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Abstract

We consider the problem of solving stochastic monotone variational inequalities
with a separable structure using a stochastic first-order oracle. Building on standard
extragradient for variational inequalities we propose a novel algorithm—stochastic
accelerated gradient-extragradient (AG-EG)—for strongly monotone variational
inequalities (VIs). Our approach combines the strengths of extragradient and
Nesterov acceleration. By showing that its iterates remain in a bounded domain and
applying scheduled restarting, we prove that AG-EG has an optimal convergence
rate for strongly monotone VIs. Furthermore, when specializing to the particular
case of bilinearly coupled strongly-convex-strongly-concave saddle-point problems,
including bilinear games, our algorithm achieves fine-grained convergence rates
that match the respective lower bounds, with the stochasticity being characterized
by an additive statistical error term that is optimal up to a constant prefactor.

1 Introduction

The variational inequality (VI) problem plays a central role in a wide range of optimization problems
with convex structure, including convex minimization, saddle-point problems, and games [Facchinei
and Pang, 2003, Nemirovski, 2004, Nemirovski et al., 2009, Juditsky et al., 2011, Jordan et al., 2023].
A general VI problem aims to find a solution z⇤ 2 Z that satisfies:

hW(z⇤), z⇤ � zi  0, 8z 2 Z, (1)

where Z is a finite-dimensional closed and convex feasible set and W(·) is a monotone operator
in the following form:

W(z) = rF(z) +H(z) + J
0(z) ⌘ E⇠[r eF(z; ⇠)] + E⇣ [ eH(z; ⇣)] + J

0(z), (2)

where F is continuously differentiable with L-Lipschitz continuous gradient and is µ-strongly
convex, H is an M -Lipschitz monotone operator, J 0 2 @J is the subgradient of a simple and convex
function, ⇠ and ⇣ are drawn from distributions D⇠ and D⇣ , respectively. This formulation captures
a separable structure in which H usually models the competing forces in a system, and J models
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a nonsmooth factor. In addition, we consider the stochastic setting where we can only access rF
and H through their unbiased estimators r eF(z; ⇠) and eH(z; ⇣) respectively.

A notable instance of the VI problem (1) with separable structure (2) is the widely studied bilinearly

coupled strongly-convex-strongly-concave saddle-point problem:

min
x2Rn

max
y2Rm

F (x,y) = F (x) +H(x,y)�G(y) ⌘ E⇠ [f(x; ⇠)] + E⇣ [h(x,y; ⇣)]� E⇠ [g(y; ⇠)] ,

(3)
where H(x,y) ⌘ x>By � x>ux + u>

y y is the bilinear coupling function with the coupling
matrix B 2 Rn⇥m. Note that (3) is a special instance of (1) when taking F(z) = F (x) + G(y),
H(z) = [rxH(x,y);�ryH(x,y)] and J = 0. In addition to a wide range of applications in
economics, problems of form (3) are becoming increasingly important in machine learning. For
instance, (3) appears in reinforcement learning, differentiable games, regularized empirical risk
minimization, and robust optimization formulations. It can also be seen as a local approximation
of the nonconvex-nonconcave minimax games—e.g., the generative adversarial network (GAN)
[Goodfellow et al., 2020]—around a local Nash equilibrium [Mescheder et al., 2017, Nagarajan and
Kolter, 2017].

In this paper, we aim to improve the efficiency of solving (1) by utilizing the structural information
of the monotone operator in (2). More specifically, we consider the case when F is strongly
monotone, or zero. Although optimal convergence results have been obtained for the monotone VI
problem (1) [Chen et al., 2017] as well as the special case of convex-concave saddle-point problem
with bilinear coupling (3) [Chen et al., 2014], it remains open how to design an optimal algorithm
for the strongly monotone VI problem. Notably, for the special case (3) when F and/or G are
strongly convex, several concurrent works have independently obtained the optimal convergence
rates [Kovalev et al., 2022, Thekumparampil et al., 2022, Jin et al., 2022, Metelev et al., 2022, Li
et al., 2022b]. On the other hand, when both F and G are zero, optimal convergence results have
been obtained by Li et al. [2022a] and the accelerated-gradient optimistic gradient approach [Li et al.,
2022b]. We defer a more complete overview of related work to the appendix.

