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Abstract
Machine learning progress is often attributed to scaling model size and dataset volume, yet the com-
position of data can be just as consequential. Empirical findings repeatedly show that combining
datasets from different domains yields non-trivial interactions: adding code improves mathemati-
cal reasoning, while certain mixtures introduce interference that suppresses performance. We refer
to these effects collectively as data synergy—interaction effects whereby the joint contribution of
multiple domains exceeds (positive synergy) or falls short of (interference) the sum of their iso-
lated contributions. In this work, we formalize and quantify dataset interactions in large language
models. Leveraging observational variation across open-weight LLMs with diverse pretraining
mixtures, we estimate both direct domain-to-benchmark synergy (how one domain contributes to
performance on another) and pretraining data synergy (capabilities that require co-occurrence of
multiple domains). Our framework improves predictive accuracy over domain-agnostic scaling
laws, recovers stable synergy patterns such as math–code complementarity, and yields interpretable
maps of cross-domain transfer. These results demonstrate that understanding and exploiting data
synergy is essential for designing data mixtures and curating corpora in the next generation of
foundation models.

1. Introduction

Recent improvements in Large Language Models (LLMs) are strongly shaped by their pretrain-
ing data [15, 25], yet most formulations abstract away composition and interactions, reducing data
into an undifferentiated token count [9, 13]. Practitioners frequently observe that adding data from
one domain improves performance on seemingly unrelated tasks–for example, code data enhancing
mathematical reasoning [1, 18], while other combinations lead to interference and degraded perfor-
mance [16, 34]. We refer to these cross-domain interactions as data synergy. Such findings suggest
that tokens are not interchangeable: what matters is not only how much data we train on, but also
what kinds of data are combined.

There is growing evidence that interactions matter. Prior works find that continued pretraining
on code improves reasoning-heavy benchmarks [32]; and targeted ablations reveal both positive
transfer and occasional negative transfer across conceptually related sources [8, 31, 34]. These ob-
servations are not isolated anecdotes but point to regularities in how domain composition shapes
learned representations; regularities that merit explicit modeling.

Most existing approaches overlook this dimension, and instead treat pretraining corpora as ho-
mogeneous. Classical scaling laws, for instance, relate loss to parameter count and total data but are

© K. Hamidieh, L. Mackey & D. Alvarez-melis.



DATA SYNERGY

domain-agnostic, since they assume all tokens contribute equally [9, 13]. and mixture-optimization
methods often search over weights while implicitly assuming independent returns [30]. What is
missing is an explicit, identifiably interaction-aware formulation: a way to separate the aggregate
benefit of more data from domain-specific deviations, and to quantify when two domains together
yield more (or less) than the sum of their parts.

In this paper, we present a framework for quantifying and modeling data synergy in LLMs.
Rather than treating data as homogeneous, we exploit natural variation across open-weight mod-
els trained on diverse data mixtures. Our approach formalizes two complementary notions: (i)
Domain→benchmark synergy, measuring how pre-training data from one domain affects the per-
formance on another, and (ii) Pretraining data synergy, capturing domain-domain interaction ef-
fects that depend on co-occurrence of multiple domains in the training data. Our estimation pro-
cedure jointly fits these effects across many (model, benchmark) observations, provides sparse,
interpretable maps of cross-domain interactions that generalize beyond observed mixtures.

Our contributions are as follows:
• We provide an operational definition of dataset synergy that links empirical observations to

formal modeling.
• We introduce domain-aware estimators that improve predictive model performance over stan-

dard scaling laws by incorporating synergy terms.
• We recover stable, interpretable synergy patterns, such as the recurring complementarity be-

tween code and math, that provide actionable insights for data curation and acquisition.

2. Domain and Synergy-Aware Scaling Laws

2.1. Problem Setup

Let M1, . . . ,Mm denote a set of language models (e.g., open-weight LLMs on Huggingface), and
let D1, . . . , Dn be evaluation domains. For every model-domain pair we observe the loss value
L =

[
li,j

]
∈ Rm×n. Alongside L we collect model-level covariates: parameter count Ni, total

pretraining tokens di, and composition (mixture shares) of the pretraining data ui,k ∈ [0, 1], the
fraction of tokens from training domain Dk that model Mi is pretrained on. Our goal is to quantify
cross-domain data synergy: how training on pretraining domain(s) affects loss on a benchmark,
after accounting for model scale and total tokens.

