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Abstract

Recent neural compression methods have been based on the popular hyperprior framework.
It relies on Scalar Quantization and offers a very strong compression performance. This
contrasts from recent advances in image generation and representation learning, where Vector
Quantization is more commonly employed.

In this work, we attempt to bring these lines of research closer by revisiting vector quantization
for image compression. We build upon the VQ-VAE framework and introduce several
modifications. First, we replace the vanilla vector quantizer by a product quantizer. This
intermediate solution between vector and scalar quantization allows for a much wider set
of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise
require intractably large codebooks. Second, inspired by the success of Masked Image
Modeling (MIM) in the context of self-supervised learning and generative image models, we
propose a novel conditional entropy model which improves entropy coding by modelling the
co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly
effective: its compression performance is on par with recent hyperprior methods. It also
outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses
(e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks,
we show qualitatively that it can operate under a hybrid mode between compression and
generation, with no further training or finetuning. As a result, we explore the extreme
compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.

1 Introduction

Efficient image codecs have accelerated the rapid growth of the internet by enabling the transmission of
images in a few dozens of kilobytes, thanks to the emergence of effective lossy methods. This democratization
was accompanied by standardization efforts to facilitate the interoperability, which led to the emergence
of standards such as the Joint Photographic Experts Groups (JPEG). Subsequent formats have leveraged
scientific advances on all components of source coding, ranging from transforms (Antonini et al., 1992), and
quantization (Gray & Neuhoff, 1998), to entropy coding (Witten et al., 1987; Taubman, 2000), eventually
leading to modern video compression codecs enabling streaming and video-conferencing applications.

Neural methods have recently become increasingly popular for image compression as well as other image
processing tasks, such as denoising (Tian et al., 2020), super-resolution (Bruna et al., 2016; Dong et al., 2015;
Ledig et al., 2017; Wang et al., 2021) or image reconstruction (Wang et al., 2020; Knoll et al., 2020). In
typical scenarios, neural image compression is not necessarily mature enough to take over standard techniques
like the BPG format inherited from the High-Efficiency Video Coding standard (Sullivan et al., 2012). This



Published in Transactions on Machine Learning Research (03/23)

is because they do not offer a significant quantitative advantage over prior works that would justify the
higher complexity, which depends on the context and operational constraints. A key advantage of neural
compression methods is their enhanced qualitative reconstruction when incorporating an adversarial loss or
likewise psycho-visual objectives favoring visually appealing reconstructions (Agustsson et al., 2019; Mentzer
et al., 2020). From this perspective, neural compression is related to image generation. The two subfields,
however, are currently dominated by different approaches, noticeably they employ different discretization
procedures. Indeed, while earlier neural compression methods utilized vector quantization (Agustsson et al.,
2017, VQ), recent methods mostly employ scalar quantization (SQ). In contrast, the recent literature on
image generation (Chang et al., 2022; Yu et al., 2021; Esser et al., 2021; Rombach et al., 2022) relies on
Vector Quantization jointly with a distortion criterion akin to those used in compression.

In this work we aim to reduce the methodological gap and to make a step towards unification of neural
image compression and image generation, and allowing image compression to more directly benefit from the
rapid advances in image generation methods. Patch-based masking methods for self-supervised learning (Bao
et al., 2022; He et al., 2021b; El-Nouby et al., 2021a) have recently demonstrated their potential for image
generation (Chang et al., 2022). Inspired by this work we propose a compression approach built upon Vector
Quantized Variational Auto-Encoders (Oord et al., 2017; Razavi et al., 2019). In this context, we focus on
two intertwined questions: (1) How to define a vector quantizer offering a range of rate-distortion operating
points? (2) How to define an entropy model minimizing the cost of storing the quantization indexes, while
avoiding the prohibitive complexity of an auto-regressive model?

To address the challenges above, we revisit vector quantization in image compression, and investigate product
quantization Jégou et al. (2010) (PQ) in a compression system derived from VQ-VAE Oord et al. (2016b).
We show that PQ offers a strong and scalable rate-distortion trade-off. We then we focus on the spatial
entropy modeling and coding of the quantization indexes in the VQ or PQ latent layer, hence we name our
method as (Vector/Product)-Quantized Masked Image Modeling (VQ-MIM and PQ-MIM). To this end,
we introduce a multi-stage vector-quantized image model: we gradually reduce the conditional entropy of
the patch latent codes by increasing the number of observed patches we condition on for each stage. The
conditional distribution over patches is estimated by a transformer model and provided to an entropy coder,
symmetrically on the emitter and receiver sides.