1.1 Main Contributions

We start with the strongly monotone VI problem in an unbounded feasible set, extending the scope
of recent work such as Jin et al. [2022] and going beyond earlier studies that focus on nonstrongly
monotone VIs in a bounded feasible set [Juditsky et al., 2011, Chen et al., 2017].1 We propose a
class of algorithms named stochastic accelerated gradient-extragradient (AG-EG), which combine
Nesterov acceleration with the extragradient method. By employing either a strong-convexity shifting
technique or a scheduled restarting scheme, our algorithm achieves convergence rates that match
the lower bounds for the general strongly monotone VI problem (1), the special SC-SC saddle-point
problem (3), and bilinear games, in both deterministic and stochastic settings, thus providing a unified
optimal solution. In sharp contrast to the accelerated mirror-prox (AMP) algorithm proposed by Chen
et al. [2017], Jordan et al. [2023], our analysis does not rely on the boundedness of the feasible set
Z , which makes our algorithm projection-free. We also extend our algorithm to VIs with bounded
feasible set and/or nondifferentiable convex regularization through proximal mapping. We summarize
our contributions as follows:

(1) We present a direct approach for separable strongly monotone VIs, where the iteration complexity
lower bound due to Zhang et al. [2022] is matched as O

⇣q
L
µ + M

µ + �2

µ2"2

⌘
log

⇣
L
µ

1
"

⌘
, which

admits a sharp near-unity coefficient [§2.3, Theorem 2.3]. Here �
2 is the weighted, uniform

variance bound on the stochastic gradient and stochastic operator.
(2) We also present a stochastic AG-EG algorithm equipped with scheduled restarting, which achieves

the sharpest possible iteration complexity of O
⇣⇣q

L
µ + M

µ

⌘
log

�
1
"

�
+ �2

µ2"2

⌘
for finding an

"-optimal point. The deterministic part matches the complexity lower bound in Zhang et al.
[2022], while the stochastic part matches the optimal statistical error.

1VIs in an unbounded feasible set is more difficult to solve because existing algorithms and analyses crucially
rely on the boundedness of the feasible set.
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When specializing the VI problem to bilinearly coupled SC-SC saddle-point problems, our results
have the following implications:

Strongly-convex-strongly-concave (SC-SC) Saddle-Point Problem. For the class of SC-SC
saddle-point problems, the stochastic AG-EG descent-ascent Algorithm 1, equipped with scaling
reduction, achieves an iteration complexity of

O
  q

LF
µF
_ LG

µG
+

r
�max(B

>B)
µFµG

!
log

✓
1

"

◆
+ �2

µ2
F "2

!
, (4)

where F : Rn ! R is LF -smooth and µF -strongly convex, G : Rm ! R is LG-smooth and
µG-strongly convex. When the optimization problem is deterministic, the complexity upper bound
matches the lower bound of Zhang et al. [2022][§3.1, Corollary 2.8].

Bilinear Games. For bilinear games (rf(x; ⇠) = 0 andrg(y; ⇠) = 0 almost surely), Algorithm 1,
equipped with scheduled restarting achieves an iteration complexity of

O
✓r

�max(B
>B)

�min(BB>) log

✓
4
p

�min(BB>)�max(B>B)
�Bil

◆
+ �2

Bil

�min(BB>)"2

◆
, (5)

where �
2
Bil is the variance of the stochastic gradient on the bilinear coupling term. When there

is no randomness, this complexity result reduces to O
⇣q

�max(B>B)
�min(BB>) log

�
1
"

�⌘
for bilinear games,

matching the lower bound of Ibrahim et al. [2020] [§3.2, Corollary 3.3].2

Organization. The rest of this paper is organized as follows. Section 2 proposes the Accelerated
Gradient-Extragradient Descent-Ascent algorithm for strongly monotone VIs, showing that it achieves
an accelerated convergence rate, and extending to VIs with bounded domains with proximal operator.
Section 3 discusses two specific instances of saddle-point problems, where our proposed AG-EG
algorithm has a convergence rate that matches the corresponding lower bounds. Finally, Section 4
summarizes our results and suggests future directions.

Notation. Let �max(M) (resp. �min(M) be the largest (resp. smallest) eigenvalue of a real symmet-
ric matrix M. Let a_ b ⌘ max(a, b) (resp. a^ b ⌘ min(a, b)) denote the maximum (resp. minimum)
value of two reals a, b. For two nonnegative real sequences (an) and (bn), we write an = O(bn)
or an . bn (resp. an = ⌦(bn) or an & bn) to denote an  Cbn (resp. an � Cbn) for all n � 1
for a positive, numerical constant C, and let an ⇣ bn if both an . bn and an & bn hold. We also
let an = Õ (bn) denote an  Cbn where C hides a polylogarithmic factor in problem-dependent
constants. We let [x;y] 2 Rn+m concatenate two vectors x 2 Rn and y 2 Rm. Finally for two
real symmetric matrices A and B, we denote A � B (resp. A ⌫ B) when v>(A � B)v  0
(resp. v>(A�B)v � 0) holds for all vectors v.

