
Published in Transactions on Machine Learning Research (06/2024)

DIGNet: Learning Decomposed Patterns in Representation
Balancing for Treatment Effect Estimation

Yiyan Huang ∗ yiyhuang@polyu.edu.hk
Department of Applied Mathematics, The Hong Kong Polytechnic University

Siyi Wang * siyi.wang@my.cityu.edu.hk
School of Data Science, City University of Hong Kong

Cheuk Hang Leung chleung87@cityu.edu.hk
School of Data Science, City University of Hong Kong

Qi Wu † qi.wu@cityu.edu.hk
School of Data Science, City University of Hong Kong

Dongdong Wang wangdongdong9@jd.com
JD Digits

Zhixiang Huang huangzhixiang@jd.com
JD Digits

Reviewed on OpenReview: https: // openreview. net/ forum? id= Z20FInfWlm

Abstract

Estimating treatment effects from observational data is often subject to a covariate shift
problem incurred by selection bias. Recent research has sought to mitigate this problem by
leveraging representation balancing methods that aim to extract balancing patterns from
observational data and utilize them for outcome prediction. The underlying theoretical ra-
tionale is that minimizing the unobserved counterfactual error can be achieved through two
principles: (I) reducing the risk associated with predicting factual outcomes and (II) miti-
gating the distributional discrepancy between the treated and controlled samples. However,
an inherent trade-off between the two principles can lead to a potential loss of information
useful for factual outcome predictions and, consequently, deteriorating treatment effect es-
timations. In this paper, we propose a novel representation balancing model, DIGNet, for
treatment effect estimation. DIGNet incorporates two key components, PDIG and PPBR,
which effectively mitigate the trade-off problem by improving one aforementioned principle
without sacrificing the other. Specifically, PDIG captures more effective balancing patterns
(Principle II) without affecting factual outcome predictions (Principle I), while PPBR en-
hances factual outcome prediction (Principle I) without affecting the learning of balancing
patterns (Principle II). The ablation studies verify the effectiveness of PDIG and PPBR
in improving treatment effect estimation, and experimental results on benchmark datasets
demonstrate the superior performance of our DIGNet model compared to baseline models.

1 Introduction

In the context of the ubiquity of personalized decision-making, causal inference has sparked a surge of
research exploring causal machine learning in many disciplines, including economics and statistics (Wager &
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Athey, 2018; Athey & Wager, 2019; Farrell, 2015; Chernozhukov et al., 2018; Huang et al., 2021), healthcare
(Qian et al., 2021; Bica et al., 2021a;b), and commercial applications (Guo et al., 2020a;b; Chu et al., 2021).
The core of causal inference is to estimate treatment effects, which is closely related to the factual outcomes
(observed outcomes) and counterfactual outcomes. The concept of the counterfactual outcome is closely
linked to a fundamental hypothetical question: What would the outcome be if an alternative treatment
were received? Answering this question is challenging because counterfactual outcomes are unobservable
in reality, making it impossible to directly access ground-truth treatment effects from observational data.
Consequently, an increasing amount of recent research has focused on developing innovative machine learning
models that aim to enhance the estimation of counterfactual outcomes to obtain more accurate treatment
effect estimates.

One of the challenges in estimating counterfactual outcomes lies in the covariate shift problem. In observa-
tional data, the population can be typically divided into two groups: (i) individuals who received treatment
(T = 1), referred to as treated samples or treatment samples, and (ii) individuals who did not receive treat-
ment (T = 0), referred to as controlled samples or control samples. The covariate shift problem indicates
the difference between the distribution of covariate in the treated group and that in the controlled group,
meaning P (X|T = 1) ̸= P (X|T = 0). This phenomenon is a result of the non-random treatment assignment
mechanism, where the decision to receive treatment (e.g., heart medicine) is often determined by the covari-
ate (e.g., age). For example, people receiving heart medicine treatment tend to be much older compared to
those who do not receive such treatment, because the doctor’s decision-making regarding whether to undergo
heart medicine treatment highly depends on the patients’ age. Such a non-random treatment assignment is
known as the selection bias phenomenon in the causal inference literature.

Although the covariate shift arises from the association between covariate and treatment, this issue can
significantly exacerbate the difficulty in inferring counterfactual outcomes, as traditional machine learning
models can be invalid in estimating potential outcomes when a covariate shift is present (Yao et al., 2018;
Hassanpour & Greiner, 2019a). Specifically, to infer the potential outcome Y 0 for treated (T = 1) samples,
the conventional approach is to first train a model τ̂0(X) using controlled (T = 0) samples, and then utilize
τ̂0(X) to predict Y 0 for treated (T = 1) samples. This approach, known as the T-learner in the causal
inference literature (Curth & Van Der Schaar, 2023; Mahajan et al., 2024), becomes problematic because
the training data (control samples) used for model training do not have the same distribution as the test
data (treated samples), i.e., P (X|T = 1) ̸= P (X|T = 0). This violates the assumption in machine learning
that training data and test data should be independent and identically distributed.

To alleviate the covariate shift problem, recent advancements in representation balancing research have ex-
plored the representation learning model, such as CounterFactual Regression Network (CFRNet) (Shalit
et al., 2017), to estimate individual treatment effects (ITEs). These representation balancing models aim to
extract balancing patterns from observational data and utilize these patterns to predict outcomes. The cor-
responding objective function is typically concerned with minimizing the empirical risk of factual outcomes
while concurrently minimizing the distributional distance between the treatment and control groups in the
representation space (Shalit et al., 2017; Johansson et al., 2022a). The underlying theoretical logic behind
these studies is that minimizing counterfactual error can be achieved by two principles in the representa-
tion space: (Principle I) minimizing the risk associated with factual outcome prediction, and (Principle II)
reducing the distributional discrepancy between the treated and controlled samples.

While the representation balancing framework provides a powerful tool to address the covariate shift issue,
models based on classical structures such as CFRNet (Figure 1(a)) still encounter a trade-off between the
aforementioned two principles: Enforcing models to focus solely on balancing can undermine the predictive
power of the outcome function (Zhang et al., 2020; Assaad et al., 2021; Huang et al., 2023). A detailed
discussion of this trade-off problem can be found in Appendix A.1. This inherent trade-off motivates us to
explore a pivotal question: considering the inherent trade-off between the two principles, is it possible to
explore a scheme that enhances one principle without sacrificing the other? More specifically, can we explore
improving treatment effect estimation through the following two paths: (Path I) learning more effective
balancing patterns without sacrificing factual outcome prediction and (Path II) enhancing factual outcome
prediction without sacrificing the learning of balancing patterns? In the following, we present the proposed
solutions and the rationale behind the underlying intuitions.
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In classic representation balancing models, the process of learning balancing patterns can lead to the loss
of outcome-predictive information. It is therefore natural to consider a module that can preserve the pre-
balancing information before the representation balancing step. This increases the model’s complexity to
maintain the useful predictive knowledge while still benefiting from the covariate balancing properties of
the representation balancing framework. Furthermore, in multi-task learning, distinct representations are
learned for different tasks, with each task involving its own objective function. An important step in multi-
task learning is integrating the information from these separately learned representations into a unified
representation. Therefore, following the multi-task learning paradigm (Li et al., 2018; Baltrušaitis et al., 2018;
Crawshaw, 2020; Yan et al., 2021; Xu et al., 2023b), we propose concatenating the representations learned
with Wasserstein distance and H-divergence to form a joint representation. This joint representation can
effectively capture the task-specific balancing information provided by each distance metric without adversely
affecting the outcome modeling task. A detailed discussion of these intuitions can be found in Section 5.3.1.

Based on the above motivations, we introduce a novel representation balancing model, DIGNet (Section
5.2.2), a neural network that incorporates Decomposed patterns with Individual propensity confusion and
Group distance minimization. Decomposed patterns denote distinct components disentangled from specific
representations in DIGNet (Section 5.2). The individual propensity confusion aspect of DIGNet aims to
learn representations that obscure the propensity of each individual being treated or controlled (Section
5.1.2), grounded in our derived H-divergence guided counterfactual and ITE error bounds (Section 4.2).
The group distance minimization aspect focuses on learning representations that minimize the distance
between treated and controlled groups (Section 5.1.1), supported by previous work on Wasserstein distance
guided counterfactual and ITE error bounds (Shalit et al., 2017) (Section 4.1). Figure 1 visually depicts
these introduced concepts and their relationships.

Contributions. Our main contributions are summarized as follows:

1. We derive theoretical upper bounds for counterfactual error and ITE error based on H-divergence
(Section 4.2). In particular, this theoretical foundation highlights the important role of propensity
score for representation balancing models, connecting the representation balancing with the concept
of individual propensity confusion.

2. We suggest learning decomposed patterns in representation balancing models (Section 5.2.1) to miti-
gate the trade-off problem rooted in classic causal representation balancing models. First, we propose
a PDIG method (Figure 1(b)), which aims to learn Patterns Decomposed with Individual propen-
sity confusion and Group distance minimization to improve treatment effect estimation through Path
I. Second, we propose a PPBR method (Figure 1(c)), which aims to learn Patterns of Pre-balancing
and Balancing Representations to improve treatment effect estimation through Path II.

3. Building upon PDIG and PPBR, we propose a novel representation balancing model, DIGNet (Figure
1(d)), for treatment effect estimation. In Section 6, ablation studies verify the efficacy of PDIG
and PPBR in improving ITE estimation through Path I and Path II, respectively. Furthermore,
experimental results on benchmark datasets demonstrate that DIGNet surpasses the performance
of baseline models in terms of treatment effect estimation.

2 Related Work

The presence of a covariate shift problem stimulates the line of representation balancing works (Johansson
et al., 2016; Shalit et al., 2017; Johansson et al., 2022a). These works aim to balance the distributions of
representations between treated and controlled groups and simultaneously try to maintain representations
predictive of factual outcomes. This idea is closely connected with domain adaptation. In particular, the
ITE error bound based on Wasserstein distance is similar to the generalization bound in Ben-David et al.
(2010); Long et al. (2014); Shen et al. (2018). The theoretical foundation and the classic CFRNet structure
proposed in Shalit et al. (2017) have inspired many subsequent studies on representation balancing methods
for treatment effect estimation, including Yao et al. (2018); Shi et al. (2019); Zhang et al. (2020); Hassanpour
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Figure 1: (a): The classic model (e.g., GNet in Section 5.1.1 and INet in Section 5.1.2) maps the original data
D into representations ΦE to achieve representation balancing. The balanced representations are referred
to as balancing patterns. These balancing patterns are also used for outcome prediction. (b): The PDIG
(Section 5.2.1) is illustrated as the yellow part, where balancing patterns are decomposed into two distinct
components, ΦG and ΦI . ΦG serves for group distance minimization (Section 5.1.1) and ΦI serves for
individual propensity confusion (Section 5.1.2). The balancing patterns ΦG and ΦI are concatenated for
predicting outcomes. (c): The PPBR (Section 5.2.1) is represented by the yellow section, where ΦE is used
for feature extraction and ΦG is used for representation balancing. Here representations are decomposed
into pre-balancing patterns ΦE and balancing patterns ΦG. ΦE and ΦG are concatenated for predicting
outcomes. (d): The proposed model DIGNet (Section 5.2.2) integrates both PDIG and PPBR. Specifically,
DIGNet decomposes balancing patterns into two distinct components, ΦG and ΦI . The outcome predictors
are further formed by concatenating ΦG, ΦI , and pre-balancing patterns ΦE .

& Greiner (2019a); Assaad et al. (2021); Huang et al. (2022a). This paper derives a new ITE error bound
based on H-divergence (Ben-David et al., 2006; 2010; Ganin et al., 2016). In addition to the connection to
domain adaptation, causal representation learning is also linked to the field of fair representation learning,
which aims to ensure that machine learning algorithms make fair decisions by learning fair representations.
The main goal of these studies is to enforce a classification model to be less sensitive to certain sensitive
variables when the representations of different groups are sufficiently similar (Zemel et al., 2013; Edwards
& Storkey, 2015; Beutel et al., 2017; Madras et al., 2018; Zhang et al., 2018; Adel et al., 2019; Feng et al.,
2019; Zhao et al., 2019a; Zhao & Gordon, 2022). Notably, the original idea of adversarial learned fair
representations in Edwards & Storkey (2015) is also motived by the domain adaptation work (Ben-David
et al., 2006; 2010; Ganin et al., 2016), sharing a similar motivation to our utilization of INet, which relies
on H-divergence guided error bounds for ITE estimation. Moreover, Wasserstein distance has also been
employed for learning fair representations in Jiang et al. (2020).

Another recent line of causal representation learning literature investigates efficient neural network structures
for treatment effect estimation. Kuang et al. (2017); Hassanpour & Greiner (2019b) extract the original co-
variates into treatment-specific factors, outcome-specific factors, and confounding factors; X-learner (Künzel
et al., 2019) and R-learner (Nie & Wager, 2021) are developed beyond the classic S-learner and T-learner;
Curth & van der Schaar (2021) leverage structures for end-to-end learners to counteract the inductive bias
towards treatment effect estimation, which is motivated by Makar et al. (2020). There are some other deep
neural network models that have been employed in treatment effect estimation Louizos et al. (2017); Yao
et al. (2018); Yoon et al. (2018); Shi et al. (2019); Du et al. (2021). To ensure comparability and consistency,
we rigorously follow the same framework as these causal inference works. The causal graph in these studies
satisfies the standard setup T ← X → Y and T → Y . Additionally, it is also worth noting that there are
many other causal inference works exploring treatment effect estimation under more complex causal graphs.
For instance, studies such as Kallus et al. (2019); Jesson et al. (2021); Miao et al. (2023) specifically tackle
the treatment effect estimation when unobserved confounders U present. In this case, the causal graph setup
extends to T ← X → Y , T → Y , T ← U → Y . A recent work (Cao et al., 2023) further expands this
static causal graph to a dynamic setting. Moreover, some studies such as Angrist et al. (1996); Burgess
et al. (2017); Wu et al. (2022); Yuan et al. (2023) estimate treatment effects with instrumental variables
I involved. In this case, there are various causal graph setups such as T ← X → Y , I → T → Y , and
T ← I → Y . More complex causal graph settings (Nogueira et al., 2021; Vowels et al., 2022; Zanga et al.,
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2022) have been studied with the development of Directed Graphical Models (Pearl, 2009), which represents
another significant research direction known as causal discovery.

