (Liu et al., 2024a) on MME-
Perception (Fu et al., 2024). The
compared single augmentations
are the predefined augmentations
in SAS Prompting.

Strategy Augmentation MME-P↑

Static

Noise 1351.76±7.59

Horizontal flip 1302.55±47.62

Vertical flip 1354.42±15.13

Random crop 1315.56±41.75

Random mask 1302.50±29.34

Adaptive
VACoDe 1372.50±13.78

SAVCD 1431.30±13.87

Oracle 1435.07±22.30

recognition in POPE are unified as Is there a {object} in the image?, which are directly
addressed by the definition of random mask as an occluding operation within the SAS Prompt. In
contrast, the uniform distribution of MMVP reflects the diverse nature of the benchmark itself, which
queries nine different visual pattern categories and thus applies a wider range of augmentations. On
the other hand, the infrequent selection of horizontal flip across all benchmarks is a direct result
of the evaluated queries rarely testing for horizontal spatial relationships. These findings suggest a
broader principle that the set of predefined augmentations must be sufficiently diverse to match the
complexity of the visual patterns in a given task, while noting that the specific distribution of choices
is also dependent on the SAS Prompt design.

Model Capacity The impact of model scale on the quality of augmentation selection was evaluated
by comparing the LLaVA-1.5 7B and 13B models against the Oracle baseline using two primary
metrics. First, selection accuracy was measured by calculating the agreement with the Oracle choice,
where the 7B model achieved 64.15% and the 13B model achieved 66.19%. Second, the quality of
the reasoning trace for each choice was assessed by gpt-4o-mini on a scale of 0 to 10, with the 13B
model producing higher quality justifications with an average score of 9.04 compared to 8.28 for the
7B model across benchmarks. The results from both metrics confirm that larger model capacity leads
to improved augmentation selection and reasoning quality. Full prompt for reasoning assessment and
detailed breakdown of these agreements are provided in the Appendix B.2 and E, respectively.

Comparison with Single Augmentation A comparison between static and adaptive visual aug-
mentation strategies is presented in Tab. 4. Static strategies apply a single, fixed augmentation across
all inputs, while adaptive strategies utilize query-aware augmentations. There is a clear performance
gap between the two approaches, underscoring the importance of context-optimal augmentation. The
significant gap between the proposed method and the others underscores the importance of query-
augmentation semantic alignment and architectural flexibility, opening the possibility of leveraging
diverse knowledge sources from internal knowledge to external reasoning modules.

SAT Threshold The core inverse-entropy heuristic of SAT was validated through a compari-
son of the proposed Hdecay against the APC baseline and a normalized scaled entropy Hns :

(−
∑|V|−1

i=0 (p)i log2(p)i/ log2 |V|)1/γ . The Hns function is a direct-proportional entropy function,
i.e., implements the opposing rule to Hdecay, mapping high input entropy to a more confined threshold.
As visualized in Fig. 4, the results confirm a performance hierarchy: Hdecay consistently outperforms
APC and Hns with more stable outputs. A further observation arises from the performance trend
within each entropy-based function with respect to the scaling parameter γ. A lower γ absolute
value corresponds to a more restrictive threshold for Hdecay but a more generous one for Hns. These
findings not only imply mature thresholding is required to properly penalize false positives, but also
provide strong empirical support for the inverse-entropy principle in the design of SAT.

Furthermore, the generalizability of SAT was evaluated through a direct comparison with the APC
baseline. Both thresholding algorithms were applied to VCD, VACoDe, and SAVCD, and the findings
are presented in Tab. 5. The results show that SAT consistently outperforms APC across all decoding
configurations, achieving an average performance gain of 4.94%. This performance gain is attributed
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Figure 4: Comparison of the normalized entropy
and proposed inverse-entropy function by γ.

Table 5: Plausibility constraint thresholding with
APC and SAT.

Decoding Thresholding MME-P↑

VCD APC (β = 0.1) 1323.67±20.84

SAT 1395.17±17.09

VACoDe APC (β = 0.1) 1372.50±13.78

SAT 1414.21±26.85

SAVCD APC (β = 0.1) 1345.46±4.65

SAT 1431.30±13.87

to the foundational difference in the usage of model confidence. The consistency of this improvement
suggests that SAT is broadly applicable to other CD-based methods.

