
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

(MPO)2: Multivariate Polynomial Optimiza-
tion based on Matrix Product Operators

Anonymous authors
Paper under double-blind review

Abstract

Central to machine learning is the ability to perform universal function
approximation and learn complex input-output relationships from limited
numbers of observations. Suitable Multivariate Polynomial Optimization
can in theory provide universal function approximations. However, the
coefficients of the polynomial regression model grows exponentially in the
polynomial degree. To reduce exponential growth tensor factorizations of the
associated weight tensor have been explored, including the canonical polyadic
decomposition (CPD) and tensor train (TT) decompositions. Whereas CPD
has expressive power proportional to rank and current TT formulations are
feature order dependent with each input feature associated to a specific
factorization block. Furthermore, these procedures account for redundancies
sub-optimally in the weight tensor. We presently explore multivariate
polynomial optimization of matrix product operator (MPO) structures
forming the (MPO)2. Notably, the (MPO)2 defines a flexible framework
that naturally combines MPO polynomial weight tensors with MPO feature
embeddings. The (MPO)2 consequently produces an expressive yet compact
representation of multivariate polynomials that is feature order independent
and explicitly accounts for symmetries in the weight tensor. On a series
of regression and classification problems we observe that the proposed
(MPO)2 provides superior performance when compared to existing tensor
decomposition based multivariate polynomial regression approaches even
outperforming conventional universal function approximation procedures on
some datasets. The (MPO)2 provides an expressive and versatile alternative
to deep learning for universal function approximation with simple and
efficient inference using second order methods.

1 Introduction

A central task in machine learning is to learn from data suitable functions that can map
inputs to associated outputs in a way that best possible generalizes. Whereas it is well
established that deep learning can provide universal function approximation for sufficiently
large model architectures (Hornik et al., 1989), many other modeling tools exist for universal
function approximations. This includes Gaussian Processes (GPs) for suitable choices of
kernels (Williams & Rasmussen, 2006; Tran et al., 2016) and polynomial regressions, i.e. as
also guaranteed by Taylor’s theorem.
In the recent decade context aware learning methods have demonstrated superior performance
in generalization enabling to leverage nonlinear dependencies. This includes the transformer
architecture (Vaswani et al., 2017) and gating mechanisms as used for instance in long-short
term memory (Hochreiter & Schmidhuber, 1997) and gated linear units (Dauphin et al., 2017).
Importantly, such architectures can directly leverage multiplicative interactions between
attributes instrumental in deep learning (Jayakumar et al., 2020). Whereas multiplicative
interactions are well established in classical statistics as defined by widely used interaction
terms between features, the ability to directly account for simple multiplication operations
within a standard multilayer feed forward network has been shown to require several (i.e.,
four) hidden neurons (Lin et al., 2017).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Conversely, polynomial networks directly express multiplicative interactions using higher
degree terms. Early works on polynomial networks were based on the pi-sigma network (Shin
& Ghosh, 1991) that expressed polynomials as multiplications of simple linear regression
functions. Ridge polynomial networks (Shin & Ghosh, 1995) similarly express the polynomial
function in terms of successive accumulations whereas the pi-sigma-pi network introduced
an additional multiplicative layer combining multiple pi-sigma networks (Li, 2003).
Recently, polynomial networks have been advanced exploring tensor decomposition structures
including the canonical polyadic decomposition (Hendrikx et al., 2019; Govindarajan et al.,
2022; Ayvaz & De Lathauwer, 2022; Kilic & Batselier, 2025) as well as hierarchically coupled
CPD decompositions forming the P-Net (Chrysos et al., 2022b;a) which are directly related
respectively to the pi-sigma and ridge polynomial networks that can be considered rank one
CPD structured. Besides the CPD, these approaches have also been advanced to more flexible
tensor network structures including the tensor train/matrix product states decomposition
(MPS/TT) (Stoudenmire & Schwab, 2016b; Götte et al., 2021; Kilic & Batselier, 2025).
Importantly, decomposed polynomial networks can be optimized using simple alternating
linear systems (ALS) optimization using second order methods to optimize each factor of the
decomposition at a time, see also Hendrikx et al. (2019); Ayvaz & De Lathauwer (2022); Kilic
& Batselier (2025). Whereas the above polynomial networks explore tensor decompositions
for regression we note that they differ from tensor regression which aims to explore regression
of high order data structures (Liu et al., 2022). Tensor network representation for polynomial
networks also differ from recent efforts using tensor decomposition procedures to compress
the weight tensors in deep learning models, for a discussion of the connections between tensor
decompositions and deep learning see also Panagakis et al. (2021).
Importantly, tensor decomposition structures address the curse of dimensionality of the
multivariate polynomial regression weights (Shin & Ghosh, 1991). However, the existing
formulations using the CPD decomposition have limited expressive power, whereas the
current MPS/TT based modeling procedures are feature order dependent. Furthermore, these
procedures do not account for redundancies in the weight tensor and relies on prespecified
feature representations. These limitations, we argue, have hampered the wider adoption of
this otherwise attractive alternative to deep learning based function approximation.
We presently propose the Multivariate Polynomial Optimization based on Matrix Product
Operators (MPO)2 framework, a new tensor network based structure for the modeling
of higher order polynomials. Notably, (MPO)2 generalizes polynomial tensor networks
enhancing their

• Expressiveness: We consider more expressive tensor network representations ex-
ploring the matrix product operators formalism to both learn feature and polynomial
representations with added expressive capabilities when compared to CPD and
existing MPS/TT based procedures notably also being feature order independent
when compared to the latter.