Our method is highly motivated by the trade-off problem between outcome prediction and representation
balancing. In the causal representation learning literature, a similar trade-off phenomenon has been noticed
by Zhang et al. (2020); Assaad et al. (2021); Huang et al. (2022a), where the researchers argue that highly-
balanced representations can have adverse effects on outcome modeling. However, the explanations for this
phenomenon and its connections with other related literature are not extensively provided in their work.
We highlight that the trade-off between outcome prediction and representation balancing is also connected
with trade-offs observed in other research domains. In representation balancing models, representation bal-
ancing helps improve the model’s ability to generalize to counterfactual estimates. However, representation
balancing can potentially sacrifice information necessary for predicting factual outcomes. In supervised ma-
chine learning, penalizing model complexity during model training helps the model to learn simpler patterns,
thereby promoting generalization ability (reducing its variance) to unseen data. However, a bias-variance
trade-off occurs because less flexible models tend to exhibit higher bias in training data (Geman et al.,
1992; Domingos, 2000; Valentini & Dietterich, 2004; Yang et al., 2020). In the literature of domain adap-
tation (Shen et al., 2018; Zhao et al., 2019b), transfer learning (Long et al., 2015; 2017; Ma et al., 2023),
out-of-distribution detection (Kumar et al., 2021; 2022), and fair representation learning (Zliobaite, 2015;
Hardt et al., 2016), enforcing a model to capture proxy features that are domain-invariant helps the model
to generalize well to unseen target (also known as out-of-distribution) data. However, a trade-off between
classification accuracy and domain-invariance (or fairness in fair representation learning literature) occurs
because the pursuit of domain-invariant features may lead to a loss of classification accuracy on the source
(also known as in-distribution) data (Zhao et al., 2019a; Zhao & Gordon, 2022; Zhao et al., 2022).

3 Preliminaries

Notations. Suppose there are N i.i.d. random variables D = {(Xi, Ti, Yi)}N
i=1 with observed realizations

{(xi, ti, yi)}N
i=1, where there are N1 treated units and N0 controlled units. For each unit i, Xi ∈ X ⊂ Rd

denotes d-dimensional covariates and Ti ∈ {0, 1} denotes the binary treatment, with e(xi) := p(Ti = 1 | Xi =
xi) defined as the propensity score (Rosenbaum & Rubin, 1983). Potential outcome framework (Rubin, 2005)
defines the potential outcomes Y 1, Y 0 ∈ Y ⊂ R for treatment T = 1 and T = 0, respectively. We let the
observed outcome (factual outcome) be Y = T ·Y 1 +(1−T )·Y 0, and the unobserved outcome (counterfactual
outcome) be Y = T · Y 0 + (1 − T ) · Y 1. For t ∈ {0, 1}, let τ t(x) := E [Y t | X = x] be a function of Y t

w.r.t. X, then our goal is to estimate the individual treatment effect (ITE) τ(x) := E
[
Y 1 − Y 0 | X = x

]
=

τ1(x) − τ0(x) 1, and the average treatment effect (ATE) τAT E := E
[
Y 1 − Y 0]

=
∫

X τ(x)p(x)dx. The
introduced concepts PPBR and PDIG are illustrated in Figure 1, and the necessary representation functions
ΦE , ΦG and ΦI , as well as different model structures, are illustrated in Figure 2. Throughout the paper, we
refer to patterns as meaningful representations. For instance, decomposed patterns are distinct components
disentangled from some specific representations.

3.1 Problem setup

In causal representation balancing works, we denote representation space by R ⊂ Rd, and Φ : X → R is
assumed to be a twice-differentiable, one-to-one and invertible function with its inverse Ψ : R → X such that
Ψ(Φ(x)) = x 1. The densities of the treated and controlled covariates are denoted by pT =1

x = pT =1(x) :=
p(x | T = 1) and pT =0

x = pT =0(x) := p(x | T = 0), respectively. Correspondingly, the densities of the treated
and controlled covariates in the representation space are denoted by pT =1

Φ = pT =1
Φ (r) := pΦ(r | T = 1) and

pT =0
Φ = pT =0

Φ (r) := pΦ(r | T = 0), respectively.

1The term E
[
Y 1 − Y 0 | X = x

]
is commonly known as the Conditional Average Treatment Effect (CATE). In order to

maintain consistency with the notion used in the existing causal representation balancing literature, e.g., Shalit et al. (2017),
we refer to this term as ITE throughout this paper. Note that the original definition of ITE for the i-th individual is commonly
expressed as the difference between their potential outcomes, represented as Y 1

i − Y 0
i .

1Theoretically, the invertibility is necessary for deriving the upper bounds of ITE error, specifically for equation 39 and
equation 47. However, the invertibility can be hard to verify in practice (Johansson et al., 2022b).
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Our study is based on the potential outcome framework (Rubin, 2005). Assumption 1 states standard
and necessary assumptions to ensure treatment effects are identifiable. Before proceeding with theoretical
analysis, we also present some necessary terms and definitions in Definition 1.
Assumption 1 (Consistency, Overlap, and Unconfoundedness). Consistency: If the treatment is t, then the
observed outcome equals Y t. Overlap: The propensity score is bounded away from 0 to 1, i.e., 0 < e(x) < 1.
Unconfoundedness: Y t ⊥⊥ T | X, ∀t ∈ {0, 1}.
Definition 1. Let h : R × {0, 1} → Y be an hypothesis defined over the representation space R such
that h(Φ(x), t) estimates yt, and L : Y × Y → R+ be a loss function (e.g., the squared loss L(y, y′) =
(y − y′)2 or the absolute loss L(y, y′) = |y − y′|). If we define the expected loss for (x, t) as ℓh,Φ(x, t) =∫

Y L(yt, h(Φ(x), t))p(yt|x)dyt, we then have factual and counterfactual errors, as well as them on the treated
and controlled:

ϵF (h, Φ) =
∫

X ×{0,1}
ℓh,Φ(x, t)p(x, t)dxdt, ϵCF (h, Φ) =

∫
X ×{0,1}

ℓh,Φ(x, t)p(x, 1− t)dxdt,

ϵT =1
F (h, Φ) =

∫
X

ℓh,Φ(x, 1)pT =1(x)dx, ϵT =0
F (h, Φ) =

∫
X

ℓh,Φ(x, 0)pT =0(x)dx,

ϵT =1
CF (h, Φ) =

∫
X

ℓh,Φ(x, 1)pT =0(x)dx, ϵT =0
CF (h, Φ) =

∫
X

ℓh,Φ(x, 0)pT =1(x)dx.

If we let f(x, t) be h(Φ(x), t), where f : X × {0, 1} → Y is a prediction function for outcome, then the
estimated ITE over f is defined as τ̂f (x) := f(x, 1)− f(x, 0). We can measure the error in ITE estimation
with the metric, Precision in the expected Estimation of Heterogeneous Effect (PEHE):

ϵP EHE(f) =
∫

X
L(τ̂f (x), τ(x))p(x)dx. (1)

Here, ϵP EHE(f) can also be denoted by ϵP EHE(h, Φ) if we let f(x, t) be h(Φ(x), t).

4 Theoretical Results

In this section, we first prove ϵP EHE is bounded by ϵF and ϵCF in Lemma 1. Next, we revisit the upper bound
for Wasserstein distance guided representation balancing method in Section 4.1. Furthermore, we state the
new theoretical results concerning H-divergence guided representation balancing method in Section 4.2.
Lemma 1. Let functions h and Φ be as defined in Definition 1. Recall that τ t(x) = E [Y t | X = x].
Define σ2

y = min{σ2
yt(p(x, t)), σ2

yt(p(x, 1 − t))} and Ay = max{Ayt(p(x, t)), Ayt(p(x, 1 − t))} ∀t ∈ {0, 1},
where σ2

yt(p(x, t)) =
∫

X ×{0,1}×Y(yt − τ t(x))2p(yt|x)p(x, t)dytdxdt and Ayt(p(x, t)) =
∫

X ×{0,1}×Y |y
t −

τ t(x)|p(yt|x)p(x, t)dytdxdt ∀t ∈ {0, 1}.
Let loss function L be the squared loss. Then we have:

ϵP EHE(h, Φ) ≤ 2(ϵCF (h, Φ) + ϵF (h, Φ)− 2σ2
y). (2)

Let loss function L be the absolute loss. Then we have:

ϵP EHE(h, Φ) ≤ ϵCF (h, Φ) + ϵF (h, Φ) + 2Ay. (3)

Lemma 1 reveals that the ITE error ϵP EHE is closely connected with the factual error ϵF and counterfactual
ϵCF , as well as a constant σ2

y (or Ay) that is unrelated with functions h and Φ. Here, σ2
y is the smaller value

of the variance in Y t w.r.t. the distribution p(x, t) and the variance in Y 1−t w.r.t. p(x, 1− t), and Ay is the
larger value of the absolute deviation in Y t w.r.t. the distribution p(x, t) and the absolute deviation in Y 1−t

w.r.t. the distribution p(x, 1 − t). The proof of Lemma 1 is deferred to Section A.2. Note that equation
(2) corresponds to the result presented in Shalit et al. (2017), while equation (3) is our new result, which
supplements the case when L denotes the absolute loss.
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4.1 Wasserstein Distance Guided Error Bounds

Previous causal learning models commonly adopt the Wasserstein distance guided approach to seek rep-
resentation balancing. In this subsection, we first give the definition of Wasserstein distance (Cuturi &
Doucet, 2014) by introducing the Integral Probability Metric (IPM) (Sriperumbudur et al., 2012) defined in
Definition 2. Then we state the theorem regarding the upper bounds for counterfactual error ϵCF and ITE
error ϵP EHE using Wasserstein distance in Theorem 1.
Definition 2. Let G be a function family consisting of functions g : S → R. For a pair of distributions p1,
p2 over S, the Integral Probability Metric is defined as

IPMG(p1, p2) := sup
g∈G
|
∫

S
g(s)(p1(s)− p2(s))ds|.

If G is the family of 1-Lipschitz functions, we can obtain the so-called 1-Wasserstein distance, denoted
by Wass(p1, p2). Next, we present the bounds for counterfactual error ϵCF and ITE error ϵP EHE using
Wasserstein distance in Theorem 1.
Theorem 1. Let Φ : X → R be an invertible representation with Ψ being its inverse. Define
σ2

y = min{σ2
yt(p(x, t)), σ2

yt(p(x, 1 − t))} and Ay = max{Ayt(p(x, t)), Ayt(p(x, 1 − t))} ∀t ∈ {0, 1},
where σ2

yt(p(x, t)) =
∫

X ×{0,1}×Y(yt − τ t(x))2p(yt|x)p(x, t)dytdxdt and Ayt(p(x, t)) =
∫

X ×{0,1}×Y |y
t −

τ t(x)|p(yt|x)p(x, t)dytdxdt ∀t ∈ {0, 1}. Let pT =1
Φ (r), pT =0

Φ (r) be as defined before, h : R × {0, 1} → Y,
u := Pr(T = 1) and G be the family of 1-Lipschitz functions. Assume there exists a constant BΦ ≥ 0, such
that for t ∈ {0, 1}, the function gΦ,h(r, t) := 1

BΦ
· ℓh,Φ(Ψ(r), t) ∈ G. Given a loss function L, we have

ϵCF (h, Φ) ≤(1− u) · ϵT =1
F (h, Φ) + u · ϵT =0

F (h, Φ) + BΦ ·Wass(pT =1
Φ , pT =0

Φ ). (4)

Let loss function L be the squared loss. Then we have:

ϵP EHE(h, Φ) ≤ 2(ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + BΦ ·Wass(pT =1
Φ , pT =0

Φ )− 2σ2
y). (5)

Let loss function L be the absolute loss. Then we have:

ϵP EHE(h, Φ) ≤ ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + BΦ ·Wass(pT =1
Φ , pT =0

Φ ) + 2Ay. (6)

Theorem 1 reveals that the ITE error is closely tied to the factual error ϵF and the Wasserstein distance
between treated and controlled groups in the representation space. This theorem provides a theoretical
foundation for representation balancing models based on group distance minimization (Section 5.1.1). The
proof of Theorem 1 is deferred to Section A.3. Note that equation (5) corresponds to the result presented
in Shalit et al. (2017), while equation (6) is our new result, which supplements the case when L denotes the
absolute loss.

4.2 H-divergence Guided Error Bounds

In most representation balancing literature, the models mainly rely on Wasserstein distance guided error
bounds as discussed in Section 4.1. In this subsection, we will focus on establishing H-divergence guided
error bounds for counterfactual and ITE estimations in representation balancing approach. We first give the
definition of H-divergence (Ben-David et al., 2006) in Definition 3. Then we state the theorem regarding the
upper bounds for counterfactual error ϵCF and ITE error ϵP EHE using H-divergence in Theorem 2.
Definition 3. Given a pair of distributions p1, p2 over S, and a hypothesis binary function class H, the
H-divergence between p1 and p2 is defined as

dH(p1, p2) := 2 sup
η∈H
|Prp1 [η(s) = 1]− Prp2 [η(s) = 1]| . (7)

Theorem 2. Let Φ : X → R be an invertible representation with Ψ being its inverse. Define
σ2

y = min{σ2
yt(p(x, t)), σ2

yt(p(x, 1 − t))} and Ay = max{Ayt(p(x, t)), Ayt(p(x, 1 − t))} ∀t ∈ {0, 1},
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where σ2
yt(p(x, t)) =

∫
X ×{0,1}×Y(yt − τ t(x))2p(yt|x)p(x, t)dytdxdt and Ayt(p(x, t)) =

∫
X ×{0,1}×Y |y

t −
τ t(x)|p(yt|x)p(x, t)dytdxdt ∀t ∈ {0, 1}. Let pT =1

Φ (r), pT =0
Φ (r) be as defined before, h : R × {0, 1} → Y,

u := Pr(T = 1) and H be the family of binary functions. Assume that there exists a constant K ≥ 0 such
that

∫
Y L(y, y′)dy ≤ K ∀y′ ∈ Y. Given a loss function L, we have

ϵCF (h, Φ) ≤(1− u) · ϵT =1
F (h, Φ) + u · ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ ). (8)

Let loss function L be the squared loss. Then we have:

ϵP EHE(h, Φ) ≤ 2(ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ )− 2σ2
y). (9)

Let loss function L be the absolute loss. Then we have:

ϵP EHE(h, Φ) ≤ ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ ) + 2Ay. (10)

Theorem 2 reveals that the ITE error is closely connected with the factual error ϵF and the H-divergence
between treated and controlled samples in the representation space. This new theoretical result provides a
theoretical foundation for representation balancing models based on individual propensity confusion (Section
5.1.2). The proof of Theorem 2 is deferred to Section A.4.

