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Abstract

Autoformalization is one of the central tasks in formal verification, while
its advancement remains hindered due to the data scarcity and the ab-
sence efficient methods. In this work we propose FormaRL, a simple yet
efficient reinforcement learning framework for autoformalization which
only requires a small amount of unlabeled data. FormaRL integrates syn-
tax check from Lean compiler and consistency check from large language
model to calculate the reward, and adopts GRPO algorithm to update the
formalizer. We also curated a proof problem dataset from undergraduate-
level math materials, named uproof, in the hope to facilitate the explo-
ration of autoformalization and theorem proving in advanced math. Ex-
periments show that FormaRL can increase the pass@1 autoformalization
accuracy of Qwen2.5-Coder-7B-Instruct by 4 ∼ 6x (4.04% → 26.15% on
ProofNet and 2.4% → 9.6% on uproof) with merely 859 unlabeled data.
And on uproof our method also achieved a strong improvement in out-of-
distribution performance compared to existing open-source state-of-the-art
autoformalizers on both pass@1 accuracy (6.2% → 9.6%) and pass@16 ac-
curacy (24.4% → 33.6%). Training code of FormaRL is open-sourced at
https://github.com/THUNLP-MT/FormaRL.

1 Introduction

Mathematical reasoning has long been regarded as a cornerstone of scientific and techno-
logical advancement. Recent large language models (LLMs) have made advancements in
solving math problems (OpenAI et al., 2024a; Qwen et al., 2024; Yang et al., 2024a). Large
reasoning models (LRMs) gain stronger reasoning abilities, and achieved impressive results
on competition level math problems (OpenAI et al., 2024b; DeepSeek-AI et al., 2025a; Team
et al., 2025).

Although language models excel in many mathematical tasks, they still struggle with
theorem proving. An important reason is that theorem proving typically requires formal
verification, and one of the critical steps of it, autoformalization, remains challenging for
models (Li et al., 2024b; Yang et al., 2024b). Autoformalization is the process which translates
natural language mathematics into formal languages (Li et al., 2024b; Yang et al., 2024b),
such as Lean (Moura & Ullrich, 2021), Isabelle (Tobias Nipkow, 2002), or Coq (Yves Bertot,
2013). It is the start point of formal verification for a theorem. And it is crucial for creation
of large scale training dataset of following steps of theorem proving (Wu et al., 2024; Li et al.,
2024a; Lin et al., 2025; Xin et al., 2025; Castelvecchi, 2024; Xin et al., 2024a;b).

Existing models demonstrate certain ability on autoformalization of elementary mathemat-
ics, but their performance significantly drops when it comes to that of advanced mathematics
(see Table 4). Advanced math covers a much wider range of concepts and is much more
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Natural language
statement dataset

If $f (x) = x + 2$ and $g 
(x) = x^2$, then for what
value of $x$ does $f(g(x))
= g(f(x))$? Express your
answer as a common fracti
on. Show that it is
-\frac{1}{2}.
--------------------------
Let $n $ be an integer gre
ater than or equal to 2. 
Prove that if $k^2 + k +
n $ is prime for all integ
ers $k $ such that $ 0 \le
q k \leq \sqrt{n/3} $, the
n $k^2 + k + n $ is prime
for all integers $k $ such
that
$0 \leq k \leq n - 2 $.
--------------------------
......

--------------
---------
  ------------
  -----

--------------
---------
------------
-----------

Autoformalization

theorem induction_sum_odd
  (n : ℕ) :
  ∑ k in (Finset.range n),
  2 * k + 1 = n^2 := sorry

A group of formal
statements

Rewards for GRPO

Training Loop of FormaRL

Syntax Check
via Lean Compiler

Consistency Check
via language model

[     ,      ,      ,      ]

Figure 1: Illustration of FormaRL training loop. We combined lean syntax check from
the compiler and LLM based semantic check to assess the quality of formalizations, and
adopted GPRO algorithm to update our formalizer.

complex than contest level math, thus is harder to formalize (Azerbayev et al., 2023,). The
lack of training data further limits autoformalization performance in this area. Some prior
works (Xin et al., 2024a;b; Li et al., 2024a; Lin et al., 2025; Xin et al., 2025) train autofor-
malizer on existing large scale formalization datasets, such as MMA (Jiang et al.), Lean
Workbook (Ying et al., 2024) or some in-house datasets. Other works boost model perfor-
mance via supervised fine-tuning (SFT) on manually annotated data (Ying et al., 2024) or
informalized statement pairs (Liu et al., 2025; Jiang et al.). However, due to the high cost of
human annotation and the inefficiency of training recipe, their performance remains limited.

For the above challenge, we propose a method called FormaRL. We utilize reinforcement
learning to train our model, with rewards from Lean compiler and LLMs, as shown in
Figure 1. Our method is more effective and efficient compared to previous SFT methods. We
use training data which is unlabeled, and only 1% of the amount compared to prior works,
to reach superior performance. Additionally, our method is applicable to various models,
including mathematical foundational models and existing autoformalizers. we also create a
dataset, named uproof, to evaluate out-of-distribution autoformalization performance in
advanced math. It contains 5,273 proof problems from 14 classical textbooks, which covers
a wide range of topics from undergraduate-level math.