In summary, we make the following contributions:

e We introduce a novel Masked Image Modeling conditional entropy model that significantly reduces
the rates by leveraging the spatial inter-dependencies between latent codes.

e We introduce product quantization for VQ-VAE. This simple PQ-VAE variant offers a strong and
scalable rate-distortion trade-off.

e When trained with adversarial and perpetual losses, PQ-MIM exhibits a strong performance in
terms of perceptual metrics like FID and KID, outperforming HiFiC (Mentzer et al., 2020).

e We qualitatively show that PQ-MIM is capable of operating in a hybrid mode, between generative
and compression, without requiring further training and finetuning. This allows for higher resilience
to corrupted or missing signal where our model can fill-in the missing information.

2 Related work

Neural image compression Early approaches to neural image compression reach back to the late 1980s
(Sonehara, 1989; Sicuranza et al., 1990; Bottou et al., 1998). Recent rapid advances in explicit and implicit
density modelling (Goodfellow et al., 2014; Kingma & Welling, 2014; Larochelle & Murray, 2011; Oord
et al., 2016a; Rezende & Mohamed, 2015; Salimans et al., 2017) have renewed interest in posing image
compression as a learning problem. Due to the connection to variational learning (Gregor et al., 2016; Frey,
1998; Alemi et al., 2018), variational auto-encoders have been the primary choice for lossy image compression.
In contrast to standard variational models, the evaluation of neural compression models focuses on achievable
bitrates, multi-scale applicability and computational complexity. The initial works in the field used fully
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Figure 1: Qualitative example of PQ-MIM compression. PQ-MIM provides a strong compression performance.
We retain many of the details present original image with minimal blurring effect even with comrpession rate as low
as 0.196 bpp. Moreover, compared to HiFiC we achieve a lower rate for the same image. PQ-MIM provides colors
that are more faithful to the original image, while HiFiC has a darkening effect and some high frequency artifacts. On
the other hand, PQ-MIM can have some smoothing effect that can cause loss of detail for particular regions (e.g.
some of the Arabic letters in the example above). More qualitative examples are provided in Appendix D.

convolutional architectures for encoding/decoding (Ballé et al., 2017; Theis et al., 2017; Mentzer et al., 2018).
The resulting encoded latent image representations are quantized and compressed via an entropy coder with
learned explicit density model or “entropy bottleneck”. Initial variational approaches directly modeled a
single level of code densities. Ballé extended these models by introducing a second “hyperprior” that yielded
improved performance (Ballé et al., 2018). Hyperprior models have been the basis for several subsequent
advances with further improvements for density modeling, such as joint autoregressive models (Minnen
et al., 2018), Gaussian mixture/attention (Cheng et al., 2020), and channel-wise auto-regressive models
(Minnen & Singh, 2020). He et al. (2021a) improve the efficiency of spatial autoregressive context models by
utilizing checkerboard contexts which allows for more parallelization friendly decoding. This approach can be
considered a special case when we use only two steps of quincunx pattern encoding/decoding. Another line
of work has proposed to use vector quantization with histogram-based probabilities for image compression
(Agustsson et al., 2017; Lu et al., 2019). Contrary to VQ-VAE models, these models typically optimize the
rate (or a surrogate of the rate) directly and may include a spatial component for the quantized vectors. Yang
et al. (Yang et al., 2020) showed multiple ways to improve the encoding process, including the fine-tuning
of the discretization process and employing bits-back coding in the entropy bottleneck. Finally, (Santurkar
et al., 2018; Mentzer et al., 2020; Rippel & Bourdev, 2017; Agustsson et al., 2019) showed that altering the
distortion metric to include an additional adversarial loss can make a large difference for compression rate.
Another interesting line of work considers image compression by training image-specific networks, or network
adapters, that map image coordinates to RGB values, and compressing the image-specific parameters (Dupont
et al., 2021; 2022; Striipler et al., 2022).