2 Accelerated Gradient-Extragradient Descent-Ascent Algorithm

In this section, we focus on accelerating the extragradient algorithm for the strongly monotone VI
problem in (1) with separable structure (2). Our algorithm design draws inspiration from the work
of Chen et al. [2017] on the stochastic Accelerated MirrorProx (AMP) algorithm for nonstrongly
monotone VIs. The AMP algorithm applies Nesterov-type acceleration on top of the mirror-prox
method [Korpelevich, 1976, Nemirovski, 2004] and attains the optimal iteration complexity of
O
⇣q

L
" + M

"

⌘
. However, the big-O notation hides the diameter of the feasible set, and the existing

theory for the AMP algorithm can only deal with VIs with bounded domain. Our algorithm not
only achieves the optimal convergence rates for the strongly monotone VI problem with separable
structure but we also remove the dependency on the diameter of the feasible set. Therefore, our
algorithm can deal with VIs with unbounded domains.

2For the function class of bilinear games, we assume that n = m where B is a nonsingular square matrix,
so that �min(BB>) > 0 and the complexity makes sense. See §3.2 for more on this.
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Throughout §2, we maintain conceptual simplicity by presenting all our algorithm designs in the
deterministic setting, while presenting the convergence results in the more general stochastic setting.
These results can be easily reduced to the deterministic setting when the stochastic noise vanishes.

2.1 Setting and Assumptions

In this section, we formally introduce our assumptions. We first state the smoothness and monotonicity
assumptions that we impose on F and H.

Assumption 2.1 (Monotonicity, strong convexity and smoothness) We assume that function F(·)
is continuously differentiable with L-Lipschitz continuous gradient and is µ-strongly convex. That is,

for any z, z0 2 Z ,

µ
2 kz � z0k2  F(z)� F(z0)�rF(z0)>(z � z0)  L

2 kz � z0k2.
Furthermore, operator H(·) is monotone and M -Lipschitz in the sense that for any z, z0 2 Z ,

hH(z)�H(z0), z � z0i � 0, kH(z)�H(z0)k Mkz � z0k.

Second, we impose assumptions on the noise variance.

Assumption 2.2 (Unbiased gradients and variance bounds) We assume that z 2 Z , samples

⇠ ⇠ D⇠ and ⇣ ⇠ D⇣ are drawn from given distributions such that the following conditions hold:

E⇠[rF̃(z; ⇠)] = rF(z), E⇣ [H̃(z; ⇣)] = H(z), and

E⇠

h
krF̃(z; ⇠)�rF(z)k2

i
 �

2
Str, E⇣

h
kH̃(z; ⇣)�H(z)k2

i
 �

2
Bil. (6)

For all results in this work, we suppose that Assumptions 2.1 and 2.2 hold with appropriate parameter
settings. Given a desired accuracy " > 0, our goal is to find an "-optimal point defined as:

Definition 2.1 ("-Optimal point) A point z 2 Z is called an "-optimal point for the VI problem

in (1) if kz � z⇤k  ".

2.2 The ExtraGradient (EG) Algorithm

We first consider the case where Z is the entire space Rn and the objective is smooth (J = 0).
The extragradient (EG) algorithm, introduced by Korpelevich [1976], is designed to address cyclic
behavior in saddle-point problems by introducing an extrapolated point for gradient evaluation. In
the context of VI problems (1), let zt represents the t-th iterate of the EG algorithm. The update rule
of EG is as follows:

zt+1 = zt � ⌘W
�
zt � ⌘W(zt)

�
, (7)

where ⌘ > 0 is the step size. For a L-smooth and µ-strongly monotone operator W , Tseng [1995],
Mokhtari et al. [2020], Gidel et al. [2019a] have shown that the EG algorithm achieves an iteration
complexity of O( log(1/")), where  = L/µ denotes the condition number of the problem.

2.3 Accelerating the ExtraGradient Algorithm, Direct Approach

The convergence rate of the EG algorithm is far from optimal for the strongly monotone VI problem
in (1) with separable structure (2). Firstly, the update rule in (7) takes W as a whole without utilizing
the separable structure. This prevents us from exploiting the properties of rF . Secondly, in the case
of bilinear games, the established lower bound for EG is ⌦(

p
 log(1/")) rather than ⌦( log(1/")).

This discrepancy highlights the potential for accelerating the EG algorithm in various directions. We
first rewrite the EG update rule in (7) as follows:

zt� 1
2
= zt�1 � ⌘W(zt�1) = zt�1 � ⌘

�
H(zt�1) +rF(zt�1)

�
,

zt = zt�1 � ⌘W(zt� 1
2
) = zt�1 � ⌘

�
H(zt� 1

2
) +rF(zt� 1

2
)
�
. (8)

To accelerate the process based on rF , we consider Nesterov’s second acceleration scheme on
minimizing a single convex function F [Tseng, 2008, Lan and Zhou, 2018, Lin et al., 2020c]:

zmd
t�1 = (1� ↵t)z

ag
t�1 + ↵tzt�1, zt = zt�1 �

⌘

↵t
rF(zmd

t�1), z
ag
t = (1� ↵t)z

ag
t�1 + ↵tzt, (9)
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where ↵t is the extrapolation step size in the standard three-line Nesterov scheme. Here we adopt
the notation zmd and zag to indicate the middle point and the aggregated point [Chen et al., 2017],
respectively. Next, to achieve acceleration, we replace the gradient of rF evaluated at both zt�1

and zt� 1
2

in (8) by the gradient evaluated at the extrapolated point zmd
t�1 in (9). Furthermore, we shift

the index of zag by 1
2 to indicate the use of zt� 1

2
instead of zt in the zag update in (9). In addition,

we take into account the µ-strong convexity of F and shift the gradient of the strongly convex
part rz

