
Published as a conference paper at COLM 2025

FormaRL: Enhancing Autoformalization with no Labeled Data

Yanxing Huang1, Xinling Jin4, Sijie Liang5, Peng Li3∗, Yang Liu2,3∗
1Department of Mathematics Sciences, Tsinghua University
2Dept. of Comp. Sci. & Tech., Institute for AI, Tsinghua University, Beijing, China
3Institute for AI Industry Research (AIR), Tsinghua University
4School Of Computer Science And Technology, Tongji University
5Faculty of Science Mathematics and applied mathematics, Beijing Forestry University

Abstract

Autoformalization is one of the central tasks in formal verification, while
its advancement remains hindered due to the data scarcity and the ab-
sence efficient methods. In this work we propose FormaRL, a simple yet
efficient reinforcement learning framework for autoformalization which
only requires a small amount of unlabeled data. FormaRL integrates syn-
tax check from Lean compiler and consistency check from large language
model to calculate the reward, and adopts GRPO algorithm to update the
formalizer. We also curated a proof problem dataset from undergraduate-
level math materials, named uproof, in the hope to facilitate the explo-
ration of autoformalization and theorem proving in advanced math. Ex-
periments show that FormaRL can increase the pass@1 autoformalization
accuracy of Qwen2.5-Coder-7B-Instruct by 4 ∼ 6x (4.04% → 26.15% on
ProofNet and 2.4% → 9.6% on uproof) with merely 859 unlabeled data.
And on uproof our method also achieved a strong improvement in out-of-
distribution performance compared to existing open-source state-of-the-art
autoformalizers on both pass@1 accuracy (6.2% → 9.6%) and pass@16 ac-
curacy (24.4% → 33.6%). Training code of FormaRL is open-sourced at
https://github.com/THUNLP-MT/FormaRL.

1 Introduction

Mathematical reasoning has long been regarded as a cornerstone of scientific and techno-
logical advancement. Recent large language models (LLMs) have made advancements in
solving math problems (OpenAI et al., 2024a; Qwen et al., 2024; Yang et al., 2024a). Large
reasoning models (LRMs) gain stronger reasoning abilities, and achieved impressive results
on competition level math problems (OpenAI et al., 2024b; DeepSeek-AI et al., 2025a; Team
et al., 2025).

Although language models excel in many mathematical tasks, they still struggle with
theorem proving. An important reason is that theorem proving typically requires formal
verification, and one of the critical steps of it, autoformalization, remains challenging for
models (Li et al., 2024b; Yang et al., 2024b). Autoformalization is the process which translates
natural language mathematics into formal languages (Li et al., 2024b; Yang et al., 2024b),
such as Lean (Moura & Ullrich, 2021), Isabelle (Tobias Nipkow, 2002), or Coq (Yves Bertot,
2013). It is the start point of formal verification for a theorem. And it is crucial for creation
of large scale training dataset of following steps of theorem proving (Wu et al., 2024; Li et al.,
2024a; Lin et al., 2025; Xin et al., 2025; Castelvecchi, 2024; Xin et al., 2024a;b).

Existing models demonstrate certain ability on autoformalization of elementary mathemat-
ics, but their performance significantly drops when it comes to that of advanced mathematics
(see Table 4). Advanced math covers a much wider range of concepts and is much more

∗Corresponding authors: Peng Li (lipeng@air.tsinghua.edu.cn) and Yang Liu (li-
uyang2011@tsinghua.edu.cn)

1

https://github.com/THUNLP-MT/FormaRL

Published as a conference paper at COLM 2025

Natural language
statement dataset

If $f (x) = x + 2$ and $g
(x) = x^2$, then for what
value of x does $f(g(x))
= g(f(x))$? Express your
answer as a common fracti
on. Show that it is
-\frac{1}{2}.

Let $n $ be an integer gre
ater than or equal to 2.
Prove that if $k^2 + k +
n $ is prime for all integ
ers $k $ such that $ 0 \le
q k \leq \sqrt{n/3} $, the
n $k^2 + k + n $ is prime
for all integers $k $ such
that
$0 \leq k \leq n - 2 $.

......

Autoformalization

theorem induction_sum_odd
 (n : ℕ) :
 ∑ k in (Finset.range n),
 2 * k + 1 = n^2 := sorry

A group of formal
statements

Rewards for GRPO

Training Loop of FormaRL

Syntax Check
via Lean Compiler

Consistency Check
via language model

[, , ,]

Figure 1: Illustration of FormaRL training loop. We combined lean syntax check from
the compiler and LLM based semantic check to assess the quality of formalizations, and
adopted GPRO algorithm to update our formalizer.

complex than contest level math, thus is harder to formalize (Azerbayev et al., 2023,). The
lack of training data further limits autoformalization performance in this area. Some prior
works (Xin et al., 2024a;b; Li et al., 2024a; Lin et al., 2025; Xin et al., 2025) train autofor-
malizer on existing large scale formalization datasets, such as MMA (Jiang et al.), Lean
Workbook (Ying et al., 2024) or some in-house datasets. Other works boost model perfor-
mance via supervised fine-tuning (SFT) on manually annotated data (Ying et al., 2024) or
informalized statement pairs (Liu et al., 2025; Jiang et al.). However, due to the high cost of
human annotation and the inefficiency of training recipe, their performance remains limited.

For the above challenge, we propose a method called FormaRL. We utilize reinforcement
learning to train our model, with rewards from Lean compiler and LLMs, as shown in
Figure 1. Our method is more effective and efficient compared to previous SFT methods. We
use training data which is unlabeled, and only 1% of the amount compared to prior works,
to reach superior performance. Additionally, our method is applicable to various models,
including mathematical foundational models and existing autoformalizers. we also create a
dataset, named uproof, to evaluate out-of-distribution autoformalization performance in
advanced math. It contains 5,273 proof problems from 14 classical textbooks, which covers
a wide range of topics from undergraduate-level math.

In summary, our contributions are three-folded:

• We propose FormaRL, a simple yet effective RL based training framework to en-
hance model ability of autoformalization with far less training data.

• We create a benchmark named uproof, bridging the gap of evaluation of out-of-
distribution autoformalization for advanced math problems.

• We conduct extensive experiments, and find that existing models fall short in
advanced math autoformalization, while our proposed method reaches promising
performance especially on advanced math autoformalization. Our ablation study
further guarantees the effectiveness of FormaRL.