Table 6: SAS Prompting with and
without reasoning steps and ICL.

Reasoning ICL MME-P↑

✗ ✗ 1419.08±11.39

✗ ✓ 1428.63±31.85

✓ ✗ 1428.02±7.92

✓ ✓ 1431.30±13.87

SAS Prompting The individual contributions of the reason-
ing and ICL components within SAS Prompting were evaluated
by selectively removing the reasoning instruction and in-context
examples from the full prompt. The results presented in Tab. 6
indicate that removing either component has a minimal im-
pact on performance. Even the weakest configuration, which
omits both components, achieves a performance gain of 11.00%
against regular sampling. Note that the reasoning instruction,
however, is the most impactful factor affecting computational
latency, as it requires the model to generate a full text sequence for the justification. Removing this
instruction reduces the generation requirement to fewer than ten tokens for the final choice.

5 LIMITATIONS AND FUTURE WORK

The proposed method also presents several branches for future work by addressing current limitations.
First, the effectiveness of SAS Prompting depends on the reasoning and instruction-following ability
of the base model. Less capable models might produce malformed outputs or poor augmentation
choices. This dependency could be addressed in future work by developing more robust prompting
methods (e.g., Chain-of-Thoughts (Wei et al., 2022)) or utilizing a smaller, specialized model for
the selection task. Second, the current method is limited to a predefined set of visual augmentations.
While this set covers common scenarios, it may not contain the best augmentation for highly
specialized visual reasoning tasks. A promising direction for future research involves developing
methods that can dynamically select from a more diverse and larger library of transformations using
external modules (e.g., object detector), enhancing the approach’s versatility. Finally, the inclusion
of explicit reasoning creates a trade-off between performance and inference speed; this trade-off
is flexible and can be controlled by simplifying the prompt as highlighted in the ablation studies.
This offers a range of options to suit different application requirements, and further exploration into
optimizing this balance is a valuable area for future investigation.

6 CONCLUSION

This work introduces SAVCD, a novel decoding strategy designed to mitigate hallucinations in
LVLMs. The proposed method aligns the semantics between query and visual augmentation by
leveraging the flexible intrinsic reasoning of the model without relying on predefined heuristics.
In addition, the proposed sparsity adaptive truncation introduces a confidence-aware thresholding
that dynamically adjusts candidate sets based on logit entropy, effectively penalizing false positives.
Extensive experiments conducted across three LVLM families and seven benchmarks demonstrated
that SAVCD consistently improves factual consistency over existing decoding strategies while
maintaining practical computational efficiency. Beyond immediate performance gains, this study
underlines the importance of the semantic coupling of query-augmentation with confidence-sensitive
decoding as a principled approach for developing more robust multimodal generation.
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SELF-AUGMENTED VISUAL CONTRASTIVE DECODING

APPENDIX

Due to space limitations in the main manuscript, we provide supplementary materials in this appendix
that elaborate on the proposed design, experimental settings, and visualizations. This includes the
complete prompt design for Self-Augmentation Selection (SAS) and LLM-as-a-Judge for reasoning
quality, additional qualitative examples, extended experimental results, and a detailed breakdown of
the model and benchmark information.

A ADDITIONAL EXPERIMENTAL SETUP DETAILS

The visual augmentations were implemented on top of the official VCD (Leng et al., 2024) source
code with the following specific parameters. The color inversion operation was performed using the
PyTorch torchvision.transforms.functional.invert function. For the random crop
and random mask augmentations, a ratio of 2.0 was used, which corresponds to applying the operation
to a randomly placed square patch with side lengths equal to half the original image dimensions. For
the noise augmentation, a diffusion noise step of 500 was applied from the official VCD random
noise implementation.