2.2. Domain-agnostic scaling law

We begin with a domain-agnostic baseline that explains loss variation using only model size N in
terms of number of parameters, and total pretraining tokens D. This serves as the baseline model
against which composition- and synergy-aware refinements will be evaluated. Following Chinchilla
scaling laws [9], we have the parametric form L(N,D) = L∞ + AN−α + BD−β , where L∞
is the irreducible loss, A,B are scale coefficients for parameter and data terms, and α, β are the
parameter and data scaling exponent. In practice we fit this baseline per benchmark, and allow these
parameters to vary across evaluation domains, after mapping heterogeneous metrics to a common
monotone-transformed pseudo-loss. Let s = logN and d = logD, and for benchmark j define
ej = logL∞,j , aj = logAj , and bj = logBj . Writing the parametric form in log-parameters gives
the numerically-stable log-sum-exp (LSE) form:

logLj(s, d) = LSE
(
ej , aj − αjs, bj − βjd

)
, (1)
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where LSE(x1, x2, x3) = log
(
ex1 + ex2 + ex3

)
. Equation (1) is our domain-agnostic baseline:

the expected log-loss depends only on total parameters and total tokens. In the next subsections
we enrich the data term b − β logD to account for training mixture composition and to estimate
cross-domain synergy, while keeping the same overall form of the scaling law recoverable.

2.3. First-order Domain-Benchmark Synergy

We now modify the data term so that different training domains can reduce loss at different rates
on each benchmark. Recall that ui,k ∈ [0, 1] is the fraction of tokens from training domain Dk that
model Mi is pretrained on. It is easy to show that log di =

∑
k ui,k log(ui,kdi) + H(ui), where

H(ui) = −
∑

k ui,k log ui,k. To allow domain–specific data scaling exponent on benchmark j,
βj + γj,k (faster if γj,k > 0, slower if γj,k < 0).

We introduce domain–specific data scaling exponent parameters {γi,j}, which modify the per-
task data scaling exponents additively: βj + γj,k. A positive γj,k indicates that data from domain
k yields greater-than-expected scaling – i.e, a synergistic effect with benchmark j. Conversely, a
negative γj,k implies diminishing returns, where data from domain k contributes less effectively
than expected (interference). Substituting the log di decomposition equation into the third argument
of the LSE in (1) and introducing these modifiers gives

E[ li,j ] = LSE
(
ej , aj − αjsi, bj −

[
βj1+ γj,·

]⊤
zi − βjH(ui)

)
, (2)

with zi,k = ui,k log(ui,kdi) and synergy coefficients γj,k ∈ R.

2.4. Second-order Pretraining Data Synergy

We hypothesize that certain training domains interact synergistically and intrinsically, such that their
joint presence yields learning benefits irrespective of the specific downstream benchmark. These
synergies reflect fundamental complementarities between domains, though their effect size is still
mediated by the benchmark-specific data scaling coefficient. The gain from such co-occurrence is
bottlenecked by the scarcer source and can be understood as producing “additional bonus tokens”
only when both domains are present. To capture this, we model synergy with a pairwise term that
vanishes if either domain is absent and scales with the smaller per-domain log-token budget.

Let ui,k ∈ [0, 1] be pretraining domain mixture weights and di the total token count and define

zi,k = ui,k log(ui,kdi), z̄i,k = log
(
1+ui,kdi

)
, softminτ (a, b) := −τ log

(
e−a/τ +e−b/τ

)
.

