000 ENHANCING DEEP PARTIAL LABEL LEARNING VIA CASTING IT TO A SATISFIABILITY PROBLEM

Anonymous authors

Paper under double-blind review

ABSTRACT

Partial label learning (PLL) is a challenging real-world problem in the field of weakly supervised learning, in which each data instance contains a set of candidate labels with multiple ambiguous labels and one gold label. Although recent progress in PLL using deep representation learning has led to significant advances, the methods continue to experience significant performance drop on data with high label ambiguity and fine-grained categories. By *casting PLL into a satisfiability* problem and incorporating a loss based on this reduction, we show that the accuracy of those techniques can be further improved. We establish several key theoretical properties of the proposed SATisfiability-based (SAT) loss and its learning error bound. Our extensive empirical comparison reveals that the proposed loss improves over existing PLL techniques by up to 25.12% on multi-class benchmarks and 12.50% on fine-grained categorized benchmarks.

1 INTRODUCTION

026 027 028

001

002 003 004

006

008 009

010 011 012

013

014

015

016

017

018

019

021

023 024 025

Traditional supervised learning models 029 rely on precise, unambiguous labels. However, common labeling methods, 031 including crowd-sourced annotations, where the expertise of annotators varies 033 significantly, and unsupervised learning 034 models, which often struggle with ambiguous or challenging cases, can have difficulty giving clear-cut and definitive labels. These practical concerns make 037 partial label learning (PLL) (Cour et al., 2011b; Tian et al., 2023) a necessity

rather than a choice, especially in situa-

040 tions where obtaining perfectly labeled data is impractical or impossible. *Label disambiguation* is the 041 core challenge of PLL where training models need to effectively handle and learn from data in which 042 each instance is associated with a set of candidate labels, only one of which is correct. As shown in 043 Figure 1, unless a bird expert, a human annotator would have a hard time distinguishing the "Raven" 044 from "Crow", "Blackbird" or "Grackle".

045

046 Recent deep neural network (DNN) approaches in PLL have made real practical progress. Two of the 047 most notable works, PICO (Wang et al., 2022b) (or PICO⁺ (Wang et al., 2022c)) and PaPi (Xia et al., 048 2023b), use prototype-based representation learning to guide label disambiguation in the training 049 process. These studies have demonstrated remarkable performance on standard datasets such as CIFAR-10 (Krizhevsky, 2009), MNIST(LeCun et al., 1998), SVHN(Netzer et al., 2011). 050

051

Relying on the assumption that points closer in the feature space are more likely to share the same 052 gold label, PICO and PICO⁺ proceed by learning prototypes for each class in a contrastive manner. They generate pseudo labels for each data instance based on their normalized similarity with prototype

Figure 2: Comparison of prediction accuracy and confidence between PAPI and PICO⁺ with their integration of SAT loss. (a) and (b) show the classification percentages by Both Correct, Classifier-only, Prototypes-only, and Both Incorrect of PAPI on the test data from CIFAR-100 and CUB-200. (d) and (e) show the percentage changes by SAT-enhancement, i.e. PAPI_{SAT}, on the same test data. (c) and (f) shows the changes of test accuracy and average prediction confidence of PICO⁺ and PAPI with their SAT-counterparts during the training process.

embeddings. Then, the cross entropy loss is adopted to guide label disambiguation using the pseudo
label guidance. However, interleaving the process of label disambiguation with prototype learning
may lead to undesired phenomena. In particular, erroneous label disambiguation may negatively
affect representation learning by trying to reduce the distance between embeddings of instances that
belong to different classes, which may consequently introduce further errors for following training.
Such an observation led to PAPI (Xia et al., 2023a).

Despite its improvements over PICO, PAPI is still prone to undesired interactions between the label disambiguation and the representation learning processes, in scenarios in which the candidate sets of labels are large or when data from extremely similar categories (Wah et al., 2011; Nilsback & Zisserman, 2008). Figures 2(a) and 2(b) show for each training epoch in PAPI, the percentage of test images that (i) were correctly classified by the classifier and incorrectly classified based on the prototypes (blue area), (ii) were incorrectly classified by the classifier and correctly classified based on the prototypes (yellow area), (iii) were correctly classified both under the classifier and based on the prototypes (green area), and finally, (iv) were incorrectly classified under both cases (orange area). In Figure 2(a) the PLL dataset is constructed out of CIFAR-100, while in Figure 2(b) the PLL dataset is constructed out of CUB-200. In both cases, each training sample has roughly 30 candidate labels. As illustrated by the yellow areas of Figure 2(a) and 2(b), the percentage of images correctly classified based on the prototypes and incorrectly classified by the classifier is minimal relative to the entire dataset. Furthermore, under CUB-200, the percentage of images in the green area shows a decreasing trend, see Figure 2(b). This suggests that the guidance from prototypes is not reliable, and can even be counterproductive in realistic scenarios where data categories are very similar.

What is the root cause of this undesired behavior? Both PICO (and its successor PICO⁺) and
PAPI put emphasis on prototype learning, simply using the cross entropy of the pseudo labels as
a classification loss term. However, choosing the cross entropy loss on highly noisy pseudo labels
may have catastrophic consequences: it is already known that the cross entropy loss is not robust to
noise (Feng et al., 2021). To tackle noisy labels, an approach would be to employ loss functions that
are tolerant to noisy labels (Wang et al., 2022c). However, all these techniques work under certain
assumptions on how noise is modeled. These assumptions are violated in the standard PLL setting:
we only know that the gold label is in the set of candidate labels, with no other information.