B FULL PROMPT DESIGN

This section provides the verbatim prompts used for both the self-augmentation selection and the
subsequent reasoning quality assessment. The full SAS Prompt, which leverages in-context learning
and reasoning to achieve optimal query-augmentation semantic alignment, is presented first. This is
followed by the prompt used to instruct the LLM-as-a-Judge for the evaluation of the SAS reasoning
trace against the Oracle. The individual effects of the reasoning and in-context learning components
within the SAS Prompt are quantified in the ablation study section of the main manuscript.

B.1 SAS PROMPTING

You are an expert data augmentation analyst. Your task is to select the single most semantically
disruptive image augmentation that most effectively invalidates the question’s premise or prevents a
confident answer. Provide a clear reason explaining why the augmentation is chosen, then state your
final choice.

## Augmentations and Their Effects ##
- Vertical flip: Flips image top-to-bottom. Disrupts questions about “above”, “below”, “under” or
reading orientation.
- Color inversion: Replaces each color with its complement. Disrupts questions relying on accurate
color identification.
- Random crop: Removes random parts of the image. Disrupts questions requiring global context or
peripheral objects.
- Random mask: Occludes portions of the image. Disrupts object presence, count, or attribute recogni-
tion.
- Noise: Adds visual distortion. Disrupts questions requiring small details, texture, or text clarity.
- Horizontal flip: Flips the image left-to-right. Disrupts questions about left/right positioning and
left-to-right text reading.

## Examples ##
Question: ”Is the mirror above the TV?” Reason: The question focuses on vertical positioning. Ver-
tical flip reverses top and bottom, making “above” mean “below,” invalidating the question. Other
augmentations don’t affect vertical relationships. Choice: vertical flip
Question: “Is this photo taken indoors?” Reason: The question requires identifying a specific envi-
ronmental context. Random crop may exclude key background elements like trees, invalidating the
question. Flips, color inversion, noise, and random mask don’t directly affect scene context. Choice:
random crop
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Question: “Are there any green beans in the image?” Reason: The question requires identifying a
specific color. Color inversion changes green to its complement, invalidating the question. Flips, noise,
random mask, and random crop don’t target color directly. Choice: color inversion
Question: “How many people are in the image?” Reason: The question requires counting visible people.
Random mask can completely obscure one or more people, making the exact count impossible. Noise
obscures details but typically doesn’t hide entire objects, allowing approximate counting. Flips and
color inversion don’t affect object visibility or count. Choice: random mask
Question: “Is the cat on the right side of the laptop?” Reason: The question relies on horizontal
positioning. Horizontal flip reverses left and right, making “right” mean “left”, invalidating the question.
Other augmentations don’t target horizontal positions. Choice: horizontal flip
Question: “Does this artwork exist in the form of painting?” Reason: The question requires identifying
the texture of the artwork. Noise obscures fine details, making it hard to identify the medium. Other
augmentations don’t target texture details. Choice: noise

## Your Answer ##
If multiple augmentations could disrupt the question, select the one whose effect is most direct and
unambiguous. You must choose one of the given augmentations following the “Reason:” and “Choice:”
format.
Question: “{text}”

B.2 LLM-AS-A-JUDGE PROMPT FOR REASONING QUALITY

Your task is to evaluate a candidate model’s response against an expert-provided reference solution. The
goal is to select the image augmentation that most effectively disrupts the premise of a given question.

## Evaluation Rubric (Integer Scale 0-10) ##
- 10 (Excellent): The candidate’s choice is highly effective and the reasoning is clear, logically sound,
and directly supports the choice. The response is of reference quality.
- 7-9 (Good): The choice is effective and the reasoning is logical, but may be slightly less specific or
insightful than the reference.
- 4-6 (Acceptable): The choice is plausible but not optimal. The reasoning is generic, weak, or contains
minor flaws.
- 1-3 (Poor): The choice is ineffective and the reasoning is flawed or irrelevant.
- 0 (Very Poor): The choice and reasoning are completely incorrect or nonsensical.

## Reference Example ##
Question: “How many people are in the image?”
Reference Reason: “The question requires counting visible people. Random mask can completely
obscure one or more people, making the exact count impossible.”
Reference Choice: “random mask”
Candidate Reason: “Random crop might cut some people out of the frame.”
Candidate Choice: “random crop”
Evaluation: Score: 7, Reason: The candidate’s choice is a valid strategy for disrupting a counting task,
but it is less direct than the reference. The reasoning is correct but lacks specificity.