2

Published as a conference paper at COLM 2025

2 Related work

2.1 Autoformalization

Autoformalization aims to automatically translate mathematical materials in natural lan-
gauge into machine-verifiable formal code (Li et al., 2024b). Broadly speaking, it include the
translation of both the statements and proofs of a math problem (Cunningham et al., 2023;
Jiang et al., 2023; Zhao et al., 2023; Murphy et al., 2024; Patel et al.), while another line of
works primarily focus on the translation of the problem statements (Wu et al., 2022; Jiang
et al.; Azerbayev et al., 2023,).

Autoformalization is a challenging task especially for currently prevalent data-driven
approaches (Li et al., 2024b). To alleviate the scarcity of informal-formal corpora, researchers
adopted various methods to synthesize large scale datasets for training. This LLM based
informalization (Azerbayev et al., 2023,; Jiang et al.; Liu et al., 2025), or utilizing in-context
learning (ICL) capability to create an expert iteration pipeline for autoformalization (Wu
et al., 2022; Ying et al., 2024). One major difference in autoformalization compared to
machine translation is the existence of formal verifier. They can provide accurate feedback
on the accuracy of the formalized statements and proofs. The verifier is widely used
to conduct rejection sampling (Poiroux et al., 2024) or expert iteration (Jiang et al., 2023;
Murphy et al., 2024) to enhance autoformalization. It can also contribute to constructing
objective evaluation metrics (Azerbayev et al., 2023,; Ying et al., 2024; Liu et al., 2025).

2.2 Reinforcement learning

Reinforcement learning (RL) is a machine learning paradigm where an agent learns to
make decisions by interacting with the environment to maximize cumulative rewards.
Unlike supervised learning, which relies on large scale labeled datasets, RL algorithms learn
through trial and error, guided by a reward signal that evaluates the quality of actions taken.

In the development of modern LLMs, there is many works that leverage RL algorithms to
optimize their performance. Reinforcement learning from human feedback (RLHF) was
proposed to align LLMs behaviour with human preferences and values (Ouyang et al., 2022;
Ziegler et al., 2020). Recent work demonstrates RL’s effectiveness in both informal math
problem solving (Lightman et al., 2023; Shao et al., 2024) and formal theorem proving (Xin
et al., 2024b; Lin et al., 2025; Xin et al., 2025). RL is also the key to the paradigm shift from
LLM to LRM (DeepSeek-AI et al., 2025a; Team et al., 2025). RL-based algorithm surpasses
SFT is both data efficiency and final performance according to some recent studies (Zeng
et al., 2025; Li et al., 2025; Yu et al., 2025).

3 Preliminaries

In this work we primarily focus on formal language Lean 4, with particular attention to the
translation of mathematical problem statements. In Lean 4, it is possible to simulate the
completion of a proof using the keyword “sorry”. If a theorem statement is syntactically
correct and either properly proved or concluded with “sorry”, the Lean compiler returns a
“no goals” message, indicating that the statement is accepted.

A typical problem statement in Lean 4 is written as follows:

1 theorem e x e r c i s e _ 1 _ 1 3 a { f : C → C } (Ω : Se t C) (a b : Ω) (h : IsOpen
Ω) (hf : Di f fe rent iab le On C f Ω) (hc : ∃ (c : R) , ∀ z ∈ Ω , (f
z) . re = c) : f a = f b := sorry

The “theorem” keyword is used to declare a named theorem, while “example” can be used
for unnamed statements. Each declaration is concluded with “ s̄orry“ if a proof is omitted.
Here we also provide some descriptions of each dataset involved in our experiments.

• miniF2F (Zheng et al., 2022) is a formal theorem proving benchmark proposed by
OpenAI. It consists 488 problems from elementary math with several variants in

3

Published as a conference paper at COLM 2025

Lean, Coq and Isabelle. The original purpose of miniF2F was to create a universal
benchmark across different formal languages. The problems in miniF2F are drawn
from high-school exercises and contests such as AIME, AMC and the IMO. In our
experiments we use the version from Xin et al. (2024a) as an autoformalization
benchmark for elementary math.

• ProofNet (Azerbayev et al., 2023,) was proposed both as a theorem proving bench-
mark and an autoformalization benchmark. It primarily focus on undergraduate-
level math, manually collected and translated 371 problems into Lean. It covers a
wide range of topics from advanced mathematics, from real and complex analysis
to algebra and topology. Again we use the version provided by Xin et al. (2024a) as
an autoformalization benchmark for advanced math.

• Lean Workbook (Ying et al., 2024) is a large scale Lean 4 problem set formalized
from contest level math problems in natural language. They crawled the raw
problems from AOPS and translated them into Lean 4 using a formalizer trained by
themselves. After filtering these results they ended up with 25.2k Lean 4 translation
pairs in total, and most of them also belong to elementary math. We primarily
use this dataset to train formalizers via SFT as our baseline. Recent researches
showed that formalizers trained on this dataset already exhibits strong performance
compared to other formalization corpora (Liu et al., 2025).

4 Methodology

We begin our experiments by designing a reward to assess the translation, which is then
integrated into a reinforcement learning framework to iteratively refine translation perfor-
mance. Our reward design eliminates the need for annotated translation datasets, enabling
training of a formalizer without reliance on manual demonstrations.

4.1 Reward design

We adapted the data filtering method in Lean Workbook (Ying et al., 2024) as the core of our
reward system. This process involves two sequential validation stages:

• Syntax Check (SC): Extracted translations will firstly undergo automated validation
via the Lean 4 compiler to ensure syntactic correctness. This ensures that the outputs
are valid lean 4 code.

• Consistency Check (CC): After stripping comments and metadata, the translation’s
semantic alignment with the original problem is evaluated using a large language
model (LLM).

For each response from the translation model, a reward of “1.0” is assigned only when it
passed both SC and CC, otherwise the reward will always be “0.0”. This hybrid rule-based
and LLM-driven assessment ensures robustness, as empirical results demonstrate that
neither component alone suffices for reliable validation, see section 5.3 for more details

4.2 Training method

We adopted a simplified version of Group Relative Policy Optimization (GRPO) as our
training algorithm. This is also the algorithm behind the success of DeepSeek-R1 (Shao et al.,
2024; DeepSeek-AI et al., 2025a). For each question q, GRPO algorithm samples a group of
outputs {o1, o2, . . . , oG} from the old policy model πθold , and then optimize the policy model
by maximizing the following objective:

JGRPO(θ) = E[q ∼ P(Q), {oi}G
i=1 ∼ πθold]

1
G

G

∑
i=1

1
|oi|

|oi |

∑
t=1

{
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, 1 − ϵ, 1 + ϵ)

]}

4

Published as a conference paper at COLM 2025

Here ϵ and β are hyperparameters, and Âi,t is the advantage calculated based on relative
rewards of the outputs in each group. More accurately it is Âi,t = r̃i =

ri−mean(r)
std(r) , where r is

the observed reward.