108 To overcome the limitations of PICO and PAPI, and motivated by the observations that the classifier 109 was always more correct than prototype-based classification at the beginning and sometimes this 110 advantage was even maintained until convergence, we remove PICO's and PAPI's cross entropy-based 111 classification loss term and incorporate techniques for training neural classifiers subject to logical constraints (Wang et al., 2023). In particular, we show that the PLL constraints can be naturally 112 encoded into formulas in propositional logic. These formulas are subsequently used to compute losses 113 capturing the degree to which the classifiers' scores abide by them, hereby transforming PLL into a 114 satisfiability problem. We define this logic-based formulated loss as SATisfiability-based (SAT) loss 115 and provide theoretical justification for its effectiveness on difficulty scenarios as high label ambiguity 116 and fine-grained candidate categories. Further, we empirically demonstrate that satisfiability-based 117 training can serve as a standalone loss function or enhance the state-of-the-art PLL methods beyond 118 $PICO^+$ and PAPI via seamless integration. As shown in Figure 2(c) and (f), integrating SAT loss 119 effectively enhanced the classification (Test Accuracy) and label disambiguation performance (Mean 120 Max Confidence) of PICO⁺ and PAPI. Based on the comparison between Figure 2(a)(b) and (d)(e), 121 it also improved the consistency between the classifier and the prototype predictions as a better 122 classifier generates high-quality representations. We summarize our **main contributions** as below:

123

129

Methodology. We are the first to thoroughly assess satisfiability-based learning in the context of PLL and its merits when integrated with state-of-the-art PLL techniques focusing on learning better representations (Wang et al., 2022b;c; Xia et al., 2023a; Wu et al., 2022a). The obtained empirical results are state-of-the-art in PLL. The proofs of all formal statements, as well as more details on our empirical analysis are in the appendix.

Theory. Beyond empirically assessing satisfiability-based PLL, we theoretically analyze the properties of the proposed method. We prove several natural properties of satisfiability-based PLL: that the loss is non-increasing the larger candidate label sets become, see Corollary 5.2, and that it favors low entropy classifiers, Proposition 5.3. In addition, we provide the Rademacher-style error bound, showing the learnability and generalization ability of SAT loss, see Theorem 5.4.

Experiments. We validate the performance of logic-inspired PLL training empirically, via the most thorough, to our knowledge, experimental evaluation. Our assessment shows that satisfiability-based training leads to consistently higher classification accuracy over all settings compared with previous state-of-the-art techniques. Its integration brings up to 25.12% increase on CIFAR-100 for PICO⁺ and 12.50% improvement on CUB-200 for PAPI.

- 140 141
- 142

2 RELATED WORK

143 144

145 The literature on PLL is very rich. We quickly summarize the most well-known theoretical results. The small ambiguity degree assumption (Cour et al., 2011a; Cabannes et al., 2020) has been central 146 to showing several formal properties including learnability (Liu & Dietterich, 2014) and classifier 147 consistency (Lv et al., 2020; Cabannes et al., 2020; Wang et al., 2022a). Regarding the latter, the 148 authors in (Lv et al., 2020) show classifier consistency via training under the minimal loss, while the 149 authors in (Cabannes et al., 2020) show classifier consistency via the infimum loss. Both the minimal 150 and the infimum losses can be seen as a special case of Semantic Loss (SL) (Xu et al., 2018b). In 151 addition, similarly to (Lv et al., 2020; Cabannes et al., 2020), we prove classifier consistency and 152 provide Rademacher-style error bounds, see Section 5.

153 154

Risk-consistent PLL techniques have been also proposed (Feng et al., 2020; Wen et al., 2021), 155 where a PLL technique is risk-consistent (Xia et al., 2019) if by increasing the size of PLL samples 156 from P(X, S), the empirical risk based on those samples converges to the expected risk based on 157 fully-supervised supervised samples from P(X, Y). Classifier- and risk-consistent techniques were 158 proposed in (Feng et al., 2020), named CC and RC, respectively, based on the assumption that the 159 PLL training samples abide by a specific data generation process. This research was later extended by (Wu & Sugiyama, 2021). The authors in (Wen et al., 2021) introduced a family of loss functions 160 named leveraged weighted loss (LWC) and proved risk and Bayes consistency under a data generation 161 process that extends the one from (Feng et al., 2020). Differently from (Feng et al., 2020; Wen et al., 2021), our work makes no assumption on the data generation, while the empirical results demonstrate superior classification accuracy against CC, RC, and LWC, see Section 6.

165 Advancements in deep learning have further expanded the PLL exploration (Xu et al., 2021; Wang 166 et al., 2022b;c; Wu et al., 2022a; Xia et al., 2023a). The authors in (Xu et al., 2021) introduced 167 VALEN, a technique based on variational inference, for PLL settings in which the candidate labels 168 in s are dependent on the features of x. The key idea is to associate each x with a latent label distribution over the labels in s, representing the probability to which each $l \in s$ describes the features 170 of x. Recently, (Wang et al., 2022b;c) adopted contrastive representation learning (Chen et al., 2020) for PLL, significantly improving the state-of-the-art results on several image classification 171 benchmarks. Despite its remarkable performance, the authors in (Xia et al., 2023a) observed that 172 PICO's contrastive learning component and its label disambiguation process that is based on the 173 class embedding prototypes may negatively affect the training process. Motivated by these finds, 174 the authors proposed PAPI (Xia et al., 2023a). PAPI gets rid of contrastive learning and relies on 175 aligning the distribution over the pseudo-labels of x with a distribution over the distances of x's 176 feature embedding to the representative feature embeddings of each class. In addition, PAPI relies on 177 the classifier's predictions for label disambiguation and not to the class prototypes. Another recently 178 proposed PLL technique that relies deep learning is DPLL (Wu et al., 2022a). Both PICO and 179 PAPI rely on the cross-entropy loss for label disambiguation. Our work instead shows that via replacing this loss term with ℓ^{SAT} , we can have major improvements in the accuracy of the learned 180 classifiers, see Section 6. 181