## Task ##
Question: “{question}”
Reference Reason: “{oracle reason}”
Reference Choice: “{oracle choice}”
Candidate Reason: “{model reason}”
Candidate Choice: “{model choice}”

Evaluation:

C MODEL AND BENCHMARK DETAILS

Model Families

• LLaVA-1.5 (Liu et al., 2023) is a powerful open-source LVLM that establishes the ef-
fectiveness of visual instruct tuning for creating general-purpose visual assistants. Its
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architecture is characterized by its simplicity, connecting a pretrained CLIP vision encoder
to a Vicuna LLM using a single Multi-Layer Perceptron projection layer. The LLaVA-1.5
version improved upon the original by incorporating a more capable LLM and scaling the
instruction-following data.

• Qwen-VL (Bai et al., 2023) is a series of highly performant, versatile vision-language models
based on the Qwen language model family. A key feature of the Qwen-VL architecture is
its support for multiple languages, the ability to process multi-image inputs, and its strong
capabilities in fine-grained visual understanding, including text recognition and object
localization.

• InstructBLIP (Dai et al., 2023) is a vision-language instruction tuning framework designed
to enhance zero-shot generalization across a diverse set of tasks. Its central innovation is
the use of an instruction-aware Query Transformer. This module is trained to extract visual
features from the image encoder that are specifically relevant to the given text instruction,
enabling more targeted and effective multimodal reasoning.

Discriminative Benchmarks

• MME (Fu et al., 2024) is a benchmark that provides a granular evaluation of multimodal
tasks, spanning 10 perception and 4 cognition categories. The performance is measured on
binary yes or no questions using an accuracy-based MME score. Following the standard
practice (Leng et al., 2024; Kim et al., 2024), we consider the perception category for the
experiments.

• MMVP (Tong et al., 2024) is designed to evaluate a model’s understanding of fine-grained
visual details. It achieves this by using 300 CLIP-blind image pairs, where models must
capture subtle differences to perform paired classification accurately. These image pairs
cover nine distinct visual patterns: orientation and direction, feature presence, state and
condition, quantity and count, positional and relational context, color and appearance,
structural and physical characteristics, text, and viewpoint and perspective. The evaluation
follows a multiple-choice format, where final model responses are mapped to the answer
options using GPT-4 as an automated judge.

• POPE (Li et al., 2023) serves as a dominant benchmark for assessing object hallucination
by testing models with three distinct types of negative questions. These categories include
queries about random non-existent objects, popular objects that are frequent in the dataset
but absent from the image, and adversarial objects selected for their high co-occurrence. The
dataset contains 9,000 question-image pairs built from 500 images, each evaluated against
multiple questions across the three categories.

Generative Benchmarks

• LLaVA-Bench (In-the-Wild) (Liu et al., 2023) is a benchmark to evaluate the ability of
Large Vision Language Models (LVLMs) to handle complex tasks and adapt to new domains.
It features 24 images and 60 queries, which collapse into three categories: conversation,
detailed description, and complex reasoning. The evaluation is conducted using GPT-4V as
a judge to rate both the model response and a reference answer. The final performance is
reported as a score ratio, calculated by dividing the total score of the reference answer.

• MMHal-Bench (Sun et al., 2023) evaluates and penalizes hallucinations across a diverse
set of reasoning types. It is composed of 96 image-question pairs that cover eight distinct
categories, including object attributes, comparison, and spatial relations. Evaluation is
performed using GPT-4V as an automated judge to assess the severity of hallucination in the
generated response. The responses are scored on a scale from 0 to 7, where a higher score
indicates greater facutal consistency.