• Versatility: We introduce generic structured operators to account for inductive
biases such as polynomial degree redundancies and translation invariance as imposed
by conventional convolutional neural networks. We further accommodate different
loss functions such as least squares for regression and cross-entropy minimization for
classification using a loss agnostic second order minimization framework.

We evaluate the proposed (MPO)2 structure for supervised learning on several tabular
datasets and on image classification, and highlight its advantages over the latest tensor
network based methods.

2 Methods

2.1 Tensor Networks and Tensor Notation

Tensor networks are represented by graphs where each node is a tensor and the connections
represent contraction over a mode of the tensor.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In this work, the position of the indices of a tensor, when referring to tensor networks
structures, will be at the apex to indicate vertical modes in the diagrammatic represen-
tation and at the pedex to indicate horizontal modes. The different positions have no
mathematical difference, but carries a conceptual difference where vertical modes will be
associated to the input space while horizontal modes will be associated with the latent space.
Summation over multiple indices of the tensor M with elements Mi1i2...in

will be denoted
by

∑
i1i2...in

Mi1i2...in =
∑

i Mi(n) , where i(n) = {i1, i2, . . . , in}, meaning that the sum is
performed over all the indices going from i1 to in. When the apex is omitted, it means that
i = i(N), where N is the degree of the polynomial.
A trivial example of a graphical representation of tensor networks can be seen in Figure 1 in
which, in the left panel, a tensor with five modes is illustrated, and in the middle panel a
contraction of two tensors multiplied along one mode corresponding to conventional matrix
multiplication, and in the right panel the matrix product operator (MPO) corresponding to
multiple tensors being pairwise contracted along one mode.

T

i

j

k

l

m

(a) 5-d tensor
Tijklm

A B
i

j

k

(b) Matrix product:
Tik =

∑
j

AijBjk

O1 O2 · · · Om

j1 j2 jn

i1 i2 in

(c) MPO:
OiN i′N

=
∑

a(n) A
[1]i1i′

1
1a2

A
[2]i2i′

2
a2a3 . . . A

[n]ini′
n

an1

Figure 1: Graphical representation of (a) tensors, (b) the matrix product, and (c) the matrix
product operator (MPO).

The well-known tensor network structures, namely matrix product states (MPS) and tensor
trains (TT ), as well as Tucker and CPD decompositions, are respectively given by

MPS/TT: Td(N)l =
R∑
r

T [1]d1
1r2

T [2]d2
r2r3

. . . T [n]dnl
rn1 (1)

Tucker/CPD: Td(N)l =
R∑
r

GrT [1]d1
r1

. . . T [n]dn
rn

, (2)

in which the Tucker decomposition reduces to the CPD when G = I, i.e., is defined as the
identity tensor with ones along the (hyper-)diagonal and zeros elsewhere. Notably, these
decompositions are special cases of MPOs.

2.2 Multivariate Polynomial Regression

Given an input x of dimension D, we define a multivariate polynomial of x of degree N :

pl(x) = Tl +
∑
d1

Tld1xd1 +
∑

d2≥d1

Tld(2)xd1xd2 + · · · +
∑

d2≥d1

· · ·
∑

dN ≥dN−1

Tld(N)xd1 . . . xdN
(3)

where l indicates one of the multivariate polynomial outputs, and T are the coefficients.
Following Ayvaz & De Lathauwer (2022), we consider two formulations of the polynomial.
Namely, as a sum of independent homogeneous polynomials of increasing degree with a
tensor for each degree specifying all coefficients within this degree (type I), or one tensor to
represent all coefficients of the polynomial (type II):

Type I: pl(x) =
N∑

n=0

∑
d(n)

Tld(n)xd1 . . . xdn
, Type II: pl(x̃) =

∑
d(N)

T̃ld(N) x̃d1 . . . x̃dN
(4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

T1 T2 · · · TN

G

r1 r2 rN

x

d1
x

d2
x

dN

(a) CPD decomposition

A1 A2 · · · AN

ϕ1

d1

ϕ2

d2

ϕN

dN

out

(b) MPS/TT decomposition

T1 T2 · · · TN

A1 A2 · · · AN

x

d1

x

d2

x

dN

out

(c) (MPO)2

Figure 2: Existing tensor network modeling procedures for multivariate polynomial regression
based on (a) the CPD decomposition, (b) the MPS/TT decomposition in which each feature
has its own train-cart operating on a fixed transformation ϕ(xi) = ϕi imposed on each
feature, and (c) the proposed (MPO)2 framework exploring two layers of MPOs respectively
transforming the input to suitable latent representations and creating a feature order invariant
polynomial representation.

