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Abstract

It is well-known that modern neural networks are vulnerable to adversarial exam-
ples. To mitigate this problem, a series of robust learning algorithms have been
proposed. However, although the robust training error can be near zero via some
methods, all existing algorithms lead to a high robust generalization error. In this
paper, we provide a theoretical understanding of this puzzling phenomenon from
the perspective of expressive power for deep neural networks. Specifically, for
binary classification problems with well-separated data, we show that, for ReLU
networks, while mild over-parameterization is sufficient for high robust training
accuracy, there exists a constant robust generalization gap unless the size of the
neural network is exponential in the data dimension d. This result holds even
if the data is linear separable (which means achieving standard generalization is
easy), and more generally for any parameterized function classes as long as their
VC dimension is at most polynomial in the number of parameters. Moreover, we
establish an improved upper bound of exp(O(k)) for the network size to achieve
low robust generalization error when the data lies on a manifold with intrinsic
dimension k (k < d). Nonetheless, we also have a lower bound that grows ex-
ponentially with respect to & — the curse of dimensionality is inevitable. By
demonstrating an exponential separation between the network size for achieving
low robust training and generalization error, our results reveal that the hardness of
robust generalization may stem from the expressive power of practical models.

1 Introduction

Deep neural networks have achieved remarkable success in a variety of disciplines including com-
puter vision (Voulodimos et al., 2018), natural language processing (Devlin et al., 2018) as well as
scientific and engineering applications (Jumper et al., 2021). However, it is observed that neural
networks are often sensitive to small adversarial attacks (Biggio et al., 2013; Szegedy et al., 2013;
Goodfellow et al., 2014), which potentially gives rise to reliability and security problems in real-
world applications.

In light of this pitfall, it is highly desirable to obtain classifiers that are robust to small but adversarial
perturbations. A common approach is to design adversarial training algorithms by using adversarial
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examples as training data (Madry et al., 2017; Tramer et al., 2018; Shafahi et al., 2019). Another line
of works (Cohen et al., 2019; Zhang et al., 2021a) proposes some provably robust models to tackle
this problem. However, while the state-of-the-art adversarial training methods can achieve high
robust training accuracy (e.g. nearly 100% on CIFAR-10 (Raghunathan et al., 2019)), all existing
methods suffer from large robust test error. Therefore, it is natural to ask what is the cause for such
a large generalization gap in the context of robust learning.

Previous works have studied the hardness of achieving adversarial robustness from different per-
spectives. A well-known phenomenon called the robustness-accuracy tradeoff has been empirically
observed (Raghunathan et al., 2019) and theoretically proven to occur in different settings (Tsipras
et al., 2019; Zhang et al., 2019). Dohmatob (2019) shows that adversarial robustness is impossible
to achieve under certain assumptions on the data distribution, while it is shown in Nakkiran (2019)
that even when an adversarial robust classifier does exist, it can be exponentially more complex than
its non-robust counterpart. Hassani and Javanmard (2022) studies the role of over-parameterization
on adversarial robustness by focusing on random features regression models.

At first glance, these works seem to provide convincing evidence that robustness is hard to achieve in
general. However, this view is challenged by Yang et al. (2020), who observes that for real data sets,
different classes tend to be well-separated (as defined below), while the perturbation radius is often
much smaller than the separation distance. As pointed out by Yang et al. (2020), all aforementioned
works fail to take this separability property of data into consideration.

Definition 1.1 (Separated data). Suppose that A,B C R® and ¢ > 0. We say that A, B are e-
separated under £, norm (1 < p < +00) if

|za —xpll, >€ Vea€ A xp€B.

Indeed, this assumption is necessary to ensure the existence of a robust classifier. Without this
separated condition, it is clear that there is no robust classifier even if a non-robust classifier always
exists, as discussed above.

Recently, Bubeck and Sellke (2021) shows that for regression problems, over-parameterization may
be necessary for achieving robustness. However, they measure robustness of a model by its training
error and Lipschitz constant, which has a subtle difference with robust test error (Madry et al., 2017);
see the discussions in (Bubeck and Sellke, 2021, Section 1.1).