• MM-Vet (Yu et al., 2023) evaluates an LVLM to integrate multiple multimodal capabilities
for complex reasoning. The benchmark defines six fundamental multimodal abilities:
recognition, knowledge, OCR, spatial awareness, language generation, and mathematics. A
key feature of MM-Vet is its focus on compositional tasks, where these six core abilities are
combined to create 16 distinct capability integrations. The dataset itself is composed of 200
images and 218 questions, each requiring a specific combination of these integrated skills.
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D ADDITIONAL QUALITATIVE RESULTS

To provide a more granular understanding of the behavior of the method, this section presents addi-
tional qualitative results from both discriminative and generative benchmarks. Each example provides
a comprehensive analysis that includes the reasoning trace for the chosen augmentation, a stylized
visualization of the augmentation, the logit values for the expert, amateur, and contrasted distributions,
and the corresponding Sparsity Adaptive Truncation threshold. For improved visualization clarity,
common punctuation tokens such as commas and periods have been omitted from the presented logit
distributions.

Expert token b

Amateur token b

Final token a

Expert logit
20.88

20.88

20.77

Amateur logit
20.89

20.89

20.50

Final logit
20.86

20.86

20.50

0.361

Query:
How many spots are on the

‌animal in the image? (a) 5 (b) 6

Reason: The question requires counting the number of spots on
the animal. Random mask can completely obscure the animal,
making it impossible to count the spots. Noise and flips don't affect
the visibility of the animal or the count.

Expert token _Left

Amateur token _Left

Final token _Right

Expert logit
22.62

22.62

22.38

Amateur logit
22.69

22.69

22.03

Final logit
22.56

22.56

22.72

0.253

Query:
Is the sports car in the picture

‌facing left or right?

Reason: The question requires determining the direction the sports
car is facing. Horizontal flip reverses left and right, making “left”
mean “right” and vice versa, invalidating the question. Other
augmentations don't target horizontal positions.

Figure 5: Qualitative results on MMVP (Tong et al., 2024).

Expert token _No

Amateur token _No

Final token _Yes

Expert logit
27.56

27.56

27.22

Amateur logit
28.64

28.64

25.53

Final logit
26.48

26.48

28.91

0.380

Expert token _No

Amateur token _No

Final token _Yes

Expert logit
26.16

26.16

25.33

Amateur logit
27.36

27.36

23.19

Final logit
24.95

24.95

27.47

0.391

Query:
Is there a red scarf

‌in the image?
Query:

Are there two horses in this image?

Reason: The question requires identifying the presence of two horses. Random mask
can completely obscure one or both horses, making the exact presence impossible.
noise and flips don't affect the number of horses or their visibility.

Reason: The question requires identifying the color of
an object. Color inversion changes red to its
complement, making it impossible to determine if there
is a red scarf in the image. Flips, noise, random mask,
and random crop don't directly affect color identification.

Figure 6: Qualitative results on MME (Fu et al., 2024).
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Expert token _The _farthest _north _highlight ed _city _in _the _image _is _Min ...

Amateur token _The _farthest _north _highlight ed _city _in _the _image _is _Min ...

Final token _The _farthest _north _highlight ed _city _in _the _image _is _Chicago ...

Expert logit
17.89 18.28 23.14 19.75 24.11 24.66 21.52 25.17 18.83 23.50 15.25 ...

17.89 18.28 23.14 19.75 24.11 24.66 21.52 25.17 18.83 23.50 15.25 ...

17.89 18.28 23.14 19.75 24.11 24.66 21.52 25.17 18.83 23.50 15.25 ...

Amateur logit
17.88 18.05 23.06 19.52 24.09 24.66 21.44 25.06 19.03 23.55 15.22 ...

17.88 18.05 23.06 19.52 24.09 24.66 21.44 25.06 19.03 23.55 15.22 ...

17.88 18.05 23.06 19.52 24.09 24.66 21.44 25.06 19.03 23.55 15.22 ...

Final logit
17.91 18.52 23.22 19.98 24.12 24.66 21.59 25.28 18.62 23.45 15.28 ...

17.91 18.52 23.22 19.98 24.12 24.66 21.59 25.28 18.62 23.45 15.28 ...

17.91 18.52 23.22 19.98 24.12 24.66 21.59 25.28 18.62 23.45 15.28 ...

0.196 0.341 0.475 0.342 0.500 0.494 0.298 0.444 0.351 0.488 0.125 ...