VQ-models for image generation. There has been significant interest in generative models based in
discrete image representations, as introduced by VQ-VAE (Oord et al., 2017; Razavi et al., 2019). A discrete
representation of reduced spatial resolution is learned by means of an autoencoder which quantizes the latent
representations. This discrete representation is coupled with a strong prior, for example implemented as
an autoregressive pixel-CNN model. VQ-GAN (Esser et al., 2021) replaces the prior architecture with a
transformer model (Vaswani et al., 2017), and introduces an adversarial loss term to learn an autoencoder with
more visually pleasing reconstructions and improved sample quality. This approach has been extended to text-
based generative image models by extending the prior to model a longer sequence that combines the discrete
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Figure 2: PQ-MIM overview. Our model consists of (i) a a transformer based encoder and decoder, (ii) a masked
image model (MIM) for conditional entropy modeling, and (iii) an entropy coder, e.g an arithmetic coder (AE/AD).
The input image x is projected to a set of latent features, followed by product quantization to yield quantization
indices q. The arithmetic coder encodes (and decodes) q into a bitstream b in a lossless manner. The elements in
q are spatially split into groups, as detailed in Figure 4. Conditional Entropy Modeling. Our model estimates
the conditional probabilities of the discrete indices in S steps. Every step, a subset of the tokens g; is selected using
the quincunx pattern. Our MIM transformer estimates p(q;|q.<;) and passes it to the Arithmetic encoder as a CDF,
effectively reducing the lossless compression cost.

image representation with a prefix that encodes the conditioning text. This has yielded impressive results by
scaling the model capacity and training data to tens or hundreds of million text-image pairs (Ding et al., 2021;
Gafni et al., 2022; Ramesh et al., 2021). A fundamental limitation of autoregressive generative models is
that they sample data sequentially, requiring separate non-parallel evaluation of the predictive (transformer)
model to sample each token. To alleviate this, several data items can be sampled independently in parallel,
conditioning on all previously sampled tokens. This has been leveraged to speed-up pixel-CNNs for small
images and video by two to three orders of magnitude (Reed et al., 2017). More recently, MaskGIT (Chang
et al., 2022) and follow-up work (Lezama et al., 2022) explored this for generative models of VQ-VAE
representations, and find that similar or better sample quality is obtained by parallel sampling of image patch
subsets in few steps, reducing the generation time significantly. Despite their success for image synthesis we
are not aware of the use of such models for image compression in earlier work.

3 Product Quantized Masked Image Modeling

This work takes a step towards to closing the gap between neural image compression and image generation
methodologies. We revisit vector quantization for image compression and propose an entropy model inspired
by masked image modelling. Our compression pipeline, depicted in Figure 2, relies on three neural networks:

1. The Encoder network £ : X — Z maps input images x € X to a quantized representation z € Z.

2. The Mask Image Model (MIM) compresses the quantized representations without loss of informa-
tion. This network is involved both on the compression and decompression side.

3. The Decoder network G : Z — X produces an estimate ® = G(F(x)) of the original image x.

We now detail the architecture, in particular our PQ proposal, of the image model that we employ in the
statistical lossless coding, as well as the training scheme.

3.1 High-level architecture: PQ-VAE

High-level architecture. We follow recent work on discrete generative image models for the design of
image encoder and decoder (Chang et al., 2022; Esser et al., 2021; Oord et al., 2017; Razavi et al., 2019; Yu
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et al., 2021). The encoder F : X — R takes an RGB image x of resolution WxH as input and maps it to
a latent representation F(x) with d feature channels and a reduced spatial resolution wxh, downsampling the
input resolution by a factor f = W /w = H/h. The T = wXh elements of the latent representation E(x) are
quantized with a vector quantizer Q(+) to produce the quantized latent representation z = Q(FE(x)) = E(x),
where each element in E(x) is replaced with its nearest cluster center. The decoder G uses the quantized
latents z to reconstruct the image.

Product Quantization. In VQ-VAE, the quantizer @ is simply an online k-means quantizer that produces
quantization indices from real-valued vectors. We denote by q € {1, ..., V}T the map of quantization indices
indicating for each element of z which of the V' centroids is selected. The higher V' the more precise is the
approximation z, leading to higher bit rates. For instance, assuming that indices are coded with a naive
coding scheme (see next section), the bit rate is doubled when moving to V' = 256 to V' = 65536 centroids.