In summary, our contributions are three-folded:

• We propose FormaRL, a simple yet effective RL based training framework to en-
hance model ability of autoformalization with far less training data.

• We create a benchmark named uproof, bridging the gap of evaluation of out-of-
distribution autoformalization for advanced math problems.

• We conduct extensive experiments, and find that existing models fall short in
advanced math autoformalization, while our proposed method reaches promising
performance especially on advanced math autoformalization. Our ablation study
further guarantees the effectiveness of FormaRL.
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2 Related work

2.1 Autoformalization

Autoformalization aims to automatically translate mathematical materials in natural lan-
gauge into machine-verifiable formal code (Li et al., 2024b). Broadly speaking, it include the
translation of both the statements and proofs of a math problem (Cunningham et al., 2023;
Jiang et al., 2023; Zhao et al., 2023; Murphy et al., 2024; Patel et al.), while another line of
works primarily focus on the translation of the problem statements (Wu et al., 2022; Jiang
et al.; Azerbayev et al., 2023,).

Autoformalization is a challenging task especially for currently prevalent data-driven
approaches (Li et al., 2024b). To alleviate the scarcity of informal-formal corpora, researchers
adopted various methods to synthesize large scale datasets for training. This LLM based
informalization (Azerbayev et al., 2023,; Jiang et al.; Liu et al., 2025), or utilizing in-context
learning (ICL) capability to create an expert iteration pipeline for autoformalization (Wu
et al., 2022; Ying et al., 2024). One major difference in autoformalization compared to
machine translation is the existence of formal verifier. They can provide accurate feedback
on the accuracy of the formalized statements and proofs. The verifier is widely used
to conduct rejection sampling (Poiroux et al., 2024) or expert iteration (Jiang et al., 2023;
Murphy et al., 2024) to enhance autoformalization. It can also contribute to constructing
objective evaluation metrics (Azerbayev et al., 2023,; Ying et al., 2024; Liu et al., 2025).

2.2 Reinforcement learning

Reinforcement learning (RL) is a machine learning paradigm where an agent learns to
make decisions by interacting with the environment to maximize cumulative rewards.
Unlike supervised learning, which relies on large scale labeled datasets, RL algorithms learn
through trial and error, guided by a reward signal that evaluates the quality of actions taken.

In the development of modern LLMs, there is many works that leverage RL algorithms to
optimize their performance. Reinforcement learning from human feedback (RLHF) was
proposed to align LLMs behaviour with human preferences and values (Ouyang et al., 2022;
Ziegler et al., 2020). Recent work demonstrates RL’s effectiveness in both informal math
problem solving (Lightman et al., 2023; Shao et al., 2024) and formal theorem proving (Xin
et al., 2024b; Lin et al., 2025; Xin et al., 2025). RL is also the key to the paradigm shift from
LLM to LRM (DeepSeek-AI et al., 2025a; Team et al., 2025). RL-based algorithm surpasses
SFT is both data efficiency and final performance according to some recent studies (Zeng
et al., 2025; Li et al., 2025; Yu et al., 2025).

3 Preliminaries

In this work we primarily focus on formal language Lean 4, with particular attention to the
translation of mathematical problem statements. In Lean 4, it is possible to simulate the
completion of a proof using the keyword “sorry”. If a theorem statement is syntactically
correct and either properly proved or concluded with “sorry”, the Lean compiler returns a
“no goals” message, indicating that the statement is accepted.

A typical problem statement in Lean 4 is written as follows:

1 theorem e x e r c i s e _ 1 _ 1 3 a { f : C → C } ( Ω : Se t C ) ( a b : Ω ) ( h : IsOpen
Ω ) ( hf : Di f fe rent iab le On C f Ω ) ( hc : ∃ ( c : R ) , ∀ z ∈ Ω , ( f
z ) . re = c ) : f a = f b := sorry

The “theorem” keyword is used to declare a named theorem, while “example” can be used
for unnamed statements. Each declaration is concluded with “ s̄orry“ if a proof is omitted.
Here we also provide some descriptions of each dataset involved in our experiments.

• miniF2F (Zheng et al., 2022) is a formal theorem proving benchmark proposed by
OpenAI. It consists 488 problems from elementary math with several variants in
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Lean, Coq and Isabelle. The original purpose of miniF2F was to create a universal
benchmark across different formal languages. The problems in miniF2F are drawn
from high-school exercises and contests such as AIME, AMC and the IMO. In our
experiments we use the version from Xin et al. (2024a) as an autoformalization
benchmark for elementary math.

• ProofNet (Azerbayev et al., 2023,) was proposed both as a theorem proving bench-
mark and an autoformalization benchmark. It primarily focus on undergraduate-
level math, manually collected and translated 371 problems into Lean. It covers a
wide range of topics from advanced mathematics, from real and complex analysis
to algebra and topology. Again we use the version provided by Xin et al. (2024a) as
an autoformalization benchmark for advanced math.