To sum up the above, although existing robust training algorithms result in low robust test accuracy,
previous works do not provide a satisfactory explanation of this phenomenon, since there exists a
gap between their settings and practice. In particular, it is not known whether achieving robustness
can be easier for data with additional structural properties such as separability (Yang et al., 2020)
and low intrinsic dimensionality (Gong et al., 2019).

In this paper, we make an important step towards understanding robust generalization from the
viewpoint of neural network expressivity. Focusing on binary classification problems with separated
data (cf. Definition 1.1) in R?, we make the following contributions:

* Given a data set D of size IV that satisfies a separability condition, we show in Section 2
that it is possible for a ReLU network with O(Nd) weights to robustly classify D. In other
words, an over-parameterized ReLU network with reasonable size can achieve 100% robust
training accuracy.

* We next consider the robust test error (cf. Definition 3.1). As a warm-up, we show in
Section 3 that, in contrast with the robust fraining error, mere separability of data does
not imply that low robust test error can be attained by neural networks, unless their size
is exponential in d. This motivates the subsequent sections where we consider data with
additional structures.

* In Section 4, we prove the main result of this paper, which states that for achieving low
robust test error, an exp(£2(d)) lower bound on the network size is inevitable, even when
the underlying distributions of the two classes are linear separable. Moreover, this lower
bound holds for arbitrarily small perturbation radius and more general models as long as
their VC dimension is at most polynomial in the number of parameters.

* Finally, in Section 5 we consider data that lies on a k-dimensional manifold (k < d), and
prove an improved upper bound exp(QO(k)) for the size of neural networks for achieving



Table 1: Summary of our main results.

Setting
Params Robust Trainin Robust Generalization
€ ["General Case | Linear Separable | k—dim Manifold
O(Nd) exp(O(d)) exp(O(k))
Upper Bound (Thm 2.2) (Thm 3.3) (Thm 5.5)
Q(VNd) exp(€2(d)) exp(€2(d)) exp(Q(k))
Lower Bound |y 5 3 (Thm 3.4) (Thm 4.3) (Thm 5.8)

low robust test error. Nonetheless, the curse of dimensionality is inescapable — the lower
bound is also exponential in k.

The upper and lower bounds on network size are summarized in Table 1. Overall, our theoretical
analysis suggests that the hardness of achieving robust generalization may stem from the expressive
power of practical models.

1.1 Implications of our results

Before moving on to technical parts, we would like to first discuss the implications of our results by
comparing them to previous works.

Our main result is the exponential lower bound on the neural network size for generalization. First,
different from previous hardness results, our result is established for data sets that have desirable
structural properties, hence more closely related to practical settings. Note that the separability
condition implies that there exists a classifier that can perfectly and robustly classify the data i.e.
achieve zero robust test error. However, we show that such classifier is hard to approximate using
neural networks with moderate size.

Second, it is a popular belief that many real-world data sets are intrinsically low dimensional, al-
though they lie in a high dimensional space. Our results imply that low dimensional structure makes
robust generalization possible with a neural network with significantly smaller size (when k < d).
However, the size must still be exponential in k.

Finally, we show that there exists an exponential separation between the required size of neural
networks for achieving low robust training and test error. Based on our results, we conjecture that
the widely observed drop of robust test accuracy is not due to limitations of existing algorithms —
rather, it is a more fundamental issue originating from the expressive power of neural networks.

1.2 Related works

Robust Generalization. One surprising behavior of deep learning is that over-parameterized neural
networks can generalize well despite their ability to fit random data (Zhang et al., 2017; Belkin et al.,
2019). However, in contrast to the standard (non-robust) generalization, for the robust setting, Rice
et al. (2020) empirically investigates robust performance of models based on adversarial training
methods, which are designed to improve adversarial robustness (Szegedy et al., 2013; Madry et al.,
2017), and shows that robust overfitting can be observed on multiple datasets. From the theoretical
side, Madry et al. (2017) proposes the notion of robust test error to measure the performance of a
model under adversarial attacks, and the required sample complexity is studied in various settings
(Schmidt et al., 2018; Bhagoji et al., 2019; Dan et al., 2020; Bhattacharjee et al., 2021). In this paper,
we mainly focus on this robust generalization gap and provide a theoretical understanding from the
perspective of expressive power.