where x̃ will be the input vector x with a constant additional feature of value 1 in order to
account for all coefficients of all the different degrees in the modeling.
Notably, these weight tensors grow exponentially in the number of coefficients as the degree
N of the polynomial increases for M features by O(MN ) making the polynomial regression
considering all coefficients of all degrees infeasible except for low degree polynomials with
limited numbers of features. To reduce the number of parameters these weight tensors have
been decomposed considering the CPD decomposition (Hendrikx et al., 2019; Ayvaz & De
Lathauwer, 2022; Govindarajan et al., 2022; Chrysos et al., 2022a; Kilic & Batselier, 2025) as
well as tensor train decomposition (Stoudenmire & Schwab, 2016b; Götte et al., 2021; Kilic
& Batselier, 2025). However, these existing CPD procedures have limited modeling capacity
whereas the existing TT modeling procedures are feature order dependent decomposing
the weight tensors using feature specific carts, i.e., T

[m]d′
m−1

rm−1rm associates the decomposed
weight tensor with feature m, which is undesirable as there typically exists no natural feature
ordering of the decomposition. As we will show, these drawbacks can be effectively addressed
considering the MPO formalism.

2.2.1 (MPO)2: Multivariate Polynomial optimization using Matrix Product
Operators

Often in machine learning, to enhance the capability of the model, a linear transformation is
applied to the inputs to learn suitable latent feature representations. By applying a generic
set of transformations A[i] to the inputs, we can express the polynomial as:

pl(x) =
∑
dd′

Td′lA
[1]
d′

1d1
xd1 . . . A

[N ]
d′

N
dN

xdN
=

∑
dd′

Td′lAd′dxd1 . . . xdN
(5)

where we omit the apex d(N) when it is equal to N , the degree of the polynomial. We defined
the product of all linear operators A as a tensor A.
In the (MPO)2 framework we propose to perform multivariate polynomial regression and
classification by modeling both the generic linear transformation of the input space as well as
the polynomial coefficients as matrix product operators (MPOs). These are diagrammatically
represented in Figure 2c and given as follows:

Td′(N)l =
R∑
r

T [1]d′
1

1r2
T [2]d′

2
r2r3 . . . T [n]d′

nl
rn1 , Ad′d =

R∑
r

A
[1]d1d′

1
1r2

A
[2]d2d′

2
r2r3 . . . A

[n]dnd′
n

rn1 (6)

where R is the rank of the MPO structure.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We propose three structures of the MPOs representing the input transformation tensor A
by linear projections, convolutions, and masking that accounts for weight redundancies by
the proposed masking MPO. These three structures are outlined below, whereas a more
comprehensive mathematical description can be found in appendix A.1.

2.2.2 Linear projection MPO

We project the inputs subspace, related to a single degree, from D to D′ dimensional space,
where D′ ≪ D, reducing parameters and complexity of inverting Hessian during inference
(see section 2.3) by a factor ∼

(
D
D′

)3. The operator in its most general form as in equation 8
can be randomly initialized and learned blockwise in the same fashion as the train structured
coefficients are learned, in such a way that the model learns the best transformation of the
inputs. Especially for high-dimensional inputs, computing and inverting the Hessian of a
block can be challenging, and, if the inputs show linear dependency, wasteful. We introduce a
learnable operator that applies a simple linear transformation for each subspace represented
by the blocks, which results in global structured linear transformation. To further reduce the
parameters, we can impose independency between the subspaces for the linear transformation
by setting the rank to one. The advantage is that the new model, instead of representing
the coefficients of the polynomial with blocks of dimension R2D, instead is represented by
two blocks of dimensions R2D′ and DD′, where D is the dimension of the input and D′ is
the dimension of the projected subspace. We define the linear MPO block as a randomly
initialized learnable tensor Biii′

i
riri+1 . When the dimension of the rank r is 1 we retrieve linear

independent transformations of the inputs.

2.2.3 Convolution MPO

A structured case of linear projection are convolutions, which accounts for translation
invariant compression as explored in CNNs. By representing the inputs as a two dimensional
tensor, and project the inputs along one of these two dimensions we obtain an operation
equivalent to convolution. For images, we can define the two dimensions as patches and
pixels in each patch (Olshausen & Field, 1996), respectively called p and k in the following.
The convolution with kernel g can then be written has xp =

∑
k gkXk,p. Consequently, we

define the convolution MPO block by G(kn,pn)p′
n = gknδpnp′

n
where the index (k, p) represents

one index obtained by vectorizing over the dimension in the parentheses, where δ is the
delta function, taking value 1 only if all indexes are the same and 0 otherwise. As a result,
the MPO convolution block is defined as a linear projection on a subset of the full space.
Notably, using the MPO formalism it is natural to also increase the multiplicity of the
kernels by increasing the MPO’s rank dimension, defining the MPO convolution blocks as
G(kn,pn)p′

n
anan+1 = Gkn

anan+1
δpnp′

n
, such that the kernels over different subspaces interact.