5 Method

In the preceding section, we have stated the theoretical foundations for representation balancing methods,
which are the Wasserstein distance guided error bounds (results in Shalit et al. (2017)) and H-divergence
guided error bounds (Our results). Moving on to Section 5.1, we will begin by introducing representation
balancing methods without decomposed patterns. Specifically, Section 5.1.1 revisits a Wasserstein distance
based representation balancing network GNet, and Section 5.1.2 demonstrates how Theorem 2 can be con-
nected with individual propensity confusion, helping us to build a H-divergence based representation balanc-
ing network INet. Subsequently, in Section 5.2, we will introduce how to design a representation balancing
method within the scheme of decomposed patterns, based on the PDIG and PPBR methods (Section 5.2.1).
The final proposed model DIGNet is presented in Section 5.2.2.

5.1 Representation Balancing without Decomposed Patterns

In representation balancing models, given the input data tuples (x, t, y) = {(xi, ti, yi)}N
i=1, the original

covariates x are extracted by some representation function Φ(·), and representations Φ(x) are then fed
into the outcome functions h1(·) := h(·, 1) and h0(·) := h(·, 0) that estimate the potential outcome y1 and
y0, respectively. Finally, the factual outcome can be predicted by ht(·) = th1(·) + (1 − t)h0(·), and the
corresponding outcome loss is

Ly(x, t, y; Φ, ht) = 1
N

N∑
i=1

L(ht(Φ(xi)), yi). (11)

The loss function Ly approximates the factual error ϵF appeared in Theorems 1 and 2. Minimizing Ly also
corresponds to the Principle I as mentioned in the Introduction.

5.1.1 GNet: Group Distance Minimization Guided Network

The group distance minimization focuses on learning representations that minimize the distance between
the treated and controlled groups, and the corresponding theoretical foundation is supported by Wasserstein
distance guided counterfactual and ITE error bounds (Theorem 1). Previous causal inference methods (e.g.,
Shalit et al. (2017); Yao et al. (2018); Zhang et al. (2020); Huang et al. (2022a)) commonly adopt Wasserstein
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distance to achieve group distance minimization. Specifically, these methods aim to minimize the empirical
approximation of LG(x, t; Φ) = Wass ({Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1) to learn balancing patterns. If we denote
ΦE(·) by the feature extractor that extracts the original covariates x, then the objective function designed
on Theorem 1 is

min
ΦE ,ht

Ly(x, t, y; ΦE , ht) + α1LG(x, t; ΦE). (12)

Since the objective is to learn balancing patterns by minimizing the distributional distance between treated
and controlled groups, i.e., group distance minimization, we refer to a model with the objective in equation
(12) as GNet. For the reader’s convenience, we illustrate the structure of GNet in Figure 2(a). Note that
CFRNet (Shalit et al., 2017) is also the category of GNet.

5.1.2 INet: Individual Propensity Confusion Guided Network

In the field of causal inference, the propensity score plays a central role because it characterizes the probability
that one receives treatment (Rosenbaum & Rubin, 1983). For example, the propensity score has been widely
employed in prior literature for matching (Caliendo & Kopeinig, 2008) or weighting (Austin & Stuart, 2015)
purposes. In this paper, we emphasize that the propensity score also plays an important role in representation
balancing, where it serves as a natural indicator of the adequacy of leanred balancing patterns. Specifically,
we propose the concept of individual propensity confusion, which aims to learn representations that are
difficult to utilize for characterizing the propensity of each individual being treated or controlled. The
underlying theoretical foundation is upon the H-divergence guided ITE error bounds derived in Theorem 2.
Specifically, equations 9 and 10 in Theorem 2 highlight the significance of minimizing the generalization bound
associated with factual outcome error and the H-divergence between treated and controlled representations
in reducing ITE errors. Subsequently, we will present the details of achieving representation balancing by
reducing the H-divergence between treated and controlled samples in the representation space.

Let 1(a) be an indicator function that gives 1 if a is true, and H be the family of binary functions as defined
in Theorem 2. To achieve representation balancing, the objective function designed on Theorem 2 should
aim to minimize the empirical H-divergence d̂H(pT =1

Φ , pT =0
Φ ) such that

d̂H(pT =1
Φ , pT =0

Φ ) = 2

1−min
η∈H

 1
N

∑
i:η(Φ(xi))=0

1[ti = 1] + 1
N

∑
i:η(Φ(xi))=1

1[ti = 0]

 . (13)

The “min” part in equation (13) indicates that the optimal classifier η∗ ∈ H minimizes the classification
error between the estimated treatment η∗(Φ(xi)) and the observed treatment ti, i.e., discriminating whether
Φ(xi) is a control (T = 0) or treatment (T = 1). Equation (13) suggests that d̂H(pT =1

Φ , pT =0
Φ ) will be large if

η∗ can easily distinguish whether Φ(xi) is treated or controlled. In contrast, d̂H(pT =1
Φ , pT =0

Φ ) will be small if
it is hard for η∗ to determine whether Φ(xi) is treated or controlled. Therefore, the prerequisite of a small
H-divergence is to find a map Φ such that any classifier η ∈ H will get confused about the probability of
Φ(xi) being treated or controlled. To achieve this goal, similar to the strategy of empirical approximation of
H-divergence (Ganin et al., 2016), we define a discriminator π(r) : R → [0, 1] that estimates the propensity
score of r, which can be regarded as a surrogate for η(r). The classification error for the ith individual can
be empirically approximated by the cross-entropy loss between π(Φ(xi)) and ti:

Lt(ti, π(Φ(xi))) = − [ti log π(Φ(xi)) + (1− ti) log(1− π(Φ(xi)))] . (14)

As a consequence, we aim to find an optimal discriminator π∗ for equation (13) such that π∗ maximizes the
probability that treatment is correctly classified:

max
π∈H
LI(x, t; Φ, π) = max

π∈H

[
− 1

N

N∑
i=1
Lt(ti, π(Φ(xi)))

]
. (15)

Given the feature extractor ΦE(·), the objective of INet can be formulated as a min-max game:

min
ΦE ,ht

max
π

Ly(x, t, y; ΦE , ht) + α2LI(x, t; ΦE , π). (16)

9
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In the maximization, the discriminator π is trained to maximize the probability that treatment is correctly
classified. This forces π(ΦE(xi)) closer to the true propensity score e(xi). In the minimization, the feature
extractor ΦE is trained to fool the discriminator π. This confuses π such that π(ΦE(xi)) cannot correctly
specify the true propensity score e(xi). Eventually, the representations are balanced as the adversarial process
makes it difficult for π to determine the propensity of each individual being treated or controlled. We refer to
this process as individual propensity confusion. Such an adversarial learning technique has been widely
used in domain adaptation (e.g., Ganin et al. (2016); Tzeng et al. (2017)) and fair representation learning
(e.g., Edwards & Storkey (2015); Madras et al. (2018)) to learn domain-invariant and fair representations.
For the reader’s convenience, we illustrate the structure of INet in Figure 2(b).

5.2 Representation Balancing with Decomposed Patterns

5.2.1 The Proposed PDIG and PPBR Methods

PDIG. Although Theorems 1 and 2 provide solid theoretical foundation for GNet (model proposed by
Shalit et al. (2017)) and INet (model proposed by us), both of these model types still encounter the inherent
trade-off between representation balancing and outcome modeling. To this end, we expect to capture more
effective balancing patterns by learning Patterns Decomposed with Individual propensity confusion and
Group distance minimization (PDIG). More specifically, the covariates x are extracted by the feature
extractor ΦE(·), and then ΦE(x) are fed into two distinct balancing networks ΦG(·) and ΦI(·) for group
distance minimization and individual propensity confusion, respectively. In summary, PDIG decomposes the
balancing patterns into two distinct parts, group distance minimization and individual propensity confusion,
which are respectively achieved by the following loss functions:

min
ΦG

LG(x, t; ΦG ◦ ΦE) (17)

min
ΦI

max
π
LI(x, t; ΦI ◦ ΦE , π). (18)

Here, ◦ denotes the composition of two functions, indicating that Φ(·) in LG(x, t; Φ) and LI(x, t; Φ, π) are
replaced by ΦG(ΦE(·)) and ΦI(ΦE(·)), respectively.

PPBR. Motivated by the discussion in Section 1, we design a framework that is capable of capturing
Patterns of Pre-balancing and Balancing Representations (PPBR) to mitigate potential over-balancing
issue mentioned in the Introduction, aiming to preserve information that is useful for outcome predictions.
In the PPBR method, the balancing patterns ΦG(ΦE(x)) and ΦI(ΦE(x)) are first learned over ΦG and
ΦI , while ΦE is remained fixed as pre-balancing patterns. Furthermore, we concatenate the balancing
patterns ΦG(ΦE(x)) and ΦI(ΦE(x)) with the pre-balancing representations ΦE(x) as attributes for outcome
prediction. As a result, the proxy features used for outcome predictions are ΦE(x)⊕ΦG(ΦE(x))⊕ΦI(ΦE(x)),
where ⊕ indicates the concatenation by column. For example, if a = [1, 2] and b = [3, 4], then a ⊕ b =
[1, 2, 3, 4]. Consequently, representation balancing is accomplished over ΦG and ΦI , rather than ΦE . Even if
there may be a loss of information relevant to outcome prediction in ΦG and ΦI , the pre-balancing patterns
ΦE can still effectively preserve such information. Finally, the objective function with regard to outcome
modeling under PPBR method becomes

min
ΦE ,ΦI ,ΦG,ht

Ly(x, t, y; ΦE ⊕ (ΦI ◦ ΦE)⊕ (ΦG ◦ ΦE), ht). (19)

5.2.2 The Proposed DIGNet

Combining with PDIG and PPBR, we propose a new neural Network model that incorporates Decomposed
patterns with Individual propensity confusion and Group distance minimization, which we call DIGNet.
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Φ𝐺𝐺

(a) GNet (CFR-Wass) (b) INet (c) DGNet (d) DINet (e) DIGNet
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Figure 2: Illustrations of the network architecture of the five models studied in Section 6.

The objective of DIGNet is separated into four stages:

min
ΦG

α1LG(x, t; ΦG ◦ ΦE), (20)

max
π

α2LI(x, t; ΦI ◦ ΦE , π), (21)

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π), (22)

min
ΦE ,ΦI ,ΦG,ht

Ly(x, t, y; ΦE ⊕ (ΦI ◦ ΦE)⊕ (ΦG ◦ ΦE), ht). (23)

Within each iteration, DIGNet minimizes the group distance through equation 20, and plays an adversarial
game to achieve propensity confusion through equation 21 and equation 22. In equation 23, DIGNet updates
both the pre-balancing patterns ΦE and balancing patterns ΦI , ΦG, along with the outcome function ht to
minimize the outcome prediction loss. For the reader’s convenience, we illustrate the structure of DIGNet
in Figure 2(e).

5.3 Insights of Representation Balancing with Decomposed Patterns

Our proposed DIGNet model builds upon the PDIG and PPBR methods. The PPBR method is relatively
straightforward, as it forms more flexible predictor (ΦE ⊕ (ΦI ◦ ΦE)) (or (ΦE ⊕ (ΦG ◦ ΦE))) compared to
the solely predictor ΦE . Therefore, incorporating both pre-balancing and balancing patterns is helpful in
enhancing the model’s complexity and its ability to capture more useful information for outcome prediction.
However, there still remains further exploration to better understand why the PDIG method is effective.
The DIGNet model aims to learn balancing patterns based on both Wasserstein distance and H-divergence.
At first glance, one might assume that incorporating both distances could be redundant, as one distance
seems naturally to imply the other. In this section, we gain some insights of these two divergence metrics.
First, we provide a systematic discussion on the properties of Wasserstein distance and H-divergence. In
addition, we utilize a toy example to illustrate their distinct abilities in capturing distributional disparity.
Further, we use this example to aid readers in better understanding the trade-off problem encountered in
representation balancing models (Figure 5). Finally, we establish a connection between our method and
the Elastic Net method and Multi-task learning approach, which offers valuable insights and explanations
regarding the intuition behind involving both metrics as regularizations.

5.3.1 Properties of Wasserstein Distance and H-Divergence

Wasserstein distance and H-Divergence possess distinct theoretical properties. The effectiveness of the
Wasserstein distance in measuring distributional differences for classification tasks in domain adaptation
has been demonstrated in Shen et al. (2018). Furthermore, Shalit et al. (2017) highlights the potential of
Wasserstein distance in representation balancing models for ITE estimation, which significantly outperforms
traditional ITE estimation methods. Wasserstein distance is also widely adopted in other research domains,
such as fair representation learning (Jiang et al., 2020), as discussed in Section 2. Its prevalence stems from
its strong capability to capture better diversities compared to H-Divergence (Shui et al., 2020). Studies
have proven that under certain conditions, it is possible to bound H-Divergence using Wasserstein distance
(Villani et al., 2009; Shui et al., 2020), which provides a reasonable explanation for the overall superiority of
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Figure 3: Distributions of p1(x), p2(x), and p3(x) in the example of Section 5.3.1.

(a) Model fitting using (X, Y ). The probability density
functions of Xtreat and Xcontrol are p1 and p3, respec-
tively.

(b) Model fitting using (Φ(X), Y ). The probability den-
sity functions of Φtreat(X) and Φcontrol(X) are p1 and
p2, respectively.

Figure 4: Model fitting using (X, Y ) and (Φ(X), Y ) based on the example in Section 5.3.1.

the Wasserstein distance in learning domain-invariant features (Zhiri et al., 2022). However, it is important to
note that this bound does not hold in general (Chae & Walker, 2020), suggesting that a smaller H-divergence
does not necessarily imply a smaller Wasserstein distance. To better illustrate the difference between these
two measures, we provide a concrete example below.

Toy example. Consider the following three probability density functions p1(x), p2(x), and p3(x) defined
over x ∈ [0, 1]:

p1(x) =


2.5, if 0 ≤ x < 0.25
0.5, if 0.25 ≤ x < 0.5
0.5, if 0.5 ≤ x < 0.75
0.5, if 0.75 ≤ x ≤ 1

p2(x) =


0.5, if 0 ≤ x < 0.25
2.5, if 0.25 ≤ x < 0.5
0.5, if 0.5 ≤ x < 0.75
0.5, if 0.75 ≤ x ≤ 1

p3(x) =


0.5, if 0 ≤ x < 0.25
0.5, if 0.25 ≤ x < 0.5
2.5, if 0.5 ≤ x < 0.75
0.5, if 0.75 ≤ x ≤ 1

.