• Lean Workbook (Ying et al., 2024) is a large scale Lean 4 problem set formalized
from contest level math problems in natural language. They crawled the raw
problems from AOPS and translated them into Lean 4 using a formalizer trained by
themselves. After filtering these results they ended up with 25.2k Lean 4 translation
pairs in total, and most of them also belong to elementary math. We primarily
use this dataset to train formalizers via SFT as our baseline. Recent researches
showed that formalizers trained on this dataset already exhibits strong performance
compared to other formalization corpora (Liu et al., 2025).

4 Methodology

We begin our experiments by designing a reward to assess the translation, which is then
integrated into a reinforcement learning framework to iteratively refine translation perfor-
mance. Our reward design eliminates the need for annotated translation datasets, enabling
training of a formalizer without reliance on manual demonstrations.

4.1 Reward design

We adapted the data filtering method in Lean Workbook (Ying et al., 2024) as the core of our
reward system. This process involves two sequential validation stages:

• Syntax Check (SC): Extracted translations will firstly undergo automated validation
via the Lean 4 compiler to ensure syntactic correctness. This ensures that the outputs
are valid lean 4 code.

• Consistency Check (CC): After stripping comments and metadata, the translation’s
semantic alignment with the original problem is evaluated using a large language
model (LLM).

For each response from the translation model, a reward of “1.0” is assigned only when it
passed both SC and CC, otherwise the reward will always be “0.0”. This hybrid rule-based
and LLM-driven assessment ensures robustness, as empirical results demonstrate that
neither component alone suffices for reliable validation, see section 5.3 for more details

4.2 Training method

We adopted a simplified version of Group Relative Policy Optimization (GRPO) as our
training algorithm. This is also the algorithm behind the success of DeepSeek-R1 (Shao et al.,
2024; DeepSeek-AI et al., 2025a). For each question q, GRPO algorithm samples a group of
outputs {o1, o2, . . . , oG} from the old policy model πθold , and then optimize the policy model
by maximizing the following objective:

JGRPO(θ) = E[q ∼ P(Q), {oi}G
i=1 ∼ πθold ]

1
G

G

∑
i=1

1
|oi|

|oi |

∑
t=1

{
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, 1 − ϵ, 1 + ϵ)

]}
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Here ϵ and β are hyperparameters, and Âi,t is the advantage calculated based on relative
rewards of the outputs in each group. More accurately it is Âi,t = r̃i =

ri−mean(r)
std(r) , where r is

the observed reward.

A notable departure from standard GRPO is the omission of the KL divergence regulariza-
tion term. This simplification, supported by recent empirical studies (Meng et al., 2024; Yu
et al., 2025), maintains training stability while reducing computational overhead, and can
lead to better performance in many cases.

4.3 Quality assessment

While Lean 4’s syntax checker provides rigorous formal validation, the reliability of the
consistency check (CC) warrants closer examination. Inaccuracies in this process could lead
to reward hacking or degrade the overall effectiveness of training.

We frame the evaluation of CC as a binary classification task. To assess recall, we applied
the consistency check to samples from existing formal datasets paired with their ground
truth translations, measuring the rate at which correct samples were accepted. To estimate
specificity, we prompted a large language model to deliberately generate incorrect transla-
tions by modifying original statements, such as adding, removing, or altering conditions
or conclusions, and then tested whether the CC could successfully reject these perturbed
examples.

Unless otherwise noted, DeepSeek-V3 (DeepSeek-AI et al., 2025b) was used for CC during
most of the FormaRL training process, while Qwen2.5-7B-Instruct (Qwen et al., 2024) served
as the evaluation model. The performance of the consistency check is summarized in Table 1.

Model
miniF2F ProofNet

Recall ↑ Specificity ↑ Recall ↑ Specificity ↑
Qwen2.5-7B-Instruct 87.29% 92.22% 78.59% 79.68%
DeepSeek-V3 88.52% 98.57% 76.82% 93.53%
GPT-4o 84.22% 97.95% 72.51% 90.84%

Table 1: Performance of the consistency check across different models and datasets.

These results indicate that the consistency check performs reasonably well on simpler
datasets like miniF2F, but struggles more with complex mathematical content, as seen
in ProofNet, where both recall and specificity are lower. This suggests that using CC as
a filtering or selection mechanism may be problematic, particularly in high-throughput
scenarios like pass@8 sampling, where specificity can drop sharply (e.g., to 52.31% for
miniF2F and 16.25% for ProofNet), allowing a significant number of incorrect samples into
the generated dataset.

To mitigate this, our subsequent experiments rely solely on the syntax check (SC) for
selection. For each problem, only the first candidate that passes SC proceeds to consistency
checking and contributes to the final pass rate.

5 Experiments

5.1 Dataset

To construct our dataset, we curated 14 classical mathematics textbooks spanning core
undergraduate curricula, including mathematical analysis, linear algebra, abstract algebra,
real analysis, complex analysis, functional analysis, topology, probability, statistics and
commutative algebra.
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The raw textbook content was preprocessed by converting PDF files into markdown format,
followed by segmentation into smaller chunks of reasonable length. We required GPT-4o to
extract the lemmas, theorems and exercises from these documents. After that we required
GPT-4o again to filter out incomplete problems and reformat math formulas into standard
LaTeX syntax.