2.2.4 Masking MPO

The existing tensor network based polynomial regression procedures have degenerate polyno-
mial coefficients as defined in equation 3 in which the weight tensor includes all orderings
of multiplications of the same terms. Imposing symmetric constraint on the coefficients, is
often hard to model, especially for tensor decomposition methods. For this reason in the
modeling of polynomial the symmetry is disregarded, leading to a number of represented
parameters that in the worst case scales as depending on the model specifications. Modeling
the degenerate polynomial in equation 4 respect to equation 3, increases the coefficients
to be modeled of a factor of K ≃ e−nnn (which for n = 6 is ≃ 115 and for n = 10 it is
∼ 5 × 104). For large polynomial degrees n, the divergence of K can impair the expression
power and the explainability of the model. The ideal scenario, would be to associate each
combination of input (monomial) to one and only one element of the model output. We can
achieve this by introducing a mask that filters the tensor of coefficients obtaining the model
for the polynomial defined in equation 3. We model the mask filtering degenerate coefficients
as an MPO by defining its blocks C as Ciii′

i

bibi+1 =
∑

k HbikDkiii′
i
bi+1 , where Hij = θ(j − i),

Dab... = δab... and θ is the Heaviside function. The polynomial can consequently, be expressed
as a contraction between a tensor representing coefficients and a masking MPO and a tensor

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

containing the inputs, all retaining the block structure. Notably, due to this separate masking
MPO, the gradient and subsequent Hessian calculations used for inference (see section 2.3)
remain unchanged.

2.3 Efficient model inference

In multivariate polynomial optimization, CPD has parameterized polynomial coefficients
and enabled efficient Gaus-Newton (GN) implementations defining the TeMPO procedure
for least squares minimization (Ayvaz & Lathauwer, 2021). For MPS/TT and MPO, tra-
ditionally training proceeds by alternatively solving subproblems defined per block of the
tensor network utilizing alternating linear systems (ALS) and density matrix renormaliza-
tion group (DMRG) update schemes (Holtz et al., 2012; Grasedyck et al., 2019). Using
these methodologies MPS/TT models have demonstrated competitive supervised learning
performance (Stoudenmire & Schwab, 2016a). Leveraging these prior works, we adopt the
efficiency of natural gradient based ALS within our (MPO)2 framework. To our knowledge,
no prior work jointly tackles MPO structured multivariate polynomials, linear, convolutional
and masking operators, and alternating natural gradient training. Our formulation closes
this gap, unifying tensorized polynomial modeling with loss agnostic optimization.

2.3.1 Alternating natural gradient

To learn the block of the MPOs we use a block-wise version of the natural gradient method,
optimal for large family of Bregman divergence losses, incl., neg. log likelihood, cross entropy
(classification) and least squares (regression), see Amari (2016).
Notably, standard gradient updates when dealing with MPS/TT have been demonstrated
to lead to slow convergence (Qiu et al., 2024). The natural gradient is a second order
optimization method, that calculates the update step of the parameters taking in consideration
the curvature or the loss, resulting to faster learning. Often utilized algorithms for MPOs are
alternating least squares or the density matrix renormalization group, both sharing similar
properties and methods.
Given an objective loss to minimize minθL(y, x(θ)), natural gradient defines the best update
of the parameters as ∆θ = −H−1

θ (L)jθ(L), where Hθ(L) and jθ(L) are the Hessian and
the Jacobian of the loss respect to the parameters. Inspired by alternating least squares
methodologies on tensor networks, we learn the update step block-wise. The method reduces
to computing the Hessian and Jacobian of the loss with respect to a block, updates the block
according to the step, and repeats the process until all blocks are updated and then proceeds
to repeat the operation in the opposite direction. We denote the full iteration as a swipe.
The Hessian is often singular in the first swipes, especially when considering other losses
than least squares minimization, due to random initialization. To stabilize the inference, we
introduce Tikhonov regularization (Boyd & Ong, 2009; Trefethen, 2019), with an exponentially
decaying schedule for weight decay.
Importantly, for MPO structures, calculating the Hessian of a single block reduces to a trivial
task. We can write the Hessian and Jacobian taking into account the regularization:

jA(i)(L) =
∑

s

∑
l

∇A(i)pls ∂pls
L(ps, ys) + λA(i)

HA(i)(L) =
∑

s

∑
ll′

∇A(i)pls ∇T
A(i)pl′s ∂pls∂p′

l
sL(ps,y) + λI

(7)

where pls is the output of the model for sample s and output dimension l and ps is the
vector of outputs for sample s.
Block-wise learning and MPO structured coefficients simplify the Hessian since
∇A(i)∇A(i)p = 0. Additionally, the gradient with respect to a block, amounts to calculating
the contraction of the full MPO without the differentiated block.
Notably when using the least squares loss the natural gradient method is equivalent to the
more commonly used ALS method defined in Holtz et al. (2012).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3 Related Works