A notable departure from standard GRPO is the omission of the KL divergence regulariza-
tion term. This simplification, supported by recent empirical studies (Meng et al., 2024; Yu
et al., 2025), maintains training stability while reducing computational overhead, and can
lead to better performance in many cases.

4.3 Quality assessment

While Lean 4’s syntax checker provides rigorous formal validation, the reliability of the
consistency check (CC) warrants closer examination. Inaccuracies in this process could lead
to reward hacking or degrade the overall effectiveness of training.

We frame the evaluation of CC as a binary classification task. To assess recall, we applied
the consistency check to samples from existing formal datasets paired with their ground
truth translations, measuring the rate at which correct samples were accepted. To estimate
specificity, we prompted a large language model to deliberately generate incorrect transla-
tions by modifying original statements, such as adding, removing, or altering conditions
or conclusions, and then tested whether the CC could successfully reject these perturbed
examples.

Unless otherwise noted, DeepSeek-V3 (DeepSeek-AI et al., 2025b) was used for CC during
most of the FormaRL training process, while Qwen2.5-7B-Instruct (Qwen et al., 2024) served
as the evaluation model. The performance of the consistency check is summarized in Table 1.

Model
miniF2F ProofNet

Recall ↑ Specificity ↑ Recall ↑ Specificity ↑
Qwen2.5-7B-Instruct 87.29% 92.22% 78.59% 79.68%
DeepSeek-V3 88.52% 98.57% 76.82% 93.53%
GPT-4o 84.22% 97.95% 72.51% 90.84%

Table 1: Performance of the consistency check across different models and datasets.

These results indicate that the consistency check performs reasonably well on simpler
datasets like miniF2F, but struggles more with complex mathematical content, as seen
in ProofNet, where both recall and specificity are lower. This suggests that using CC as
a filtering or selection mechanism may be problematic, particularly in high-throughput
scenarios like pass@8 sampling, where specificity can drop sharply (e.g., to 52.31% for
miniF2F and 16.25% for ProofNet), allowing a significant number of incorrect samples into
the generated dataset.

To mitigate this, our subsequent experiments rely solely on the syntax check (SC) for
selection. For each problem, only the first candidate that passes SC proceeds to consistency
checking and contributes to the final pass rate.

5 Experiments

5.1 Dataset

To construct our dataset, we curated 14 classical mathematics textbooks spanning core
undergraduate curricula, including mathematical analysis, linear algebra, abstract algebra,
real analysis, complex analysis, functional analysis, topology, probability, statistics and
commutative algebra.

5

Published as a conference paper at COLM 2025

The raw textbook content was preprocessed by converting PDF files into markdown format,
followed by segmentation into smaller chunks of reasonable length. We required GPT-4o to
extract the lemmas, theorems and exercises from these documents. After that we required
GPT-4o again to filter out incomplete problems and reformat math formulas into standard
LaTeX syntax.

This results in uproof, a large scale dataset of undergraduate-level proof problems. Here we
list some examples in uproof in Table 2.

Problem Category

If F : D → P is a conformal map from the disc D to a polygonal region P, show
that F extends to a continuous bijection from the closure of D to the closure of
P.

Analysis

Let α = (2 +
√

2)(3 +
√

3) and consider the extension E = Q(α). Show that α

is not a square in F = Q(
√

2,
√

3)
Algebra

Prove that every closed nonorientable surface has a 2-sheeted orientable
covering space.

Topology

Show that if
√

n(Xn−µ)
σ converges in distribution to N(0, 1), then the expression√

n(X̄n−µ)
Sn

converges in distribution to N(0, 1) as well.

Probability

Table 2: Samples from uproof dataset.

5.2 Results

We utilize two well-known datasets in formal theorem proving, miniF2F and ProofNet, for
training with FormaRL. It is important to note that these two datasets contains merely 859
statements in total, which is significantly smaller than the data requirement of existing SFT-
based methods (25.2k in Lean Workbook (Ying et al., 2024) and 243k for RAutoformalizer Liu
et al. (2025)). The ground truth translations in these datasets are not involved in FormaRL
either. Nevertheless, our experiments demonstrate that FormaRL already exhibits superior
performance in autoformalization.

In our experiments we used Lean Workbook as the training dataset for our baseline formal-
izers via SFT. It is worth mentioning that this dataset was synthesized using both miniF2F
and ProofNet, making these benchmarks in-distribution for all formalizers evaluated. In our
main experiment, we tested two different base models, Qwen2.5-Coder-7B-Instruct (Hui
et al., 2024) and DeepSeek-Math-7B (Shao et al., 2024). We randomly selected 1,000 elements
from uproof dataset as our validation split. Since our primarily focus is on the generalization
ability of different strategies, the results on uProof are particularly informative, as they
reflect the models’ out-of-distribution performance.

Our main experiment results are summarized in Table 3.

We can see that FormaRL outperformed SFT baselines by a large margin, demonstrating its
strong generalization capability.

DeepSeek-Math-7B-Instruct performs poorly out of the box and struggles to generate correct
formalizations without fine-tuning, thereby would severely impact the efficiency of RL.
So we applied a minimal warm-up for this model, specifically, we randomly selected 1k
translation pairs from Lean Workbook and trained DeepSeek-Math-7B-Instruct for 1 epoch.
This does not introduce excessive additional training or data requirement. Meanwhile,
Qwen2.5-Coder-7B-Instruct is trained via FormaRL entirely from scratch.

We also evaluated the effect of applying FormaRL on top of a pre-trained formalizer. While
this setup showed that FormaRL can further improve performance after extensive SFT, the
improvement plateaued, suggesting a limited upper bound. Notably, the most substantial
performance gains were observed when using FormaRL without any prior SFT.