Robust interpolation. Bubeck et al. (2021) proposes a conjecture that over-parameterization is nec-
essary for smooth interpolation. Then Bubeck and Sellke (2021) establishes a law of robustness for
isoperimetric data. Specifically, they prove an Q(1/Nd/p) Lipschitzness lower bound for smooth
interpolation, where IV, d, and p denote the sample size, the inputs’ dimension, and the number of
parameters, respectively. This result indicates that over-parameterization may be necessary for ro-
bust learning. Zhang et al. (2022) studies many data are needed for robust interpolation. This line



of works focuses on the training error and the worst-case robustness (i.e. Lipschitz constant), while
we measure robustness via the robust generalization error.

Memorization power of neural networks. Our work is related to another line of works (e.g., Baum,
1988; Yun et al., 2019; Bubeck et al., 2020; Zhang et al., 2021a; Rajput et al., 2021; Zhang et al.,
2021b; Vardi et al., 2021) on the memorization power of neural networks. Among these works, Yun
et al. (2019) shows that a neural network with O(NN) parameters can memorize the data set with
zero error, where NN is the size of the data set. Under an additional separable assumption, Vardi et al.
(2021) derives an improved upper bound of O(v/N), which is shown to be optimal. In this work, we
show that O(Nd) parameters is sufficient for achieving low robust training error. This is in contrast
with our exponential lower bound for low robust fest error.

Function approximation. Our work is related to a line of works on function approximation via
neural networks (e.g., Cybenko, 1989; Hornik, 1991; Lu et al., 2017; Yarotsky, 2017; Hanin, 2019).
Yarotsky (2017) is the most related, which shows that the functions in Sobolev spaces can be uni-
formly approximated by deep ReLU networks. Also related is the studies of using deep ReLU
networks to approximate functions supported on low dimensional manifolds (Chui and Mhaskar,
2018; Shaham et al., 2018; Chen et al., 2019). In particular, Chen et al. (2019) proves that any C"
function in Holder spaces can be e-approximated by the neural network with size O(¢~*/™), where
k is the intrinsic dimension of the manifold embedded in R?. In the robust classification scenario,
we can also achieve dimensionality reduction for low-dimensional data.

1.3 Notations

Throughout this paper, we use ||+, ,p € [1, +00] to denote the ¢, norm in the vector space R?. For
x € R and A C R? we can define the distance between z and A as dj,(z, A) = inf{||z — y||, :
y € A}. Forr > 0, By(x,r) = {y eER?: ||z — yll, < r} is defined as the £,-ball with radius r
centered at x. For a function class F, we use dy ¢ (F) to denote its VC-dimension. A multilayer
neural network is a function from input & € R? to output y € R™, recursively defined as follows:
hi =0 (Wiz+b), W; cR™* p cR™,
hy=0c(Wihy_1+by), W, eR™ ™1 p, e R™ 2<4<L—1,
y=Wrhy+by,, Wy eR"™"™ b, eR",
where o is the activation function and L is the depth of the neural network. In this paper, we mainly

focus on ReLU networks i.e. o(z) = max{0,2}. The size of a neural network is defined as its
number of weights/parameters i.e. the number of its non-zero connections between layers.

2 Mild Over-parameterized ReLLU Nets Achieve Zero Robust Training Error

With access to only finite amount of data, a common practice for learning a robust classifier is to
minimize the robust training error(defined below). In this section, we show that neural networks
with reasonable size can achieve zero robust training error on a finite training set.

Definition 2.1 (Robust training error). Given a data set D = {(x;,yi)}cicn> ¥i € {—1,+1} and
an adversarial perturbation radius § > 0, the robust training error of a classifier f is defined as

LRO(f) = £ o0 1{32 € By(x:;0),sen(f(2) # v}

When ¢ = 0, the definition coincides with the standard training error. In this paper, we mainly focus
on the case p = 2 and p = oo, but our results can be extended to general p as well.
The following is our main result in this section, which states that for binary classification problems,

a neural network with 5(N d) weights can perfectly achieve robust classification on a data set of
size N. The detailed proof is deferred to Appendix B.3.