Using tensor products to model general “feature-output” maps has a long history going
back to Pi-Sigma networks (Shin & Ghosh, 1991). Recently, higher order Sigma–Pi and
Sigma–Pi–Sigma neural networks (SPSNNs) were proposed (Jiao & Su, 2024; Deng et al.,
2024; Sarıkaya et al., 2023). They use multiplicative units in place of neurons and parameter
sharing over layers to compactly encode polynomial maps.
Theoretically, multiplicative networks can approximate smooth targets with fewer lay-
ers/neurons than ReLU nets (Ben-Shaul et al., 2023; Jayakumar et al., 2020), while bio-
logically inspired multiplicative couplings accelerate learning and gating in RNNs (Zhang
et al., 2025). Deep polynomial networks such as Π-nets combine hierarchical polynomial
expansions with CPD (rank 1) implementations and parameter sharing across layers to curb
parameter growth and achieve strong results in vision (Chrysos et al., 2022b).
Tensor Machines learn target–specific polynomial features via low–rank CPD tensors (Yang
& Gittens, 2015). These typically assume CP/Tucker parameterizations and squared/logistic
losses. From input output mode perspective, they can be seen as a variants of multivariate
polynomial models of recent work (Ayvaz & Lathauwer, 2021).
As opposed to rank-1 models, our approach leverages the exponentially higher expressivity of
MPO over CPD, as shown in Oseledets (2011), while avoiding the quadratic growth in block
parameters (≈ R2 for MPO versus ≈ R for CP). Our MPO model generalizes aforementioned
Π-nets without layer nonlinear activations and multivariate polynomial models by offering
unifying architecture based on arbitrary rank decompositions and multilinear filters, such as
convolution or (random) feature projections (Kar & Karnick, 2012).

4 Results and Discussion

We present a comparison between (MPO)2, CPD for polynomial regression using symmetric
CPD (CPD-S) based on TeMPO (Ayvaz & De Lathauwer, 2022) and asymmetric CPD (CPD-
A) (Govindarajan et al., 2022) optimized in our framework. We further include the classical
TT/MPS structure for regression both with Fourier basis (TNML-F) as in Efthymiou et al.
(2019) and polynomial basis (TNML-P) as in Götte et al. (2021). The TNML-F models are
optimized using the present optimization framework to directly assess the impact on model
structure on performance whereas the original paper utilizes density matrix renormalization
group (DMRG). For comparison, we also included Gaussian Processes (GP) and XGBoost
as implemented in scikit-learn (Pedregosa et al., 2011) as well as a multilayer perceptron
(MLP) considering twenty tabular datasets, ten for regression and ten for classification.
The datasets are chosen based on popularity in the UCML repository (Kelly et al., 2019). We
perform a two level cross-validation setup with 70% training, 15% validation, and 15% test
splits. Hyperparameters were tuned on the validation set, and the models were retrained with
the optimal parameters before final evaluation on the test set. Dataset details as well as the
full data pipeline, pre-processing as well as hyperparameter selection and optimization details
for all procedures are given in appendix A.6 together with code attached for reproducibility.
In the hyperparameter search for CPD, we considered both the same ranks used for (MPO)2

and their squared values in order to obtain models with comparable parameter counts.
During the hyperparameter search, we explored a broader range of CPD ranks, including
both those used for (MPO)2 and their squared values to match parameter counts.
Due to the Hessian being unstable in the early phase of optimization, we applied Tikhonov
regularization with an exponentially decaying schedule. To find the suitable regularization
level we decay it and use early stopping to stop when validation loss does not decrease for 10
block/operator updates. In all tabular experiments we start with an initial value of λstart = 5
and decay exponentially with γ = 0.25 as such: λn = λstart · γn = 5.0 · (0.25)n where n is the
number of trained blocks and operators so far in the optimization order.
In Table 1 and Table 2 we report the average R2 for regression and accuracy for classification,
evaluated on the test set with the standard error of the mean over five random initializations
of each model. In the upper part of each table we present the polynomial tensor network

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

based models, while the lower part contains generic function approximation models. The
best overall model is highlighted in bold, and the best among the polynomial tensor network
based methods is underlined. XGBoost was run in its default deterministic setting, and GP
showed no variation in predictive performance across random seeds, so no error bars are
reported for these two methods.
For both regression and classification, (MPO)2 outperforms the other polynomial tensor
network-based methods on most datasets, and when it is not the best, its performance
remains close to the strongest alternative tensor based method. Overall, (MPO)2 is on
average the best performing tensor network based approach. Notably, feature ordering
plays an important role when contrasting TNML-P and TNML-F with CPD and (MPO)2.
Since CPD and (MPO)2 are invariant to feature ordering, they consistently outperform the
MPS/TT structures that are feature order dependent.

Table 1: Models performance comparison for regression considering R2 (higher is better).

SP AB OB BK RE EE CO AI PO SB Avg

(MPO)2 21.69 58.97 73.53 74.23 80.82 99.78 85.40 42.45 1.96 60.84 59.97
±0.12 ±0.35 ±0.55 ±0.13 ±0.71 ±0.01 ±0.44 ±0.37 ±0.24 ±2.48

CPD-A 20.93 59.82 71.18 73.65 81.26 99.69 80.89 40.44 1.71 68.72 59.83
±0.28 ±0.07 ±2.04 ±0.21 ±0.84 ±0.01 ±0.79 ±0.56 ±0.03 ±2.92

CPD-S 19.60 56.19 51.86 41.45 10.25 92.65 49.36 31.06 1.13 44.26 39.78
±2.37 ±0.75 ±0.49 ±0.12 ±5.19 ±0.12 ±5.81 ±1.68 ±0.17 ±5.38

TNML-P -700.45 55.69 48.80 61.61 78.10 99.64 73.27 27.91 -9.06 20.31 -24.42
±190.59 ±0.68 ±2.51 ±0.26 ±0.22 ±0.02 ±1.69 ±0.03 ±0.07 ±4.49