6

Published as a conference paper at COLM 2025

Model Method SC Pass Rate Final Pass Rate ∆
Pass@1

DeepSeek-V3

ICL

1.3% 1.1%
GPT-4o 2.9% 2.2%
DeepSeek-Math-7B-Instruct 0.2% 0.1%
Qwen2.5-Coder-7B-Instruct 3.7% 2.4%

RAutoformalizer (Liu et al., 2025) - 14.1% 6.2%
FormaRL 20.1% 11.9% + 5.7%

DeepSeek-Math-7B-Instruct SFT 21.2% 7.8%
FormaRL 14.4% 8.6% + 0.8%

Qwen2.5-Coder-7B-Instruct SFT 20.4% 7.5%
FormaRL 18.6% 9.6% + 2.1%

Pass@8

RAutoformalizer (Liu et al., 2025) - 48.0% 20.0%
FormaRL 44.8% 21.9% + 1.9%

DeepSeek-Math-7B-Instruct SFT 54.7% 17.0%
FormaRL 46.1% 22.8% + 5.8%

Qwen2.5-Coder-7B-Instruct SFT 52.3% 15.8%
FormaRL 62.2% 29.8% +14.0%

Pass@16

RAutoformalizer (Liu et al., 2025) - 65.2% 24.4%
FormaRL 53.4% 25.7% + 1.3%

DeepSeek-Math-7B-Instruct SFT 66.4% 22.5%
FormaRL 57.7% 27.2% + 4.7%

Qwen2.5-Coder-7B-Instruct SFT 63.6% 21.2%
FormaRL 66.7% 33.6% +12.4%

Table 3: The out-of-distribution accuracy of autoformalization on uproof split (advanced
math). ICL is for “in-context learning”. The SFT approach utilizes 25.2k Lean Workbook
dataset for training, while our FormaRL approach only uses 859 unlabeled statements from
miniF2F and ProofNet. As RAutoformalizer has been already fine-tuned on a 243k dataset
for autoformalization, whose scale is much larger than our SFT dataset, we do not conduct
further SFT on it.

To assess in-distribution performance, we evaluated some of these models on miniF2F and
ProofNet, relevant results are listed in Table 4. While these benchmarks are less central to
our primary focus, they serve as useful supplementary references.

Both propriaty models, DeepSeek-V3 and GPT-4o exhibit poor performance especially in
advanced math such as ProofNet dataset. This mainly stems from their low SC pass rate.
More detailed examinations on this can be found in Appendix A.1.

5.3 Ablation study

Our experiments also suggest that FormaRL is a minimal possible RL framework for
autoformalization. That means if we eliminate any component in the reward calculation,
the RL training would cause severe reward hack and no meaningful results. And at the
same time, we can observe consistent performance increment when integrating both SC and
CC check.

If we calculate the reward without CC check, the model will quickly learn to generate the
same simple statement that is not relevant to the given problem so that it can pass all syntax
checks. On the other hand if we eliminate SC check, the model will quickly learn to include
natural language statements from the original problem in its response, preserving good
consistency but that is not formalization. We list some typical cases and evaluation results
in Table 5

7

Published as a conference paper at COLM 2025

Model Method miniF2F ProofNet

DeepSeek-V3 ICL 24.59% / 20.08% 2.70% / 2.70%
GPT-4o 47.95% / 38.93% 4.04% / 3.23%

RAutoformalizer (Liu et al., 2025) - 49.18% / 25.00% 28.30% / 19.68%
FormaRL 83.20% / 53.89% 58.49% / 46.90%

DeepSeek-Math-7B-Instruct SFT 82.17% / 48.77% 35.04% / 22.64%
FormaRL 86.27% / 59.63% 42.59% / 31.81%

Qwen2.5-Coder-7B-Instruct SFT 88.32% / 56.35% 35.85% / 18.87%
FormaRL 81.56% / 57.58% 35.58% / 26.15%

Table 4: The pass@1 accuracy of in-distribution autoformalization performance. ICL is for
“in-context learning”. We use miniF2F dataset to test the autoformalization performance
of elementary math, and ProofNet for advanced math. Similar to Table 3, for each test, we
report the SC pass rate and the final pass rate after SC and CC.

Method Case Pass Rate

w/o SC
holomorphic_open_omega f Ω → Re_constant f

→ Constant f := sorry

SC 0.27%
CC 74.66%

SC&CC 0.00%

w/o CC
theorem realPar tConstant Impl iesConstant :

Fa l se := sorry

SC 100%
CC 0%

SC&CC 0%

CC & SC

theorem p r o v e _ f _ i s _ c o n s t a n t { f : C → C }
(h_f_holomorphic : ∀ (z : C) , ∀ (U : Set C)
, IsOpen U ∧ ∀ (w : C) , w ∈ U → ∃ (L : C) ,
∀ (z1 z2 : C) , z1 ∈ U ∧ z2 ∈ U → (f z1 − f
z2 = L * (z1 − z2))) (h_im_constant : ∀ (z :
C) , ∀ (w : C) , f z = f w → Im (f z) = Im
(f w)) : ∀ (z1 z2 : C) , f z1 = f z2 := sorry

SC 35.58%

CC 57.14%

SC&CC 26.15%

Table 5: Ablation study on reward design. These formalizers are trained from Qwen2.5-7B-
Instruct and tested on ProofNet. These are formalizations from the same proof problem in
complex analysis: “Suppose that f is holomorphic in an open set Ω. Prove that if Im(f) is
constant, then f is constant”.

The performance of FormaRL heavily relies on the distinguishing ability of the LLM used in
CC. We also tried some weaker language models in the training process. By switching the
backend of CC from DeepSeek-V3 to Qwen2.5-7B-Instruct, we can observe performance
drop on all benchmarks under pass@8 or pass@16 settings. Typically models trained
with weaker LLM in FormaRL exhibit weaker performance in keeping the consistency
in autoformalization, but tend to have higher SC pass rate in sampling. This limits their
potential to gain improvement from multiple sampling. Nevertheless, these models still
outperformed SFT baselines, with significantly less data requirement. Relevant results are
summarized in Table 6.

A formal statement that passes both SC and CC checks is typically a promissing formal-
ization, however, since we used a large language model to conduct consistency check in
both training and evaluation, there exists the possibility of reward hack. We have selected
100 samples for both formalizer, and done some manual reviews on samples generated by
formalizer trained via FormaRL and RAutoformalizer. As shown in Table 7, since the for-
malizer trained with RL did not exhibit significantly higher CC pass rate under LLM-based
review than manual, There is no evidence of reward hack in our experiments. We also did
some ablation study on the LLM backend of CC, relevant results can be found in Table 10 in
the appendix. These results also support the non-existence of reward hack after FormaRL.