⇥µ
2 kz � z0k2

⇤
= µ(z � z0) from rF(z) to H(z) as W(z) = (rF(z)� µ(z � z0)) +

(H(z) + µ(z � z0)), we obtain the following update rule for a direct version of an accelerated EG
algorithm (different step size schemes for ⌘t are required for different algorithmic designs):

8
>>>>>><

>>>>>>:

zmd
t�1 = (1� ↵t)z

ag
t� 3

2
+ ↵tzt�1,

zt� 1
2
= zt�1 � ⌘t

�
H(zt�1) +rF(zmd

t�1)� µ(zmd
t�1 � zt�1)

�
,

zt = zt�1 � ⌘t

⇣
H(zt� 1

2
) +rF(zmd

t�1)� µ(zmd
t�1 � zt� 1

2
)
⌘
,

zag
t� 1

2
= (1� ↵t)z

ag
t� 3

2
+ ↵tzt� 1

2
.

(10)

We call the algorithm in (10) the accelerated gradient-extragradient, direct approach (AG-EG-Direct),
and postpone its full description to Algorithm 2 in §C.1. The final output of the direct approach is
zT after T iterates. The following theorem records the convergence rate and iteration complexity of
AG-EG (direct approach).

Theorem 2.3 (Convergence of stochastic AG-EG, direct approach) Suppose Assumptions 2.1

and 2.2 hold. Fix any r 2 (0, 1), � 2 (0,1), let � = L
µ + (1+�)M2

µ2 and set the step size

upper bound ↵̄ ⌘ r
1+
p

1+r�
. For any sequence of step sizes ↵t 2 (0, ↵̄] and ⌘t =

↵t
µ , the iterates of

stochastic AG-EG (direct approach) satisfy that for all t = 1, . . . , T , we have

E kzt � z⇤k2  kz0 � z⇤k2
⇣

L
µ + 1

⌘ tY

s=1

(1� ↵s) +
3�2

µ2

tX

s=1

↵
2
s

tY

⌧=s+1

(1� ↵⌧ ), (11)

where we define � = 1
p
3

q
1

1�r�
2
Str + (2 + 1

� )�
2
Bil.

In the rest of the paper, we use the same definition � as in Theorem 2.3. The proof of Theorem 2.3 is
provided in §D.4. We further note that one possible choice of step size is to let ↵t ⌘ ↵, such that (11)
reduces to

E kzt � z⇤k2  kz0 � z⇤k2
⇣

L
µ + 1

⌘
e
�↵t + 3�2

µ2 ↵.

For any given T � 1, by choosing the optimal ↵ = 1
T

⇣
1 + log

⇣
µ2T
3�2

⇣
L
µ + 1

⌘
kz0 � z⇤k2

⌘⌘
^

↵̄, (11) implies

EkzT � z⇤k2  kz0 � z⇤k2
⇣

L
µ + 1

⌘
e
�↵̄T + 3�2

µ2T

⇣
1 + log

⇣
µ2T
3�2

⇣
L
µ + 1

⌘
kz0 � z⇤k2

⌘⌘
.

Prescribing the desired accuracy " > 0, the iteration complexity to output an "-optimal minimax
point is 3

O
⇣⇣q

L
µ + M

µ + �2

µ2"2

⌘
log

⇣⇣
L
µ + 1

⌘
kz0 � z⇤k2/"2

⌘⌘
.

We conjecture that the logarithmic factor in the optimal statistical rate �2

µ2"2 is removable using
a proper diminishing step size, a possibility that we reserve for future study. In the setting of
deterministic optimization, setting � = 0 and r ! 1�, � ! 0+ in Theorem 2.3, we obtain the
optimal iteration complexity bound as follows:

✓
1 +

q
1 + L

µ + M2

µ2

◆
log

⇣⇣
L
µ + 1

⌘
/"

2
⌘
. (12)

3Throughout this work, we focus on the iteration complexity whereas the required number of queries to the
stochastic gradient oracle is three times the iteration complexity.
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Algorithm 1 Stochastic AcceleratedGradient-ExtraGradient (AG-EG) Descent-Ascent Algorithm,
with Scheduled Restarting

Require: Initialization z[0]
0 , total number of epochs S � 1, total number of per-epoch iterates

(Ts : s = 1, . . . ,S ), stepsizes (↵t, ⌘t : t = 1, 2, . . .).
for s = 1, 2, . . . ,S do

Set zag
�

1
2
 z[s�1]