This results in uproof, a large scale dataset of undergraduate-level proof problems. Here we
list some examples in uproof in Table 2.

Problem Category

If F : D → P is a conformal map from the disc D to a polygonal region P, show
that F extends to a continuous bijection from the closure of D to the closure of
P.

Analysis

Let α = (2 +
√

2)(3 +
√

3) and consider the extension E = Q(α). Show that α

is not a square in F = Q(
√

2,
√

3)
Algebra

Prove that every closed nonorientable surface has a 2-sheeted orientable
covering space.

Topology

Show that if
√

n(Xn−µ)
σ converges in distribution to N(0, 1), then the expression√

n(X̄n−µ)
Sn

converges in distribution to N(0, 1) as well.

Probability

Table 2: Samples from uproof dataset.

5.2 Results

We utilize two well-known datasets in formal theorem proving, miniF2F and ProofNet, for
training with FormaRL. It is important to note that these two datasets contains merely 859
statements in total, which is significantly smaller than the data requirement of existing SFT-
based methods (25.2k in Lean Workbook (Ying et al., 2024) and 243k for RAutoformalizer Liu
et al. (2025)). The ground truth translations in these datasets are not involved in FormaRL
either. Nevertheless, our experiments demonstrate that FormaRL already exhibits superior
performance in autoformalization.

In our experiments we used Lean Workbook as the training dataset for our baseline formal-
izers via SFT. It is worth mentioning that this dataset was synthesized using both miniF2F
and ProofNet, making these benchmarks in-distribution for all formalizers evaluated. In our
main experiment, we tested two different base models, Qwen2.5-Coder-7B-Instruct (Hui
et al., 2024) and DeepSeek-Math-7B (Shao et al., 2024). We randomly selected 1,000 elements
from uproof dataset as our validation split. Since our primarily focus is on the generalization
ability of different strategies, the results on uProof are particularly informative, as they
reflect the models’ out-of-distribution performance.

Our main experiment results are summarized in Table 3.

We can see that FormaRL outperformed SFT baselines by a large margin, demonstrating its
strong generalization capability.

DeepSeek-Math-7B-Instruct performs poorly out of the box and struggles to generate correct
formalizations without fine-tuning, thereby would severely impact the efficiency of RL.
So we applied a minimal warm-up for this model, specifically, we randomly selected 1k
translation pairs from Lean Workbook and trained DeepSeek-Math-7B-Instruct for 1 epoch.
This does not introduce excessive additional training or data requirement. Meanwhile,
Qwen2.5-Coder-7B-Instruct is trained via FormaRL entirely from scratch.

We also evaluated the effect of applying FormaRL on top of a pre-trained formalizer. While
this setup showed that FormaRL can further improve performance after extensive SFT, the
improvement plateaued, suggesting a limited upper bound. Notably, the most substantial
performance gains were observed when using FormaRL without any prior SFT.
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Model Method SC Pass Rate Final Pass Rate ∆
Pass@1

DeepSeek-V3

ICL

1.3% 1.1%
GPT-4o 2.9% 2.2%
DeepSeek-Math-7B-Instruct 0.2% 0.1%
Qwen2.5-Coder-7B-Instruct 3.7% 2.4%

RAutoformalizer (Liu et al., 2025) - 14.1% 6.2%
FormaRL 20.1% 11.9% + 5.7%

DeepSeek-Math-7B-Instruct SFT 21.2% 7.8%
FormaRL 14.4% 8.6% + 0.8%

Qwen2.5-Coder-7B-Instruct SFT 20.4% 7.5%
FormaRL 18.6% 9.6% + 2.1%

Pass@8

RAutoformalizer (Liu et al., 2025) - 48.0% 20.0%
FormaRL 44.8% 21.9% + 1.9%

DeepSeek-Math-7B-Instruct SFT 54.7% 17.0%
FormaRL 46.1% 22.8% + 5.8%

Qwen2.5-Coder-7B-Instruct SFT 52.3% 15.8%
FormaRL 62.2% 29.8% +14.0%

Pass@16

RAutoformalizer (Liu et al., 2025) - 65.2% 24.4%
FormaRL 53.4% 25.7% + 1.3%

DeepSeek-Math-7B-Instruct SFT 66.4% 22.5%
FormaRL 57.7% 27.2% + 4.7%

Qwen2.5-Coder-7B-Instruct SFT 63.6% 21.2%
FormaRL 66.7% 33.6% +12.4%

Table 3: The out-of-distribution accuracy of autoformalization on uproof split (advanced
math). ICL is for “in-context learning”. The SFT approach utilizes 25.2k Lean Workbook
dataset for training, while our FormaRL approach only uses 859 unlabeled statements from
miniF2F and ProofNet. As RAutoformalizer has been already fine-tuned on a 243k dataset
for autoformalization, whose scale is much larger than our SFT dataset, we do not conduct
further SFT on it.

To assess in-distribution performance, we evaluated some of these models on miniF2F and
ProofNet, relevant results are listed in Table 4. While these benchmarks are less central to
our primary focus, they serve as useful supplementary references.