Start from the first–order data term split into baseline and per–domain parts, −βj
∑

k zi,k −∑
k γj,k zi,k − βjH(ui), and augment only the base effect with a co-occurrence correction

−βj
∑
k

[
zi,k +

∑
k′ ̸=k

γj,kσkk′ softminτ
(
z̄i,k, z̄i,k′

)]
−

∑
k

γj,kzi,k − βjH(ui),

that is with a cross-domain synergy correction modulated by domain-benchmark synergy strength.
Using z̄ (nonnegative and = 0 when ui,k = 0) ensures the interaction truly vanishes if either domain
is absent and preserves the desired O(log di) scaling. We then scale the last term by βj to ensure
that it moves at the same rate as the baseline. Symmetrizing (using σkk′ = σk′k), gives,

Φi,j = bj −
[
βj1K + γj,·

]⊤
zi − βj H(ui)− βj

∑
k<k′

(γj,k + γj,k′)σkk′ softminτ
(
z̄i,k, z̄i,k′

)
(3)
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Figure 1: We visualize first-order domain→benchmark synergy heatmap γj,k (median ± SE,
B=50) between pretraining domains (columns) and benchmarks (rows), and right panel
shows βj with 90% CIs. A few synergies (e.g., code → GSM8K) are reliably positive,
while most synergies are small or uncertain.

where Σ = [σkk′ ] is symmetric with σkk = 0. The complete log-space law has the form logLi,j =
LSE

(
ej , aj − αjsi, Φi,j

)
. In Appendix C.2, we interpret the new data term as “effective” number

of pretraining data.

3. Results

We estimate composition effects from observational variation across open-weight models and their
publicly documented pre-training mixtures, rather than training models. Details on models and data
are included in Appendix E.

3.1. First-order Domain→Benchmark Synergy

We estimate the first-order synergy of each pre-training domain on each benchmark, as explained in
Appendix D. Figure 1 visualizes the estimated matrix Γ = {γj,k} with the benchmark-specific data
exponent βj . To quantify uncertainty, we report standard errors from B=50 bootstrap resamples
(80% subsampling) and show 90% confidence intervals for βj . The resulting map is sparse and
interpretable: a few domain→benchmark synergies are reliably positive, while most γ values are
small or statistically indistinguishable from zero synergy. Notably, code pretraining exhibits positive
first-order synergy to math reasoning benchmark GSM8K, which is consistent with findings of prior
work [1, 18].

3.2. Second-order Pre-training Data Synergy

Beyond first-order effects, we estimate pairwise data synergy between pre-training domains to cap-
ture gains that materialize only when two domains co-occur, across all benchmarks. We fit the
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Figure 2: Second-order pretraining domain×domain synergy matrix Σ = {σi,j} shows positive
synergy between domains such as Code×Math, Q&A×Web/Science.

symmetric synergy matrix Σ = {σk,k′} along with other parameters as in Equation 3 evaluate un-
certainty via B = 50 bootstrap resamples (80% subsampling). Figure 2 summarizes the results
the shared pairwise synergy across domains, along with the confidence intervals. Positive entries
indicate domain-domain synergy (e.g. the expected Code×Math synergy), while negative entries
show interference. We also observe negative synergy between Code×Encyclopedia/Q&A, which
reflects that having both domains present in the pre-training dataset, may hurt average performance
on selected domains.

We also assess how predictive the model is on held-out samples. Figure 3 compares our domain-
aware estimator with a domain-agnostic (γi,j = 0) baseline. Across a number of benchmarks, the
synergy-aware models show better loss on residuals of held-out examples, on these datasets. A
comparison of all fits is shown in Figure 4 Appendix F.1. These gains show that modeling com-
position, via a small number of non-zero γj,k (and universal σk,k′) adds explanatory power beyond
total token count, which is especially effective for benchmarks that are different in distribution from
typical pre-training datasets, such as in HumanEval, a coding benchmark.
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Figure 3: We compare first and second-order domain-aware scaling model vs. the domain-agnostic
one (Chinchilla) on a number of benchmarks. The synergy-aware estimators achieves
lower test loss on held-out models in these benchmarks.
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4. Conclusion