TNML-F -1446.58 -28.05 -87.67 -20.98 -522.90 -224.25 -72.28 2.28 -9.06 -1676.04 -408.55
±14.24 ±1.29 ±2.12 ±5.62 ±0.78 ±0.80 ±3.42 ±0.12 ±0.03 ±2.84

GP 21.97 60.40 94.22 – 70.99 99.79 85.88 – – – 72.21

MLP 18.42 58.00 89.33 94.25 27.24 92.22 64.13 60.58 2.34 92.24 59.88
±0.33 ±0.70 ±1.20 ±0.20 ±0.85 ±0.09 ±0.31 ±0.96 ±0.01 ±0.58

XGBoost 19.61 55.41 92.12 94.84 82.48 99.83 92.06 59.12 0.72 97.81 69.40

Table 2: Performance comparison of classification models (accuracy, higher is better).

IR HE WQ BR AD BA WI CE SD MU Avg

(MPO)2 100.00 61.74 55.30 99.77 56.87 90.57 100.00 99.23 77.71 99.47 84.07
±0.00 ±1.11 ±0.65 ±0.23 ±0.02 ±0.02 ±0.00 ±0.21 ±0.34 ±0.02

CPD-A 100.00 59.13 55.02 99.07 56.94 90.51 96.30 97.15 78.07 99.46 83.16
±0.00 ±0.81 ±0.25 ±0.23 ±0.02 ±0.03 ±0.00 ±0.09 ±0.22 ±0.03

CPD-S 100.00 58.70 54.13 96.51 56.57 90.16 100.00 82.15 76.87 99.13 81.42
±0.00 ±0.69 ±0.44 ±0.97 ±0.10 ±0.09 ±0.00 ±0.99 ±0.27 ±0.03

TNML-P 100.00 56.09 48.62 79.07 56.19 89.67 82.96 99.23 51.20 99.26 76.23
±0.00 ±1.06 ±2.90 ±0.37 ±0.12 ±0.15 ±4.32 ±0.27 ±1.52 ±0.25

TNML-F 77.39 31.30 45.29 73.72 47.20 78.58 51.85 95.69 33.43 98.98 63.35
±1.63 ±1.63 ±0.42 ±2.22 ±0.44 ±0.48 ±6.09 ±0.51 ±3.34 ±0.25

GP 100.00 58.70 61.03 97.67 – – 96.30 96.54 78.31 – 84.08
– – – – – – – – – –

MLP 97.39 53.48 60.00 99.30 57.10 90.96 99.26 98.46 76.51 99.46 83.19
±1.74 ±0.53 ±0.90 ±0.47 ±0.06 ±0.03 ±0.74 ±0.34 ±0.23 ±0.02

XGBoost 100.00 54.35 67.79 96.51 57.81 90.95 100.00 96.54 78.01 99.51 84.15

In Table 3 provided in supplementary section A.4, we systematically include an ablation
study of the different modeling components of the (MPO)2 procedure considering the Type
I and Type II formulations (i.e., T1 and T2) as well as applications of the Masking (M)
and Linear (L) MPOs. From the results we observe that all the specified (MPO)2 variants
produces best performance on at least one of the considered datasets. Consequently, the
utility of the different (MPO)2 variants are dataset dependent and the (MPO)2 specification
that is most suited for a given dataset needs to be accessed on the validation set. As such the
versatile specification of the multivariate polynomial by the considered (MPO)2 specifications

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

104 105 106 107

Number of Parameters

93

94

95

96

97

98

Te
st

 A
cc

ur
ac

y 
(%

)

MNIST: Test Accuracy vs Number of Parameters
CPD
TNML
(MPO)2

104 105 106 107

Number of Parameters

84.5

85.0

85.5

86.0

86.5

87.0

87.5

88.0

88.5

Te
st

 A
cc

ur
ac

y 
(%

)

Fashion MNIST: Test Accuracy vs Number of Parameters
CPD
TNML
(MPO)2

Figure 3: Accuracy on the test set for MNIST and Fashion MNIST classification tasks
as function of parameters. CPD is optimized using the TeMPO procedure in Ayvaz &
De Lathauwer (2022) as one-vs-all classifiers for each class. TNML results are reported
from Efthymiou et al. (2019).

enable the systematic assessment of suitable tensor network specifications for multivariate
polynomial regression with each dataset benefiting from different structures imposed.
We additionally report the average accuracy on the MNIST (Deng, 2012) and FashionM-
NIST (Xiao et al., 2017) datasets in Figure 3, as a function of the number of parameters,
comparing against the CPD Type I specification as this structure was imposed for these
datasets in (Ayvaz & De Lathauwer, 2022) and TNML with the Fourier basis Efthymiou
et al. (2019). Notably, for this image dataset we apply the Convolution MPO in our (MPO)2

procedure. Inspecting the Figure 3 we observe that the (MPO)2, can reach strong predictive
performance using substantially fewer parameters, while reaching the same results as TNML,
which due to the high number of blocks being feature dependent exhibit rapidly increasing
parameters as function of ranks.
In the appendix, we furthermore explore exact polynomial inference, and devise an efficient
inference procedure systematically growing the polynomial degree from lower degree learned
(MPO)2 representations that naturally avoids overfitting when considering the modeling of
noise-free polynomial functions in A.5.