0 , z0  z[s�1]
0 , zmd

0  z[s�1]
0

for t = 1, 2, . . . , Ts do
Draw samples ⇠t� 1

2
⇠ D⇠ from oracle, and also ⇣t� 1

2
, ⇣t ⇠ D⇣ independently from oracle

zt� 1
2
 zt�1 � ⌘t

⇣
H̃(zt�1; ⇣t� 1

2
) +rF̃(zmd

t�1; ⇠t� 1
2
)
⌘

zag
t� 1

2
 (1� ↵t)z

ag
t� 3

2
+ ↵tzt� 1

2

zt  zt�1 � ⌘t

⇣
H̃(zt� 1

2
; ⇣t) +rF̃(zmd

t�1; ⇠t� 1
2
)
⌘

zmd
t  (1� ↵t+1)z

ag
t� 1

2
+ ↵t+1zt

end for
Set z[s]

0  zag
Ts�

1
2

{//Warm-start using the output of the previous epoch}
end for
Output: z[S ]

0

Remark 2.4 Our complexity bounds fundamentally differs from the previous analysis [Chen et al.,

2017, Jordan et al., 2023] for separable smooth (strongly) monotone VIs. The convergence results

in previous studies are dependent on the diameter of the domain, whereas our convergence rate is

independent of the domain parameters and eliminates the need for projection onto a bounded domain.

Moreover, our contributions go beyond those of Chen et al. [2017] by extending the analysis to the

strongly monotone case. In comparison with Jordan et al. [2023], we design an algorithm whererF
is strongly monotone and resolve the open problem of extending the analysis to the stochastic case.

Additionally, our complexity bound in (12) indicates a near-unity coefficient on the condition-number

exponent, improving the corresponding coefficient in Chen et al. [2017, Theorem 15] by an asymptotic

factor of 4.

The direct approach, which reduces to EG whenrF = 0 and µ = 0, falls short of attaining optimality
within the specific regime of bilinear games. In the next subsection, we will introduce a new algorithm
that can overcome this limitation.

2.4 Accelerating the ExtraGradient Algorithm with Scheduled Restarting

In this subsection, we solve problem (1) by further accelerating the stochastic EG algorithm. Rather
than directly relying on the strong monotonicity of rF , the inner updates of our new algorithm
are identical to the updates in (10) with µ = 0. Due to the domain-independent nature of our
analysis, we can apply the scheduled restarting technique [O’donoghue and Candes, 2015, Roulet
and d’Aspremont, 2017, Renegar and Grimmer, 2022] to the outer loop, accelerating the algorithm
from sublinear convergence to linear convergence. In addition, the output of our algorithm is the
aggregated point zag

T�
1
2

after T iterates. We present the full algorithm in Algorithm 1.

We first present the convergence rate of a single epoch (i.e., the inner loop) of Algorithm 1 in
Theorem 2.5. To accommodate more flexibility in the choice of parameters, we introduce three
constants r,�, and C in the theorem statement.

Theorem 2.5 (Convergence of stochastic AG-EG, one epoch) Suppose Assumptions 2.1 and 2.2

hold. For any fixed epoch length T � 1, any constant r 2 (0, 1), � 2 (0,1), C 2 (0,1), choose

step sizes ↵t =
2

t+1 and ⌘t such that

t
⌘t

= 2
rL _B +

q
1+�
r Mt, (13)

6



where B = �
p
T (T+1)

C
p

Ekz0�z⇤k2
. The output zag

T�
1
2

of a single epoch of Algorithm 1 satisfies

E
���zag

T�
1
2
� z⇤

���
2
 2

µ(T+1)

✓
2L
rT +A

q
1+�
r M

◆
E kz0 � z⇤k2 + 2( 1

C +C)�

µ
p
T

q
E kz0 � z⇤k2,

(14)
where the prefactor A ⌘ 1 + C

2
B⌘1  1 + C

2
reduces to 1 when � = 0.

The proof of Theorem 2.5 is provided in §D.3. We make a few remarks on Theorem 2.5 as follows:

Remark 2.6 In the setting of deterministic optimization, by taking � = 0, r ! 1�, � ! 0+ in our

analysis, with step size choice ⌘t =
t

2L+Mt , we obtain that

kzag

T�
1
2
� z⇤k2  2

µ(T+1)

⇣
2L
T +M

⌘
kz0 � z⇤k2, (15)

In this setting, the algorithm is independent of B and requires no knowledge of kz0 � z⇤k2. In

the face of stochasticity, we choose C = 1 when the initial distance to the optimal point is known.

Alternatively, when only an over-estimate �0 of

p
Ekz0 � z⇤k2 is available, we can set (large

enough) C = �0p
Ekz0�z⇤k2

� 1 to obtain

Ekzag

T�
1
2
� z⇤k2  2

µ(T+1)

✓
2L

rT
+ 2

q
1+�
r M

◆
�2
0 +

4�
µ
p
T
�0. (16)

Remark 2.7 When the constants are not a concern, the coarse-grained choices of r = 1
2 and � = 1

would suffice. Nevertheless, to optimize the constants, the tradeoff between the deviation of r from 1
and � from 0 is crucial, as it determines a balance between the stochastic gradient noise variance

and the convergence rate coefficients.