We formalize and quantify data synergy in LLM pretraining, and show that explicitly modeling
domain-benchmark and pretraining data interactions can lead to interpretable estimates of data syn-
ergy, and improve predictive fit across multiple benchmarks. Our approach is limited by its obser-
vational design, as estimates rely on noise or incomplete mixture metadata, and we only rely on
eight benchmarks to estimate pretraining data synergy. Future work will validate these measured
synergies by training on domains we find to be synergistic. Beyond methodology, our estimates sup-
port practical applications in data curation, mixing, and acquisition, and performing synergy-aware
mixture optimization to target specific capabilities.
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Appendix A. Related Work

Scaling laws. A line of work shows that LLM loss follows smooth power laws as model capacity
and data grow. Early results characterize scaling trends across parameters, data, and compute [13],
while subsequent analyses refine the compute–data trade-off and argue that many models were
under-trained for their size and recommend that token counts scale roughly with parameters to
remain compute-optimal [9]. We treat these as the domain-agnostic baseline and study differences
induced by heterogeneous data mixtures.

Domain-aware scaling and mixture optimization. Beyond total token count, several works
show that which tokens matter. Data pruning and curation can “beat” naive power-law scaling
by shifting the effective constants and exponents in favorable ways [26]. Mixture-optimization
approaches explicitly treat domain composition as a control variable: AutoScale automates scaling-
law fitting and uses the fitted laws to recommend data-mixture and broader training-design choices
with minimal additional training [12]. RegMix frames mixture selection as a regression problem
with regularization to stabilize estimates under limited supervision [17]. More recently, “data mix-
ing laws” relate performance to mixture weights and document nonlinear returns, including phase-
transition-like effects as specific domains are increased [31]. Our formulation contributes to this
line by modeling domain effects via the empirical domain frequencies ui,k (fraction of tokens from
domain k in the dataset used for model i), which allows the data term’s exponent to vary for different
domains and compositions, rather than only with D.

Observational inference of skills and benchmark structure. Orthogonal to controlled pretrain-
ing, a complementary literature uses observational variation across many (model, task) points to in-
fer latent capability structure and transfer patterns. Perplexity-correlation methods identify promis-
ing upstream corpora for a target benchmark using only readily available statistics, providing a
zero-shot signal for mixture selection [28]. Hierarchical latent-variable models on leaderboard ma-
trices recover shared factors that explain co-movement of benchmark scores across models, offering
a data-driven map of “skills” without interventional training runs [11]. Our estimator follows this
observational spirit but focuses on predicting performance under counterfactual mixtures by lever-
aging the fraction of tokens in pre-training data from a specific domain.

Evidence for data synergy. Multiple empirical studies report positive transfer between code and
mathematical reasoning. Continued pretraining on math+code corpora improves math benchmarks
beyond either domain alone [1, 18]. Controlled ablations further indicate that injecting code during
pretraining (rather than only SFT) yields broader reasoning gains with minimal negative transfer
[19]. These findings motivate sparse, domain-specific parameters that can capture synergy between
conceptually related domains.

Appendix B. Related Work

Scaling laws. A line of work shows that LLM loss follows smooth power laws as model capacity
and data grow. Early results characterize scaling trends across parameters, data, and compute [13],
while subsequent analyses refine the compute–data trade-off and argue that many models were
under-trained for their size and recommend that token counts scale roughly with parameters to
remain compute-optimal [9]. We treat these as the domain-agnostic baseline and study differences
induced by heterogeneous data mixtures.
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Domain-aware scaling and mixture optimization. Beyond total token count, several works
show that which tokens matter. Data pruning and curation can “beat” naive power-law scaling
by shifting the effective constants and exponents in favorable ways [26]. Mixture-optimization
approaches explicitly treat domain composition as a control variable: AutoScale automates scaling-
law fitting and uses the fitted laws to recommend data-mixture and broader training-design choices
with minimal additional training [12]. RegMix frames mixture selection as a regression problem
with regularization to stabilize estimates under limited supervision [17]. More recently, “data mix-
ing laws” relate performance to mixture weights and document nonlinear returns, including phase-
transition-like effects as specific domains are increased [31]. Our formulation contributes to this
line by modeling domain effects via the empirical domain frequencies ui,k (fraction of tokens from
domain k in the dataset used for model i), which allows the data term’s exponent to vary for different
domains and compositions, rather than only with D.