Theorem 2.2. Suppose that D C B,(0,1) with p € {2,400} consists of N data, and the two
classes in D are 2¢-separated (cf. Definition 1.1), where € € (O, %) is a constant. Let robustness
radius § < %e, then there exists a classifier f represented by a ReLU network with at most

O (Ndlog (67'd) + N - polylog(6~'N))



parameters, such that ﬁ%a( f)=0o.

Theorem 2.2 implies that neural networks is quite efficient for robust classification of finite training
data. We also derive a lower bound in the same setting, which is stated below. It is an interesting
future direction to study whether this lower bound can be achieved.

Theorem 2.3. Let p € {2,400} and F,, be the set of functions represented by ReLU networks
with at most n parameters. For arbitrary 2e-separated data set D under {,, norm, if there exists a

classifier f € F,, such that ﬁ%s(f) = 0, then it must hold that n = Q(V/ Nd).

The detailed proof of Theorem 2.3 is in Appendix B.4. We leave it as a future direction to study
whether this lower bound can be attained. While optimal (non-robust) memorization of N data
points only needs constant width (Vardi et al., 2021), our construction in Theorem 2.2 has width

O(Nd). Therefore, if our upper bound is tight, then Theorem 2.2 can probably explain why increas-
ing the network width can benefit robust training (Madry et al., 2017).

3 Hardness of Robust Generalization : A Warm-up

In the previous section, we give an upper bound on the size of ReL.U networks to robustly classify
finite training data. However, it says nothing about generalization, or the robust test error, which
is arguably a crucial aspect of evaluating the performance of a trained model. As a warm-up, in
this section we first consider the same setting as Section 2 where we only assume the data to be
well-separated. We show that in this setting, even achieving high standard test accuracy requires
exponentially large neural networks in the worst case, which is quite different from empirical obser-
vations. This motivates to consider data with additional structures in subsequent sections.

Definition 3.1 (Robust test error). Given a probability measure P on R? x {—1, 41} and a robust
radius § > 0, the robust test error of a classifier f : RY — Rw.r.t P and § under €, norm is defined

as L%° (f) = By p [Max) e —a), <5 {sgn(f(z) # y}].

In contrast with the training set which only consists of finite data points, when studying generaliza-
tion, we must consider potentially infinite points in the classes that we need to classify. As a result,
we consider two disjoint sets A, B € [0, 1]%, where points in A have label +1 and points in B have
label —1. We are interested in the following questions:

* Does there exists a robust classifier of A and B?

* If so, can we derive upper and lower bounds on the size of a neural network to robustly
classify A and B?

It turns out that, similar to the previous section, the e-separated condition (cf. Definition 1.1) ensures
the existence of such a classifier. Moreover, it can be realized by a Lipschitz function. This fact has
been observed in Yang et al. (2020), and we provide a different version of their result below for
completeness.

Proposition 3.2. For 2e-separated A, B C [0,1]¢ under ¢, norm with p € {2,+oc}, the clas-

sifier f*(x) := % is €~ '-Lipschitz continuous, and satisfies L'5°(f*) = 0 for any

probability distribution P on AU B.

Based on this observation, Yang et al. (2020) concludes that adversarial training is not inherently
hard. Rather, they argue that current pessimistic results on robust test error is due to the limits
of existing algorithms. However, it remains unclear whether the Lipschitz function constructed in
Proposition 3.2 can actually be efficiently approximated by neural networks. The following theorem
shows that ReLU networks with exponential size is sufficient for as robust classification.

Theorem 3.3. For any two 2¢-separated A, B C [0, 1] under £, norm with p € {2, 400}, distribu-
tion P on the supporting set S = A U B and robust radius ¢ € (0, 1), there exists a ReLU network
f with at most O (((1 — c¢)e)~?) parameters, such that L°(f) = 0.

The detailed proof is deferred to Appendix C.1. Indeed, it is well known that without additional
assumptions, an exponentially large number of parameters is also necessary for approximating a
Lipschitz function (DeVore et al., 1989; Shen et al., 2022). This result motivates us to consider the



second question listed above. The following result implies that even without requiring robustness,
neural networks need to be exponentially large to correctly classify A and B:

Theorem 3.4. Let F,, be the set of functions represented by ReLU networks with at most n param-
eters. Suppose that for any 2e-separated sets A, B C [0,1]? under £, norm with p € {2,400},
there exists f € JF,, that can classify A, B with zero (standard) test error, then it must hold that

n=0 ((26)—% (dlog(l/ze))*%).