To prepare for our multi-epoch result with the help of scheduled restarting, we perform an induction
based on (16) as follows. Supposing that Ekz[s�1]

0 � z⇤k2  �2
0e

1�s hold, by taking r = 1
2 and

� = 1, we have

Ekz[s]
0 � z⇤k2 . L

µT 2
s
�2
0e

1�s + M
µTs

�2
0e

1�s + �
µ
p
Ts
�0e

1�s
2 .

Setting the right-hand side of the above inequality to satisfy �2
0e

�s, and solving for Ts, we need the
epoch length satisfies Ts ⇣

q
L
µ + M

µ + �2

µ2�2
0e

1�s . Thus, we can obtain the total iteration complexity
as

SX

s=1

hq
L
µ + M

µ + �2

µ2�2
0e

1�s

i
=
⇣q

L
µ + M

µ

⌘
S + �2

µ2�2
0
· eS�1

e�1 ,

where S ⌘
l
log �2

0
"2

m
. This yields the following multi-epoch iteration complexity bound:

Corollary 2.8 (Iteration complexity of stochastic AG-EG with scheduled restarting) Under the

same condition of Theorem 2.5, the stochastic AG-EG with scheduled restarting in Algorithm 1 with

epoch length Ts ⇣
q

L
µ + M

µ + �2

µ2�2
0e

1�s has a total iteration complexity of

O
⇣⇣q

L
µ + M

µ

⌘
log

�
1
"

�
+ �2

µ2"2

⌘
. (17)

Note that the hard instance constructed by Zhang et al. [2022] can be modified in a straightforward
way to establish a lower bound of ⌦

⇣⇣q
L
µ + M

µ

⌘
log

�
1
"

�⌘
for our monotone VI (1), demonstrating

the optimality of Corollary 2.8 in the deterministic separable setting. An alternative optimality
argument proceeds as follows: the first term

q
L
µ matches the lower bound for the minimization of a

strongly convex function F [Nesterov, 2004], and the second term M
µ matches the lower bound for

VI for non-strongly monotone operator when rF = 0 [Ouyang and Xu, 2021]. This together gives
a lower bound for solving monotone VI (1) via a similar argument by Thekumparampil et al. [2022].
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It is worth noting that while both complexity bounds in Corollary 2.8 and Theorem 2.3 match
the lower bound in Zhang et al. [2022] for strongly monotone VIs with separable structure, the
direct approach in §2.3 reduces to the last-iterate independent-sample stochastic extragradient (SEG)
algorithm in bilinear games. Consequently, the deterministic part (� = 0) fails to match the lower
bound in Ibrahim et al. [2020]. In the stochastic case with noise variance bounded away from zero,
the direct approach in §2.3 can exhibit nonconvergence behavior [Hsieh et al., 2020, §3]. The AG-EG
algorithm in §2.4 resolves this issue by restarting the average-iterate SEG, matching the lower bound
results (see §3.2 for more details). In addition, the complexity bound in (17) also eliminates the log

prefactor of the statistical error term �2

µ2"2 compared to Theorem 2.3. The optimality of our algorithm

lies in not only the optimization complexity but also the statistical error rate �2

µ2✏2 . Here the "-optimal
point z is defined as kz � z⇤k  ".4

2.5 Extension of AG-EG to Proximal Algorithms

In previous subsections, we have focused on the case where the feasible set Z represents the entire
space and the nondifferentiable convex function J is dropped. We now extend the AG-EG algorithm
and its analysis to the more general setting that has a bounded feasible set (via Euclidean projection
onto the feasible set) as well as a nondifferentiable convex regularization term (via a proximal
operator). These settings are useful in various applications, such as the variational inequality on
the Lorentz cone where projection onto Z =

�
(x, t) 2 R(n+1) : kxk  t

 
is required [Chen et al.,

2017], and the two-player game that involves projection onto the probability simplex, among others.
To deal with bounded feasible set Z , we adopt a variant of the EG algorithm, where we project the
extrapolated point and the main iterates back onto the feasible set Z of W:

zt� 1
2
= PZ [zt�1 � ⌘W(zt�1)] = argmin

z2Z

hz � zt�1, ⌘W(zt�1)i+
1

2
kz � zt�1k2 ,

zt = PZ

h
zt�1 � ⌘W(zt� 1

2
)
i
= argmin

z2Z

D
z � zt�1, ⌘W(zt� 1

2
)
E
+

1

2
kz � zt�1k2 , (18)

where PZ(z) = argminz02Z kz � z0k2 is the Euclidean projection operator. To handle the nondif-
ferentiable simple convex function J , we replace the projection operator in (18) by the following
proximal mapping defined via a Bregman divergence B(·, ·):

proxJ
z(v) ⌘ argmin

u2Z

hv,u� zi+ B(z,u) + J(u). (19)