Expert token _To _is _a _bott er _located _to _the _sh am po o </s>

Amateur token _To _is _a _t ing _located _to _the _sh am po o </s>

Final token _There _is _a _condition er _located _to _the _sh am po o </s>

Expert logit
21.53 26.75 21.55 14.44 23.53 20.19 25.34 27.78 21.47 25.14 27.00 25.00 22.59

21.53 26.75 21.55 13.80 22.75 20.19 25.34 27.78 21.47 25.14 27.00 25.00 22.59

21.48 26.75 21.55 13.74 23.53 20.19 25.34 27.78 21.47 25.14 27.00 25.00 22.59

Amateur logit
21.55 26.39 20.62 11.69 22.88 19.44 25.00 27.11 20.28 24.72 26.66 24.09 22.27

21.55 26.39 20.62 13.70 23.08 19.44 25.00 27.11 20.28 24.72 26.66 24.09 22.27

21.14 26.39 20.62 10.05 22.88 19.44 25.00 27.11 20.28 24.72 26.66 24.09 22.27

Final logit
21.52 27.11 22.47 17.19 24.19 20.94 25.69 28.45 22.66 25.56 27.34 25.91 22.92

21.52 27.11 22.47 13.90 22.42 20.94 25.69 28.45 22.66 25.56 27.34 25.91 22.92

21.52 27.11 22.47 17.44 24.19 20.94 25.69 28.45 22.66 25.56 27.34 25.91 22.92

0.222 0.420 0.414 0.082 0.387 0.252 0.426 0.499 0.468 0.500 0.500 0.500 0.330

Query:
Which of these highlighted cities is the

‌farthest north?

Reason: The question requires identifying the relative position of the cities. Noise obscures the map and makes it difficult to determine the distances between the cities. Other
augmentations don't affect the relative positions of the cities.

Query:
What is located to the right of

‌the shampoo?

Reason: The question requires identifying the position of an object relative to another object. Random crop may remove the context of the objects' relationship, making it impossible to
determine their position. Flips, color inversion, noise, and random mask don't directly affect relative positioning.

Figure 7: Qualitative results on MM-Vet (Yu et al., 2023).

Expert token _The _colors _of _the _shirts _worn _by _the _three _men _are _green _blue _red </s>

Amateur token _The _colors _of _the _shirts _worn _by _the _three _men _are _p _orange _p </s>

Final token _The _colors _of _the _shirts _worn _by _the _three _men _are _green _blue _red </s>

Expert logit
26.75 20.73 27.56 29.00 26.44 25.44 30.19 29.78 26.61 26.05 26.89 19.91 20.89 25.92 27.53

26.75 20.73 27.56 29.00 26.44 25.44 30.19 29.78 26.61 26.05 26.89 12.73 14.61 17.27 27.53

26.75 20.73 27.56 29.00 26.44 25.44 30.19 29.78 26.61 26.05 26.89 19.91 20.89 25.92 27.53

Amateur logit
26.66 21.00 27.36 28.94 26.12 25.20 30.02 29.67 26.52 25.97 26.72 16.20 17.41 19.91 27.19

26.66 21.00 27.36 28.94 26.12 25.20 30.02 29.67 26.52 25.97 26.72 19.97 18.94 21.66 27.19

26.66 21.00 27.36 28.94 26.12 25.20 30.02 29.67 26.52 25.97 26.72 16.20 17.41 19.91 27.19

Final logit
26.84 20.47 27.77 29.06 26.75 25.67 30.36 29.89 26.70 26.12 27.06 23.61 24.38 31.94 27.88

26.84 20.47 27.77 29.06 26.75 25.67 30.36 29.89 26.70 26.12 27.06 -inf -inf -inf 27.88

26.84 20.47 27.77 29.06 26.75 25.67 30.36 29.89 26.70 26.12 27.06 23.61 24.38 31.94 27.88

0.422 0.294 0.499 0.493 0.487 0.472 0.500 0.499 0.484 0.499 0.498 0.253 0.344 0.494 0.492