182

For completeness, we conclude with work on other learning settings. One of the closest fields is 183 neuro-symbolic learning, whose key focus is the integration of deep learning with logical reasoning. 184 Works as Tsamoura et al. (2021); Buffelli & Tsamoura (2022) explore frameworks that combine 185 neural network outputs with symbolic reasoning processes, enhancing the system's ability to perform tasks requiring complex reasoning or knowledge representation. Despite its promise, neuro-symbolic 187 learning faces challenges, particularly in seamlessly integrating neural and symbolic components 188 and scaling these systems for complex, real-world applications. There are many existing works 189 (Xu et al., 2018a; Manhaeve et al., 2018; Wang et al., 2019; Huang et al., 2021) explored utilizing 190 logic constraints to train neural networks. A few of the close works deployed logic constraints into 191 multi-instance partial label learning learning (Zombori et al., 2023), which are different from what we 192 emphasized. In this work, we aim to demonstrate that training neural network with logic constraints can enhance their robustness in handling label ambiguity under standard partial label learning. 193

194

Complementary to ours is the work in (Ferber et al., 2019; Vlastelica et al., 2019; Paulus et al., 2021) 195 that integrates combinatorial solvers into deep models. The integration of combinatorial optimization 196 methods, as explored in these works, provides a direct link to PLL under logic constraints. Specifi-197 cally, decision-focused learning methods like MIPaaL (Ferber et al., 2019) and CombOptNet (Paulus 198 et al., 2021) align well with PLL, where selecting the correct label from a set of candidate labels 199 can be framed as an optimization problem. The incorporation of integer programming and combi-200 natorial solvers as layers in deep networks, as demonstrated in these papers, suggests that similar 201 approaches could be applied to PLL, especially under the scenario where candidate label sets need to 202 be disambiguated efficiently.

- 203 204
- 205 206

3 PRELIMINARIES

207 208 209

210

In this section, we introduce the notation and the formulation of supervised and partial label learning.

Supervised Learning. Let \mathcal{X} denote the input space and $\mathcal{Y} = [C]$ denote a finite label space, where $[C] = \{1, \dots, C\}$. For an annotated dataset $\mathcal{D}_N = \{(x_i, y_i)_{i=1}^N\}$ sampled from an unknown distribution $P(X, Y) \in \mathcal{X} \times \mathcal{Y}$, each data instance $x_i \in \mathcal{X}$ has a label $y_i \in \mathcal{Y}$. A distribution P(X, Y)is *deterministic* if P(Y = y | X = x) = 0 unless y is the gold label y^* of x. We define the problem of *learning* as the process of finding the scoring function f from the hypothesis space \mathcal{F} that can minimize the classification risk over the given training samples \mathcal{D}_N . We define the classification risk 2

216 subject to a given loss function ℓ as: 217

$$\mathbb{R}(f;\ell) \coloneqq \mathbb{E}_{(x,y)\sim P(X,Y)}\left[\ell(f(x),y)\right] \tag{1}$$

220 The lower $\Re(f; \ell)$ becomes, the better f fits the data. For optimal classifier $f^*(\cdot)$, we have $\Re(f^*; \ell) =$ 0. We use $\widehat{\mathbb{R}}(f; \ell; \mathcal{D}_N)$ to denote the empirical risk, i.e. the average risk over \mathcal{D}_N . 222

223 Partial label learning. Differently from supervised learning where each input is paired with a gold 224 label y_i^* , in partial label learning (PLL), each data instance x_i is associated with a candidate label set 225 s_i , which contains one gold label and a set of candidate labels, i.e. $s_i = \{y_i^*\} \cup z_i$, where z_i is the additional label set. In particular, partial labeled data is drawn from a *partial distribution* P(X,S)226 over $\mathfrak{X} \times S$, where $S \subset 2^{\mathcal{Y}}$ is the set of all subsets of $2^{\mathcal{Y}}$ excluding \mathcal{Y} and the empty set, that is 227 compatible with P(X, Y) (Cabannes et al., 2020), i.e., there exists a probability measure P(X, Y, S)228 over $\mathfrak{X} \times \mathfrak{Y} \times \mathfrak{S}$, such that P(X,Y) is the marginal of P(X,Y,S) over $\mathfrak{X} \times \mathfrak{Y}$, P(X,S) is the 229 marginal of P(X, Y, S) over $\mathfrak{X} \times \mathfrak{S}$, and P(S = s | Y = y) = 0 if $y \notin s$. In analogy to supervised 230 learning, the objective is to find a classifier f that minimizes a partial risk subject to a partial loss 231 function $\ell : \mathbb{R}^c \times \mathbb{S} \to \mathbb{R}^+ : \mathcal{R}(f;\ell) := \mathbb{E}_{(x,s) \sim P(X,S)}[\ell(f(x),s)]$ 232

233 **Classifiers.** We consider *scoring functions* of the form $f: \mathfrak{X} \to \Delta_C$, where Δ_C is the space of 234 probability distributions on \mathcal{Y} (e.g., f outputs the softmax probabilities of a neural network). We use 235 $f^{j}(x)$ to denote the j-th output of f(x). A scoring function f induces a classifier whose prediction 236 on x is defined by $[f](x) := \operatorname{argmax}_{j \in [C]} f^j(x)$. We use \mathcal{F} and $[\mathcal{F}]$ to denote the space of scoring 237 functions and the space of classifiers induced by \mathcal{F} , respectively. We use the Rademacher complexity 238 to characterize the complexity of hypothesis space \mathcal{F} (Shalev-Shwartz & Ben-David, 2014), which is 239 formally defined in Section A.1. 240