5 Conclusions

We presented the (MPO)2 procedure for multivariate polynomial regression and demonstrated
that this approach systematically outperformed conventional tensor network based polynomial
regression modeling procedures based on existing CPD and MPS/TT based decompositions
for polynomial regression. We attribute the enhanced performance to the (MPO)2 procedures
higher modeling capacity when compared to CPD structures and feature order independence
when comparing to existing MPS/TT based methodologies. Notably, we explored the
versatility of the (MPO)2 framework leveraging Linear, Convolutional and Masking MPO
to learn compressed feature representations and accounting for weight redundancies. We
expect there are many further generalizations in which the MPO formalism can be used to
accommodate other types of operations. As such, we also expect the (MPO)2 can be a useful
tool when combined with deep learning modeling approaches akin to how the pi-sigma based
CPD procedure has been imposed as nonlinear polynomial transformations of deep learning
models Chrysos et al. (2022b); Panagakis et al. (2021); Chrysos et al. (2022a).

Limitations We presently only considered (MPO)2 modeling procedures in which the rank
R was specified to be identical across the MPO blocks. Future work should consider how
individual ranks can be efficiently learned which would require an exponential evaluation of
model specifications. It should also explore how Bayesian inference procedures can be used
to quantify parameter uncertainty and automatically learn the relevance of different rank
terms, see also Hinrich et al. (2020); Kilic & Batselier (2025).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Shun-ichi Amari. Information Geometry and Its Applications. Springer, 2016.

Muzaffer Ayvaz and Lieven De Lathauwer. CPD-Structured Multivariate Polynomial
Optimization. Frontiers in Applied Mathematics and Statistics, 8, 3 2022. doi:
10.3389/fams.2022.836433. URL https://doi.org/10.3389%2Ffams.2022.836433.

Muzaffer Ayvaz and Lieven De Lathauwer. Tensor-based multivariate polynomial optimization
with application in blind identification. In Proc. European Signal Processing Conference
(EUSIPCO), pp. 1080–1084, 2021. doi: 10.23919/EUSIPCO54536.2021.9616070.

Ido Ben-Shaul, Tomer Galanti, and Shai Dekel. Exploring the approximation capabilities
of multiplicative neural networks for smooth functions. arXiv preprint arXiv:2301.04605,
2023. URL https://arxiv.org/abs/2301.04605.

Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.

John P Boyd and Jun Rong Ong. Exponentially-convergent strategies for defeating the
runge phenomenon for the approximation of non-periodic functions, part i: single-interval
schemes. Comput. Phys, 5(2-4):484–497, 2009.

Grigorios G Chrysos, Markos Georgopoulos, Jiankang Deng, Jean Kossaifi, Yannis Panagakis,
and Anima Anandkumar. Augmenting deep classifiers with polynomial neural networks.
In European Conference on Computer Vision, pp. 692–716. Springer, 2022a.

Grigorios G. Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Jiankang Deng, Yannis
Panagakis, and Stefanos Zafeiriou. Deep polynomial neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(8):4021–4034, 2022b. doi: 10.1109/
TPAMI.2021.3058891.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling
with gated convolutional networks. In International conference on machine learning, pp.
933–941. PMLR, 2017.

Fei Deng, Shibin Liang, Kaiguo Qian, Jing Yu, and Xuanxuan Li. A recurrent sigma-pi-sigma
neural network. Scientific Reports, 14:84299, 2024. doi: 10.1038/s41598-024-84299-y.

Li Deng. The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Stavros Efthymiou, Jack Hidary, and Stefan Leichenauer. Tensornetwork for machine learning,
2019. URL https://arxiv.org/abs/1906.06329.

Nithin Govindarajan, Nico Vervliet, and Lieven De Lathauwer. Regression and classification
with spline-based separable expansions. Frontiers in big Data, 5:688496, 2022.

Lars Grasedyck, Melanie Kluge, and Sebastian Krämer. Alternating least squares tensor
completion in the tt-format. SIAM Journal on Scientific Computing, 2019. URL https:
//arxiv.org/abs/1509.00311. arXiv:1509.00311.

Michael Götte, Reinhold Schneider, and Philipp Trunschke. A block-sparse tensor train
format for sample-efficient high-dimensional polynomial regression, 2021. URL https:
//arxiv.org/abs/2104.14255.

Stijn Hendrikx, Martijn Boussé, Nico Vervliet, and Lieven De Lathauwer. Algebraic and
optimization based algorithms for multivariate regression using symmetric tensor de-
composition. In 2019 IEEE 8th International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP), pp. 475–479. IEEE, 2019.

Jesper L Hinrich, Kristoffer H Madsen, and Morten Mørup. The probabilistic tensor
decomposition toolbox. Machine Learning: Science and Technology, 1(2):025011, jun
2020. doi: 10.1088/2632-2153/ab8241. URL https://dx.doi.org/10.1088/2632-2153/
ab8241.