Bits per pixel (bpp)

However, scaling the number of centroids K is possible

up to thousands of centroids, but beyond that it is com- —o— PQ-MIM -~
putationally prohibitive. Additionally, it is challenging to 316 VQ-MIM —
train large codebooks where each centroid has a very low —
probability of being updated. To address this problem, 20
we replace the online k-means quantizer by a product % y.J
quantizer (Jégou et al., 2010) (PQ): the latent vector z =
is split into M subvectors as z = [z',...,27,. .. ,zM] of 2
dimension M /d. Each subvector is quantized by a distinct
quantizer having V; quantization value. The set of quantiz- 28 ¥
ers implicitly defines a vector quantizer in the latent space
0.015 0.05 0.1 0.15

with V = VSM distinct centroids. Hence, we can easily de-
fine very large codebooks without the computational and  Figyre 3: PQ and VQ comparison. While VQ pro-
optimization problems mentioned above, because both vides a comparable performance to PQ for extremely
the assignment and learning are marginalized over the low rates where the codebook size is small, PQ ex-
different subspaces. Empirically, we observe in Figure 3 hibits better scaling behaviour for higher rates. For
that PQ provides a better scaling behaviour for higher VQ we only vary the codebook size, while for PQ we
rates compared to VQ whose codebook size needs to grow fix the codebook size to 256 and vary the number of
exponentially to achieve the same rates. sub-vectors between 2 and 6.

Neural network. Without loss of generality, we choose all neural network models to be identical. This is
not a requirement but this offers the property that the encoder and decoder have identical complexities, and
that the memory and compute peaks are identical. More specifically we choose a cross-variance transformer (El-
Nouby et al., 2021b) (XCiT), whose complexity is linear with respect to image resolution. In contrast, standard
vision transformers (Dosovitskiy et al., 2021) (ViT) are quadratic in the image surface, which is prohibitive
for high resolution images that can typically require strong compression. We point out that recent work
has shown that Swin-Transformers (Zhu et al., 2021) could be a compelling choice as well in the context of
image compression. Formally they also have a quadratic complexity, but this is amortized by the hierarchical
structure of this architecture.

3.2 Image entropy model

In this section we present PQ-MIM. The objective is to compress the discrete representations q without loss
of information, producing a bitstream of the compressed representation that can be transmitted or stored.
During the decoding stage, we invert the aforementioned lossless compression. This model can be regarded
as the VQ/PQ-VAE counterpart of adaptive contextual arithmetic coders, like EBCOT (Taubman, 2000)
or CABAC (Richardson, 2004), proposed in early compression standards, in that it couples a conditional
probabilistic model with an arithmetic coder.

Lossless compression. A naive manner for lossless compression of the discrete image codes q = {qt}?zl
is to use fixed-length codes. In that case, each code word is assigned to a unique binary representation of
equal length, resulting in [log, V'] bits per element g;. This approach is computationally very efficient as
fixed-length codes are not model-based, and as such do not require likelihood estimation, and because all
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encoder and decoder side. Each panel represents one of five stages in which we en/de-code a set of tokens in parallel
using a probability model p, implemented by a transformer with parameters 6. The transformer predicts the tokens
in q,, displayed in grayscale and marked by “?”, and takes as input the preceding groups of tokens qq,...,q._; that
are displayed in color. The distribution provided by this neural network is fed to an arithmetic en/de-coder.

codes are of equal length by construction, the computation is perfectly parallelizable. However, theoretically
this coding scheme could be Shannon optimal only if codewords are uniformly and independently distributed.
Those assumptions are not met in practice due to the architecture choices we have made previously: k-means
does not produce uniformly distributed indices except in singular cases (Gray & Neuhoff, 1998). More details
about losseless compression are covered in Appendix A.

Entropy model. To improve the bitrate, we hence rely on an entropy coder, which provides an inverse
pair of functions, enc, and dec,, achieving near optimal compression rates on sequences of symbols for any
distribution p. The better p matches the (unknown) underlying data distribution, the better the compression
rate (Cover, 1991). Generally, more powerful generative models will ensure better compression performance.