241 Loss function. We present several commonly used loss functions to facilitate the discussion in the 242 following sections. zero-one loss defined as $\ell^{01}(f(x), y) \coloneqq \mathbb{1}{f(x) = y}$ is commonly used in 243 supervised multi-class learning task. We also consider the partial zero-one loss (Cour et al., 2011b), 244 $\ell_P^{01}(f(x),s) := \mathbb{1}\{[f](x) \in s\}$ for partial label setting. Cross entropy loss is frequently used for 245 label disambiguation, which defined as $\ell^{ce}(f(x), e^y) := -\sum_{j \in [c]} e^y[j] f^j(x)$, where $e^y[j]$ denotes the j-th entry of the one-hot vector e^{y} . Different partial loss functions have been proposed in the 246 literature, including the infimum loss (Cabannes et al., 2020) and a modified negative log likelihood 247 loss (NLL) (Wu et al., 2022a) given by $\ell^{nll}(f(x), s) := -\sum_{j \in \mathcal{Y} \setminus s} \log(1 - f^j(x))$. We refer to the 248 risk of f subject to the above losses as the zero-one, partial zero-one, cross-entropy and NLL risk and 249 denote them by $\mathcal{R}^{01}(f)$, $\mathcal{R}^{01}_{P}(f)$, $\mathcal{R}^{CE}(f)$, and $\mathcal{R}^{nll}(f)$ respectively. 250

251

253 254 255

256 257

258

259

260

261

262

264

218 219

221

METHODOLOGY 4

4.1 PLL AS A SATISFIABILITY PROBLEM

We overcome the limitations of training using pseudo labels and the cross entropy loss by reducing PLL to a satisfiability problem. This essentially requires encoding the set of candidate partial labels s of each training sample (x, s) from P(X, S) as a Boolean formula φ_s that is true if and only if the Boolean variable associated with some label in s is true. This Boolean formula is the conjunction between two formulas:

$$\varphi_s := \bigvee_{j \in s} X_j \wedge \bigwedge_{j,j' \in s: j \neq j'} \neg (X_j \wedge X_{j'})$$
⁽²⁾

We use a slight abuse of notation to denote X_j as the Boolean variable that is uniquely associated to 265 label $j \in s$; \lor (OR) and \land (AND) are the logical connectives. The probability that X_j becomes true 266 subject to classifier f and sample x is $f^{j}(x)$. We provide an example below that illustrates how we 267 can formulate the logical sentence constraints derived from partial labels. 268

Example 4.1. Given a dataset D_s with label space $\mathcal{Y} = \{bird, airplane, tiger, dog, lion\}$, we have a 269 data instance x and its candidate label set $s = \{tiger, dog, lion\}$, meaning that the first three labels

Figure 3: Learning with SAT loss

("tiger", "dog", "lion") are candidate labels. To encode this as a Boolean formula, we will use the Boolean variables X_{label} representing the labels. The formula φ_s is constructed in two parts:

The **disjunction** over the candidate labels in s, i.e., at least one of the candidate labels must be true:

$$\bigvee_{j \in s} X_j = X_{tiger} \lor X_{dog} \lor X_{lion}$$

This ensures that one of the labels "tiger", "dog", or "lion" must be true. The **conjunction** over all pairs of candidate labels to ensure that no two labels from s are true simultaneously:

$$\bigwedge_{j,j'\in s: j\neq j'} \neg(X_j \land X_{j'}) = \neg(X_{tiger} \land X_{dog}) \land \neg(X_{tiger} \land X_{lion}) \land \neg(X_{dog} \land X_{lion})$$

292 This ensures that only one of the labels "tiger", "dog", or "lion" can be true. Combining these two 293 parts, the final Boolean formula φ_s is:

$$\varphi_s := (X_{tiger} \lor X_{dog} \lor X_{lion}) \land \neg (X_{tiger} \land X_{dog}) \land \neg (X_{tiger} \land X_{lion}) \land \neg (X_{dog} \land X_{lion})$$

How do we compute a loss out of this formula? Assuming that each X_j , for $j \in s$, becomes true with probability $f^j(x)$, a natural loss should penalize formulas with low probability of being satisfied and reward formulas otherwise. By omitting the right part of the conjunction, i.e., if we consider only the subformula $\bigvee_{j \in s} X_j$ from equation 2 (disjunction), and using previous results from probabilistic databases (Suciu et al., 2011), this probability becomes $1 - \prod_{j \in s} (1 - f^j(x))$, which is simply one minus the probability all X_j being simultaneously false. To satisfy the properties mentioned at the very beginning of this paragraph, the resulting SATisfiability-based (SAT) loss takes the form:

304 305 306

307

308

309

310

311

277

278 279

281

282 283

288 289

291

295

$$\ell^{SAT}(f(x),s) := -\log(1 - \prod_{j \in s} (1 - f^j(x)))$$
(3)

Remark 4.2. The definition of ℓ^{SAT} does not take into account the right-hand side (conjunction) of (2), that is the mutual exclusiveness constraints. Disregarding those constraints is harmless in our case, as the softmax scores of f jointly with the optimization objective (that is risk minimization, see Section 5) implicitly enforce mutual exclusiveness.

Remark 4.3. We refer to the quantity $1 - \prod_{j \in s} (1 - f^j(x))$ as the probability of formula $\bigvee_{j \in s} X_j$, aligning with (Suciu et al., 2011; Chavira & Darwiche, 2008). However, the probability of that formula coincides with its product t-norm from the fuzzy logic literature (Diligenti et al., 2017), by rewriting it via De Morgan law to $\neg(\bigwedge_{j \in s} \neg X_j)$ (see Section 3 from (Diligenti et al., 2017)).

316 317

5 THEORETICAL ANALYSIS

318 319

In this section, we provide a theoretical justification to show why the proposed SAT loss can benefit label disambiguation under challenging scenarios such as high label ambiguity and fine-grained categories. The primary challenge brought by high label ambiguity is that each data instance will have a larger set of candidate labels. On the other hand, compared to standard datasets like CIFAR-10, fine-grained categorization data involves data that comes from the same super-category, such as

324 different species of birds. While this is more reflective of real-world scenarios, it also leads to the 325 model assigning similar prediction probabilities to multiple candidate classes, making it difficult to 326 distinguish between them. 327

328 To quantify the label ambiguity level in a given dataset \mathcal{D}_N , we adopt the concept of *small ambiguity* degree, which was widely used in PLL literature (Liu & Dietterich, 2014; Lv et al., 2020; Cabannes 330 et al., 2020; Wang et al., 2022a).