Both propriaty models, DeepSeek-V3 and GPT-4o exhibit poor performance especially in
advanced math such as ProofNet dataset. This mainly stems from their low SC pass rate.
More detailed examinations on this can be found in Appendix A.1.

5.3 Ablation study

Our experiments also suggest that FormaRL is a minimal possible RL framework for
autoformalization. That means if we eliminate any component in the reward calculation,
the RL training would cause severe reward hack and no meaningful results. And at the
same time, we can observe consistent performance increment when integrating both SC and
CC check.

If we calculate the reward without CC check, the model will quickly learn to generate the
same simple statement that is not relevant to the given problem so that it can pass all syntax
checks. On the other hand if we eliminate SC check, the model will quickly learn to include
natural language statements from the original problem in its response, preserving good
consistency but that is not formalization. We list some typical cases and evaluation results
in Table 5
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Model Method miniF2F ProofNet

DeepSeek-V3 ICL 24.59% / 20.08% 2.70% / 2.70%
GPT-4o 47.95% / 38.93% 4.04% / 3.23%

RAutoformalizer (Liu et al., 2025) - 49.18% / 25.00% 28.30% / 19.68%
FormaRL 83.20% / 53.89% 58.49% / 46.90%

DeepSeek-Math-7B-Instruct SFT 82.17% / 48.77% 35.04% / 22.64%
FormaRL 86.27% / 59.63% 42.59% / 31.81%

Qwen2.5-Coder-7B-Instruct SFT 88.32% / 56.35% 35.85% / 18.87%
FormaRL 81.56% / 57.58% 35.58% / 26.15%

Table 4: The pass@1 accuracy of in-distribution autoformalization performance. ICL is for
“in-context learning”. We use miniF2F dataset to test the autoformalization performance
of elementary math, and ProofNet for advanced math. Similar to Table 3, for each test, we
report the SC pass rate and the final pass rate after SC and CC.

Method Case Pass Rate

w/o SC
holomorphic_open_omega f Ω → Re_constant f

→ Constant f := sorry

SC 0.27%
CC 74.66%

SC&CC 0.00%

w/o CC
theorem realPar tConstant Impl iesConstant :

Fa l se := sorry

SC 100%
CC 0%

SC&CC 0%

CC & SC

theorem p r o v e _ f _ i s _ c o n s t a n t { f : C → C }
( h_f_holomorphic : ∀ ( z : C ) , ∀ (U : Set C )
, IsOpen U ∧ ∀ (w : C ) , w ∈ U → ∃ ( L : C ) ,
∀ ( z1 z2 : C ) , z1 ∈ U ∧ z2 ∈ U → ( f z1 − f
z2 = L * ( z1 − z2 ) ) ) ( h_im_constant : ∀ ( z :
C ) , ∀ (w : C ) , f z = f w → Im ( f z ) = Im
( f w) ) : ∀ ( z1 z2 : C ) , f z1 = f z2 := sorry

SC 35.58%

CC 57.14%

SC&CC 26.15%

Table 5: Ablation study on reward design. These formalizers are trained from Qwen2.5-7B-
Instruct and tested on ProofNet. These are formalizations from the same proof problem in
complex analysis: “Suppose that f is holomorphic in an open set Ω. Prove that if Im( f ) is
constant, then f is constant”.

The performance of FormaRL heavily relies on the distinguishing ability of the LLM used in
CC. We also tried some weaker language models in the training process. By switching the
backend of CC from DeepSeek-V3 to Qwen2.5-7B-Instruct, we can observe performance
drop on all benchmarks under pass@8 or pass@16 settings. Typically models trained
with weaker LLM in FormaRL exhibit weaker performance in keeping the consistency
in autoformalization, but tend to have higher SC pass rate in sampling. This limits their
potential to gain improvement from multiple sampling. Nevertheless, these models still
outperformed SFT baselines, with significantly less data requirement. Relevant results are
summarized in Table 6.

A formal statement that passes both SC and CC checks is typically a promissing formal-
ization, however, since we used a large language model to conduct consistency check in
both training and evaluation, there exists the possibility of reward hack. We have selected
100 samples for both formalizer, and done some manual reviews on samples generated by
formalizer trained via FormaRL and RAutoformalizer. As shown in Table 7, since the for-
malizer trained with RL did not exhibit significantly higher CC pass rate under LLM-based
review than manual, There is no evidence of reward hack in our experiments. We also did
some ablation study on the LLM backend of CC, relevant results can be found in Table 10 in
the appendix. These results also support the non-existence of reward hack after FormaRL.
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Method Base Model Settings Performance

SFT Qwen2.5-Coder-7B-Instruct pass@1 20.4% / 7.5%
FormaRL(w/ deepseek) Qwen2.5-Coder-7B-Instruct pass@1 18.6% / 9.6%
FormaRL(w/ qwen) Qwen2.5-Coder-7B-Instruct pass@1 28.5% / 11.7%

SFT Qwen2.5-Coder-7B-Instruct pass@8 52.3% / 15.8%
FormaRL(w/ deepseek) Qwen2.5-Coder-7B-Instruct pass@8 62.2% / 29.8%
FormaRL(w/ qwen) Qwen2.5-Coder-7B-Instruct pass@8 69.8% / 27.6%

SFT Qwen2.5-Coder-7B-Instruct pass@16 63.6% / 21.2%
FormaRL(w/ deepseek) Qwen2.5-Coder-7B-Instruct pass@16 66.7% / 33.6%
FormaRL(w/ qwen) Qwen2.5-Coder-7B-Instruct pass@16 79.8% / 31.3%

Table 6: Ablation studies on the CC reward in training. We can see that models trained
with DeepSeek-V3 is consistantly more performant than that with Qwen2.5-7B-Instruct.
Performance is evaluated on uproof dataset and reported as SC pass rate / final pass rate.