Theorem 3.4 implies that mere separability of data sets is insufficient to guarantee that they can be
classified by ReLU networks, unless the network size is exponentially large. The detailed proof is
in Appendix C.2.

However, one should be careful when interpreting the conclusion of Theorem 3.4, since real-world
data sets may possess additional structural properties. Theorem 3.4 does not take these properties
into consideration, so it does not rule out the possibility that these additional properties make robust
classification possible. Specifically, the joint distribution of data can be decomposed as

P(X,Y) = P(Y | X) P(X),
——— N~
labeling mapping input

where P(X,Y),P(Y | X), and P(X) denote the joint, conditional and marginal distributions,
respectively. In subsequent sections, we consider two well-known properties of data sets that corre-
spond to the labeling mapping structure (Section 4) and the input structure (Section 5), respectively,
and study whether they can bring improvement to neural networks’ efficiency for robust classifica-
tion.

4 Robust Generalization for Linear Separable Data

We have seen that for separated data, if no other structural properties are taken into consideration,
even standard generalization requires exponentially large neural networks. However, in practice it is
often possible to train neural networks that can achieve fairly high standard test accuracy, indicating
a gap between the setting of Section 3 and practice.

This motivates us to consider the following question: assuming that there exists a simple classifier
that achieves zero standard test error on the data, is it guaranteed that neural networks with reason-
able size can also achieve high robust test accuracy?

We give a negative answer to this question. Namely, we show that even in the arguably simplest set-
ting where the given data is linear separable and well-separated (cf. Definition 1.1), ReLU networks
still need to be exponentially large to achieve high robust test accuracy.

4.1 Main results under the linear separable assumption

Clearly, the robust test error (cf. Definition 3.1) depends on the underlying distribution P. We
consider a class of data distributions which have bounded density ratio with the uniform distribution:

Definition 4.1 (Balanced distribution). Let S C R™ such that there exists a uniform probability
measure mqg on S. A distribution P on S is called p-balanced if

P(E
inf { (E) : E is Lebesgue measurable and my(E) > 0} > p.
mo(E)

Remark 4.2. Definition 4.1 has also appeared in (Shafahi et al., 2018, Theorem 1), which gives
an impossibility result on robust classification, albeit in a completely different setting. Intuitively, it
rules out the possibility that data points in certain regions are heavily under-represented.

The following theorem is the main result of this paper, and the proof sketch is deferred to Section 4.3.

Theorem 4.3. Let ¢ € (0,1) be a small constant, p € {2,400} and F, be the set of func-
tions represented by ReLU networks with at most n parameters. There exists a sequence Ny =

Q ((26)7%> ,d > 1 and a universal constant C1 > 0 such that the following holds: for any

c € (0,1), there exists two linear separable sets A, B C [0, 1] that are 2¢-separated under £y, norm,



such that for any po-balanced distribution P on the supporting set S = AU B and robust radius ce
we have
inf {LB(f) : f € Fn,} > Crpo.

Theorem 4.3 states that the robust test error is lower-bounded by a positive constant « = C g
unless the ReLU network has size larger than exp(€2(d)). On the contrary, if we do not require
robustness, then the data can be classified by a simple linear function. Moreover, this classifier can
be learned with a poly-time efficient algorithm (The detailed proof is in Appendix D.2) :

Theorem 4.4. For any two linear-separable A, B C [0,1]%, a distribution P on the supporting set
S=AUB,§>0and > 0, let H be the family of d—dimensional hyperplane classifiers. Then,
there exists a poly-time efficient algorithm A : 25 — H, for N = Q(d/B?) training instances
independently randomly sampled from P, with probability 1 — & over samples, we can use the
algorithm A to learn a classifier f € F such that

EP(f) S ﬁ7
where Lp(f) := Pz yy~p{y # f(x)} denotes the standard test error.

The practical implication of Theorem 4.3 is two-fold. First, by comparing with Theorem 4.4, one
can conclude that robust classification may require exponentially more parameters than the non-
robust case, which is consistent with the common practice that larger models are used for adversarial
robust training. Second, together with our upper bound in Theorem 2.2, Theorem 4.3 implies an
exponential separation of neural network size for achieving high robust training and test accuracy.