In fact, (18) can be seen as a special case of (19) when choosing the Bregman divergence B(z,u) =
1
2kz � uk2 and J(u) as the set indicator function of the feasible set Z . Therefore, by substituting
the prox-mapping (19) into the AG-EG updates introduced in §2.4, we obtain the more general
proximal AG-EG algorithm in Algorithm 3 (See in §C.2), which reduces to Algorithm 1 when
J = 0, B(z,u) = 1

2kz � uk2 and Z = Rn. Moreover, we assume that B(·, ·) is µB-strongly convex.
Without loss of generality, in contrast to the previous assumption of µ-strong convexity for F , we
instead assume that F is µ-strongly convex with respect to the Bregman divergence B(·, ·) (See, for
example, Hazan and Kale [2014], Xu et al. [2018]). Similar to Corollary 2.8, we have the following
iteration complexity result, whose proof is deferred to §D.5:

Corollary 2.9 (Iteration complexity of stochastic proximal AG-EG with scheduled restarting)
Under the same condition of Theorem 2.5, the stochastic proximal AG-EG with scheduled restarting

in Algorithm 3, with epoch length Ts ⇣
q

L
µµB

+ M
µµB

+ �2
B(z0,z

⇤)
µ2µB�2

0e
1�s , has a total iteration complexity

of

O
⇣⇣q

L
µµB

+ M
µµB

⌘
log

�
1
"

�
+ �2

B(z0,z
⇤)

µ2µB"2

⌘
.

For the deterministic case, proximal AG-EG with scheduled restarting has a total iteration complexity
of O

⇣⇣q
L

µµB
+ M

µµB

⌘
log

�
1
"

�⌘
to output an "-optimal point of (1).

4The optimal statistical error rate �2

µ2T
has been achieved by a multistage algorithm in Fallah et al. [2020],

where the "-optimal point is defined by
��z � z⇤��2

 ". In our paper, the "-optimal point is defined by��z � z⇤��  ". Therefore, our statistical error rate can be translated into �2

µ2T
using their definition, which

matches their result.
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3 Implications for Specific Instances

In this section, we discuss the implications of our AG-EG algorithm and its convergence rates when
applying to two instances of saddle-point problems.

3.1 Strongly-Convex-Strongly-Concave Saddle-Point Problem

For the stochastic bilinearly-coupled SC-SC saddle-point problem (3), we note that the smoothness
and strong convexity parameters LF , LG, µF , and µG of F and G may differ. To accommodate these
variations in curvature information, we employ a scaling reduction technique. This technique enables
us to convert the SC-SC with equal strong convexity parameters for F and G by reparametrizing the
objective function. The same argument is also applicable to the direct approach.

In lieu of (3), we consider
min
x̂

max
ŷ

F̂ (x̂, ŷ) = F (x̂) + Ĥ(x̂, ŷ)� Ĝ(ŷ),

where F̂ (x̂, ŷ) = F (x,y) with the symbolic reparametrization x̂ = x, ŷ =
q

µG

µF
y, Ĥ(x̂, ŷ) =

H(x,y), Ĝ(ŷ) = G(y) and also their derivatives rŷĤ(x̂, ŷ) =
q

µF

µG
ryH(x,y),rĜ(ŷ) =

q
µF

µG
rG(y) (the stochastic oracles ĥ, ĝ follow the same rule). It is straightforward to verify

that F̂ (x̂, ŷ) is µ-strongly-convex-µ-strongly-concave. The essence of our update rules can be
summarized by the rescaled updates on y:

ŷt = ŷt�1 � ⌘t

⇣
�rŷh(x̂t� 1

2
, ŷt� 1

2
; ⇣t) +rg(ŷmd

t�1; ⇠t� 1
2
)
⌘

, yt = yt�1 � ⌘t · µF

µG

⇣
�ryh(xt� 1

2
,yt� 1

2
; ⇣t) +rg(ŷmd

t�1; ⇠t� 1
2
)
⌘
.

Therefore, it suffices to analyze Algorithm 3 for F̂ (x̂, ŷ) and due to this scaling reduction, we
only need to prove all results for the case of µF = µG = µ. It is also straightforward to justify
corresponding scaling changes as: L = LF _ µF

µG
LG, M =

q
µF

µG
�max(B>B), and µ = µF . The

following corollary is recovered by reverting the scaling reduction from F̂ (x̂, ŷ) to F (x,y).

Corollary 3.1 (Iteration complexity of stochastic AG-EG on SC-SC saddle-point problem)
For solving (3), Algorithm 1 with an epoch length Ts ⇣

q
LF
µF
_ LG

µG
+
q

�max(B
>B)

µFµG
+ �2

µ2
F�2

0e
1�s

has a total iteration complexity of

O
  q

LF
µF
_ LG

µG
+

r
�max(B

>B)
µFµG

!
log

�
1
"

�
+ �2

µ2
F "2

!
.