Formalizer Manual Qwen2.5-7B-Instruct

RAutoformalizer(Liu et al., 2025) 25.0% 37.4%
Qwen2.5-Coder-7B-Instruct with FormaRL 38.8% 50.4%

Table 7: Comparesion of CC accuracy after SC under both manual review and LLM-based
review.

6 Conclusion and future work

FormaRL is a simple RL based training framework for autoformalization. It requires only a
small number of unlabeled training data but still exhibits superior performance compared
to vanilla SFT. Recently there are some more advanced methods proposed to enhance the
evaluation or sampling process for autoformalized problems, such as Bidirectional Extended
Definitional Equivalence (Liu et al., 2025) and dependency retrieval augmentation (Liu et al.,
2025). They also exhibit great improvement either in evaluation precision or autoformal-
ization quality. These methods are easy to integrate into our training pipeline. We can
add the contents provided by dependency retrieval to the prompts during training and
sampling, and use BEq in reward design. We believe this will bring the performance of
autoformalization to the next level.

Theorem proving is the central task of modern math research, thus is of more importance
than math contests. Some recent experiments suggest that the data amount required to train
a powerful LRM is relatively low (Li et al., 2025; Zeng et al., 2025), so maybe we are already
able to train a strong theorem prover with a proper RL algorithm and formal verification on
our uproof dataset or NaturalProofs (Welleck et al., 2021). We are optimistic about future
progress in theorem proving especially in advanced math, an area that remains largely
unexplored.
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A Appendix

A.1 Case studies

We observed that both large scale LLMs, GPT-4o and DeepSeek-V3, can not exhibit promiss-
ing performance on autoformalization according to our experiments. Things get even worse
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when it comes to advanced math. For example on ProofNet, their syntax check pass rate is
both below 5%. By examine the cases generated by GPT-4o we can figure out the reason
behind this.

Here is a sample of response from GPT-4o, and the original problem comes from ProofNet
dataset:

To t r a n s l a t e t h i s na tur a l language problem i n t o a theorem in Lean4 , we
f i r s t need to introduce the necessary concepts , such as holomorphic
f u n c t i o n s and the r e a l par t of a complex funct ion . Assuming we have
these concepts defined , the theorem can be captured as fo l lows :

‘ ‘ ‘ lean
theorem holomorphic_cons t_rea l_par t_ i s_cons t { f : C → C } { Ω : s e t C }

( hΩ : is_open Ω ) ( hf : ∀ z ∈ Ω , d i f f e r e n t i a b l e _ a t C f z )
( h_re_const : ∃ c : R , ∀ z ∈ Ω , ( f z ) . re = c ) :
∀ z1 z2 , z1 ∈ Ω → z2 ∈ Ω → f z1 = f z2 :=

sorry
‘ ‘ ‘

### Natural Language Reasoning
− * * Hypothesis 1 * * : The funct ion ‘ f ‘ i s holomorphic in the open s e t ‘Ω ‘ ,

represented by an assumption t h a t ‘ f ‘ i s d i f f e r e n t i a b l e a t every
point ‘ z ‘ in ‘Ω ‘ .

− * * Hypothesis 2 * * : The r e a l par t of ‘ f ‘ i s constant on ‘Ω ‘ , represented
by the e x i s t e n c e of a r e a l number ‘ c ‘ such t h a t f o r every point ‘ z ‘
in ‘Ω ‘ , the r e a l part of ‘ f ( z ) ‘ equals ‘ c ‘ .

− * * Conclusion * * : The funct ion ‘ f ‘ i t s e l f i s constant on the s e t ‘Ω ‘ ,
which means f o r any two points ‘ z1 ‘ and ‘ z2 ‘ in ‘Ω ‘ , ‘ f ( z1 ) ‘ equals
‘ f ( z2 ) ‘ .

We use ‘ sorry ‘ as a placeholder f o r the proof d e t a i l s .