10

https://doi.org/10.3389%2Ffams.2022.836433
https://arxiv.org/abs/2301.04605
https://arxiv.org/abs/1906.06329
https://arxiv.org/abs/1509.00311
https://arxiv.org/abs/1509.00311
https://arxiv.org/abs/2104.14255
https://arxiv.org/abs/2104.14255
https://dx.doi.org/10.1088/2632-2153/ab8241
https://dx.doi.org/10.1088/2632-2153/ab8241


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The Alternating Linear
Scheme for Tensor Optimization in the Tensor Train Format. SIAM Journal on Scientific
Computing, 34(2):A683–A713, 1 2012. doi: 10.1137/100818893. URL https://doi.org/
10.1137%2F100818893.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

Siddhant M Jayakumar, Wojciech M Czarnecki, Jacob Menick, Jonathan Schwarz, Jack
Rae, Simon Osindero, Yee Whye Teh, Tim Harley, and Razvan Pascanu. Multiplicative
interactions and where to find them. In International conference on learning representations,
2020.

Jianwei Jiao and Keqin Su. A new sigma-pi-sigma neural network based on l1 and l2
regularization and applications. AIMS Mathematics, 9(3):5995–6012, 2024. doi: 10.3934/
math.2024293. URL https://www.aimspress.com/aimspress-data/math/2024/3/PDF/
math-09-03-293.pdf.

Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels. In
AISTATS, volume 22 of JMLR: W&CP, pp. 583–591, 2012. URL https://proceedings.
mlr.press/v22/kar12/kar12.pdf.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The uci machine learning repository.
https://archive.ics.uci.edu, 2019.

Afra Kilic and Kim Batselier. Interpretable bayesian tensor network kernel machines with
automatic rank and feature selection, 2025. URL https://arxiv.org/abs/2507.11136.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

Chien-Kuo Li. A sigma-pi-sigma neural network (spsnn). Neural Processing Letters, 17:1–19,
2003.

Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning work
so well? Journal of Statistical Physics, 168:1223–1247, 2017.

Yipeng Liu, Jiani Liu, Zhen Long, Ce Zhu, Yipeng Liu, Jiani Liu, Zhen Long, and Ce Zhu.
Tensor regression. Springer, 2022.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

Ivan V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33
(5):2295–2317, 2011. doi: 10.1137/090752286.

Yannis Panagakis, Jean Kossaifi, Grigorios G Chrysos, James Oldfield, Mihalis A Nicolaou,
Anima Anandkumar, and Stefanos Zafeiriou. Tensor methods in computer vision and deep
learning. Proceedings of the IEEE, 109(5):863–890, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Shikai Qiu, Andres Potapczynski, Marc Finzi, Micah Goldblum, and Andrew Gordon Wilson.
Compute better spent: Replacing dense layers with structured matrices, 2024. URL
https://arxiv.org/abs/2406.06248.

11

https://doi.org/10.1137%2F100818893
https://doi.org/10.1137%2F100818893
https://www.aimspress.com/aimspress-data/math/2024/3/PDF/math-09-03-293.pdf
https://www.aimspress.com/aimspress-data/math/2024/3/PDF/math-09-03-293.pdf
https://proceedings.mlr.press/v22/kar12/kar12.pdf
https://proceedings.mlr.press/v22/kar12/kar12.pdf
https://archive.ics.uci.edu
https://arxiv.org/abs/2507.11136
https://arxiv.org/abs/2406.06248


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cansu Sarıkaya, Eren Bas, and Erol Egrioglu. Training sigma-pi neural networks with the
grey wolf optimization algorithm. Granular Computing, 8(5):981–989, 2023.

Yoan Shin and Joydeep Ghosh. The pi-sigma network: An efficient higher-order neural
network for pattern classification and function approximation. In IJCNN-91-Seattle
international joint conference on neural networks, volume 1, pp. 13–18. IEEE, 1991.

Yoan Shin and Joydeep Ghosh. Ridge polynomial networks. IEEE Transactions on neural
networks, 6(3):610–622, 1995.

E. Miles Stoudenmire and David J. Schwab. Supervised learning with quantum-inspired
tensor networks. In Advances in Neural Information Processing Systems (NeurIPS),
volume 29, pp. 4799–4807, 2016a. URL https://arxiv.org/abs/1605.05775.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. Advances
in neural information processing systems, 29, 2016b.

Dustin Tran, Rajesh Ranganath, and David M Blei. The variational gaussian process. ICLR,
2016.

Lloyd N Trefethen. Approximation theory and approximation practice, extended edition.
SIAM, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning, volume 2. MIT press Cambridge, MA, 2006.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jiyan Yang and Alex Gittens. Tensor machines for learning target-specific polynomial features.
arXiv preprint arXiv:1504.01697, 2015. URL https://arxiv.org/abs/1504.01697.

Xiaohan Zhang, Mohamad Altrabulsi, Wenqi Xu, Ralf Wimmer, Michael M. Halassa, and
Zhe Sage Chen. Multiplicative couplings facilitate rapid learning and information gating
in recurrent neural networks. bioRxiv, 2025. doi: 10.1101/2025.07.11.663676.

12

https://arxiv.org/abs/1605.05775
https://arxiv.org/abs/1504.01697