331 **Definition 5.1** (Small Ambiguity Degree). The small ambiguity degree γ is a measure of the hardness 332 of the learning under partial label supervision. Given distribution P(X, Y, S), where X, Y, S is the variables of input, label and candidate label set, we have the definition: 333

$$\gamma := \sup_{(x,y^*) \in \mathfrak{X} \times \mathcal{Y}, P(x,y^*) > 0, j \in s \setminus y^*} P(j \in s | X = x, Y = y^*)$$
(4)

Here *j* denotes a non-true candidate label or additional label. A partial labeled instance satisfies the 337 small ambiguity degree condition when $0 \le \gamma \le 1$, signifying that no co-occurring labels are present 338 alongside the ground truth. Next, we present an extensive analysis of learning via minimizing ℓ^{SAT} 339 to show the properties of SAT loss can mitigate these challenges. 340

5.1 ROBUSTNESS TO HIGH LABEL AMBIGUITY.

As shown in the Corollary 5.2, we first discuss that the SAT loss holds the property that its risk is non-increasing as the small ambiguity degree increases.

346 **Corollary 5.2** (Monotonicity under ambiguity). Let $P_1(X,S)$ and $P_2(X,S)$ be two par-347 tial distributions over $\mathfrak{X} \times S$ with ambiguity degrees γ_1 and γ_2 , such that for each sam-348 ple (x, s_1) occurring with probability α in $P_1(X, S)$, a sample of the form (x, s_2) oc-349 curs with probability α in $P_2(X,S)$ and $s_1 \subseteq s_2$, and hence, $\gamma_1 \leq \gamma_2$. $\mathbb{E}_{(x,s)\sim P_1(X,S)}[\ell^{SAT}(f(x),s_1)] \geq \mathbb{E}_{(x,s)\sim P_2(X,S)}[\ell^{SAT}(f(x),s_2)].$ Then, 350

352 If $s_1 \subseteq s_2$, and hence $\gamma_1 \leq \gamma_2$ then $1 - \prod_{j \in s_1} (1 - f^j(x)) \geq 1 - \prod_{j \in s_2} (1 - f^j(x))$. Taking the expectation considering samples from $P_1(X, S)$ and $P_2(X, S)$, respectively, leads to the above 353 354 corollary. This property indicates that the risk of SAT loss is determined by the model prediction and 355 will not be significantly affected by high label ambiguity as NLL losses, such as partial cross entropy 356 loss and modified negative log likelihood loss(Wu et al., 2022b). As an example, the partial cross 357 *entropy loss*, defined as $\ell_P^{CE} = -\sum_{j \in s} \log(1 - f^j(x))$, will result in a higher loss value as the size 358 of candidate label set increasing. 359

360 361

362

367

334 335 336

341 342

343 344

345

351

5.2 LABEL DISAMBIGUATION VIA ENTROPY MINIMIZATION

363 Fine-grained categorized data (Wah et al., 2011; Nilsback & Zisserman, 2008) is extremely challeng-364 ing for previous PLL methods (Wang et al., 2022b;c; Xia et al., 2023a) using cross entropy loss for label disambiguation, as the high similarity among the candidate labels causing the pseudo labels 365 generated by these methods become noisy and unreliable. 366

The advantage of SAT loss on fine-grained categorization data can be attributed to its two key 368 characteristics. On the one hand, SAT loss gets rid of the pseudo label, which may lead to erroneous 369 guidance by the representation learning module or self-supervised manner. On the other hand, SAT 370 loss forces the classifier to concentrate the prediction probability on one single candidate label during 371 the training process. To show that, we provide the second important property of SAT loss below, the 372 low entropy preference. 373

Proposition 5.3. [Low entropy preference] Let $H(f(x); s) := -\sum_{j \in s} f^j(x) \log f^j(x)$ denote the 374 entropy of the PLL sample (x, s) subject to f. Then $\ell^{SAT}(f(x), s) \propto H(f(x); s)$. 375

376

Notice that favoring low-entropy solutions, essentially means that ℓ^{SAT} penalizes classifiers that 377 output uniform (or close to uniform) softmax probabilities, as visualized in Figure 3. When the

378 prediction entropy H(f(x), s) is low, indicating the model is very confident in a single class and 379 gives it a high prediction probability, encouraging the label disambiguation process. We provide the 380 proof of the above proposition in Appendix A.3. 381

5.3 ERROR BOUND WITH SAT LOSS

We study the error bound between the SAT loss and the zero-one loss. As the risk minimization under 386 the zero-one loss is impractical even for a linear classifier, therefore we use SAT loss as the surrogate loss. We aim to show that for a classifier f trained on a partial labeled dataset \mathcal{D}_N , as N goes to infinity, then the partial risk of SAT loss subject to f converges to the risk of zero-one loss. 388

We discuss the error bound of SAT loss for a partial label learning dataset \mathcal{D}_N with size N under 390 a small ambiguity degree γ . We extend the small ambiguity degree to the uniformed partial label 391 learning scenario that $\forall j \in s$, we have $P(j \in z | X = x, Y = y^*) = \gamma$, which means given a partial 392 label learning instance x, any non-true labels have a probability of γ to be in the candidate label set s. 393 The average candidate label number can be calculated as $|s| = |(C-1)\gamma + 1|$. We show the error 394 bound below and provide full proof in Appendix A.4. 395

Theorem 5.4. [Error bound under small ambiguity degree] Given partial labeled dataset \mathcal{D}_N with small ambiguity degree $\gamma \in (0,1), \forall \epsilon, \delta \in (0,1)$, with probability at least $1 - \delta$, we have:

$$\mathcal{R}^{01}(f;\mathcal{D}_N) \le \frac{1}{1-\gamma} \left(\widehat{\mathcal{R}}^{SAT}(f;\mathcal{D}_N) + 2\sqrt{(C-1)\gamma + 1} \Re_N(\mathcal{F}) + \sqrt{\frac{\log(1/\delta)}{2N}} \right).$$
(5)

 $\widehat{\mathcal{R}}^{SAT}(f; \mathcal{D}_N)$ is the empirical risk of SAT loss ℓ^{SAT} over an arbitrary partial labeled dataset \mathcal{D}_N ; $\Re(\mathfrak{F})$ denotes the Rademacher complexity (Definition A.1) of hypothesis space \mathfrak{F} .