Observational inference of skills and benchmark structure. Orthogonal to controlled pretrain-
ing, a complementary literature uses observational variation across many (model, task) points to in-
fer latent capability structure and transfer patterns. Perplexity-correlation methods identify promis-
ing upstream corpora for a target benchmark using only readily available statistics, providing a
zero-shot signal for mixture selection [28]. Hierarchical latent-variable models on leaderboard ma-
trices recover shared factors that explain co-movement of benchmark scores across models, offering
a data-driven map of “skills” without interventional training runs [11]. Our estimator follows this
observational spirit but focuses on predicting performance under counterfactual mixtures by lever-
aging the fraction of tokens in pre-training data from a specific domain.

Evidence for data synergy. Multiple empirical studies report positive transfer between code and
mathematical reasoning. Continued pretraining on math+code corpora improves math benchmarks
beyond either domain alone [1, 18]. Controlled ablations further indicate that injecting code during
pretraining (rather than only SFT) yields broader reasoning gains with minimal negative transfer
[19]. These findings motivate sparse, domain-specific parameters that can capture synergy between
conceptually related domains.

Appendix C. Additional Details

C.1. First-order Domain→ Benchmark Synergy

De-confounding global and domain effects. To decouple the aggregate data-scaling coefficient
βj from domain synergies γj,·, we impose the mean-zero (orthogonality) constraint 1⊤γj,· = 0.
Let P⊥ := I − 1

K11⊤ be the projector onto the subspace orthogonal to 1. We enforce this either
by reparameterization γj,· = P⊥ηj,· with free ηj,·. Using zi,k = ui,k log(ui,kdi) and H(ui) =
−
∑

k ui,k log ui,k, recall 1⊤zi = log di −H(ui). Without the constraint, the data term

(βj1+ γj,·)
⊤zi + βjH(ui)

lets the mean of γj,· shift the effective coefficient on log di and spuriously couple to H(ui). Enforc-
ing 1⊤γj,· = 0 removes this confounding and reduces the data term to

Di,j = βj log di + γ⊤j,·zi,

so βj is identifiable as the aggregate token-scaling coefficient while γj,· captures only domain-
specific deviations. We apply sparsity and shrinkage penalties to the projected coefficients P⊥γj,·.
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C.2. Second-order Pre-Training Data Synergy

Scaling–law interpretation (effective tokens). Define the benchmark-specific effective tokens

logDeff
i,j := log di +

∑
k<k′

(γj,k + γj,k′)σkk′ si,kk′ , Deff
i,j = di exp

(∑
k<k′

(γj,k + γj,k′)σkk′ si,kk′
)
,

so that
exp(Φi,j) = exp

(
bj − γ⊤j,·zi

) (
Deff

i,j

)−βj .

In a Chinchilla-style view,

Li,j(Ni, di) ≈ L∞,j +AjN
−αj

i + B̃i,j︸︷︷︸
=exp(bj−γ⊤

j,·zi)

(
Deff

i,j

)−βj ,

and for small interactions,
(
Deff

i,j

)−βj ≈ d
−βj

i

[
1− βj

∑
k<k′(γj,k + γj,k′)σkk′ softminτ (z̄i,k, z̄i,k′)

]
,

which makes explicit the benchmark-gated “bonus tokens” contributed by co-occurence through the
universal Σ.

Appendix D. Training and Uncertainty

Loss and optimizer. We fit all parameters by minimizing a single Huberδ risk [10] over the LSE
scaffold (Section 2):

min
Θ

n∑
j=1

m∑
i=1

Huberδ

(
LSE

(
ej , aj − αjsi, Φi,j

)
− li,j

)
+ λ1

∑
j

∥γj,·∥1 + λ2

∑
j

∥γj,·∥22,

where si = logNi and Φi,j is either from the domain-benchmark data term (i.e., Σ = 0) or the
pretraining data synergy term in Eq. (3). We optimize with full-batch L-BFGS [22] The pretraining
domain synergy matrix Σ is parameterized on the upper triangle only (σkk′ = σk′k, σkk = 0). In all
reported runs we use δ = 0.5, τ = 0.1, λ1 = 0.01, and λ2 = 10−5. For the synergy model we first
optimize (ej , aj , bj , αj , βj , γj,·) with Σ fixed to 0 and then continuing optimizing all parameters
(including Σ) jointly.