The above three distributions are depicted in Figure 3. Further, we set the classifier in H-divergence as
η(x) = 1{x ≥ p}, and set the order in Wasserstein distance as p = 1. By utilizing the definitions of H-
divergence and 1-Wasserstein distance, one can make a direct comparison between the discrepancy in (p1, p2)
and the discrepancy in (p1, p3):

dH(p1, p2) = dH(p1, p3);
Wass(p1, p2) < Wass(p1, p3).

(24)

Equation 24 confirms that Wasserstein distance is able to capture more diverse distributional disparities
compared to H-divergence. However, in the subsequent content, we will demonstrate that such an advantage
might be a limitation in causal representation learning due to the trade-off problem.
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Understanding the trade-off. The above example serves as simple evidence that supports the conclusion
that Wasserstein distance can capture better diversities between distributions compared to H-divergence
(Shui et al., 2020). However, as discussed in Section 1, it is important to note that achieving a more
balanced distribution does not necessarily ensure favorable generalization to counterfactuals. This is because
the pursuit of balanced representations may inadvertently lead to a loss of information useful for factual
outcome estimates. We will now use the above example to gain further understanding on this matter.

Consider a simple data-generating process where Xtreat, the covariate in the treated group, follows the
distribution p1(x), and Xcontrol, the covariate in the controlled group, follows the distribution p3(x). Let
the potential outcomes are generated by Y 1 = τ1(X) + ϵ1 and Y 0 = τ0(X) + ϵ0, where ϵ1 ∼ N (0, 0.1) and
ϵ0 ∼ N (0, 0.1). Let the true potential outcome functions τ1(x) and τ0(x) be as follows:

τ1(x) = τ0(x) = (x2 + 1)1{0 ≤ x < 0.5}+ (4x− 0.75)1{0.5 ≤ x ≤ 1}. (25)

In addition, consider a representation function Φ(x) such that

Φ(x) = x1{0 ≤ x < 0.25}+ (x + 0.25)1{0.25 ≤ x < 0.5}+ (x− 0.25)1{0.5 ≤ x < 0.75}+ x1{0.75 ≤ x ≤ 1}.
(26)

We can find Φ achieves representation balancing under Wasserstein distance measure, but does not under
H-divergence measure. In original data, xtreat follows p1 and xcontrol follows p3. After mapping x to Φ(x),
Φtreat(x) follows p1 and Φcontrol(x) follows p2. Consequently, based on the results in equation 24, we have

dH(ptreat
Φ , pcontrol

Φ ) = dH(ptreat
X , pcontrol

X );
Wass(ptreat

Φ , pcontrol
Φ ) < Wass(ptreat

X , pcontrol
X ).

(27)

We now investigate the fitting performance of models using (x, y) and (Φ(x), y) to check whether there
is a loss of outcome-related information during representation balancing. In Figure 4a and Figure 4b, we
present scatter plots of samples from (x, y) and (Φ(x), y) respectively, depicted as gray points. Following the
approach of Kennedy (2023), we employ smoothing spline functions to fit these samples, and the estimated
functions are illustrated in blue.

In Figure 4a, we observe that both τ1 and τ0 are well fitted using (x, y), with their estimates being very
close to each other. This is consistent with the setup of τ1 = τ0. In contrast, Figure 4b reveals that the
fittings of τ1 and τ0 are inadequate using (Φ(x), y), resulting in substantially different estimates. The result
of different estimates violates the setup of τ1 = τ0. In this case, a model based on Wasserstein distance
would retain Φ due to its achievement of representation balancing. Unfortunately, Φ suffers from a loss of
valuable information that is crucial for outcome prediction. In contrast, a model based on H-divergence
would not keep Φ since it does not contribute to reducing the domain distance compared to the original
data. Fortunately, the original data preserve the information necessary for outcome modeling. Therefore,
this example not only emphasizes the significance of incorporating both metrics but also highlights the
importance of considering both pre-balancing patterns and balancing patterns.

5.3.2 Connection with other machine learning methods

In the previous sections, we have discussed the trade-off between factual outcome prediction and represen-
tation balancing in classic representation learning models. As part of our proposed improvements, DIGNet
involves learning two distinct representations using Wasserstein distance and H-divergence separately and
concatenates the learned representations for outcome modeling. In this section, we will explore more detailed
connections between our design and other machine learning methods.

Connection with Elastic Net: balancing on two discrepancies. Our DIGNet model involves two
discrepancy metrics: Wasserstein distance and H-divergence. We will now provide additional explanations
on its connection with the Elastic Net method. In supervised learning, a regularization term is often incor-
porated during model training to mitigate the bias-variance trade-off. In the case of linear regression, Lasso
(Tibshirani, 1996) and Ridge (Hoerl & Kennard, 1970) are proposed to improve the Ordinary Least Squares
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(OLS) method, with Lasso involving l1 regularization while Ridge involving l2 regularization:

Lasso: min
β∈Rd

1
N
||y−Xβ||22 + α||β||1 = min

β∈Rd

1
N

N∑
i=1

(x′
iβ − yi)2 + α

d∑
j=1
|βj |.

Ridge: min
β∈Rd

1
N
||y−Xβ||22 + α||β||22 = min

β∈Rd

1
N

N∑
i=1

(x′
iβ − yi)2 + α

d∑
j=1

β2
j .

The different properties between l1 regularization and l2 regularization lead to distinct advantages and
disadvantages between Lasso method and Ridge method. Given their differences, a method of Elastic Net
(Zou & Hastie, 2005) is proposed by combing both l1 regularization and l2 regularization:

Elastic Net: min
β∈Rd

1
N
||y−Xβ||22 + α1||β||1 + α2||β||22 = min

β∈Rd

1
N

N∑
i=1

(x′
iβ − yi)2 + α1

d∑
j=1
|βj |+ α2

d∑
j=1

β2
j .

The Elastic Net method integrates the strengths of two distinct approaches: the l1 regularization term
enforces sparsity, while the l2 regularization maintains the grouping effect (Zhou, 2013; Narisetty, 2020). The
Elastic Net has also motivated some research studies to adopt the idea of combining l1 and l2 regularizations
in of deep neural networks (DNNs) (Kang et al., 2017; Chen et al., 2018; Hu et al., 2023; Xu et al., 2023a).
Notably, a recent study (Xu et al., 2023a) presents an excess risk bound for Elastic Net Regularized DNNs.
This finding provides supporting evidence that incorporating both l1 and l2 regularizations in a DNN model
is reasonable. The insights gained from (Xu et al., 2023a) shed light on the theoretical explanation of our
method, and even pave the way for exploring the integration of different divergence metrics in other research
areas, such as domain adaptation, transfer learning, and fair representation learning.

Connection with multi-task learning: balancing on two representations. Our DIGNet model per-
forms representation balancing on two distinct representations using Wasserstein distance and H-divergence
separately, and the learned representations are then concatenated for outcome modeling. We will now pro-
vide additional explanations regarding its connection with the multi-task learning method. In multi-task
learning, distinct representations are learned for different tasks, with each task involving its own objective
function. An important step in multi-task learning is integrating the information from these separately
learned representations into a unified representation. One common approach is to concatenate the task-
specific representations to form a joint representation, which effectively preserves the information from each
task for outcome modeling (e.g.,Li et al. (2018); Baltrušaitis et al. (2018); Crawshaw (2020); Yan et al.
(2021); Xu et al. (2023b)). For example, in an E-commerce application Liu et al. (2023), diverse types of
user footprints are encoded using different representations with diverse objectives. The learned representa-
tions are then concatenated to make the final target prediction. Similarly, in another application Wu et al.
(2018), user and product attentions are separately learned on two distinct representations, which are later
concatenated for the final outcome prediction. In tasks such as image and text classification Hao et al. (2023),
concatenating multiple representations has shown effective improvements in the classification performance,
which is brought by the complementary information of each representation. Furthermore, a recent study on
multi-view learning (Li et al., 2024) has also demonstrated that concatenating both the non-attention and
attention representations of each view can prevent information loss in the final classification task.

Summary of strengths and limitations. Our method combines Wasserstein distance and H-divergence
for representation balancing to capture different types of balancing patterns compared to classic represen-
tation balancing models. This shares a similar intuition with the Elastic Net, which combines l1 and l2
regularizations to learn features with different properties. Notably, the two regularizations in Elastic Net
are learned on a single parameter space with one objective, this provides more interpretability but might
introduce a new trade-off. Different from Elastic Net, our DIGNet model concatenates the two distinct
representations that are learned from two different tasks: Wasserstein distance guided and H-divergence
guided representation balancing. This aligns with the principle of multi-task learning. The concatenation
fusion technique is extensively employed in numerous multi-task learning studies (Baltrušaitis et al., 2018),
as it effectively preserves and integrates information from different tasks, leading to improved performance
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Figure 5: T-SNE visualizations of the covariates as γ varies. Red represents the treatment group and blue
represents the control group. A larger γ indicates a greater imbalance between the two groups.

in the final prediction objective (Hao et al., 2023; Li et al., 2024). However, it is crucial to acknowledge
that this straightforward concatenation approach can present challenges when interpreting the specific role
of each representation and can also increase model complexity (Jia et al., 2020).

6 Experiments

In non-randomized observational data, the ground truth regarding treatment effects remains inaccessible
due to the absence of counterfactual information. Therefore, we use simulated data and semi-synthetic
benchmark data to test the performance of our methods and other baseline models. In this section, we
primarily investigate the three following questions:

Q1. Is PDIG helpful in ITE estimation through Path I in the Introduction, i.e., learning more effective
balancing patterns without affecting factual outcome prediction?

Q2. Is PPBR helpful in ITE estimation through Path II in the Introduction, i.e., improving factual outcome
prediction without affecting learning balancing patterns?

Q3. Can the proposed DIGNet model outperform other baseline models on benchmark dataset?

Ablation models. To investigate Q1 and Q2, we conducted ablation studies and designed two ablation
models, DGNet and DINet, where DGNet (or DINet) can be considered as DIGNet without PDIG, and
GNet (or INet) can be considered as DGNet (or DINet) without PPBR. The structures of DGNet and DINet
are shown in Figure 2(c) and Figure 2(d), and the objectives of DGNet and DINet are deferred to Section
A.6.

6.1 Experimental Settings

Simulation data. Previous causal inference works assess the model effectiveness by varying the distribu-
tion imbalance of covariates in treated and controlled groups at different levels (Yao et al., 2018; Yoon et al.,
2018; Du et al., 2021). As suggested by Assaad et al. (2021), we draw 1000 observational data points from
the following data generating strategy:

Xi ∼ N (0, σ2 · [ρ1p1
′

p + (1− ρ)Ip]),
Ti | Xi ∼ Bernoulli(1/(1 + exp(−γXi))),
Y 0

i = β′
0Xi + ξi, Y 1

i = β′
1Xi + ξi, ξi ∼ N (0, 1).

Here, 1p denotes the p-dimensional all-ones vector and Ip denotes the identity matrix of size p. We fix
p = 10, ρ = 0.3, σ2 = 2, β′

0 = [0.3, ..., 0.3], β′
1 = [1.3, ..., 1.3] and vary γ ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 3} to yield

different levels of selection bias. As seen in Figure 5, selection bias becomes more severe with γ increasing.
For each γ, we repeat the above data generating process to generate 30 different datasets, with each dataset
split by the ratio of 56%/24%/20% as training/validation/test sets.

Semi-synthetic data. The IHDP dataset, introduced by Hill (2011), originates from the Infant Health
and Development Program (IHDP). This program conducted a randomized controlled experiment in 1985
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Figure 6: Plots of model performances on test set for different metrics as γ varies in
{0.25, 0.5, 0.75, 1, 1.5, 2, 3}. Each graph shows the average of 30 runs with standard errors shaded. Lower
lines indicate lower values of the metric.

to investigate whether there is a positive causal effect of frequent high-quality child care and home visits
(treatment) on cognitive scores (outcome). The collected data comprise 25-dimensional pre-treatment co-
variates, including measurements on the infants (e.g., birth weight, gender, head circumference), as well as
measurements on the mothers during pregnancy (e.g., age, marital status, education, smoking and drinking
habits). In order to create an observational dataset that involves selection bias, Hill excluded a subpopu-
lation (children with nonwhite mothers) from the treated group. Consequently, the IHDP dataset exhibits
a covariate shift, resulting in imbalanced treated and controlled groups. The final IHDP dataset consists
of 747 samples, comprising 139 treated samples and 608 controlled samples. The potential outcomes were
generated using setting A in the NPCI package Dorie (2021). We use the same 1000 datasets as used in
Shalit et al. (2017), with each dataset split by the ratio of 63%/27%/10% as training/validation/test sets.

Models and metrics. In simulation experiments, we perform comprehensive comparisons between INet,
GNet, DINet, DGNet, and DIGNet in terms of the mean and standard error for the following metrics:√

ϵP EHE , √ϵCF , and √ϵF with L defined in Definition 1 being the squared loss, as well as the empirical
approximations of Wass(pT =1

Φ , pT =0
Φ ) and dH(pT =1

Φ , pT =0
Φ ) (denoted by Wass and d̂H, respectively). Note

that as shown in Figure 2, Wass is over ΦE for GNet while over ΦG for DGNet and DIGNet; d̂H is over ΦE

for INet while over ΦI for DINet and DIGNet. To analyze the source of gain and ensure fair comparison in
simulation studies, we fix hyperparameters across all models. This way is consistent with Curth & van der
Schaar (2021). We apply an early stopping rule to all models as Shalit et al. (2017) do. In IHDP experiment,
we use √ϵP EHE , as well as an additional metric ϵAT E = |τ̂AT E − τAT E | to evaluate performances of various
causal models (see them in Table 6). More descriptions of the implementation details, as well as the analysis
of training time, training stability, and hyperparameter sensitivity, are deferred to Section A.5.

Device. All the experiments are run on Dell 7920 with one 16-core Intel Xeon Gold 6250 3.90GHz CPU
and three NVIDIA Quadro RTX 6000 GPUs.