Proof Sketch. To prove Theorem 5.4, we first utilize the inequality between *zero-one loss* and *partial* zero-one loss (Proposition A.4). Then we show the Lipschtness of the SAT loss (Lemma A.3). We show that SAT loss is upper bound by *partial cross-entropy* loss and lower bound by partial zero-one loss (Lemma A.5). We get the final result by Applying standard Rademacher complexity bounds.

407 **Remark 5.5.** The error bound we get in Theorem 5.4 indicates that the increasing of small ambiguity 408 degree, i.e. γ or number of class C in the training data will increase the learning difficulty, which 409 is intuitive. In approach to the optimal classifier, the training set is expected to satisfy the quantity 410 condition $N \to \infty$, we have the empirical risk of SAT loss $\widehat{\mathcal{R}}^{SAT}(f; \mathcal{D}_N)$ approaches to the risk of 411 ideal zero-one loss, which shows the learnability and generalization ability of SAT loss. 412

413 414

382

383 384

387

389

396

401

402 403

404

405

406

EXPERIMENTS 6

415 416

Datasets. We consider a variety of multi-class benchmarks, CIFAR-100 (Krizhevsky, 2009) (100 417 classes) and TINY IMAGENET (Chrabaszcz et al., 2017) (200 classes) and fine-grained classification 418 datasets, CUB-200 (Wah et al., 2011) (200 classes), and OXFORD FLOWER 102 (Nilsback & 419 Zisserman, 2008) (102 classes). To generate PLL scenarios out of the above benchmarks, we adopted 420 the steps from Wang et al. (2022b;c); Xia et al. (2023a). In particular, we generated conventional 421 uniform partial label setting by flipping negative labels $y' \neq y$ to false positive labels with a probability 422 $q = P(y' \in s | y' \neq y)$, all C-1 labels that are different from the gold one have a uniform probability 423 to be false positive. To form the candidate label sets, the gold label is aggregated to the flipped ones. 424 The above means that each candidate label set has in total $q \times c$ labels on average. We refer to q as 425 the partial label rate. We considered $q \in \{0.1, 0.2, 0.3\}$ for CIFAR-100, TINY IMAGENET, and 426 OXFORD FLOWER 102, and $q \in \{0.05, 0.1, 0.15\}$ for CUB-200. Finally, we carried out experiments in instance-dependent partial label settings (Xu et al., 2021) using CIFAR-10 and CIFAR-100. In 427 this setting, we adopted the steps in (Xu et al., 2021) to generate PLL scenarios and, in particular, by 428 utilizing the pre-trained model's predictions as the label flipping probabilities. 429

430

Baselines. We compared the efficiency of ℓ^{SAT} against state-of-the-art classifier- and risk-consistent 431 PLL techniques that do not rely on representation learning, namely LWC (Wen et al., 2021), RC (Feng

METHODS	CIFAR-100			TINY IMAGENET			OXFORD FLOWER 102			CUB-200		
	q = 0.1	q = 0.2	q = 0.3	q = 0.1	q = 0.2	q = 0.3	q = 0.1	q = 0.2	q = 0.3	q = 0.05	q = 0.1	q = 0.15
CC	67.19%	63.55%	44.32%	52.03%	31.28%	12.63%	66.43%	33.66%	21.54%	48.86%	22.45%	12.32%
RC	66.36%	56.57%	33.71%	34.16%	7.82%	2.74%	84.55%	52.90%	39.79%	59.18%	27.82%	18.08%
LWC	67.60%	60.31%	34.18%	32.50%	8.19%	3.46%	83.18%	52.41%	44.12%	56.85%	28.03%	18.85%
SAT	71.05%	70.31%	51.74%	54.10%	50.17%	29.02%	92.16%	81.36%	61.26%	69.75%	58.85%	37.06%
PAPI	81.14%	79.77%	47.55%	52.44%	34.29%	22.34%	95.32%	92.11%	82.83%	70.40%	53.31%	37.05%
PAPISAT	81.16%	80.11%	71.56%	58.83%	52.96%	44.26%	95.34%	93.58%	85.01%	72.16%	61.52%	49.55%
PICO ⁺	68.20%	57.15%	37.76%	39.89%	17.86%	7.74%	88.99%	85.55%	75.86%	66.59%	57.37%	42.45%
PICO ⁺ SAT	73.44%	67.44%	62.88%	51.21%	46.22%	35.16%	92.30%	86.67%	78.22%	69.26%	62.18%	51.28%
DPLL	78.24%	75.67%	63.91%	52.13%	20.47%	6.74%	91.33%	67.52%	42.17%	67.36%	38.63%	21.73%
DPLLSAT	78.27%	76.28%	66.49%	55.55%	35.77%	17.16%	92.16%	72.17%	46.21%	70.33%	42.16%	27.28%

Table 1: Mean classification accuracy on CIFAR-100, TINY IMAGENET, CUB-200, and OXFORD FLOWER 102 for uniform partial labels. **Best results** across all baselines are in red.

et al., 2020), CC (Feng et al., 2020). We use SAT to denote the cases where training is conducted via minimizing the ℓ^{SAT} loss only. We also compared the classification accuracy of PICO⁺ (Wang et al., 2022c) and PAPI (Xia et al., 2023a) against their ℓ^{SAT} -based counterparties PICO⁺_{SAT} and PICO⁺_{SAT}, by replacing the *cross entropy loss* with ℓ^{SAT} . For DPLL (Wu et al., 2022a), we added ℓ^{SAT} as a new term in the loss. We refer to this variant as DPLL_{SAT}.