8

Published as a conference paper at COLM 2025

Method Base Model Settings Performance

SFT Qwen2.5-Coder-7B-Instruct pass@1 20.4% / 7.5%
FormaRL(w/ deepseek) Qwen2.5-Coder-7B-Instruct pass@1 18.6% / 9.6%
FormaRL(w/ qwen) Qwen2.5-Coder-7B-Instruct pass@1 28.5% / 11.7%

SFT Qwen2.5-Coder-7B-Instruct pass@8 52.3% / 15.8%
FormaRL(w/ deepseek) Qwen2.5-Coder-7B-Instruct pass@8 62.2% / 29.8%
FormaRL(w/ qwen) Qwen2.5-Coder-7B-Instruct pass@8 69.8% / 27.6%

SFT Qwen2.5-Coder-7B-Instruct pass@16 63.6% / 21.2%
FormaRL(w/ deepseek) Qwen2.5-Coder-7B-Instruct pass@16 66.7% / 33.6%
FormaRL(w/ qwen) Qwen2.5-Coder-7B-Instruct pass@16 79.8% / 31.3%

Table 6: Ablation studies on the CC reward in training. We can see that models trained
with DeepSeek-V3 is consistantly more performant than that with Qwen2.5-7B-Instruct.
Performance is evaluated on uproof dataset and reported as SC pass rate / final pass rate.

Formalizer Manual Qwen2.5-7B-Instruct

RAutoformalizer(Liu et al., 2025) 25.0% 37.4%
Qwen2.5-Coder-7B-Instruct with FormaRL 38.8% 50.4%

Table 7: Comparesion of CC accuracy after SC under both manual review and LLM-based
review.

6 Conclusion and future work

FormaRL is a simple RL based training framework for autoformalization. It requires only a
small number of unlabeled training data but still exhibits superior performance compared
to vanilla SFT. Recently there are some more advanced methods proposed to enhance the
evaluation or sampling process for autoformalized problems, such as Bidirectional Extended
Definitional Equivalence (Liu et al., 2025) and dependency retrieval augmentation (Liu et al.,
2025). They also exhibit great improvement either in evaluation precision or autoformal-
ization quality. These methods are easy to integrate into our training pipeline. We can
add the contents provided by dependency retrieval to the prompts during training and
sampling, and use BEq in reward design. We believe this will bring the performance of
autoformalization to the next level.

Theorem proving is the central task of modern math research, thus is of more importance
than math contests. Some recent experiments suggest that the data amount required to train
a powerful LRM is relatively low (Li et al., 2025; Zeng et al., 2025), so maybe we are already
able to train a strong theorem prover with a proper RL algorithm and formal verification on
our uproof dataset or NaturalProofs (Welleck et al., 2021). We are optimistic about future
progress in theorem proving especially in advanced math, an area that remains largely
unexplored.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 62276152),
and funding from Wuxi Research Institute of Applied Technologies, Tsinghua University
under Grant 20242001120.

References

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir
Radev, and Jeremy Avigad. ProofNet: Autoformalizing and formally proving
undergraduate-level mathematics, 2023,. URL https://arxiv.org/abs/2302.12433v1.

9

https://arxiv.org/abs/2302.12433v1

Published as a conference paper at COLM 2025

Davide Castelvecchi. Deepmind hits milestone in solving maths problems—AI’s next grand
challenge. Nature, 632(8024):236–237, 2024.

Garett Cunningham, Razvan C. Bunescu, and David Juedes. Towards autoformalization
of mathematics and code correctness: Experiments with elementary proofs, 2023. URL
http://arxiv.org/abs/2301.02195.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu
Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong
Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu,
Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong
Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang,
Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu
Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu
Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu,
Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An,
Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie,
Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou,
Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu,
Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang
Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang
Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang,
Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and
Zhen Zhang. DeepSeek-r1: Incentivizing reasoning capability in LLMs via reinforcement
learning, 2025a. URL http://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo,
Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L.
Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao,
Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang
Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua
Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng
Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan,
T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei
An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen,
Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng,
Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu
Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu,
Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun,

10

http://arxiv.org/abs/2301.02195
http://arxiv.org/abs/2501.12948

Published as a conference paper at COLM 2025

Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying
He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan
Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen
Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng
Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li,
Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng
Pan. DeepSeek-v3 technical report, 2025b. URL http://arxiv.org/abs/2412.19437.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren,
Xuancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024.
URL http://arxiv.org/abs/2409.12186.

Albert Q. Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization.
URL http://arxiv.org/abs/2311.03755.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik,
Timothée Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding
formal theorem provers with informal proofs, 2023. URL http://arxiv.org/abs/2210.
12283.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. LIMR: Less is more for RL scaling, 2025. URL
http://arxiv.org/abs/2502.11886.

Yang Li, Dong Du, Linfeng Song, Chen Li, Weikang Wang, Tao Yang, and Haitao Mi.
HUNYUANPROVER: A scalable data synthesis framework and guided tree search for
automated theorem proving, 2024a. URL http://arxiv.org/abs/2412.20735.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang,
and Xujie Si. A survey on deep learning for theorem proving, 2024b. URL http://arxiv.
org/abs/2404.09939.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.
URL http://arxiv.org/abs/2305.20050.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li,
Mengzhou Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier
model for open-source automated theorem proving, 2025. URL http://arxiv.org/abs/
2502.07640. version: 1.

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and im-
proving autoformalization: towards a faithful metric and a dependency retrieval-based
approach. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=hUb2At2DsQ.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a
reference-free reward, 2024. URL http://arxiv.org/abs/2405.14734.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe (eds.), Automated Deduction – CADE 28, pp.
625–635, Cham, 2021. Springer International Publishing. ISBN 978-3-030-79876-5.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si.
Autoformalizing euclidean geometry, 2024. URL http://arxiv.org/abs/2405.17216.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, A. J. Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry,
Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov,
Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi

11

http://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2409.12186
http://arxiv.org/abs/2311.03755
http://arxiv.org/abs/2210.12283
http://arxiv.org/abs/2210.12283
http://arxiv.org/abs/2502.11886
http://arxiv.org/abs/2412.20735
http://arxiv.org/abs/2404.09939
http://arxiv.org/abs/2404.09939
http://arxiv.org/abs/2305.20050
http://arxiv.org/abs/2502.07640
http://arxiv.org/abs/2502.07640
https://openreview.net/forum?id=hUb2At2DsQ
http://arxiv.org/abs/2405.14734
http://arxiv.org/abs/2405.17216

Published as a conference paper at COLM 2025

Christakis, Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou
Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, An-
drej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu,
Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang,
Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi
Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn,
Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll
Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun
Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong
Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Win-
ter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn,
Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David
Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong
Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl,
Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene
Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang,
Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace,
Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang,
Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde
de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian
O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan,
Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob
Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason
Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu,
Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe
Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan
McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin,
Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce
Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy
Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren
Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther,
Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing,
Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum,
Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz
Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya
Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong,
Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael
Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom
Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira
Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie
Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick
Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar,
Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg
Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter
Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla
Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin,
Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza
Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit
Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen,
Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer,
Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu,

12

Published as a conference paper at COLM 2025

Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan,
Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun
Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman,
Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd
Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan
Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam
Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong
Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov.
GPT-4o system card, 2024a. URL http://arxiv.org/abs/2410.21276.