Uncertainty via bootstrap. first-order fits. We estimate variability by resampling 80% of models
(without replacement) B = 50 times and refitting; we report percentile intervals for (ej , aj , bj , αj , βj , γj,·).

second-order fits. We warm-start with training on all models, and then we cluster bootstrap
over model families: each replicate resamples families with replacement, retains all domains per
sampled model, and refits the full objective from the warm start. With B = 50 replicates we
report 90% percentile intervals for (αj , βj), the per-domain effects γj,k, and the shared pairwise
coefficients σkk′ .

Appendix E. Observational Data: Models and Data

We estimate composition effects from observational variation across open-weight models and their
publicly documented pre-training mixtures, rather than training models. This provides variation in
both scale and composition, and enables identifying of domain-specific returns using our frame-
work. Throughout we denote by ui,k the fraction of tokens from training domain k in the dataset
used for model i.
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Model families Our panel spans six open-weight families with heterogeneous scales and train-
ing mixtures: GPT-Neo/J/NeoX [24] (125M–20B; 5 checkpoints), Pythia [2] (70M–12B; 8
checkpoints), DataDecide [20] (150M–1B; 30 checkpoints across Dolma variants with system-
atic ablations: no-code, no-flan, no-math-code, no-reddit), OLMo [7] (1B–13B; 5 checkpoints),
OpenLLaMA [6] (3B–13B; 5 checkpoints), and RedPajama-INCITE [29] (3B–7B; 2 check-
points). The DataDecide ablations provide controlled composition shifts that are especially infor-
mative for informing counterfactual domain effects. We map each subset in each model’s pretraining
data to one of the following domains: books, code, encyclopedia, legal, math, Q&A, Science, and
Web.

Benchmarks and normalization. We evaluate on eight benchmarks chosen to roughly cover our
domains: mathematical reasoning (GSM8K [5]), code generation (HumanEval [3]), science/general-
knowledge MC (ARC-Easy[4]), commonsense inference (HellaSwag [33]), broad-context cloze
(LAMBADA [23]), professional legal knowledge (MMLU-Pro-Plus, Law [27]), open-domain
QA (Natural Questions [14]), and encyclopedia (WikiText [21]). To compare different
evaluation metrics, we convert accuracy-/pass@1-type scores to error (1−success), and apply a
per-task rank transform to obtain the pseudo-loss used for fitting.

Evaluation. In most benchmarks we do not directly observe direct loss li,j but a task metric mi,j

(accuracy, pass@1, etc.). We map metrics to a pseudo log-loss via a domain-specific monotone
transform gj (e.g., rank–Gaussian (inverse normal) transform gj(m) = Φ−1

(
F̂j(m)

)
, where F̂j is

the empirical CDF of metric values on Dj and Φ−1 is the standard normal quantile function):
li,j = gj(mi,j) ∝ logLi,j , so different metrics lie on a common (log-loss) scale.

Appendix F. Additional Results

F.1. Comparison Results

We also assess how predictive the model is on held-out samples. Figure 3 compares our domain-
aware estimator with a domain-agnostic (γi,j = 0) baseline. Across a number of benchmarks, the
synergy-aware models show better loss on residuals of held-out examples, on these datasets.
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Figure 4: Comparison of performance between first- and second-order synergy-aware model vs.
non-synergy-aware model
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Figure 5: Comparison of test loss between first- and second-order synergy-aware model vs. non-
synergy-aware model
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Figure 6: Comparison of test loss between first- and second-order synergy-aware model vs. non-
synergy-aware model

F.2. Second-order Pre-training Synergy

We provide γ and β values for the second-order synergy model.
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