Implementation. We followed the official implementation for all baselines (Wang et al., 2022c; Xia et al., 2023a; Wu et al., 2022a; Wen et al., 2021; Feng et al., 2020). In all experiments, we adopted a ResNet18 classifier and ran training for 800 epochs in each case. The learning rate was set to 0.01 with weighted decay. Similarly to (Wang et al., 2022c) and (Xia et al., 2023a), we used a pre-trained ResNet18 as the initial parameters for experiments on CUB-200 and OXFORD FLOWER 102and randomly initialized for the others. The experiments ran on 8 NVIDIA RTX A6000 GPUs.

6.1 EMPIRICAL RESULT

We provide experiment result analysis in this section. Specifically, Table 1 shows results for uniform partial labels on CIFAR-100 and TINY IMAGENET and fine-grained benchmarks OXFORD FLOWER 102 and CUB-200. Table 2 shows results for instance-dependent partial labels on CIFAR-10 and CIFAR-100. We provide further details and experimental results on noisy partial label setting and real-world benchmarks as PASCAL VOC (Everingham et al.) in the Appendix B.

Results on Multi-class Datasets. Table 1 shows that the integration of ℓ^{SAT} notably enhances the classification accuracy of the baseline method across all scenarios on CIFAR-100 and TINY IMAGENET. Specifically, on CIFAR-100 and when q = 0.3, PAPI_{SAT} has accuracy 71.56% compared to the original PAPI of 47.55%. On TINY IMAGENET, PICO⁺_{SAT} reaches an accuracy of 35.16% for p = 0.3, a marked improvement over PICO⁺'s 7.74%. These results suggest that integrating ℓ^{SAT} can significantly increase the robustness and performance of the existing frameworks under challenging high-label ambiguity scenarios.

Results on Fine-grained Datasets. Table 1 also shows that ℓ^{SAT} leads to consistently higher accuracy against state-of-the-art across varying levels of label ambiguity on fine-grained, complex datasets. Notably, PAPISAT achieves exceptionally high accuracy on OXFORD FLOWER 102, reaching up to 95.34% for q = 0.1, maintaining high accuracy as the partial label rate increases. Similarly, the integration of ℓ^{SAT} into PICO⁺ significantly improves upon PICO⁺ on CUB-200, where it records a notable accuracy of 51.28% for q = 0.15. These results underline the high resilience of ℓ^{SAT} in challenging fine-grained contexts where the candidate labels come from subcategories (i.e., Raven, Crow, Blackbird) of the same class (e.g., bird).

SAT loss helps learn more distinguishable representations. In Figure 4, we illustrate the image representation encoded by the ResNet18 model using t-SNE (Van der Maaten & Hinton, 2008). We use the instance-dependent partial labeled CIFAR-10 data as the training set and present four approaches. Figure 4(a) and (b) shows the result from PICO⁺ and its ℓ^{SAT} -based counterparty PICO⁺_{SAT}. Similarly, Figure 4(c) and (d) show the results of PAPI and PAPI_{SAT}, respectively. It can be observed that the integration of ℓ^{SAT} greatly enhanced the representation quality, producing well-separated clusters. This is because the classifier and encoder share the same parameters in PICO⁺ and PAPI, and integrating ℓ^{SAT} greatly enhanced the classifier performance. Therefore, we see the more distinguishable representations.

491 Results for Instance-Dependent Partial Labels.

From Table 2, we can see that ℓ^{SAT} demon-strates superior performance, achieving the second highest accuracy of 89.32% on CIFAR-10 and 56.93% on CIFAR-100 without integrating with other techniques. The incorporation of ℓ^{SAT} into PICO⁺, PAPI, and DPLL enhances their per-formance by a large margin. We can see that PAPISAT and PICO⁺SAT show remarkable im-provements over their standalone counterparts. The consistent improvements across different base-lines and benchmarks confirm the utility of ℓ^{SAT} in improving classification outcomes in different complex label scenarios, verifying the effectiveness of our satisfiability-based PLL reduction.

METHODS	CIFAR-10	CIFAR-100
CC	82.92%	35.42%
RC	83.61%	44.56%
LWC	88.04%	46.99%
SAT	89.32%	56.93%
PAPI	85.87%	54.46%
PAPISAT	90.10%	57.66%
PICO ⁺	83.54%	56.62%
PICO ⁺ SAT	86.52%	57.74%
DPLL	71.46%	35.46%
DPLLSAT	74.74%	36.02%

Table 2: Mean classification accuracy for instance-dependent partial labels. Best results across all baselines are in red.

Figure 4: t-SNE visualization of the image representation on CIFAR-10(instance-dependent).

7 CONCLUSIONS

To conclude, this paper introduces a novel approach to Partial Label Learning (PLL) by framing it as
a satisfiability problem and introducing a SATisfiability-based (SAT) loss function. Through both
theoretical and empirical analyses, we demonstrate that this method offers substantial improvements in
classification accuracy, especially in scenarios with high label ambiguity and fine-grained categories.
Our SAT loss does not rely on pseudo labels and helps the model focus on low-entropy solutions,
resulting in better label disambiguation. This work provides a solid foundation for future research on
applying logical constraints to weakly supervised learning, with potential extensions to more complex and real-world datasets.