6.2 Results and Analysis

6.2.1 Preliminary Experimental Results

In this part, we first make a general comparison between different models with the degree of covariate im-
balance increasing, and the relevant results are shown in Figure 6. There are four main observations: (1)
DIGNet attains the lowest √ϵP EHE across all datasets, while GNet have inferior performances than other
models; (2) DINet and DGNet outperform INet and GNet regarding √ϵCF and √ϵP EHE ; (3) INet, DINet,
and DGNet have comparable performance to DIGNet in terms of factual outcome estimations (√ϵF ), but
cannot compete with DIGNet in terms of counterfactual estimations (√ϵCF ) or ITE estimations ( √ϵP EHE);
(4) DIGNet achieves smaller d̂H (or Wass) than DINet and INet (or DGNet and GNet), especially when
the covariate shift problem is severe (e.g., when γ > 1). In conclusion, the above study has produced several
noteworthy findings. Firstly, finding (1) reveals that our proposed DIGNet model consistently performs well
in ITE estimation. Secondly, as indicated by finding (2), implementing the PPBR approach can enhance the
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Table 1: Ablation study for PDIG: Mean ± std of each
metric averaged across 30 runs on test set when γ = 3.
Lower value is better.

√
ϵF

√
ϵCF d̂H Wass

DIGNet 1.07± 0.01 2.89± 0.07 1.94± 0.00 0.06± 0.00
DINet 1.07± 0.01 2.95± 0.07 1.94± 0.00 -
DGNet 1.07± 0.01 3.08± 0.07 - 0.10± 0.00

Table 2: Ablation study for PPBR: Mean ± std of
each metric averaged across 30 runs on test set when
γ = 3. Lower value is better.

√
ϵF

√
ϵCF d̂H Wass

DGNet 1.07± 0.01 3.08± 0.07 - 0.10± 0.00
GNet 1.12± 0.03 3.55± 0.14 - 0.10± 0.00
DINet 1.07± 0.01 2.95± 0.07 1.96± 0.00 -
INet 1.08± 0.01 3.47± 0.12 1.96± 0.00 -

predictive accuracy of factual and counterfactual outcomes. Lastly, findings (3) and (4) highlight the role of
PDIG structure in enhancing the simultaneous reinforcement and complementarity of group distance mini-
mization and individual propensity confusion, resulting in more balanced representations. Our subsequent
analysis will step beyond these preliminary conclusions to gain a deeper understanding of the effectiveness
of the proposed methods.

6.2.2 Further Ablation Studies

So far our preliminary observations have show that the relationship between the ITE errors of each model is:
DIGNet<DINet<INet and DIGNet<DGNet<GNet. To further explore how PDIG and PPBR contribute
to the improvement of ITE estimations, we choose the case with high selection bias (γ = 3) to analyze the
source of gain for PDIG and PPBR. We report model performances (mean ± std) of each specific metric
averaged across 30 runs on test set in Table 1 and Table 2. We also report model performances (mean ±
std) averaged over 30 training and test sets in Table 3. Below we discuss the source of gain in detail.

Ablation study for PDIG. The PDIG structure is manifest to be effective in capturing more
effective balancing patterns, without affecting factual outcome predictions. As depicted in Figure
6, DIGNet exhibits more balanced representations, irrespective of whether the discrepancy is measured by
d̂H or Wass, while DIGNet, DINet, and DGNet demonstrate comparable estimates of factual outcomes
(√ϵF ). Two additional pieces of specific evidence can be observed from Table 1: (1) Despite the absence of
PDIG in DINet and DGNet when compared to DIGNet, these three models exhibit very similar performance
regarding √ϵF , with the performance being 1.07 ± 0.01. This indicates that PDIG does not impact the
factual estimation. (2) DIGNet achieves smaller d̂H with a |1.94/1.96 − 1| = 1.0% reduction (or Wass
with a |0.06/0.10 − 1| = 40% reduction) compared with DINet (or DGNet). This indicates that PDIG
enables the model to learn more effective balancing patterns. The above two points indicate that PDIG can
capture more effective balancing patterns, without affecting factual outcome predictions. This advantage
translates into superior counterfactual estimation, with DIGNet reduceing √ϵCF by |2.89/2.95− 1| = 2.0%
and |2.89/3.08 − 1| = 6.2% compared to DINet and DGNet, respectively. Correspondingly, DIGNet also
shows superiority in treatment effect estimation (√ϵP EHE and ϵAT E) compared to DINet (or DGNet), as
demonstrated in Table 3.

Ablation study for PPBR. The PPBR approach contributes to enhancing factual outcome
predictions, without affecting learning balancing patterns. From Table 2, we gain two important
insights: (1) The difference in learned balancing patterns, measured by d̂H (or Wass), between DINet
and INet (or DGNet and GNet), is negligible. This implies that PPBR does not affect learning balancing
patterns. (2) Compared with INet, DINet achieves smaller √ϵF , with |1.07/1.08−1| = 0.9% error reduction.
Similarly, compared with GNet, DGNet achieves smaller √ϵF , with |1.07/1.12− 1| = 4.5% error reduction.
These two observations reveal that PPBR can improve factual outcome predictions, without affecting learning
balancing patterns. Benefiting from the advantage of PPBR, the improvement is particularly pronounced in
counterfactual estimation. Comparing DINet with INet, the reduction in √ϵCF amounts to |2.95/3.47−1| =
15.0%. Similarly, comparing DGNet with GNet, the reduction is |3.08/3.55− 1| = 13.2%. Correspondingly,
DINet (or DGNet) attains smaller treatment effect errors (√ϵP EHE and ϵAT E) compared with INet (or
GNet), as shown in Table 3.
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Table 3: Training- & test- set √ϵP EHE & ϵAT E when
γ = 3. Mean ± standard error of 30 runs.

Training set Test set√
ϵP EHE ϵAT E

√
ϵP EHE ϵAT E

GNet 3.30±0.15 2.58±0.14 3.30±0.16 2.59±0.14
INet 3.24±0.11 2.46±0.09 3.22±0.12 2.47±0.10

DGNet 2.86±0.06 2.15±0.03 2.83±0.07 2.15±0.04
DINet 2.70±0.06 2.12±0.04 2.69±0.08 2.13±0.05

DIGNet 2.66±0.07 2.04±0.05 2.63±0.07 2.03±0.04

Table 4: Training- & test- set √ϵP EHE & ϵAT E on
IHDP. Mean ± standard error of 100 runs.

Training set Test set√
ϵP EHE ϵAT E

√
ϵP EHE ϵAT E

GNet 0.71±0.15 0.12±0.01 0.77±0.18 0.15±0.02
INet 0.66±0.09 0.13±0.01 0.72±0.11 0.15±0.02

DGNet 0.53±0.07 0.11±0.01 0.60±0.09 0.13±0.01
DINet 0.57±0.12 0.13±0.01 0.60±0.11 0.14±0.01

DIGNet 0.42±0.02 0.11±0.01 0.45±0.04 0.12±0.01

Table 5: Significance analysis regarding the achieved improvements by comparing GNet and DGNet, INet
and DINet, DGNet and DIGNet, DINet and DIGNet. The p-value ≤ 0.05 indicates difference is statistically
significant.

Training set Test set√
ϵP EHE ϵAT E

√
ϵP EHE ϵAT E

t-value p-value t-value p-value t-value p-value t-value p-value
GNet vs. DGNet 2.7435 0.0081 2.9844 0.0042 2.7073 0.0089 2.9269 0.0049
INet vs. DINet 4.0812 0.0001 3.5222 0.0008 3.5665 0.0007 3.0824 0.0031

DGNet vs. DIGNet 2.0240 0.0476 1.8888 0.0639 2.0650 0.0434 2.0935 0.0407
DINet vs. DIGNet 0.4513 0.6535 1.3525 0.1815 0.6079 0.5456 1.5473 0.1272

Significance analysis for the improvements. To assess the significance of the improvements observed
in the above ablation studies, we conducted an additional significance analysis by recording the values
of √ϵP EHE and ϵAT E for 30 runs of each of the 5 models (GNet, INet, DGNet, DINet, and DIGNet).
Subsequently, we performed a t-test for GNet vs. DGNet, INet vs. DINet, DGNet vs. DIGNet, and DINet
vs. DIGNet, to investigate the statistical significance of their differences. The relevant results are reported in
Table 5. The results reveal a statistically significant difference between GNet and DGNet, INet and DINet,
as well as DGNet and DIGNet. Note that the difference between DINet and DIGNet is not statistically
significant, despite DIGNet exhibiting smaller treatment effect estimation errors on average compared to
DINet.

6.2.3 Comparisons on IHDP benchmark.

In this part, we perform experiments on the IHDP benchmark dataset to compare the performances of
different models. The corresponding results are reported in Table 4 and 6.

First, we report the ablation results on 1-100 IHDP datasets in Table 4, aiming to examine the consistent
effectiveness of PDIG and PPBR. Specifically, Table 4 shows that DINet and DGNet are superior to INet and
GNet but inferior to DIGNet concerning treatment effect estimation, suggesting that both PDIG and PPBR
are advantageous for treatment effect estimation. For example, on the test set, DINet reduces √ϵP EHE by
|0.60/0.72 − 1| = 16.7% for INet, and DIGNet reduces √ϵP EHE by |0.45/0.60 − 1| = 25% for DINet. This
is consistent with the findings before: PDIG and PPBR are beneficial to treatment effect estimation.

Furthermore, we undergo comparisons between DIGNet and other causal models on 1-1000 IHDP datasets
and report the results in Table 6. The results highlight the superior performance of the proposed DIGNet
across all the models. Specifically, in comparison to the second-best method in test-sample performance,
DIGNet achieves a substantial improvement, with error reducted by |0.45/0.57 − 1| = 21% in terms of√

ϵP EHE and |0.12/0.13−1| = 7.7% in terms of ϵAT E . Moreover, it is worth noting that DIGNet consistently
achieves the lowest errors across various datasets and metrics, revealing its robust performance. We also
conduct an additional experiments on another benchmark dataset Twins. The details and results are deferred
to Section A.5
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7 Conclusion

Table 6: Training- & test- set √ϵP EHE & ϵAT E on IHDP. Mean ±
standard error of 1000 runs.

Training set Test set√
ϵP EHE ϵAT E

√
ϵP EHE ϵAT E

OLS/LR1 (Johansson et al., 2016) 5.8± .3 .73± .04 5.8± .3 .94± .06
OLS/LR2 (Johansson et al., 2016) 2.4± .1 .14± .01 2.5± .1 .31± .02

k-NN (Crump et al., 2008) 2.1± .1 .14± .01 4.1± .2 .79± .05
BART (Chipman et al., 2010) 2.1± .1 .23± .01 2.3± .1 .34± .02

CF (Wager & Athey, 2018) 3.8± .2 .18± .01 3.8± .2 .40± .03
CEVAE (Louizos et al., 2017) 2.7± .1 .34± .01 2.6± .1 .46± .02

SITE (Yao et al., 2018) .69± .0 .22± .01 .75± .0 .24± .01
GANITE (Yoon et al., 2018) 1.9± .4 .43± .05 2.4± .4 .49± .05
BLR (Johansson et al., 2016) 5.8± .3 .72± .04 5.8± .3 .93± .05
BNN (Johansson et al., 2016) 2.2± .1 .37± .03 2.1± .1 .42± .03
TARNet (Shalit et al., 2017) .88± .0 .26± .01 .95± .0 .28± .01

CFR-Wass (GNet) (Shalit et al., 2017) .73± .0 .12± .01 .81± .0 .15± .01
Dragonnet (Shi et al., 2019) 1.3± .4 .14± .01 1.3± .5 .20± .05
MBRL (Huang et al., 2022a) .52 ± .0 .12 ± .01 .57 ± .0 .13 ± .01

DIGNet (Ours) .41 ± .0 .11 ± .01 .46 ± .0 .12 ± .01

This paper establishes a theoret-
ical foundation by deriving coun-
terfactual and ITE error bounds
based on H-divergence. This the-
oretical foundation builds a connec-
tion between representation balanc-
ing and individual propensity con-
fusion. Furthermore, based on in-
dividual propensity confusion and
group distance minimization, we
suggest learning decomposed pat-
terns for representation balancing
models using the PDIG and PPBR
methods. Further, building upon
PDIG and PPBR, we propose a
novel model DIGNet, for treatment
effect estimation. Comprehensive
experiments verify that PDIG and
PPBR follow different pathways to
improve counterfactual and ITE estimation. In particular, PDIG enables the model to capture more effec-
tive balancing patterns without affecting factual outcome prediction, while PPBR contributes to improving
factual outcome predictions without influencing learning balancing patterns. We hope these findings can con-
stitute an important step to inspire more research concerning the generalization of representation balancing
models for counterfactual and ITE estimation.

Limitations and future works. Our paper verifies the effectiveness of PDIG and PPBR in improving
ITE estimation, it is also important to step beyond our empirical insights into future theoretical studies
aimed at addressing the trade-off challenge mentioned in the introduction, e.g., exploring the possibility
of deriving tighter theoretical error bounds based on learning decomposed patterns, and involving the or-
thogonal machine learning (Chernozhukov et al., 2018; Oprescu et al., 2019; Nie & Wager, 2021; Huang
et al., 2022b) into the representation learning model to improve model’s robustness to the misspecification.
Furthermore, it remains challenging to analytically determine the best divergence metric for representation
balancing methods. A promising avenue for future theoretical investigations would involve developing new
distributional divergences or exploring a unified theory that enables models to select appropriate divergence
metrics based on the distinct data. Empirical studies can focus on discouraging the redundancy of the
concatenation fusion of each decomposed pattern and improving the efficacy of the multi-task learning ob-
jectives. While we have followed the same approach as previous studies by evaluating model performance
using simulated and semi-synthetic data, it is crucial for future research to explore the creation of appro-
priate benchmark datasets (Athey & Wager, 2019; Curth et al., 2021) for assessing the performance of ITE
estimation methods in real-world scenarios.

Acknowledgement

We are thankful for the constructive and helpful comments provided by the reviewers and action editor
during the reviewing process of TMLR, which has contributed a lot to the improvement of our work.

Qi WU acknowledges the support from The CityU-JD Digits Joint Laboratory in Financial Technology and
Engineering and The Hong Kong Research Grants Council [General Research Fund 11219420/9043008 and
11200219/9042900]. The work described in this paper was partially supported by the InnoHK initiative, the
Government of the HKSAR, and the Laboratory for AI-Powered Financial Technologies.

19



Published in Transactions on Machine Learning Research (06/2024)

References
Tameem Adel, Isabel Valera, Zoubin Ghahramani, and Adrian Weller. One-network adversarial fairness. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 2412–2420, 2019.