4.2 Exponential lower bound for more general models

In general, our lower bounds hold true for a variety of neural network families and other function
classes as well, as long as their VC dimension is at most polynomial in the number of parameters,
which is formally stated as Theorem 4.5 that can be derived by the proof of Theorem 4.3 directly.

Theorem 4.5. Let € € (0,1) be a small constant, p € {2,400} and G,, be the family of parameter-
ized models with at most n parameters, satisfying the VC-dimension of function family VC-dim(G,,)
is at most poly (n). Then, there exists a sequence Ng = exp(2(d)),d > 1 and a universal constant
C{ > 0 such that the following holds: for any ¢ € (0, 1), there exists two linear separable sets
A, B C [0,1]¢ that are 2¢-separated under £y, norm, such that for any po-balanced distribution P
on the supporting set S = A U B and robust radius ce we have

inf {£B°(9) : g € G, } > Clpo.

In other words, the robust generalization error cannot be lower that a constant « = C' o unless
the model, satisfying the property of their VC dimension polynomially bounded by the number of
parameters, has exponential larger size. Indeed, this property is satisfied for e.g. feedforward neural
networks with sigmoid (Karpinski and Macintyre, 1995) and piecewise polynomial (Bartlett et al.,
2019) activation functions. Therefore, our results reveal that the hardness of robust generalization
may stem from the expressive power of generally practical models.

4.3 Proof sketch of Theorem 4.3

In this subsection, we present a proof sketch for Theorem 4.3 in the ¢.,-norm case. We only consider
P to be the uniform distribution, extending to po-balanced distributions is not difficult, The case of
{5-norm is similar and can be found in the Appendix.

Proof Skeich. Let K = [5-], andléﬁ : {1,2,--- ,K}4"! — {~1,+1} be an arbitrary mapping,
we define S¢ = {(%7%7 7Zd[€1a%+60 '¢(i1ai2a"' aidfl)) 01 S i17i27"' ;Z.dfl S K}’
where € is an arbitrarily small constant. The hyperplane z(? = % partitions S into two sub-

sets, which we denote by A, and Bg. It is not difficult to check that A, and By satisfies all the
required conditions.

Our goal is to show that there exists some choice of ¢ such that robust classification is hard. To
begin with, suppose that robust classification with accuracy 1 — « can be achieved with at most M
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Figure 1: An example of our construction for d = 2. We choose A, B as the set of blue points and
red points, respectively.

parameters for all ¢, then these networks can all be embedded into an enveloping network Fg of size
O(M?3).

Define S = {(%, %’, cee iﬁ}(l, 2) 1 <idq,i9, -+ ,ig_1 < K}. Robustness implies that for all

possible label assignment to S, at least (1 — o) K%~! points can be correctly classified by Fp.

If @ = 0ie. perfect classification is required, then we can see that the VC-dim(Fyp) > K971,
which implies that its size must be exponential, by applying classical VC-dimension upper bounds
of neural networks (Bartlett et al., 2019).

When « > 0, we cannot directly use the bound on VC-dimension. Instead, we use a double-counting
argument to lower-bound the growth function of some subset of S.

— lpd—1 i (1—a) K1 g
Let V. = 5K“". Each choice of ¢ corresponds to ( v ) labelled V -subset of S that are

correctly classified. There are a total of 2K"™" Choices of ¢, while each labelled V' -subset can be
obtained by at most 2% "=V different ¢. As aresult, the total number of labelled V -subset correctly

classified by Fp is at least 2V ((1_‘“‘)}(‘171).

~ d—1
On the other hand, the total number of V-subset of S is (K ), thus there must exists a V' -subset

v
Vo C S, such that at least

() () (Y

different labellings of Vy are correctly classified by Fp, where C, = \/2(1 — 2a) > 1 for o = 0.1.
Since (1) provides a lower bound for the growth function, together with the upper bound of growth
function in terms of VC-dimension, we can deduce that VC-dim(Fp) > 0.05K d—1 Finally, the
conclusion follows by applying the VC-dimension bounds in Bartlett et al. (2019). [

Remark 4.6. The connection between VC dimension and approximation error has been explored
in a number of previous works (Yarotsky, 2017; Shen et al., 2022) to provide lower bounds on the
network size for approximating a given function class. Here we consider the problem of robust clas-
sification which is of more practical interest then function approximation, and our main technical
contribution is an exponential lower bound on the VC dimension. Our proof formalizes the folklore
that adversarial training is hard since it requires a more complicated decision boundary. We note
that similar ideas have been used to show benefits of depth in neural networks (Telgarsky, 2016;
Liang and Srikant, 2017) but their techniques are restricted to one-dimensional functions.