OpenAI, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex
Karpenko, Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei,
Allison Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew
Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang,
Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz
Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Bran-
don McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming
Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger,
Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel
Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris
Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan
Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Fran-
cis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo,
Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming
Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman,
Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon,
Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu,
Joaquin Quiñonero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hallman,
John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie
Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla
Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu,
Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng,
Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz
Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yat-
baz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov,
Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat
McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown,
Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne,
Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo
Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown,
Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer,
Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker,
Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray
Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh
Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders,
Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou,
Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng,
Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan
Li. OpenAI o1 system card, 2024b. URL http://arxiv.org/abs/2412.16720.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob

13

http://arxiv.org/abs/2410.21276
http://arxiv.org/abs/2412.16720

Published as a conference paper at COLM 2025

Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions
with human feedback, 2022. URL http://arxiv.org/abs/2203.02155.

Nilay Patel, Rahul Saha, and Jeffrey Flanigan. A new approach towards autoformalization.
URL http://arxiv.org/abs/2310.07957.

Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving autoformal-
ization using type checking, 2024. URL http://arxiv.org/abs/2406.07222.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming
Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang
Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan
Qiu. Qwen2.5 technical report, 2024. URL http://arxiv.org/abs/2412.15115.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits
of mathematical reasoning in open language models, 2024. URL http://arxiv.org/abs/
2402.03300.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao
Zhang, Enming Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai,
Haiqing Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian
Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia
Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie
Yan, Junyan Wu, Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen
Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao,
Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong, Weiran He, Weixiao Huang, Wenhao
Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu
Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie
Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi
Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang,
Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with LLMs, 2025. URL http://arxiv.org/abs/2501.12599.

Lawrence C. Paulson Tobias Nipkow, Markus Wenzel. Isabelle/hol: A proof assistant for
higher-order logic. Springer Berlin, Heidelberg, 2002.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush,
Nathan Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer
reinforcement learning. https://github.com/huggingface/trl, 2020.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and
Kyunghyun Cho. NaturalProofs: Mathematical theorem proving in natural language,
2021. URL http://arxiv.org/abs/2104.01112.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik,
and Christian Szegedy. Autoformalization with large language models, 2022. URL
http://arxiv.org/abs/2205.12615.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and
Kai Chen. InternLM2.5-StepProver: Advancing automated theorem proving via expert
iteration on large-scale LEAN problems, 2024. URL http://arxiv.org/abs/2410.15700.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan,
Wenda Li, and Xiaodan Liang. DeepSeek-prover: Advancing theorem proving in LLMs
through large-scale synthetic data, 2024a. URL http://arxiv.org/abs/2405.14333.

14

http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2310.07957
http://arxiv.org/abs/2406.07222
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2501.12599
https://github.com/huggingface/trl
http://arxiv.org/abs/2104.01112
http://arxiv.org/abs/2205.12615
http://arxiv.org/abs/2410.15700
http://arxiv.org/abs/2405.14333

Published as a conference paper at COLM 2025

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou,
Z. F. Wu, Fuli Luo, and Chong Ruan. DeepSeek-prover-v1.5: Harnessing proof assistant
feedback for reinforcement learning and monte-carlo tree search, 2024b. URL http:
//arxiv.org/abs/2408.08152.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng,
and Kai Shen. BFS-prover: Scalable best-first tree search for LLM-based automatic theorem
proving, 2025. URL http://arxiv.org/abs/2502.03438.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin
Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui
Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao
Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu
Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang,
Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao
Fan. Qwen2 technical report, 2024a. URL http://arxiv.org/abs/2407.10671.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri,
and Dawn Song. Formal mathematical reasoning: A new frontier in AI, 2024b. URL
http://arxiv.org/abs/2412.16075.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean work-
book: A large-scale lean problem set formalized from natural language math problems,
2024. URL http://arxiv.org/abs/2406.03847.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and
Mingxuan Wang. DAPO: An open-source LLM reinforcement learning system at scale,
2025. URL http://arxiv.org/abs/2503.14476.

Pierre Castéran Yves Bertot. Interactive theorem proving and program development.
Springer Berlin, Heidelberg, 2013.

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b
model and 8k examples: Emerging reasoning with reinforcement learning is both effective
and efficient. https://hkust-nlp.notion.site/simplerl-reason, 2025. Notion Blog.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based
demonstration learning for formal theorem proving, 2023. URL http://arxiv.org/abs/
2305.16366.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2f: a cross-system benchmark
for formal olympiad-level mathematics, 2022. URL http://arxiv.org/abs/2109.00110.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human prefer-
ences, 2020. URL http://arxiv.org/abs/1909.08593.

A Appendix

A.1 Case studies

We observed that both large scale LLMs, GPT-4o and DeepSeek-V3, can not exhibit promiss-
ing performance on autoformalization according to our experiments. Things get even worse

15

http://arxiv.org/abs/2408.08152
http://arxiv.org/abs/2408.08152
http://arxiv.org/abs/2502.03438
http://arxiv.org/abs/2407.10671
http://arxiv.org/abs/2412.16075
http://arxiv.org/abs/2406.03847
http://arxiv.org/abs/2503.14476
https://hkust-nlp.notion.site/simplerl-reason
http://arxiv.org/abs/2305.16366
http://arxiv.org/abs/2305.16366
http://arxiv.org/abs/2109.00110
http://arxiv.org/abs/1909.08593

Published as a conference paper at COLM 2025

when it comes to advanced math. For example on ProofNet, their syntax check pass rate is
both below 5%. By examine the cases generated by GPT-4o we can figure out the reason
behind this.

Here is a sample of response from GPT-4o, and the original problem comes from ProofNet
dataset:

To t r a n s l a t e t h i s na tur a l language problem i n t o a theorem in Lean4 , we
f i r s t need to introduce the necessary concepts , such as holomorphic
f u n c t i o n s and the r e a l par t of a complex funct ion . Assuming we have
these concepts defined , the theorem can be captured as fo l lows :

‘ ‘ ‘ lean
theorem holomorphic_cons t_rea l_par t_ i s_cons t { f : C → C } { Ω : s e t C }

(hΩ : is_open Ω) (hf : ∀ z ∈ Ω , d i f f e r e n t i a b l e _ a t C f z)
(h_re_const : ∃ c : R , ∀ z ∈ Ω , (f z) . re = c) :
∀ z1 z2 , z1 ∈ Ω → z2 ∈ Ω → f z1 = f z2 :=

sorry
‘ ‘ ‘

Natural Language Reasoning
− * * Hypothesis 1 * * : The funct ion ‘ f ‘ i s holomorphic in the open s e t ‘Ω ‘ ,

represented by an assumption t h a t ‘ f ‘ i s d i f f e r e n t i a b l e a t every
point ‘ z ‘ in ‘Ω ‘ .