Joshua D Angrist, Guido W Imbens, and Donald B Rubin. Identification of causal effects using instrumental
variables. Journal of the American statistical Association, 91(434):444–455, 1996.

Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li, and
Lawrence Carin. Counterfactual representation learning with balancing weights. In International
Conference on Artificial Intelligence and Statistics, pp. 1972–1980. PMLR, 2021.

Susan Athey and Stefan Wager. Estimating treatment effects with causal forests: An application.
Observational Studies, 5(2):37–51, 2019.

Peter C Austin and Elizabeth A Stuart. Moving towards best practice when using inverse probability of
treatment weighting (iptw) using the propensity score to estimate causal treatment effects in observational
studies. Statistics in medicine, 34(28):3661–3679, 2015.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning: A survey
and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2):423–443, 2018.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for domain
adaptation. Advances in neural information processing systems, 19, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.

Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H Chi. Data decisions and theoretical implications when adver-
sarially learning fair representations. arXiv preprint arXiv:1707.00075, 2017.

Ioana Bica, Ahmed M Alaa, Craig Lambert, and Mihaela Van Der Schaar. From real-world patient data to
individualized treatment effects using machine learning: current and future methods to address underlying
challenges. Clinical Pharmacology & Therapeutics, 109(1):87–100, 2021a.

Ioana Bica, Daniel Jarrett, Alihan Hüyük, and Mihaela van der Schaar. Learning ”what-if” explanations
for sequential decision-making. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=h0de3QWtGG.

Stephen Burgess, Dylan S Small, and Simon G Thompson. A review of instrumental variable estimators for
mendelian randomization. Statistical methods in medical research, 26(5):2333–2355, 2017.

Marco Caliendo and Sabine Kopeinig. Some practical guidance for the implementation of propensity score
matching. Journal of economic surveys, 22(1):31–72, 2008.

Defu Cao, James Enouen, Yujing Wang, Xiangchen Song, Chuizheng Meng, Hao Niu, and Yan Liu. Esti-
mating treatment effects from irregular time series observations with hidden confounders. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6897–6905, 2023.

Minwoo Chae and Stephen G Walker. Wasserstein upper bounds of the total variation for smooth densities.
Statistics & Probability Letters, 163:108771, 2020.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net attacks to deep
neural networks via adversarial examples. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey,
and James Robins. Double/debiased machine learning for treatment and structural parameters. The
Econometrics Journal, 21(1):C1–C68, 2018.

20

https://openreview.net/forum?id=h0de3QWtGG


Published in Transactions on Machine Learning Research (06/2024)

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian additive regression trees.
The Annals of Applied Statistics, 4(1):266–298, 2010.

Zhixuan Chu, Stephen L. Rathbun, and Sheng Li. Graph infomax adversarial learning for treatment effect
estimation with networked observational data. In KDD, pp. 176–184, 2021. URL https://doi.org/10.
1145/3447548.3467302.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

Richard K Crump, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik. Nonparametric tests for treatment
effect heterogeneity. The Review of Economics and Statistics, 90(3):389–405, 2008.

Alicia Curth and Mihaela van der Schaar. On inductive biases for heterogeneous treatment effect estimation.
Advances in Neural Information Processing Systems, 34:15883–15894, 2021.

Alicia Curth and Mihaela Van Der Schaar. In search of insights, not magic bullets: Towards demystification
of the model selection dilemma in heterogeneous treatment effect estimation. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 6623–6642. PMLR, 23–29 Jul 2023.

Alicia Curth, David Svensson, Jim Weatherall, and Mihaela van der Schaar. Really doing great at estimating
cate? a critical look at ml benchmarking practices in treatment effect estimation. In Thirty-fifth conference
on neural information processing systems datasets and benchmarks track (round 2), 2021.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In International conference
on machine learning, pp. 685–693. PMLR, 2014.

Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th international conference on
machine learning, pp. 231–238. Morgan Kaufmann Stanford, 2000.

Vincent Dorie. Nonparametric methods for causal inference. https://github.com/vdorie/npci, 2021.

Xin Du, Lei Sun, Wouter Duivesteijn, Alexander Nikolaev, and Mykola Pechenizkiy. Adversarial balancing-
based representation learning for causal effect inference with observational data. Data Mining and
Knowledge Discovery, 35(4):1713–1738, 2021.

Harrison Edwards and Amos Storkey. Censoring representations with an adversary. arXiv preprint
arXiv:1511.05897, 2015.

Max H Farrell. Robust inference on average treatment effects with possibly more covariates than observations.
Journal of Econometrics, 189(1):1–23, 2015.

Rui Feng, Yang Yang, Yuehan Lyu, Chenhao Tan, Yizhou Sun, and Chunping Wang. Learning fair repre-
sentations via an adversarial framework. arXiv preprint arXiv:1904.13341, 2019.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The journal of
machine learning research, 17(1):2096–2030, 2016.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma. Neural
computation, 4(1):1–58, 1992.

Ruocheng Guo, Jundong Li, Yichuan Li, K Selçuk Candan, Adrienne Raglin, and Huan Liu. Ignite: A
minimax game toward learning individual treatment effects from networked observational data. In IJCAI,
pp. 4534–4540, 2020a.

Ruocheng Guo, Jundong Li, and Huan Liu. Learning individual causal effects from networked observational
data. In Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 232–240,
2020b.

21

https://doi.org/10.1145/3447548.3467302
https://doi.org/10.1145/3447548.3467302


Published in Transactions on Machine Learning Research (06/2024)

Yaru Hao, Xiao-Yuan Jing, Runhang Chen, and Wei Liu. Learning enhanced specific representations for
multi-view feature learning. Knowledge-Based Systems, 272:110590, 2023.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances in
neural information processing systems, 29, 2016.

Negar Hassanpour and Russell Greiner. Counterfactual regression with importance sampling weights. In
IJCAI, pp. 5880–5887, 2019a.

Negar Hassanpour and Russell Greiner. Learning disentangled representations for counterfactual regression.
In International Conference on Learning Representations, 2019b.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational and
Graphical Statistics, 20(1):217–240, 2011.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970.

Cong Hu, Yuanbo Li, Zhenhua Feng, and Xiaojun Wu. Attention-guided evolutionary attack with elastic-net
regularization on face recognition. Pattern recognition, 143:109760, 2023.

Yiyan Huang, Cheuk Hang Leung, Xing Yan, Qi Wu, Nanbo Peng, Dongdong Wang, and Zhixiang Huang.
The causal learning of retail delinquency. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 204–212, 2021.

Yiyan Huang, Cheuk Hang Leung, Shumin Ma, Qi Wu, Dongdong Wang, and Zhixiang Huang. Moderately-
balanced representation learning for treatment effects with orthogonality information. In Pacific Rim
International Conference on Artificial Intelligence, pp. 3–16. Springer, 2022a.

Yiyan Huang, Cheuk Hang Leung, Qi Wu, Xing Yan, Shumin Ma, Zhiri Yuan, Dongdong Wang, and Zhixiang
Huang. Robust causal learning for the estimation of average treatment effects. In 2022 International Joint
Conference on Neural Networks (IJCNN 2022). IEEE, 2022b.

Yiyan Huang, Cheuk Hang Leung, Shumin Ma, Zhiri Yuan, Qi Wu, Siyi Wang, Dongdong Wang, and
Zhixiang Huang. Towards balanced representation learning for credit policy evaluation. In International
Conference on Artificial Intelligence and Statistics, pp. 3677–3692. PMLR, 2023.

Andrew Jesson, Sören Mindermann, Yarin Gal, and Uri Shalit. Quantifying ignorance in individual-level
causal-effect estimates under hidden confounding. In International Conference on Machine Learning, pp.
4829–4838. PMLR, 2021.

Xiaodong Jia, Xiao-Yuan Jing, Xiaoke Zhu, Songcan Chen, Bo Du, Ziyun Cai, Zhenyu He, and Dong
Yue. Semi-supervised multi-view deep discriminant representation learning. IEEE transactions on pattern
analysis and machine intelligence, 43(7):2496–2509, 2020.

Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair classifica-
tion. In Uncertainty in artificial intelligence, pp. 862–872. PMLR, 2020.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual inference. In
International conference on machine learning, pp. 3020–3029. PMLR, 2016.

Fredrik D. Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and repre-
sentation learning for estimation of potential outcomes and causal effects. Journal of Machine Learning
Research, 23(166):1–50, 2022a. URL http://jmlr.org/papers/v23/19-511.html.

Fredrik D Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and represen-
tation learning for estimation of potential outcomes and causal effects. Journal of Machine Learning
Research, 23(166):1–50, 2022b.

22

http://jmlr.org/papers/v23/19-511.html


Published in Transactions on Machine Learning Research (06/2024)

Nathan Kallus, Xiaojie Mao, and Angela Zhou. Interval estimation of individual-level causal effects under
unobserved confounding. In The 22nd international conference on artificial intelligence and statistics, pp.
2281–2290. PMLR, 2019.

Guoliang Kang, Jun Li, and Dacheng Tao. Shakeout: A new approach to regularized deep neural network
training. IEEE transactions on pattern analysis and machine intelligence, 40(5):1245–1258, 2017.

Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects. Electronic
Journal of Statistics, 17(2):3008–3049, 2023.

Kun Kuang, Peng Cui, Bo Li, Meng Jiang, Shiqiang Yang, and Fei Wang. Treatment effect estimation with
data-driven variable decomposition. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. In International Conference on Learning
Representations, 2021.

Ananya Kumar, Tengyu Ma, Percy Liang, and Aditi Raghunathan. Calibrated ensembles can mitigate
accuracy tradeoffs under distribution shift. In Uncertainty in Artificial Intelligence, pp. 1041–1051. PMLR,
2022.

Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heterogeneous
treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10):4156–
4165, 2019.

Jinxing Li, Chuhao Zhou, Xiaoqiang Ji, Mu Li, Guangming Lu, Yong Xu, and David Zhang. Multi-view
instance attention fusion network for classification. Information Fusion, 101:101974, 2024.

Yingming Li, Ming Yang, and Zhongfei Zhang. A survey of multi-view representation learning. IEEE
transactions on knowledge and data engineering, 31(10):1863–1883, 2018.

Qi Liu, Zhilong Zhou, Gangwei Jiang, Tiezheng Ge, and Defu Lian. Deep task-specific bottom representation
network for multi-task recommendation. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management, pp. 1637–1646, 2023.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu. Transfer joint matching for
unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1410–1417, 2014.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep
adaptation networks. In International conference on machine learning, pp. 97–105. PMLR, 2015.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint adapta-
tion networks. In International conference on machine learning, pp. 2208–2217. PMLR, 2017.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. Causal effect
inference with deep latent-variable models. Advances in neural information processing systems, 30, 2017.

Shumin Ma, Zhiri Yuan, Qi Wu, Yiyan Huang, Xixu Hu, Cheuk Hang Leung, Dongdong Wang, and Zhix-
iang Huang. Deep into the domain shift: Transfer learning through dependence regularization. IEEE
Transactions on Neural Networks and Learning Systems, 2023.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and trans-
ferable representations. In International Conference on Machine Learning, pp. 3384–3393. PMLR, 2018.

Divyat Mahajan, Ioannis Mitliagkas, Brady Neal, and Vasilis Syrgkanis. Empirical analysis of model selection
for heterogenous causal effect estimation. International Conference on Learning Representations, 2024.

23



Published in Transactions on Machine Learning Research (06/2024)

Maggie Makar, Fredrik Johansson, John Guttag, and David Sontag. Estimation of bounds on potential
outcomes for decision making. In International Conference on Machine Learning, pp. 6661–6671. PMLR,
2020.

Wang Miao, Wenjie Hu, Elizabeth L Ogburn, and Xiao-Hua Zhou. Identifying effects of multiple treatments
in the presence of unmeasured confounding. Journal of the American Statistical Association, 118(543):
1953–1967, 2023.

Naveen Naidu Narisetty. Bayesian model selection for high-dimensional data. In Handbook of statistics,
volume 43, pp. 207–248. Elsevier, 2020.

Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108
(2):299–319, 2021.

Ana Rita Nogueira, João Gama, and Carlos Abreu Ferreira. Causal discovery in machine learning: Theories
and applications. Journal of Dynamics & Games, 8(3), 2021.

Miruna Oprescu, Vasilis Syrgkanis, and Zhiwei Steven Wu. Orthogonal random forest for causal inference.
In International Conference on Machine Learning, pp. 4932–4941. PMLR, 2019.

Judea Pearl. Causality. Cambridge university press, 2009.

Zhaozhi Qian, Yao Zhang, Ioana Bica, Angela Wood, and Mihaela van der Schaar. Synctwin: Treatment
effect estimation with longitudinal outcomes. Advances in Neural Information Processing Systems, 34:
3178–3190, 2021.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational studies
for causal effects. Biometrika, 70(1):41–55, 1983.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal of the
American Statistical Association, 100(469):322–331, 2005.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: generalization
bounds and algorithms. In International Conference on Machine Learning, pp. 3076–3085. PMLR, 2017.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation learning for
domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment effects.
Advances in neural information processing systems, 32, 2019.

Changjian Shui, Fan Zhou, Christian Gagné, and Boyu Wang. Deep active learning: Unified and principled
method for query and training. In International Conference on Artificial Intelligence and Statistics, pp.
1308–1318. PMLR, 2020.

Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert RG Lanckriet.
On the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6:1550–1599,
2012.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267–288, 1996.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7167–7176, 2017.

Giorgio Valentini and Thomas G Dietterich. Bias-variance analysis of support vector machines for the
development of svm-based ensemble methods. Journal of Machine Learning Research, 5(Jul):725–775,
2004.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

24



Published in Transactions on Machine Learning Research (06/2024)

Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. D’ya like dags? a survey on structure
learning and causal discovery. ACM Computing Surveys, 55(4):1–36, 2022.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using random
forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.

Anpeng Wu, Kun Kuang, Bo Li, and Fei Wu. Instrumental variable regression with confounder balancing.
In International Conference on Machine Learning, pp. 24056–24075. PMLR, 2022.

Zhen Wu, Xin-Yu Dai, Cunyan Yin, Shujian Huang, and Jiajun Chen. Improving review representations with
user attention and product attention for sentiment classification. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Lihu Xu, Fang Yao, Qiuran Yao, and Huiming Zhang. Non-asymptotic guarantees for robust statistical
learning under infinite variance assumption. Journal of Machine Learning Research, 24(92):1–46, 2023a.

Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023b.