Fully autoregressive generative models p(q) = nilp(qt|q<t) are powerful (Ding et al., 2021; Esser et al.,
2021; Gafni et al., 2022; Ramesh et al., 2021; Yu et al., 2021), however, they are inconvenient in that the
likelihood estimation for this type of model is not trivially parallelizable: each patch index must be processed
sequentially as it is used to condition subsequent patch indices. Thus, similar to prior works (Chang et al.,
2022; Reed et al., 2017) we propose a masked image model, which we use to predict the image patch indices
in several stages. Specifically, we partition ¢ into S subsets qi,qa,-..,qg of patch indices, that we refer to
as tokens by analogy to language modelling:

S
a=|Ja. (1)

We model the elements in each subset conditionally independent given all preceding groups:

S
p(a) = [ [p(aslacf.), (2)

s=1

p(aslacsi0) = [ ] plalar gz aer;0s). (3)

qt€qs

Since p(qy) is not conditioned on any previous elements, it fully factorizes over ¢; € q;, and we model it as
the marginal distribution over the vocabulary observed on the training data. The non-trivial conditional
distributions p (qs|q<s; 0,) for s = 2 are modeled using transformer networks, which have few inductive biases
and have been successful across many tasks, including image generation. An overview of the MIM entropy
model is illustrated in Figure 2.

Amortized encoding and decoding. From a computational point of view, our proposal allows for the
compression (resp. decompression) to proceed in S stages. In each stage s we encode/decode the set qj
of tokens conditioned on the groups qy, ..., q,_1 encoded/decoded in preceding stages, but independently
among the tokens in the set q,. This allows for paralellization among the elements in each subset q,, and
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Figure 5: Rate-Distortion performance for Tecnick and Kodak datasets. We report PQ-MIM PSNR and
MS-SSIM performance for various operating points. PQ-MIM provides a competitive performance, particularly for
MS-SSIM, compared to standard codecs such as JPEG 2000 (Taubman & Marcellin, 2012) and BPG (Bellard) as well
as recent neural methods (Cheng et al., 2020; Minnen et al., 2018; Ballé et al., 2018).

requires strictly S forward passes through the model independent of the image size, rather than T' sequential

forwards passes for fully autoregressive models.

Quincunx partitioning.

In practice, we typically use S = 5 stages. We have explored different patterns to

partition the T tokens over the S stages. In particular we consider the “quincunx” regular grid pattern, where
in each stage we double the number of tokens to predict, see Figure 4 for an illustration. This multi-level
refinement was previously explored for image compression in the context of lifting schemes designed with
oriented wavelets (Chappelier & Guillemot, 2006). In our experiments we contrast this partitioning with
alternative ones with other patterns and subset cardinalities (Figure 9).

3.3 Training the PQ-MIM

Reconstruction objective and training.

The goal of lossy image compression is to match the image
and its reconstruction as closely as possible according to some distortion metric. In this paper, we train our
model to reduce the image distortion and the quantization loss using the following objective:

LzLRec+77'LPQ

(4)
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Figure 6: Perceptual training and evaluation using CLIC 2020 test-set. Performance of our adversarially
trained PQ-MIM w.r.t percpetual metrics compared to HiFiC Mentzer et al. (2020). PQ-MIM provides a stronger
performance on FID, KID and MS-SSIM across all reported operating points.

Following VQ-VAE, our quantization objective Lpq consists of an embedding and commitment losses, averaged
over the M different PQ sub-vectors. For the distortion loss Ly.., we present two setups where we use
different types of distortion measures:

e MSE & MS-SSIM. Typical distortion measures used in the majority of the neural compression literature
such as mean squared error (MSE) or multi-scale structural similarity (Wang et al., 2003) (MS-SSIM). For
this setup, the model is trained solely using one distortion measure at a time.

()

Liee(x, E,G) = Lyise/ms-ssm (X, X)

e Perceptual measures. Alternatively, we report a setup where we utilize perceptual objectives such as
LPIPS (Zhang et al., 2018) and adversarial training (Goodfellow et al., 2014) to enhance psycho-visual
image quality. The distortion loss is defined as:

LRCC(X7 Ev G) = LMSE(X7 )A() toa- LPcrc(X7 )A() +- LAdv(Ea Ga D)v (6)

where a and v are weighing coefficients and the adversarial loss Lag, is defined as:

Laav(E, G, D) = Ex[In D(x)] + E[In(1 - D(%))], (7)
where D(-) is the discriminator and E, denotes the expectation over x sampled uniformly from the training
set. Similarly E; denotes the expectation over reconstructed training images. Note that, unlike the MSE
and perceptual losses, the adversarial loss does not compare individual images and their reconstructions,
but aims to match the distributions of original images and their reconstructions.