5 Robust Generalization for Low-Dimensional-Manifold Data

In this section, we focus on refined structure of data’s input distribution P(X). A common belief
of real-life data such as images is that the data points lie on a low-dimensional manifold. It pro-
motes a series of methods that are invented to make the dimensionality reduction, including linear
dimensionality reduction (e.g., PCA (Pearson, 1901)) and non-linear dimensionality reduction (e.g.,
t-SNE (Hinton and van der Maaten, 2008)). Several works have also empirically verified the belief.
Roweis and Saul (2000) and Tenenbaum et al. (2000) have demonstrated that image, speech and
other variant form data can be modeled nearly on low-dimensional manifolds. In particular, Wang
et al. (2016) studies auto-encoder based dimensionality reduction, and shows that the 28 x 28 = 784
dimensional image from MNIST can be reduced to nearly 10 dimensional representations, which
corresponds to the intrinsic dimension of the handwritten digital dataset.



Motivated by these findings, in this section, we assume that data lies on a low-dimensional manifold
M embedded in [0, 1]¢ i.e. supp(X) C M C [0, 1]¢. We will show a improved upper bound that
is exponential in the intrinsic k£ of the manifold M instead of the ambient data dimension d for the
size of networks achieving zero robust test error, which implies the efficiency of robust classification
under the low-dimensional manifold assumption. Also, we point out that the exponential dependence
of k is not improvable by establishing a matching lower bound.

5.1 Preliminaries

Let M be a k—dimensional compact Riemannian manifold embedded in R?, where k is the intrinsic
dimension (k < d).

Definition 5.1 (Chart, atlas and smooth manifold). A chart for M is a pair (U, @) such that
U C M is open and ¢ : U — RF, where ¢ is a homeomorphism; An atlas for M is a collec-
tion {(Ua; $a)}qc 4 of pairwise C™ compatible charts such that | ) U, = M; And we call M
a smooth manifold if and only if M has a C*° atlas.

Definition 5.2 (Partition of unity). A C°° partition of unity on a manifold M is a collection of
non-negative C* functions p, : M — Rifor a € A that satisfy (1) the collection of supports,
{supp (pa) }aear is locally finite; and (2) Y- o4 pa = 1.

Definition 5.3 (Poly-Partitionable). We call that M is poly-partitionable if and only if, for a tangent-
space-induced atlas {(Uy, To) }aca of M, there exists a particular partition of unity {pa }aca that
satisfies po, o T ' is a simple piecewise polynomial in R¥, where simple piecewise polynomial is
defined as the composite mapping between a polynomial and a size-bounded ReLU network.

a€cA

The concept, poly-partitionable, defines a class of manifolds that have simple partition of unity,
which is a generalization of some structures in the standard Euclidean space R?. For example, an
explicit construction for low-dimensional manifold [0, 1] is {¢,,(z)} in Yarotsky (2017), where the
coordinate system is identity mapping.

5.2 Main results under the low-dimensional manifold assumption

Before giving our main results, we first extend robust classification to the version of manifold.

Definition 5.4 (Robust classification on a manifold). Given a probability measure P on M X
{—1,41} and a robust radius ¢, the robust test error of a classifier f : M — R w.rt P and §

. 0]
under £, norm is defined as L'f\/l)P(f) =K, y)~P [maXz’eM,HmLpréd I{sgn(f(2")) # y}]
Now, we present our main result in this section, which establishes an improved upper bound for size
that is mainly exponential in the intrinsic dimension & instead of the ambient data dimension d.