Expert token _The _par ach utes _in _the _sky _are _blue _orange _yellow </s>

Amateur token _The _par ach utes _in _the _sky _are _blue _yellow _pur </s>

Final token _The _par ach utes _in _the _sky _are _blue _orange _green </s>

Expert logit
27.91 23.41 25.34 25.12 23.72 29.25 25.98 24.62 19.25 19.05 20.59 26.77

27.91 23.41 25.34 25.12 23.72 29.25 25.98 24.62 19.25 18.78 17.09 26.77

27.91 23.41 25.34 25.12 23.72 29.25 25.98 24.62 19.25 19.05 20.20 26.77

Amateur logit
28.02 23.67 25.52 25.44 23.94 29.16 25.52 24.53 18.64 17.50 19.66 26.72

28.02 23.67 25.52 25.44 23.94 29.16 25.52 24.53 18.64 18.64 19.81 26.72

28.02 23.67 25.52 25.44 23.94 29.16 25.52 24.53 18.64 17.50 17.53 26.72

Final logit
27.80 23.14 25.17 24.81 23.50 29.34 26.45 24.72 19.86 20.59 21.53 26.81

27.80 23.14 25.17 24.81 23.50 29.34 26.45 24.72 19.86 18.92 -inf 26.81

27.80 23.14 25.17 24.81 23.50 29.34 26.45 24.72 19.86 20.59 22.88 26.81

0.452 0.375 0.499 0.488 0.441 0.500 0.497 0.362 0.128 0.220 0.272 0.475

Query:
What are the colors of the parachutes

‌in the sky?

Query:
What are the colors of the shirts

‌worn by the three men from left to
‌right in the image?

Reason: The question requires identifying the colors of the shirts. Color inversion changes each color to its complement, making it impossible to determine the original colors. Flips, noise, random
mask, and random crop don't affect color perception.

Reason: The question requires identifying specific colors. color inversion changes each color to its complement, making it impossible to determine the original colors. Flips,
noise, random mask, and random crop don't directly affect color perception.

Figure 8: Qualitative results on MMHal-Bench (Sun et al., 2023).
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Confusion Matrices: LLaVA-7B vs. GPT-4o-mini

Figure 9: Confusion matrix for LLAVA-1.5 7B model.
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Confusion Matrices: LLaVA-13B vs. GPT-4o-mini

Figure 10: Confusion matrix for LLAVA-1.5 13B model.
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Table 7: Comparison of model performance against the gpt-4o-mini oracle. Agreement measures the
accuracy percentage (%) of augmentation choices, and Judge Score estimates the quality rating of the
model reasoning on a 0 to 10 scale by gpt-4o-mini.

Model Metric LLaVA-Bench MME MM-Vet MMHal MMVP POPE Average

LLaVA-7B Agreement (%) 56.67 72.56 61.93 54.17 52.00 87.57 64.15
Judge Score 7.97 8.59 7.98 7.79 7.69 9.63 8.28

LLaVA-13B Agreement (%) 51.67 69.77 40.37 63.54 72.67 99.10 66.19
Judge Score 8.63 9.12 8.55 9.08 8.86 9.99 9.04

E DETAILED COMPARISON AGAINST ORACLE

In the main script, experiments were conducted to evaluate the impact of the model scale on the
quality of augmentation choice and reasoning. The agreement of each model’s choice and the quality
of its reasoning trace were measured against the Oracle, with the results summarized in Tab. 7. These
results confirm that larger model capacity generally leads to better query-augmentation semantic
alignment and higher reasoning quality.

A more granular analysis using the confusion matrices in Fig. 9 and Fig. 10, reveals a complex,
task-dependent relationship. On uniform benchmarks such as POPE, the alignment between the 13B
model and the Oracle is nearly optimal. In contrast, on more complex benchmarks such as MM-Vet,
the 13B model exhibits a predictive bias, frequently selecting random crop when the Oracle chooses
the functionally similar random mask. Note that this disagreement is not a critical failure, but rather a
choice between two functionally similar occlusion-based augmentations.

This finding highlights a key strength of the proposed method. The fact that strong downstream per-
formance is achieved without requiring a perfect, Oracle-level selection confirms that the framework
is highly effective at leveraging the competent, albeit imperfect, reasoning of different model scales
to significantly improve factual consistency.
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