Xiaoqiang Yan, Shizhe Hu, Yiqiao Mao, Yangdong Ye, and Hui Yu. Deep multi-view learning methods: A
review. Neurocomputing, 448:106–129, 2021.

Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance trade-off
for generalization of neural networks. In International Conference on Machine Learning, pp. 10767–10777.
PMLR, 2020.

Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Representation learning for
treatment effect estimation from observational data. Advances in Neural Information Processing Systems,
31, 2018.

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized treatment
effects using generative adversarial nets. In International Conference on Learning Representations, 2018.

Junkun Yuan, Xu Ma, Ruoxuan Xiong, Mingming Gong, Xiangyu Liu, Fei Wu, Lanfen Lin, and Kun Kuang.
Instrumental variable-driven domain generalization with unobserved confounders. ACM Transactions on
Knowledge Discovery from Data, 17(8):1–21, 2023.

Alessio Zanga, Elif Ozkirimli, and Fabio Stella. A survey on causal discovery: Theory and practice.
International Journal of Approximate Reasoning, 151:101–129, 2022.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations. In
International conference on machine learning, pp. 325–333. PMLR, 2013.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with adversarial
learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340,
2018.

Yao Zhang, Alexis Bellot, and Mihaela Schaar. Learning overlapping representations for the estimation of
individualized treatment effects. In International Conference on Artificial Intelligence and Statistics, pp.
1005–1014. PMLR, 2020.

Han Zhao and Geoffrey J Gordon. Inherent tradeoffs in learning fair representations. Journal of Machine
Learning Research, 23(57):1–26, 2022.

Han Zhao, Amanda Coston, Tameem Adel, and Geoffrey J Gordon. Conditional learning of fair representa-
tions. In International Conference on Learning Representations, 2019a.

Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant represen-
tations for domain adaptation. In International conference on machine learning, pp. 7523–7532. PMLR,
2019b.

25



Published in Transactions on Machine Learning Research (06/2024)

Han Zhao, Chen Dan, Bryon Aragam, Tommi S Jaakkola, Geoffrey J Gordon, and Pradeep Ravikumar. Fun-
damental limits and tradeoffs in invariant representation learning. Journal of Machine Learning Research,
23(340):1–49, 2022.

YUAN Zhiri, HU Xixu, WU Qi, MA Shumin, Cheuk Hang Leung, Xin Shen, and Yiyan Huang. A unified
domain adaptation framework with distinctive divergence analysis. 2022.

Ding-Xuan Zhou. On grouping effect of elastic net. Statistics & Probability Letters, 83(9):2108–2112, 2013.

Indre Zliobaite. On the relation between accuracy and fairness in binary classification. arXiv preprint
arXiv:1505.05723, 2015.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005.

A Appendix

A.1 Discussion of the Trade-off Problem

We will now discuss two cases to gain a deeper understanding of this trade-off phenomenon. (1) The case
without representation balancing: In this case, the outcome functions are fitted by Y 1 = τ̂1(Xtreat) and
Y 0 = τ̂0(Xcontrol) using treated and controlled samples, respectively. τ̂1(Xtreat) and τ̂0(Xcontrol) can be
good estimates of factual outcomes based on the well-preserved pre-balancing information (group informa-
tion). However, the estimated counterfactual outcomes τ̂0(Xtreat) and τ̂1(Xcontrol) can be problematic due
to the presence of the covariate shift problem P (X|T = 1) ̸= P (X|T = 0), where the distribution of training
data P (X, Y |T = t) differs from that of the test data P (X, Y |T = 1 − t) for t ∈ {0, 1} 2. (2) The case
with representation balancing: In this case, the outcome functions are fitted by Y 1 = ĥ1(Φ(Xtreat)) and
Y 0 = ĥ0(Φ(Xcontrol)) using treated and controlled samples, respectively. Using Φ(X) to fit factual outcomes
can improve the accuracy of the counterfactual estimates ĥ0(Φ(Xtreat)) and ĥ1(Φ(Xcontrol)), because rep-
resentation balancing enforces the distributions of treated and controlled samples to be as close as possible
in the representation space. As a result, representation balancing effectively tackles the covariate shift issue,
resulting in training data and test data following the same distribution 3. However, executing representation
balancing can inevitably lead to a loss of outcome-predictive information in Φ(X). This occurs naturally
as Φ becomes insensitive to the treatment variable, thereby sacrificing pre-balancing information (group
information) that contributes to factual outcome predictions. To illustrate the negative impact of losing
pre-balancing information in balanced representations, we present a motivating example below.

Motivating example. Suppose there is a vaccine available to prevent a certain disease. We define X
as the covariate, T = 1 as the treatment (receiving the vaccine), T = 0 as the control (not receiving the
vaccine), and Y as the outcome (the level of specific antibodies). Assume that the outcome is determined
by Y = T exp(X) + (1 − T ) · 0 = T exp(X), which means that if an individual receives the treatment, the
level of antibodies will be y = exp(x); otherwise, it will be y = 0. In observational data, the treatment is
assigned based on the covariate of each individual. The left graph of Figure 7 illustrates the distributions
of X in the treated and control groups. We observe that individuals with positive x values are more likely
to receive the vaccine, resulting in a higher level of antibodies. Given some sample i, a well trained model
first determines whether the sample is more likely to be in the treatment or control group based on its
covariate Xi = x. If it determines the sample to be in the treatment group, the model then predicts
y = exp(x); otherwise, it predicts y = 0. For example, if x = 1, the model would classify the sample as more
likely to be in the treatment group and predict y = e. Therefore, in this case, the pre-balancing covariate
remain informative for predicting the outcome. Now, let’s consider a representation function Φ that achieves

2By unconfoundedness, we have P (Y |X, T = t) = P (Y |X, T = 1 − t). Due to the covariate shift P (X|T = t) ̸= P (X|T =
1 − t), we have P (Y |X, T = t)P (X|T = t) ̸= P (Y |X, T = 1 − t)P (X|T = 1 − t), i.e., P (X, Y |T = t) ̸= P (X, Y |T = 1 − t).

3By one-to-one and invertible properties of Φ and unconfoundedness, we have P (Y |Φ(X), T = t) = P (Y |Φ(X), T = 1 − t).
Given an ideal representation balancing P (Φ(X)|T = t) = P (Φ(X)|T = 1 − t), we have P (Y |Φ(X), T = t)P (Φ(X)|T = t) =
P (Y |Φ(X), T = 1 − t)P (Φ(X)|T = 1 − t), i.e., P (Φ(X), Y |T = t) = P (Φ(X), Y |T = 1 − t).
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Improper balancing

Figure 7: Motivating example (similar to the example demonstrated in Huang et al. (2023)) for illustrating
the trade-off between outcome prediction and representation balancing.

improper representation balancing between the treated and control samples. The right graph of Figure 7
shows the distributions of Φ(X) in the treated and control groups. In this case, it becomes challenging for a
model to accurately predict Y using Φ(X) because the model may become confused about whether a sample
is more likely to receive the treatment or the control. Consequently, improperly balanced representations
can lead to a loss of outcome-predictive information.

The above discussions and motivating example illustrate the inherent trade-off problem between outcome
prediction (Principle I) and representation balancing (Principle II), which arises due to the fact that repre-
sentation balancing models alleviate covariate shift at the expense of factual outcome prediction.

A.2 Proof of Lemma 1

Proof of L taking the squared loss, i.e., L(y1, y2) = (y1 − y2)2:

Proof. We denote ϵP EHE(f) = ϵP EHE(h, Φ), ϵF (f) = ϵF (h, Φ), ϵCF (f) = ϵCF (h, Φ) for f(x, t) = h(Φ(x), t).

ϵF (f)

=
∫

X ×{0,1}×Y
(f(x, t)− yt)2p(yt|x)p(x, t)dytdxdt

=
∫

X ×{0,1}×Y
(f(x, t)− τ t(x))2p(yt|x)p(x, t)dytdxdt

+
∫

X ×{0,1}×Y
(τ t(x)− yt)2p(yt|x)p(x, t)dytdxdt

+ 2
∫

X ×{0,1}×Y
(f(x, t)− τ t(x))(τ t(x)− yt)p(yt|x)p(x, t)dytdxdt (28)

=
∫

X ×{0,1}
(f(x, t)− τ t(x))2p(x, t)dxdt + σ2

yt(p(x, t)) (29)

Equation (29) is by the definition of σ2
yt(p(x, t)) in Lemma 1 and equation (28) equaling zero since τ t(x) =∫

Y ytp(yt|x)dyt. A similar result can be obtained for ϵCF :

ϵCF (f) =
∫

X ×{0,1}
(f(x, t)− τ t(x))2p(x, 1− t)dxdt + σ2

yt(p(x, 1− t)).
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ϵP EHE(f)

=
∫

X
((f(x, 1)− f(x, 0))− (τ1(x)− τ0(x)))2p(x)dx

≤2
∫

X
((f(x, 1)− τ1(x))2 + (f(x, 0)− τ0(x))2)p(x)dx (30)

=2
∫

X
(f(x, 1)− τ1(x))2p(x, T = 1)dx + 2

∫
X

(f(x, 0)− τ0(x))2p(x, T = 0)dx

+ 2
∫

X
(f(x, 1)− τ1(x))2p(x, T = 0)dx + 2

∫
X

(f(x, 0)− τ0(x))2p(x, T = 1)dx (31)

=2
∫

X ×{0,1}
(f(x, t)− τ t(x))2p(x, t)dxdt + 2

∫
X ×{0,1}

(f(x, t)− τ t(x))2p(x, 1− t)dxdt

=2(ϵF (f)− σ2
yt(p(x, t))) + 2(ϵCF (f)− σ2

yt(p(x, 1− t))). (32)

Inequality (30) is by (x + y)2 ≤ 2(x2 + y2); equation (31) is by p(x) = p(x, T = 0) + p(x, T = 1). By
(equation 32) and the definition of σ2

y in Lemma 1, we have

ϵP EHE(h, Φ) ≤ 2(ϵCF (h, Φ) + ϵF (h, Φ)− 2σ2
y).

Proof of L taking the absolute loss, i.e., L(y1, y2) = |y1 − y2|:

Proof. We denote ϵP EHE(f) = ϵP EHE(h, Φ), ϵF (f) = ϵF (h, Φ), ϵCF (f) = ϵCF (h, Φ) for f(x, t) = h(Φ(x), t).

ϵF (f)

=
∫

X ×{0,1}×Y
|f(x, t)− yt|p(yt|x)p(x, t)dytdxdt

≥
∫

X ×{0,1}×Y
|f(x, t)− τ t(x)|p(yt|x)p(x, t)dytdxdt

−
∫

X ×{0,1}×Y
|τ t(x)− yt|p(yt|x)p(x, t)dytdxdt (33)

=
∫

X ×{0,1}
|f(x, t)− τ t(x)|p(x, t)dxdt−Ayt(p(x, t)). (34)

Inequality (33) is by |x + y| ≥ |x| − |y|, equation (34) is by the definition of Ayt(p(x, t)) in Lemma 1. A
similar result can be obtained for ϵCF :

ϵCF (f) ≥
∫

X ×{0,1}
|f(x, t)− τ t(x)|p(x, 1− t)dxdt−Ayt(p(x, 1− t)).
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ϵP EHE(f)

=
∫

X
|(f(x, 1)− f(x, 0))− (τ1(x)− τ0(x))|p(x)dx

≤
∫

X
(|f(x, 1)− τ1(x)|+ |f(x, 0)− τ0(x)|)p(x)dx (35)

=
∫

X
|f(x, 1)− τ1(x)|p(x, T = 1)dx +

∫
X
|f(x, 1)− τ1(x)|p(x, T = 0)dx (36)

+
∫

X
|f(x, 0)− τ0(x)|p(x, T = 0)dx +

∫
X
|f(x, 0)− τ0(x)|p(x, T = 1)dx (37)

=
∫

X ×{0,1}
|f(x, t)− τ t(x)|p(x, t)dxdt +

∫
X ×{0,1}

|f(x, t)− τ t(x)|p(x, 1− t)dxdt

≤ϵF (f) + Ayt(p(x, t)) + ϵCF (f) + Ayt(p(x, 1− t)). (38)

Inequality (35) is by |x+y| ≤ |x|+ |y|. Equation (36) and equation (37) are by p(x) = p(x, T = 0)+p(x, T =
1). By equation (38) and the definition of Ay in Lemma 1, we have

ϵP EHE(h, Φ) ≤ ϵF (f) + Ayt(p(x, t)) + ϵCF (f) + Ayt(p(x, 1− t))
≤ ϵCF (h, Φ) + ϵF (h, Φ) + 2Ay.

A.3 Proof of Theorem 1

Proof of equation (4):

Proof.

ϵCF (h, Φ)− [(1− u) · ϵT =1
F (h, Φ) + u · ϵT =0

F (h, Φ)]
=[(1− u) · ϵT =1

CF (h, Φ) + u · ϵT =0
CF (h, Φ)]− [(1− u) · ϵT =1

F (h, Φ) + u · ϵT =0
F (h, Φ)]

=(1− u) · [ϵT =1
CF (h, Φ)− ϵT =1

F (h, Φ)] + u · [ϵT =0
CF (h, Φ)− ϵT =0

F (h, Φ)]

=(1− u)
∫

X
ℓh,Φ(x, 1)(pT =0(x)− pT =1(x))dx + u

∫
X

ℓh,Φ(x, 0)(pT =1(x)− pT =0(x))dx

=(1− u)
∫

R
ℓh,Φ(Ψ(r), 1)(pT =0

Φ (r)− pT =1
Φ (r))dr + u

∫
R

ℓh,Φ(Ψ(r), 0)(pT =1
Φ (r)− pT =0

Φ (r))dr (39)

=BΦ · (1− u)
∫

R

1
BΦ

ℓh,Φ(Ψ(r), 1)(pT =0
Φ (r)− pT =1

Φ (r))dr

+ BΦ · u
∫

R

1
BΦ

ℓh,Φ(Ψ(r), 0)(pT =1
Φ (r)− pT =0

Φ (r))dr

≤BΦ · (1− u) sup
g∈G
|
∫

R
g(r)(pT =0

Φ (r)− pT =1
Φ (r))dr|

+ BΦ · u · sup
g∈G
|
∫

R
g(r)(pT =1

Φ (r)− pT =0
Φ (r))dr| (40)

=BΦ ·Wass(pT =1
Φ , pT =0

Φ ) (41)

Equation (39) is by the change of formula, pT =0
Φ (r) = pT =0(Ψ(r))JΨ(r), pT =1

Φ (r) = pT =1(Ψ(r))JΨ(r), where
JΨ(r) is the absolute of the determinant of the Jacobian of Ψ(r). Equation (41) is by Definition 2.