The extracted formalization is

theorem holomorphic_cons t_rea l_par t_ i s_cons t { f : C → C } { Ω : s e t C }
( hΩ : is_open Ω ) ( hf : ∀ z ∈ Ω , d i f f e r e n t i a b l e _ a t C f z )
( h_re_const : ∃ c : R , ∀ z ∈ Ω , ( f z ) . re = c ) :
∀ z1 z2 , z1 ∈ Ω → z2 ∈ Ω → f z1 = f z2 :=

sorry

And this is the ground truth formalization adapted from ProofNet dataset.

theorem e x e r c i s e _ 1 _ 1 3 a { f : C → C } ( Ω : Se t C ) ( a b : Ω ) ( h : IsOpen
Ω )

( hf : Di f fe rent iab leO n C f Ω ) ( hc : ∃ ( c : R ) , ∀ z ∈ Ω , ( f z ) . re =
c ) :

f a = f b := sorry

We can see that GPT-4o does preserved the semantic meanings of the original theorem, but it
can not memorize the correct identifiers or terminologies in Mathlib4. This limitation is less
problematic in elementary mathematics, where concepts are relatively simple and limited
in scope. But as a general-purpose large language model not specialized in formal math,
this becomes a significant constraint in advanced mathematical contexts, which involve
a vast array of specialized concepts and terminologies. Maybe this can be alleviated via
prompt engineering or retrieval augmentation, but exploring these approaches falls outside
the scope of our current research.

A.2 Data curation

A.2.1 Prompt template for problem extraction
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You are a h e l p f u l a s s i s t a n t t h a t e x t r a c t s complete math problems from
t e x t and formats them i n t o a JSON l i s t .

Format requirements :
− Each problem must inc lude symbol d e f i n i t i o n s
− JSON keys : " problem " ( d e s c r i p t i o n ) and " type " ( " proof "/" ans " )

Output format :
[

{ " problem " : " . . . " , " type " : " . . . " } ,
{ " problem " : " . . . " , " type " : " . . . " }

]

A.2.2 Prompt template for problem validation

You are a mathematical problem v a l i d a t o r . Your task i s to check whether
a given mathematical problem meets the fol lowing c r i t e r i a :

1 . The problem should not be a d e f i n i t i o n , or d e s c r i p t i v e statement .
2 . The problem must e x p l i c i t l y s t a t e a l l necessary condi t ions and

c l e a r l y s t a t e the conclus ion to be proven or solved .
3 . Al l symbols mentioned in the problem must be c l e a r l y defined and

explained , except f o r standard mathematical terms and symbols in the
{ category } f i e l d t h a t are convent iona l ly understood . I f the problem
r e l i e s on well −known theorems or concepts , they should be re ferenced
e x p l i c i t l y , but t h e i r d e t a i l e d d e f i n i t i o n s need not be repeated .

I f the problem meets a l l the c r i t e r i a , re turn ‘ true ‘ f o r the ‘ val id ‘
f i e l d . Otherwise , re turn ‘ f a l s e ‘ . S t a t e your answer as
$\boxed { t rue } $ or $\boxed { f a l s e } $ a t the end of your response .

Now, v a l i d a t e the fol lowing mathematical problem :

{ problem }

Please think step by step and provide a d e t a i l e d explanat ion before
giving your f i n a l answer .

A.3 Details of uproof dataset

Here is more representative examples in our uproof dataset. We also list the data sources
and composition of uproof in Table A.3.

Topology. Show that in terms of the ambient space the property of connectedness of a
set can be expressed as follows: A subset E of a topological space (X, τ) is connected if
and only if there is no pair of open (or closed) subsets G1, G2 of X that are disjoint and
such that E ∩ G1 ̸= ∅, E ∩ G2 ̸= ∅, and E ⊂ G1 ∪ G2.

Analysis. Prove that the metric space R[a, b] of real-valued Riemann-integrable functions
defined on the closed interval [a, b] is not complete with respect to the integral metric
d( f , g) =

∫ b
a | f − g|(x) dx.

Algebra. Let G be a group of order 15. According to the Third Sylow Theorem, the
number of its Sylow 3-subgroups divides 5 and is congruent to 1 modulo 3. Show that
there is one Sylow 3-subgroup, say H, and it is a normal subgroup.
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Analysis. Show that on any metric space (X, d) one can introduce a metric d−(x1, x2) =
d(x1,x2)

1+d(x1,x2)
in which the distance between the points will be less than 1.

Book Author(s) Problems

Mathematical Analysis I Vladimir A. Zorich 440
Mathematical Analysis II Vladimir A. Zorich 433
Algebra Micheal Artin 599
Algebraic Topology Allen Hatcher 464
Basic Topology M. A. Armstrong 165
Complex Analysis Elias M. Stein, Rami Shakarchi 265
Abstract Algebra David S. Dummit, Richard M. Foote 1355
Functional Analysis Theo B¨ uhler, Dietmar A. Salamon 330
Commutative Algebra M. E. Atiyah, I. G. MacDonald 176
Linear Algebra Gilbert Strang 129
Linear Algebra and Geometry Igor R. Shafarevich·Alexey O. Remizov 183
Probability: Theory and Examples Richard Durrett 247
Real Analysis Elias M. Stein, Rami Shakarchi 239
Statistical Inference George Casella, Roger L. Berger 248

Table 8: The sources and composition of uproof dataset.

A.4 Details in reward design

Syntax Check. We leverage Lean 4 compiler and Mathlib4 library to conduct syntax check
for each formalization. Relevant open-source projects are listed in Table 9.

Name Link Version

Lean 4 https://github.com/leanprover/lean4 v4.15.0
Mathlib4 https://github.com/leanprover-community/mathlib4 v4.15.0
Cli https://github.com/leanprover/lean4-cli v4.15.0
REPL https://github.com/leanprover-community/repl.git v4.15.0

Table 9: Libraries and versions envolved in SC process.