Training the entropy model. Our MIM module is an XCiT transformer that accepts T tokens as input
representing the image patches. During training, we randomly mask a set of tokens by sampling from a
uniform distribution U(0,1). The masked tokens are replaced with a mask embedding vector, while the
observed token indices are mapped to their corresponding continuous representation using an embedding
look-up table. The MIM module outputs a context vector for every masked token which in turn is passed to
M linear heads, representing the different PQ sub-vector indices, followed by a softmax to yield a distribution
p(qs|g<s). The module is trained using a standard cross-entropy objective. While we train the autoencoder
and the MIM modules simultaneously, we do not backpropagate gradients from the MIM module to the
encoder E or the quantization parameters, so the two components can be trained separately in sequence.

4 Experiments

We first present our experimental setup in Section 4.1 and the present our results in Section 4.2. We provide
ablation studies in Section 4.3. We will share our code and models.
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Figure 7: Extreme Image Compression. PQ-MIM exhibits non-trivial compression performance at the extreme
compression regime (e.g. 0.03 bpp), leading to compressed image codes that can fit in a short tweet (280 characters).

4.1 Experimental setup

Rate-distortion control. For all our experiments we fix the codebook size V' = 256 and only vary the
number of sub-vectors M € {2,4,6} for two different down-sampling factors f € {8, 16}.

PQ-VAE implementation details. Our PQ-VAE training uses the straight-through estimator (Bengio
et al., 2013) to propagate gradients through the quantization bottleneck. As for the quantization, the elements
of the latent representation z are first linearly projected to a low dimensional look-up vector (dim=8 per
sub-vector) followed by ¢, normalization, following Yu et al. (2021). We train our model using ImageNet
(Deng et al., 2009) for 50 epochs with a batch size of 256. We use an AdamW (Loshchilov & Hutter, 2019)
optimizer with a peak learning rate of 1.10_3, weight decay of 0.02 and S5 = 0.95. We apply a linear warmup
for the first 5 epochs of training followed by a cosine decay schedule for the remaining 45 epochs to a minimum
learning rate of 5.10°. Unless mentioned otherwise, for all experiments, the encoder and decoder use an
XCiT-L6 with 6 layers and hidden dimension of 768. We use sinusoidal positional embedding (Vaswani et al.,
2017) such that our model can flexibly operate on variable sized images.

For the results reported in Figure 5, the models are trained using solely MSE (n = 0.5) or MS-SSIM (5 = 10.0)
distortion losses for their corresponding plots. As for the models trained with perceptual objectives (Figure 6
and Table 1), they are trained with a weighted sum of MSE, LPIPS (a = 1) and adversarial loss (y = 0.1).
We use a Projected GAN Discriminator (Sauer et al., 2021) architecture. The perceptual training is initialized
with an MSE only trained checkpoint and trained for 50 epochs using ImageNet with a learning rate of
107* and weight decay of 5.107°. Similar to HiFiC (Mentzer et al., 2020), we freeze the encoder during
the perceptual training. Additionally, we find that clipping the gradient norm to a maximum value of 4.0
improves the training stability. Our discriminator takes only the decoded image as an input and does not
rely on any other conditional signal.

MIM implementation details. Our MIM module is an XCiT-L12 with 12 layers and embedding
dimension of 768. MIM is trained simultaneously with the PQ-VAE, but the gradients are not backpropagated
to the encoder or the quantizer parameters. The PQ indicies ¢ are split into inputs and targets for the
MIM model as defined by the quincunx partitioning pattern. By default we use S = 5 stages. All stages
are processed with the same MIM model. The masked patches are replaced by a learnable “mask” token
embedding. The loss is computed only for the masked patches. Since every token is assigned M PQ indices,
the output of the MIM transformer is passed to M separate linear heads to predict M softmax normalized
distributions over their corresponding codebooks. The marginal distribution of the codebook is computed as
a normalized histogram over the ImageNet training set. For entropy coding, we use the implementation of
the torchac' arithmetic coder.