− * * Hypothesis 2 * * : The r e a l par t of ‘ f ‘ i s constant on ‘Ω ‘ , represented
by the e x i s t e n c e of a r e a l number ‘ c ‘ such t h a t f o r every point ‘ z ‘
in ‘Ω ‘ , the r e a l part of ‘ f (z) ‘ equals ‘ c ‘ .

− * * Conclusion * * : The funct ion ‘ f ‘ i t s e l f i s constant on the s e t ‘Ω ‘ ,
which means f o r any two points ‘ z1 ‘ and ‘ z2 ‘ in ‘Ω ‘ , ‘ f (z1) ‘ equals
‘ f (z2) ‘ .

We use ‘ sorry ‘ as a placeholder f o r the proof d e t a i l s .

The extracted formalization is

theorem holomorphic_cons t_rea l_par t_ i s_cons t { f : C → C } { Ω : s e t C }
(hΩ : is_open Ω) (hf : ∀ z ∈ Ω , d i f f e r e n t i a b l e _ a t C f z)
(h_re_const : ∃ c : R , ∀ z ∈ Ω , (f z) . re = c) :
∀ z1 z2 , z1 ∈ Ω → z2 ∈ Ω → f z1 = f z2 :=

sorry

And this is the ground truth formalization adapted from ProofNet dataset.

theorem e x e r c i s e _ 1 _ 1 3 a { f : C → C } (Ω : Se t C) (a b : Ω) (h : IsOpen
Ω)

(hf : Di f fe rent iab leO n C f Ω) (hc : ∃ (c : R) , ∀ z ∈ Ω , (f z) . re =
c) :

f a = f b := sorry

We can see that GPT-4o does preserved the semantic meanings of the original theorem, but it
can not memorize the correct identifiers or terminologies in Mathlib4. This limitation is less
problematic in elementary mathematics, where concepts are relatively simple and limited
in scope. But as a general-purpose large language model not specialized in formal math,
this becomes a significant constraint in advanced mathematical contexts, which involve
a vast array of specialized concepts and terminologies. Maybe this can be alleviated via
prompt engineering or retrieval augmentation, but exploring these approaches falls outside
the scope of our current research.

A.2 Data curation

A.2.1 Prompt template for problem extraction

16

Published as a conference paper at COLM 2025

You are a h e l p f u l a s s i s t a n t t h a t e x t r a c t s complete math problems from
t e x t and formats them i n t o a JSON l i s t .

Format requirements :
− Each problem must inc lude symbol d e f i n i t i o n s
− JSON keys : " problem " (d e s c r i p t i o n) and " type " (" proof "/" ans ")

Output format :
[

{ " problem " : " . . . " , " type " : " . . . " } ,
{ " problem " : " . . . " , " type " : " . . . " }

]

A.2.2 Prompt template for problem validation

You are a mathematical problem v a l i d a t o r . Your task i s to check whether
a given mathematical problem meets the fol lowing c r i t e r i a :

1 . The problem should not be a d e f i n i t i o n , or d e s c r i p t i v e statement .
2 . The problem must e x p l i c i t l y s t a t e a l l necessary condi t ions and

c l e a r l y s t a t e the conclus ion to be proven or solved .
3 . Al l symbols mentioned in the problem must be c l e a r l y defined and

explained , except f o r standard mathematical terms and symbols in the
{ category } f i e l d t h a t are convent iona l ly understood . I f the problem
r e l i e s on well −known theorems or concepts , they should be re ferenced
e x p l i c i t l y , but t h e i r d e t a i l e d d e f i n i t i o n s need not be repeated .

I f the problem meets a l l the c r i t e r i a , re turn ‘ true ‘ f o r the ‘ val id ‘
f i e l d . Otherwise , re turn ‘ f a l s e ‘ . S t a t e your answer as
$\boxed { t rue } $ or $\boxed { f a l s e } $ a t the end of your response .

Now, v a l i d a t e the fol lowing mathematical problem :

{ problem }

Please think step by step and provide a d e t a i l e d explanat ion before
giving your f i n a l answer .

A.3 Details of uproof dataset

Here is more representative examples in our uproof dataset. We also list the data sources
and composition of uproof in Table A.3.

Topology. Show that in terms of the ambient space the property of connectedness of a
set can be expressed as follows: A subset E of a topological space (X, τ) is connected if
and only if there is no pair of open (or closed) subsets G1, G2 of X that are disjoint and
such that E ∩ G1 ̸= ∅, E ∩ G2 ̸= ∅, and E ⊂ G1 ∪ G2.

Analysis. Prove that the metric space R[a, b] of real-valued Riemann-integrable functions
defined on the closed interval [a, b] is not complete with respect to the integral metric
d(f , g) =

∫ b
a | f − g|(x) dx.

Algebra. Let G be a group of order 15. According to the Third Sylow Theorem, the
number of its Sylow 3-subgroups divides 5 and is congruent to 1 modulo 3. Show that
there is one Sylow 3-subgroup, say H, and it is a normal subgroup.

17

Published as a conference paper at COLM 2025

Analysis. Show that on any metric space (X, d) one can introduce a metric d−(x1, x2) =
d(x1,x2)

1+d(x1,x2)
in which the distance between the points will be less than 1.

Book Author(s) Problems

Mathematical Analysis I Vladimir A. Zorich 440
Mathematical Analysis II Vladimir A. Zorich 433
Algebra Micheal Artin 599
Algebraic Topology Allen Hatcher 464
Basic Topology M. A. Armstrong 165
Complex Analysis Elias M. Stein, Rami Shakarchi 265
Abstract Algebra David S. Dummit, Richard M. Foote 1355
Functional Analysis Theo B¨ uhler, Dietmar A. Salamon 330
Commutative Algebra M. E. Atiyah, I. G. MacDonald 176
Linear Algebra Gilbert Strang 129
Linear Algebra and Geometry Igor R. Shafarevich·Alexey O. Remizov 183
Probability: Theory and Examples Richard Durrett 247
Real Analysis Elias M. Stein, Rami Shakarchi 239
Statistical Inference George Casella, Roger L. Berger 248

Table 8: The sources and composition of uproof dataset.