Theorem 5.5. Let M C [0,1]% be a k—dimensional compact poly-partitionable Riemannian man-
ifold with the condition number 7 > 0. For any two 2¢— separated A, B C M under £, norm,
distribution P on the supporting set S = A U B and robust radius ¢ € (0,1), there exists a ReLU

network f with at most i
o (((1 _p e/\/E)k>

parameters, such that L35 (f) = 0, where k = O (klogd) is almost linear with respect to the
intrinsic dimension k, only up to a logarithmic factor.

Proof sketch. The proof idea of Theorem 5.5 has two steps. First, we construct a Lipschitz robust
classifier f* in Proposition 3.2. Then, we regard f* as the target function and use a ReLU network
f to approximate it on the manifold M. The following lemma is the key technique that shows we
can approximate Lipschitz functions on a manifold by using ReLU networks efficiently.

Lemma 5.6. Let M C [0,1]¢ be a k—dimensional compact poly-partitionable Riemannian mani-
fold with the condition number T > 0. For any small § > 0 and a L—lipschitz function g : M — R,

there exists a function g implemented by ReLU network with at most @) ((\/ZiL / 5)"“) parameters,
such that |g — §| < & for any x € M, where k is the same as Theorem 5.5.



By applying the conclusion of Lemma 5.6, we can approximate the 1/e—Lipschitz function f* in
Proposition 3.2 via a ReLU network f with at most O (exp(l;) parameters, such that the uniform
approximation error || f — f*|ls__(aq) at most 1 — c.

Next, we prove the theorem by contradiction. Assume that there exists some perturbed input z’ that
is mis-classified and the original input z is in A. So we know f(z’) < 0 and f*(x) < €. This

impiles dog (27, A) < doo(z', B) < S doo (2, A). Combined with doo (2', A) + doo(2/, B) >

1—€’

doo (A, B) > 2¢, we have do (2', A) > (1 — €')e = ce, which is a contradiction. O

Remark 5.7. Chen et al. (2019) studies network-based approximation on smooth manifolds, and
also establishes an O(5~") bound for the network’s size. However, different from their setting
where the approximation error ¢ goes to zero, it is reasonable that the separated distance € and
robust radius c are constants in our setting. If we simply follow their proofs, we can only obtain the
bound O((6/Caq) %) where Cpq also grows exponentially with respect to k, which further implies
that the final result will be roughly exp(O(k?)). This bound is too loose, especially when k ~ V/d.
To this end, we propose a novel approximation framework so as to improve the bound to exp(O(k)),
which is presented as Lemma 5.6. And the detailed proof of Lemma 5.6 is deferred to Appendix E. 1.

Although we have shown that robust classification will be more efficient when data lies on a low-
dimensional manifold, there is also a curse of dimensionality, i.e., the upper bound for the network’s
size is almost exponential in the intrinsic dimension k. The following result shows that the curse of
dimension is also inevitable under the low-dimensional manifold assumption.

Theorem 5.8. Let ¢ € (0,1) be a small constant. There exists a sequence { Ny },>1 that satisfies
N, = Q ((26\/d/k)’§). and a universal constant C; > 0 such that the following holds: let

M C [0,1]? be a complete and compact k—dimensional Riemannian manifold with non-negative
Ricci curvature , then there exists two 2e-separated sets A, B C M under {~, norm, such that for
any po—Dbalanced distribution P on the supporting set S = AU B and robust radius ¢ € (0,1), we
have inf {ﬁ%o’ce(f) : f S FNk} > ClM(]~

In other words, the robust test error is lower-bounded by a positive constant « = C g unless the
neural network has size larger than exp(§2(k)). The detailed proof of Theorem 5.8 is presented in
Appendix E.4.

6 Conclusion

This paper provides a new theoretical understanding of the gap between the robust training and
generalization error. We show that the ReLU networks with reasonable size can robustly classify the
finite training data. On the contrary, even with the linear separable and well-separated assumptions,
ReLU networks must be exponentially large to achieve low robust generalization error. Finally,
we consider the scenario where the data lies on the low dimensional manifold and prove that the
ReLU network, with a size exponentially in the intrinsic dimension instead of the inputs’ dimension,
is sufficient for obtaining low robust generalization error. We believe our work opens up many
interesting directions for future work, such as the tight bounds for the robust classification problem,
or the reasonable assumptions that permit the polynomial-size ReL.U networks to achieve low robust
generalization error.
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