In the deterministic case, the iteration complexity in Theorem 2.8 matches the lower bound established

by Zhang et al. [2022], i.e., ⌦
✓✓q

LF
µF
_ LG

µG
+
q

�max(B>B)
µFµG

◆
log

�
1
"

�◆
. Moreover, our algorithm

achieves the optimal statistical rate of �2

µ2
F "2

up to a constant prefactor.

Remark 3.2 A well-known finding regarding the second scheme of Nesterov acceleration is its

connection to the primal-dual method [Lan and Zhou, 2018, Lin et al., 2020c]. This finding has

been incorporated into the design of the LPD algorithm [Thekumparampil et al., 2022], where a

Chambolle-Pock-style primal-dual method is utilized as an approximation of proximal point methods,

instead of the extragradient used in this paper. The LPD algorithm [Thekumparampil et al., 2022]

also achieves the optimal complexity for the deterministic bilinearly-coupled saddle-point problem.

3.2 Bilinear Games

In this subsection, we consider the particular case of bilinear games. We assume n = m such that B
is a nonsingular square matrix, rf(x; ⇠) = 0 and rg(y; ⇠) = 0 a.s., so (3) reduces to

min
x

max
y

F (x,y) = E⇣ [h(x,y; ⇣)] = H(x,y) = x>By � x>ux + u>

y y, (20)
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and Algorithm 3 reduces to the independent-sample extragradient descent-ascent algorithm for (20).
The saddle point [z⇤;!?

y] in this case is the unique solution to the linear equation


0 B
�B> 0

� 
z⇤

!?
y

�
=


ux

uy

�
, which has a closed-form solution


z⇤

!?
y

�
=


�(B>)�1uy

B�1ux

�
.

Our results imply the following iteration complexity for solving stochastic bilinear games.

Corollary 3.3 (Iteration complexity of stochastic AG-EG, bilinear games) For solving (20),
choose the step sizes ↵t =

2
t+1 and ⌘t ⌘ 1p

�max(B>B)
, in which case Algorithm 1 with an epoch

length Ts ⇣
q

�max(B
>B)

�min(BB>) has the total iteration complexity of

O
 r

�max(B
>B)

�min(BB>) log

✓
4
p

�min(BB>)�max(B>B)
�Bil

◆
+ �2

Bil

�min(BB>)"2

!
. (21)

Note that our choice of the step size is maximal and is independent of the noise. In the deterministic
setting, letting �Bil ⇣ "

4
p
�min(BB>)�max(B>B), the complexity bound in Corollary 3.3 reduces

to O
✓q

�max(B
>B)

�min(BB>) log
�
1
"

�◆
, which matches the lower bound in Ibrahim et al. [2020]. Notably,

Azizian et al. [2020b] proposed an algorithm achieving an upper bound that matches the lower bound
in Ibrahim et al. [2020].Li et al. [2022a] also proposed a lower-bound matching SEG algorithm that
uses a shared sample in both steps under an unbounded noise assumption. In contrast, our algorithm
is in the independent-sample setting with bounded noise variance.

Remark 3.4 Standard acceleration techniques do not attain the optimal nonasymptotic convergence

rate for bilinear games [Gidel et al., 2019b]. This limitation applies to various algorithms, including

the direct approach [§2.3], as well as several other acceleration techniques [Thekumparampil et al.,

2022, Kovalev et al., 2022, Jin et al., 2022], all of which fall short of achieving optimal acceleration

for bilinear games. Therefore, matching both lower bounds in a single algorithm in the general

stochastic setting has been an open problem. While Li et al. [2022b] present an algorithm that

achieves both lower bounds in a single algorithm, it relies on the use of optimistic gradients rather

than extragradients on the bilinear coupling function. Furthermore, our algorithm and analysis is

more general than those in Li et al. [2022b] as we can handle the general variational inequality with

proximal operators.

4 Conclusions

We have presented a stochastic extragradient-based acceleration algorithm, AG-EG, for solving
stochastic monotone variational inequalities with separable structure. The iteration complexity of our
algorithm matches the lower bound and is independent of the size of the feasible set. When specialized
to solving the bilinearly coupled saddle-point problem (3), our AG-EG algorithm simultaneously
matches lower bounds due to Zhang et al. [2022] and Ibrahim et al. [2020] for strongly-convex-
strongly-concave and bilinear games, respectively. To the best of our knowledge, this is the first time
that all three lower bounds have been met by a single algorithm. There are some remaining issues to
be addressed, however, including the case of one-sided nonstrong convexity, the setting of unbounded
noise variance, and the characterization of the full parameter regime dependency on �min(BB>).
These are left as important directions for future research.
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