540	REFERENCES
541	KEI EKENCES

542 543	Davide Buffelli and Efthymia Tsamoura. Scalable regularization of scene graph generation models using symbolic theories, 2022.
545 546	Vivien Cabannes, Alessandro Rudi, and Francis Bach. Structured prediction with partial labelling through the infimum loss. In <i>ICML</i> , pp. 1230–1239, 2020.
547 548	Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. <i>Artificial Intelligence</i> , 172(6):772 – 799, 2008.
549 550 551	Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In <i>ICML</i> , 2020.
552 553	Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an alternative to the cifar datasets. <i>arXiv preprint arXiv:1707.08819</i> , 2017.
554 555 556	Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Structured prediction theory based on factor graph complexity. <i>Advances in Neural Information Processing Systems</i> , 29, 2016.
557 558	Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. <i>Journal of Machine Learning Research</i> , 12:1501–1536, 2011a. ISSN 1532-4435.
559 560 561	Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. <i>The Journal of Machine Learning Research</i> , 12:1501–1536, 2011b.
562 563	Michelangelo Diligenti, Marco Gori, and Claudio Saccà. Semantic-based regularization for learning and inference. <i>Artificial Intelligence</i> , 244:143–165, 2017.
564 565 566	M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.
567 568 569	Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Provably consistent partial-label learning. In <i>NeurIPS</i> , pp. 10948–10960, 2020.
570 571 572	Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and Bo An. Can cross entropy loss be robust to label noise? In <i>Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence</i> , pp. 2206–2212, 2021.
573 574 575	Aaron M. Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program as a layer. <i>CoRR</i> , abs/1907.05912, 2019.
576 577 578	Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. Scallop: From probabilistic deductive databases to scalable differentiable reasoning. <i>Advances in Neural</i> <i>Information Processing Systems</i> , 34:25134–25145, 2021.
579 580	Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical report, University of Toronto, 2009.
582 583	Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. <i>Proceedings of the IEEE</i> , 86(11):2278–2324, 1998.
584 585	Li-Ping Liu and Thomas G. Dietterich. Learnability of the superset label learning problem. In <i>ICML</i> , pp. 1629—1637, 2014.
586 587 588	Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama. Progressive identification of true labels for partial-label learning. In <i>ICML</i> , pp. 6500–6510, 2020.
589 590 591 592	 Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deepproblog: Neural probabilistic logic programming. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.co/paper/2019/

594 595 596 597	Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading digits in natural images with unsupervised feature learning. In <i>NeurIPS Workshop on</i> <i>Deep Learning and Unsupervised Feature Learning</i> , volume 2011, 2011.
598 599	Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In <i>ICVGIP</i> , pp. 722–729, 2008.
600 601	Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit the right np-hard problem by learning integer programming constraints, 2021.
603 604	Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, USA, 2014. ISBN 1107057132.
605 606 607	Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.
608 609	Yingjie Tian, Xiaotong Yu, and Saiji Fu. Partial label learning: Taxonomy, analysis and outlook. <i>Neural Networks</i> , 161:708–734, 2023.
610 611 612 613 614	Efthymia Tsamoura, Timothy Hospedales, and Loizos Michael. Neural-symbolic integration: A compositional perspective. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 35 (6):5051–5060, May 2021. doi: 10.1609/aaai.v35i6.16639. URL https://ojs.aaai.org/index.php/AAAI/article/view/16639.
615 616	Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. <i>Journal of machine learning research</i> , 9(11), 2008.
617 618 619	Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation of blackbox combinatorial solvers. <i>CoRR</i> , abs/1912.02175, 2019.
620 621	Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-2011 dataset. Technical report, California Institute of Technology, 2011.
622 623 624	Haobo Wang, Mingxuan Xia, Yixuan Li, Yuren Mao, Lei Feng, Gang Chen, and Junbo Zhao. Solar: Sinkhorn label refinery for imbalanced partial-label learning. In <i>NeurIPS</i> , 2022a.
625 626 627	Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao. PiCO: Contrastive label disambiguation for partial label learning. In <i>ICLR</i> , 2022b. URL https: //openreview.net/forum?id=EhYjZy6e1gJ.
628 629 630 631	Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao. Pico+: Contrastive label disambiguation for robust partial label learning. <i>CoRR</i> , abs/2201.08984, 2022c. URL https://arxiv.org/abs/2201.08984.
632 633	Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak supervision. In <i>NeurIPS</i> , 2023.
634 635 636	Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. Satnet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. In <i>ICML</i> , 2019.
637 638 639	Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, and Zhouchen Lin. Leveraged weighted loss for partial label learning. <i>CoRR</i> , abs/2106.05731, 2021. URL https://arxiv.org/abs/2106.05731.
640 641 642	Dong-Dong Wu, Deng-Bao Wang, and Min-Ling Zhang. Revisiting consistency regularization for deep partial label learning. In <i>ICML</i> , volume 162, pp. 24212–24225, 2022a.
643 644 645	Dong-Dong Wu, Deng-Bao Wang, and Min-Ling Zhang. Revisiting consistency regularization for deep partial label learning. In <i>International conference on machine learning</i> , pp. 24212–24225. PMLR, 2022b.
646 647	Zhenguo Wu and Masashi Sugiyama. Learning with proper partial labels. <i>CoRR</i> , abs/2112.12303, 2021.

648 649 650	S. Xia, J. Lv, N. Xu, G. Niu, and X. Geng. Towards effective visual representations for partial-label learning. In <i>CVPR</i> , pp. 15589–15598, 2023a.
651 652 653	Shiyu Xia, Jiaqi Lv, Ning Xu, Gang Niu, and Xin Geng. Towards effective visual representations for partial-label learning. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 15589–15598, 2023b.
654 655	Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama. Are anchor points really indispensable in label-noise learning? In <i>NeurIPS</i> , pp. 6835–6846, 2019.
657 658 659	Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss function for deep learning with symbolic knowledge. In <i>International conference on machine learning</i> , pp. 5502–5511. PMLR, 2018a.
660 661	Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function for deep learning with symbolic knowledge. In <i>ICML</i> , pp. 5502–5511, 2018b.
662 663 664	Ning Xu, Congyu Qiao, Xin Geng, and Min-Ling Zhang. Instance-dependent partial label learning. In <i>NeurIPS</i> , volume 34, pp. 27119–27130, 2021.
665 666 667	Zsolt Zombori, Agapi Rissaki, Kristóf Szabó, Wolfgang Gatterbauer, and Michael Benedikt. Towards unbiased exploration in partial label learning. <i>arXiv preprint arXiv:2307.00465</i> , 2023.
668	
670	
671	
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	
689	
690	
691	
602	
093	
605	
696	
697	
698	
699	
700	
701	