Proof of equation (5):
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Proof.

ϵP EHE(h, Φ)
≤2(ϵCF (h, Φ) + ϵF (h, Φ)− 2σ2

y). (42)
≤2(ϵT =1

F (h, Φ) + ϵT =0
F (h, Φ) + BΦ ·Wass(pT =1

Φ , pT =0
Φ )− 2σ2

y). (43)

Inequality (42) is by equation (2) in Lemma 1. Inequality (43) is by equation 4 in Theorem 1.

Proof of equation (6):

Proof.

ϵP EHE(h, Φ)
≤ϵCF (h, Φ) + ϵF (h, Φ) + 2Ay (44)
≤ϵT =1

F (h, Φ) + ϵT =0
F (h, Φ) + BΦ ·Wass(pT =1

Φ , pT =0
Φ ) + 2Ay (45)

Inequality (44) is by equation (3) in Lemma 1. Inequality (45) is by equation 4 in Theorem 1.

A.4 Proof of Theorem 2

We first introduce Lemma 2 that is useful for proving Theorem 2.

Lemma 2. Let G that is defined in Definition 2 be the family of binary functions. Then we obtain
supη∈H

∣∣∫
S η(s)(p1(s)− p2(s))ds

∣∣ = 1
2 dH(p1, p2).

Proof. Let I(·) denotes an indicator function.

dH(p1, p2)

=2 sup
η∈H

∣∣∣∣∣
∫

η(s)=1
(p1(s)− p2(s))ds

∣∣∣∣∣
=2 sup

η∈H

∣∣∣∣∫
S
I(η(s) = 1)(p1(s)− p2(s))ds

∣∣∣∣
=2 sup

η∈H

∣∣∣∣∫
S

η(s)(p1(s)− p2(s))ds

∣∣∣∣ (46)

The last equation is because an indicator function is also a binary function.

Proof of equation (8):
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Proof.

ϵCF (h, Φ)− [(1− u) · ϵT =1
F (h, Φ) + u · ϵT =0

F (h, Φ)]

=(1− u)
∫

R
ℓh,Φ(Ψ(r), 1)(pT =0

Φ (r)− pT =1
Φ (r))dr + u

∫
R

ℓh,Φ(Ψ(r), 0)(pT =1
Φ (r)− pT =0

Φ (r))dr (47)

≤(1− u)
∫

pT =0
Φ >pT =1

Φ

ℓh,Φ(Ψ(r), 1)(pT =0
Φ (r)− pT =1

Φ (r))dr

+ u

∫
pT =1

Φ >pT =0
Φ

ℓh,Φ(Ψ(r), 0)(pT =1
Φ (r)− pT =0

Φ (r))dr (48)

≤(1− u)K
∫

pT =0
Φ >pT =1

Φ

(pT =0
Φ (r)− pT =1

Φ (r))dr + u ·K
∫

pT =1
Φ >pT =0

Φ

(pT =1
Φ (r)− pT =0

Φ (r))dr (49)

=(1− u)K
∫

R
I(pt=0

Φ > pT =1
Φ )(pT =0

Φ (r)− pT =1
Φ (r))dr

+ u ·K
∫

R
I(pT =1

Φ > pT =0
Φ )(pT =1

Φ (r)− pT =0
Φ (r))dr

≤(1− u)K sup
η∈H
|
∫

R
η(r)(pT =1

Φ (r)− pT =0
Φ (r))dr|

+ u ·K · sup
η∈H
|
∫

R
η(r)(pT =1

Φ (r)− pT =0
Φ (r))dr| (50)

≤K · sup
η∈H
|
∫

R
η(r)((pT =1

Φ (r)− pT =0
Φ (r)))dr|

=K

2 dH(pT =1
Φ , pT =0

Φ ) (51)

Equation (47) is derived in the same way as equation (39). Equation (48) is by ℓh,Φ ≥ 0 for all r and t.
Inequality (49) is by the definition of K in Theorem 2. Inequality (50) is because an indicator function is
also a binary function. Equation (51) is by Lemma 2.

Proof of equation (9):

Proof.

ϵP EHE(h, Φ)
≤2(ϵCF (h, Φ) + ϵF (h, Φ)− 2σ2

y) (52)

≤2(ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ )− 2σ2
y) (53)

Inequality (52) is by equation 2 in Lemma 1. Inequality (53) is by equation 8 in Theorem 2.

Proof of equation (10):

Proof.

ϵP EHE(h, Φ)
≤ϵCF (h, Φ) + ϵF (h, Φ) + 2Ay (54)

≤ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ ) + 2Ay (55)

Inequality (54) is by equation 3 in Lemma 1. Inequality (55) is by equation 8 in Theorem 2.
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A.5 Additional Experimental details

Additional results on Twins Benchmark. To investigate the applicability of our model DIGNet to
benchmark datasets beyond the commonly used IHDP benchmark, we conducted additional comparisons
with several baseline models, including linear, tree, matching, and representation learning methods, on the
Twins benchmark, as presented in Table 7.

The Twins dataset comprises records of twin births in the USA between 1989 and 1991. After preprocessing,
each unit contains 30 covariates relevant to parents, pregnancy, and birth. The treatment D = 1 indicates
the heavier twin, while D = 0 indicates the lighter twin. The binary outcome variable Y represents 1-year
mortality. For more comprehensive details on this dataset and the limitation of IHDP, refer to Curth et al.
(2021).

Notably, for ϵAT E , the simple linear or matching estimator performs best across different methods. On the
other hand, when assessing ITE performance using the AUC of potential outcomes, representation learning
models all demonstrate strong performance, with AUC values exceeding 0.800 on both training and test
sets. The observation might stem from the fact that representation balancing models are based on ITE
error bounds, rather than ATE error bounds, thereby optimizing for AUC instead of ϵAT E . Moreover,
among all the models, our DIGNet achieves the second-best AUC results. The best results are achieved by
MBRL, which involves the orthogonality information (similar to doubly robust estimators) in representation
balancing. This, in turn, inspires us to explore ATE error bounds, or consider involving doubly robust
methods in future research.

Table 7: Training- & test- set AUC & ϵAT E on Twins. Mean ± standard error of 100 runs.

Training set Test set
AUC ϵAT E AUC ϵAT E

OLS/LR1 Johansson et al. (2016) .660± .005 .004± .003 .500± .028 .007± .006
OLS/LR2 Johansson et al. (2016) .660± .004 .004± .003 .500± .016 .007± .006

k-NN Crump et al. (2008) .609± .010 .003± .002 .492± .012 .005± .004
BART Chipman et al. (2010) .506± .014 .121± .024 .500± .011 .127± .024
CEVAE Louizos et al. (2017) .845± .003 .022± .002 .841± .004 .032± .003

SITE Yao et al. (2018) .862± .002 .016± .001 .853± .006 .020± .002
BLR Johansson et al. (2016) .611± .009 .006± .004 .510± .018 .033± .009
BNN Johansson et al. (2016) .690± .008 .006± .003 .676± .008 .020± .007
TARNet Shalit et al. (2017) .849± .002 .011± .002 .840± .006 .015± .002

CFR-Wass (GNet) Shalit et al. (2017) .850± .002 .011± .002 .842± .005 .028± .003
MBRL (Huang et al., 2022a) .879± .000 .003± .000 .874± .001 .007± .00q

DIGNet (Ours) .874± .001 .004± .001 .871± .001 .008± .001

Implementation details. In simulation studies, we ensure a fair comparison by fixing all the hyperpa-
rameters in all datasets across different models. The relevant details are stated in Table 8. In IHDP studies,

Table 8: Hyperparameters of different models in simulation studies.

ΦE ΦG ΦI π h1 h0 α1 α2 batchsize iteration learning rate learning rate for π

Gnet (100, 100, 100, 100) − − − (100, 100) (100, 100) 0.1 − 100 300 1e−3 −
Inet (100, 100, 100, 100) − − (100, 100, 100) (100, 100) (100, 100) − 0.1 100 300 1e−3 1e−4

DGNet (100, 100, 100, 100) (100, 100) − − (100, 100) (100, 100) 0.1 − 100 300 1e−3 −
DINet (100, 100, 100, 100) − (100, 100) (100, 100, 100) (100, 100) (100, 100) − 0.1 100 300 1e−3 1e−4

DIGNet (100, 100, 100, 100) (100, 100) (100, 100) (100, 100, 100) (100, 100) (100, 100) 0.1 0.1 100 300 1e−3 1e−4

to compare with the baseline model CFR-Wass (GNet), we remain the hyperparameters of INet, DGNet,
DINet and the early stopping rule the same as those used in CFR-Wass Shalit et al. (2017). Since DIGNet
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is more complex than other four models, we adjust the hyperparameters of ΦE , ΦG, ΦI , α1, and α2 for
DIGNet as Shalit et al. (2017) do. The relevant details are stated in Table 9.

Table 9: Hyperparameters of different models in IHDP experiments.

ΦE ΦG ΦI π h1 h0 α1 α2 batchsize iteration learning rate learning rate for π

Gnet (100, 100, 100, 100) − − − (100, 100, 100) (100, 100, 100) 1 − 100 600 1e−3 −
Inet (100, 100, 100, 100) − − (200, 200, 200) (100, 100, 100) (100, 100, 100) − 1 100 600 1e−3 1e−3

DGNet (100, 100, 100, 100) (100, 100) − − (100, 100, 100) (100, 100, 100) 1 − 100 600 1e−3 −
DINet (100, 100, 100, 100) − (100, 100) (200, 200, 200) (100, 100, 100) (100, 100, 100) − 1 100 600 1e−3 1e−3

DIGNet (100, 100, 100, 100, 100, 100) (100, 100, 100) (100, 100, 100) (200, 200, 200) (100, 100, 100) (100, 100, 100) 1 1 100 600 1e−3 1e−3

Analysis of training time and training stability. We record the time it took for different models to
run through 100 IHDP datasets in Table 10, and each model is trained within 600 epochs. Following Shalit
et al. (2017), all models adopt the early stopping rule. We also record the average early stopping epoch on
100 runs and the actual time on 100 runs, where (actual time) = (total time) × (average early stopping
epoch)/600. Not surprisingly, GNet took the least amount of time with 3096 seconds since the objective of
GNet is the simplest. However, it is very interesting that the proposed methods, DGNet and DINet, are the
first two to early stop. As a result, though DGNet and DINet have multi-objectives, they spent less actual
training time but achieved better ITE estimation compared to GNet and INet. Since GNet and INet are
actually DGNet and DINet with PPBR ablated, we find that PPBR component can help a model achieve
better ITE estimates with less time. In addition, we find that DIGNet spent the longest time to optimize
since it has the most complex objective. To further study the stability of the model training, we also plot
the metrics √ϵF , Wass, d̂H, and √ϵP EHE for the first 100 epochs of each model on the first IHDP dataset
in Figure 8. We find that the training process of DIGNet is stable, even steadier than GNet and INet. From
this perspective, we haven’t seen a difficulty of optimizing DIGNet.

Table 10: Training time records on 100 IHDP datasets.

Model Time for 600 epochs Avg early stopping Actual time √
ϵP EHE on test set

GNet 3096s 240.61 1241s 0.77±0.18
INet 4042s 254.19 1712s 0.72±0.11

DGNet 3775s 169.17 1064s 0.60±0.09
DINet 3212s 157.98 846s 0.60±0.11

DIGNet 4984s 226.76 1884s 0.45±0.04

We also provide the ITE and ATE estimation results on 100 IHDP datasets when the combination of
(α1, α2) in DIGNet objective varies in {0.1, 0.5, 1}. The relevant results are reported in Table 11, indicating
our DIGNet model is robust to the hyperparameters varying.

Table 11: The results on 100 IHDP datasets with different combinations of (α1, α2) in DIGNet objective.

Training set Test set
(α1, α2) √

ϵP EHE ϵAT E
√

ϵP EHE ϵAT E

(0.1, 0.1) 0.407± 0.018 0.125± 0.015 0.434± 0.022 0.138± 0.016
(0.1, 0.5) 0.414± 0.026 0.120± 0.015 0.434± 0.028 0.123± 0.015
(0.1, 1) 0.416± 0.019 0.116± 0.014 0.452± 0.026 0.121± 0.015

(0.5, 0.1) 0.417± 0.023 0.130± 0.016 0.440± 0.026 0.137± 0.017
(0.5, 0.5) 0.407± 0.021 0.125± 0.015 0.416± 0.022 0.124± 0.015
(0.5, 1) 0.413± 0.020 0.126± 0.014 0.455± 0.028 0.133± 0.016
(1, 0.1) 0.411± 0.021 0.119± 0.015 0.439± 0.027 0.118± 0.015
(1, 0.5) 0.403± 0.020 0.118± 0.015 0.430± 0.026 0.128± 0.016
(1, 1) 0.402± 0.019 0.112± 0.014 0.437± 0.027 0.121± 0.015
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Figure 8: Training loss plots for the first 100 epochs on the first IHDP dataset.

A.6 Objectives of Different Models

Objective of GNet.

min
ΦE ,ht

Ly(x, t, y; ΦE , ht) + α1LG(x, t; ΦE).

Objective of INet.

max
π

α2LI(x, t; ΦE , π),

min
ΦE ,ht

Ly(x, t, y; ΦE , ht) + α2LI(x, t; ΦE , π).

Objective of DINet. Note that similar to DIGNet, the pre-balancing patterns are preserved by only
updating ΦI but fixing ΦE in the second step.

max
π

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦE ,ΦI ,ht

Ly(x, t, y; ΦE ⊕ (ΦI ◦ ΦE), ht).

Objective of DGNet. Note that similar to DIGNet, the pre-balancing patterns are preserved by only
updating ΦG but fixing ΦE in the first step.

min
ΦG

α1LG(x, t; ΦG ◦ ΦE),

min
ΦE ,ΦG,ht

Ly(x, t, y; ΦE ⊕ (ΦG ◦ ΦE), ht).
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Objective of DIGNet.

min
ΦG

α1LG(x, t; ΦG ◦ ΦE),

max
π

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦE ,ΦI ,ΦG,ht

Ly(x, t, y; ΦE ⊕ (ΦI ◦ ΦE)⊕ (ΦG ◦ ΦE), ht).
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