A.4 Details in reward design

Syntax Check. We leverage Lean 4 compiler and Mathlib4 library to conduct syntax check
for each formalization. Relevant open-source projects are listed in Table 9.

Name Link Version

Lean 4 https://github.com/leanprover/lean4 v4.15.0
Mathlib4 https://github.com/leanprover-community/mathlib4 v4.15.0
Cli https://github.com/leanprover/lean4-cli v4.15.0
REPL https://github.com/leanprover-community/repl.git v4.15.0

Table 9: Libraries and versions envolved in SC process.

For each formalized theorem we will add some predefined headers and imports before it
is sent to the verifier. We used the same settings as Xin et al. (2024b). Here is the actual
environment provided for each theorem:

import Mathlib
import Aesop
se t_o pt ion maxHeartbeats 0
open Topology
open BigOperators
open Nat
open Real
open Rat

Consistency Check. We require a LLM to conduct consistency check with the following
prompt template across our experiments.

Here i s a n at ura l language math problem and a t r a n s l a t i o n in formal
language Lean 4 . You need to c a r e f u l l y analyse these problems and
f i g u r e out wether they are equiva lent or not . These problems must
have e x a c t l y the same condi t ions and conclusions , they should be

18

https://github.com/leanprover/lean4
https://github.com/leanprover-community/mathlib4
https://github.com/leanprover/lean4-cli
https://github.com/leanprover-community/repl.git

Published as a conference paper at COLM 2025

marked f a l s e i f they v i o l a t e any of these requirements . You should
reply f a l s e i f the given formal statement i s empty or in a weird
format .

* * Natural Language Problem * *

{ nl_s ta tement }

‘ ‘ ‘ lean
{ f l _ s t a t e m e n t }
‘ ‘ ‘

S t a t e your answer as $\\boxed { { t rue } } $ or $\\boxed { { f a l s e } } $ a t the end
of your response .

The answer will then be extracted from response of the LLM, and can not obtain the expected
output from the LLM, the default evaluation will be “false”. Here is the sampling parameters
we used in CC:

• Temperature: 0.6
• Min P: 0.05
• Max Completion Tokens: 2048

A.5 Detailed training settings

We adopted a lightweight framework, trl(von Werra et al., 2020), for all of our training
process. The actual version we used is v0.15.2.

Baseline Settings. We train our baseline formalizers via vanilla supervised fine-tuning
method on Lean Workbook dataset.(Ying et al., 2024) Here is the detailed training hyperpa-
rameters of baseline formalizers:

• Learning Rate: 2 × 10−5

• Weight Decay: 0
• Precision: bf16
• Train Epoch: 2
• Training Devices: 6
• Per Device Train Batch Size: 1
• Gradient Accumulation Steps: 1
• Max Seq Length: 4096
• Optimizer: AdamW

RL Settings. We conducted RL training with the same prompt template for instruction-
finetuned models.

T r a n s l a t e the statement of t h i s math problem i n t o a s i n g l e theorem in
formal language Lean4 . Do not wri te any proof s teps f o r t h i s theorem
or t r y to solve t h i s problem , you should focus on the t r a n s l a t i o n
and simply use ‘ sorry ‘ as a place holder of the d e t a i l e d proof . For
example , 1+1=2 i s t r a n s l a t e d i n t o ‘ ‘ ‘ lean\nexample : 1+1=2 :=
sorry\n ‘ ‘ ‘ .

Natural Language Problem
{ nl_statement }

Then we use GRPO algorithm to optimize our formalizer with the following hyperparame-
ters, other hyperparameters are kept the same as the default settings in trl library.

19

Published as a conference paper at COLM 2025

• Learning Rate: 1 × 10−6

• Per Device Train Batch Size: 1
• Num Generations: 4
• Train Epoch: 3
• Max Completion Length: 2048
• Gradient Accumulation Steps: 1
• GRPO Beta: 0.0
• Precision: bf16

A.6 Additional experiment results

To assess reward hack issues in FormaRL, we also tested some other LLMs on the evaluation
of the same samples generated by our formalizer. Results are summarized in Table 10.
Models fine-tuned via FormaRL still outperformed SFT based models across all benchmarks.

Method Dataset
Evaluation Models

Qwen2.5-7B-Instruct GPT-4o DeepSeek-V3

(Liu et al., 2025) ProofNet 19.68% 16.98% 17.52%
FormaRL ProofNet 31.81% 27.49% 26.68%
(Liu et al., 2025) uproof 6.2 % 4.7 % 5.1 %
FormaRL uproof 8.6 % 5.8 % 5.4 %

Table 10: Pass@1 accuracy of both SC and CC on ProofNet and uproof with different
large language model as the backend of consistency check. Thees results are all based on
DeepSeek-Math-7B.

Here are some other additional experiment results not mentioned in the main part. They
are scattered experiments conducted under different settings, and their conclusions are
essentially consistent with those in the main text.

Method Base Model miniF2F ProofNet

SFT, DeepSeek-Math-7B-Instruct 97.34% / 57.79% 67.39% / 36.66%
FormaRL+R RAutoformalizer 96.52% / 62.30% 81.40% / 53.64%

(Liu et al., 2025) RAutoformalizer 96.72% / 36.07% 75.74% / 39.89%

Table 11: The pass@8 accuracy of in-distribution autoformalization performance. Statistics
are reported as “SC pass rate / final pass rate”.

Model Dataset SC Pass Rate Final Pass Rate

Qwen2.5-7B-Instruct miniF2F 20.90% 10.66%
Qwen2.5-Coder-7B-Instruct miniF2F 34.22% 22.54%
Qwen2.5-7B-Instruct ProofNet 2.43% 1.62%
Qwen2.5-Coder-7B-Instruct ProofNet 6.73% 4.04%

Table 12: More results of vanilla ICL of different models. Performance are evaluated at
pass@1 metric.

20

	Introduction
	Related Work
	Autoformalization
	Reinforcement Learning

	Preliminaries
	Methodology
	Reward Design
	Training Method
	Quality Assessment

	Experiments
	Dataset
	Results
	Ablation Study

	Conclusion and Future Work
	Appendix
	Case Studies
	Data Curation
	Prompt Template for Problem Extraction
	Prompt Template For Problem Validation

	Details of Uproof Dataset
	Details in Reward Design
	Detailed Training Settings
	Additional Experiment Results