For each formalized theorem we will add some predefined headers and imports before it
is sent to the verifier. We used the same settings as Xin et al. (2024b). Here is the actual
environment provided for each theorem:

import Mathlib
import Aesop
se t_o pt ion maxHeartbeats 0
open Topology
open BigOperators
open Nat
open Real
open Rat

Consistency Check. We require a LLM to conduct consistency check with the following
prompt template across our experiments.

Here i s a n at ura l language math problem and a t r a n s l a t i o n in formal
language Lean 4 . You need to c a r e f u l l y analyse these problems and
f i g u r e out wether they are equiva lent or not . These problems must
have e x a c t l y the same condi t ions and conclusions , they should be
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marked f a l s e i f they v i o l a t e any of these requirements . You should
reply f a l s e i f the given formal statement i s empty or in a weird
format .

* * Natural Language Problem * *

{ nl_s ta tement }

‘ ‘ ‘ lean
{ f l _ s t a t e m e n t }
‘ ‘ ‘

S t a t e your answer as $\\boxed { { t rue } } $ or $\\boxed { { f a l s e } } $ a t the end
of your response .

The answer will then be extracted from response of the LLM, and can not obtain the expected
output from the LLM, the default evaluation will be “false”. Here is the sampling parameters
we used in CC:

• Temperature: 0.6
• Min P: 0.05
• Max Completion Tokens: 2048

A.5 Detailed training settings

We adopted a lightweight framework, trl(von Werra et al., 2020), for all of our training
process. The actual version we used is v0.15.2.

Baseline Settings. We train our baseline formalizers via vanilla supervised fine-tuning
method on Lean Workbook dataset.(Ying et al., 2024) Here is the detailed training hyperpa-
rameters of baseline formalizers:

• Learning Rate: 2 × 10−5

• Weight Decay: 0
• Precision: bf16
• Train Epoch: 2
• Training Devices: 6
• Per Device Train Batch Size: 1
• Gradient Accumulation Steps: 1
• Max Seq Length: 4096
• Optimizer: AdamW

RL Settings. We conducted RL training with the same prompt template for instruction-
finetuned models.

T r a n s l a t e the statement of t h i s math problem i n t o a s i n g l e theorem in
formal language Lean4 . Do not wri te any proof s teps f o r t h i s theorem
or t r y to solve t h i s problem , you should focus on the t r a n s l a t i o n
and simply use ‘ sorry ‘ as a place holder of the d e t a i l e d proof . For
example , 1+1=2 i s t r a n s l a t e d i n t o ‘ ‘ ‘ lean\nexample : 1+1=2 :=
sorry\n ‘ ‘ ‘ .

### Natural Language Problem
{ nl_statement }

Then we use GRPO algorithm to optimize our formalizer with the following hyperparame-
ters, other hyperparameters are kept the same as the default settings in trl library.
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• Learning Rate: 1 × 10−6

• Per Device Train Batch Size: 1
• Num Generations: 4
• Train Epoch: 3
• Max Completion Length: 2048
• Gradient Accumulation Steps: 1
• GRPO Beta: 0.0
• Precision: bf16

A.6 Additional experiment results

To assess reward hack issues in FormaRL, we also tested some other LLMs on the evaluation
of the same samples generated by our formalizer. Results are summarized in Table 10.
Models fine-tuned via FormaRL still outperformed SFT based models across all benchmarks.

Method Dataset
Evaluation Models

Qwen2.5-7B-Instruct GPT-4o DeepSeek-V3

(Liu et al., 2025) ProofNet 19.68% 16.98% 17.52%
FormaRL ProofNet 31.81% 27.49% 26.68%
(Liu et al., 2025) uproof 6.2 % 4.7 % 5.1 %
FormaRL uproof 8.6 % 5.8 % 5.4 %

Table 10: Pass@1 accuracy of both SC and CC on ProofNet and uproof with different
large language model as the backend of consistency check. Thees results are all based on
DeepSeek-Math-7B.

Here are some other additional experiment results not mentioned in the main part. They
are scattered experiments conducted under different settings, and their conclusions are
essentially consistent with those in the main text.

Method Base Model miniF2F ProofNet

SFT, DeepSeek-Math-7B-Instruct 97.34% / 57.79% 67.39% / 36.66%
FormaRL+R RAutoformalizer 96.52% / 62.30% 81.40% / 53.64%

(Liu et al., 2025) RAutoformalizer 96.72% / 36.07% 75.74% / 39.89%

Table 11: The pass@8 accuracy of in-distribution autoformalization performance. Statistics
are reported as “SC pass rate / final pass rate”.

Model Dataset SC Pass Rate Final Pass Rate

Qwen2.5-7B-Instruct miniF2F 20.90% 10.66%
Qwen2.5-Coder-7B-Instruct miniF2F 34.22% 22.54%
Qwen2.5-7B-Instruct ProofNet 2.43% 1.62%
Qwen2.5-Coder-7B-Instruct ProofNet 6.73% 4.04%

Table 12: More results of vanilla ICL of different models. Performance are evaluated at
pass@1 metric.
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