1https ://github.com/fab-jul/torchac
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Table 1: Discriminator Architecture. We investi- Table 2: Different MIM masking policies. PQ-MIM
gate multiple discriminator including StyleGAN (Karras with quincunx pattern with 5 steps reduces the bpp signifi-
et al., 2019), ProjectedGAN (Sauer et al., 2021) and cantly (27%). Additionally, PQ-MIM is orders of magni-

UNet (Schonfeld et al., 2020). tude cheaper in terms of FLOPs compared to an autore-
Discriminator ~ FID | KID | MS-SSIM 1 gressive raster order masking pattern.
None 26.1 1 9%—9 15.3 Masking policy #steps  bpp  MACs/Pixel (M)
StyleGAN 3.57 4.8x10—4 13.3 Marginal baseline 1 0.512 0.69
ProjectedGAN ~ 3.69  6.6x10—4 14.1 Raster order T 0oM 24.4x10°
UNet 3.87  6.7x10-4 13.9 Quincunx 5 0.373 6.66

Datasets. We train our models using ImageNet (Deng et al., 2009). For data augmentation, we apply
random resized cropping to 256 X 256 images and horizontal flipping. For evaluation and comparison to
prior work, we use KODAK (Kodak, 1993) and TECNICK (Asuni & Giachetti, 2014) datasets for PSNR and
MS-SSIM. Moreover, we compute the perceptual metrics (FID (Heusel et al., 2017), KID (Binkowski et al.,
2018)) for perceptually trained models using the CLIC 2020 test-set (Toderici et al., 2020) (428 images)
using the same patch cropping scheme detailed by Mentzer et al. (2020).

Baselines.  We compare to several existing neural compression baselines: the scale hyperprior model (Ballé
et al., 2018), mean & scale hyperprior (Minnen et al., 2018), GMM hyperprior (Cheng et al., 2020), and
HiFiC (Mentzer et al., 2020). Among the non-neural codecs, we compare to the popular BPG (Bellard),
WebP, and JPEG2000.

4.2 Main experimental results

Comparison to existing (neural) codecs. We compare PQ-MIM to other approaches across a wide
range of bitrates in Figure 5”. Note that in our evaluation we consider bitrates that are an order of magnitude
lower than what is typically studied in the literature: most previous studies were limited to 0.1 bpp and
above, see e.g (Ballé et al., 2018; Cheng et al., 2020; Minnen et al., 2018). The extremely low bitrates we
consider make it possible to transmit a 256x256 image in an SMS or a tweet (280 Characters)3 as shown in
Figure 7. PQ-MIM achieves a strong and competitive performance for both KODAK and TECNICK datasets,
outperforming all prior neural and standard codecs with the exception of GMM hyperprior (Cheng et al.,
2020). We observe that PQ-MIM is particularly strong for low rates, making it a good fit for extreme
compression scenarios. Moreover, PQ-MIM exhibits a particularly strong MS-SSIM performance which was
designed to model the human visual contrast perception (Wang et al., 2004; 2003).

Perceptual metrics comparison. In Figure 6, we compare PQ-MIM to HiFiC (Mentzer et al., 2020) in
perceptual quality measures like FID and KID as well as MS-SSIM. HiFiC is based on the mean & scale
hyperprior model (Minnen et al., 2018), but adds adversarially trained discriminator model to improve the
perceptual quality of the image reconstructions. PQ-MIM, with perceptual training, achieves a strong
performance for all reported metrics, outperforming HiFiC for all operating points.

4.3 Analysis and Ablations

Model size and architecture. In Figure 8, we analyze the effect of using XCiT of different capacities for
the autoencoder with respect to rate-distortion trade-off. We observe that the performance improves with
higher capacity autoencoders, but their is a diminishing return with further increase in capacity. For all our
experiments we use an XCiT-L6 since it achieves the best performance.

Masking patterns. In Table 2, we compare to predicting tokens one-by-one autoregressively in a raster-
scan order, the same pattern used in VQ-VAE based generative image models such as DALL-E (Ramesh
et al., 2021) and VQ-GAN (Esser et al., 2021). In contrast to PQ-MIM, raster-scan models require causal
attention, which makes XCiT not a good fit. We use a standard ViT model instead. However, due to the
quadratic complexity of ViT and the high resolution of images typically used for evaluation of compression

2All results for the baselines are reported using the authors official repositories
3For example, a bitrate of 0.03 yields 256 x 256 x 0.03/8 = 246 bytes for a 256 %256 image.
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Figure 8: Autoencoder capacity. The RD performance Figure 9: MIM number of steps. In addition to quincunx,
of different encoder/decoder capacities. We use the same we explore using the prediction confidence as the patch
model trunk for (i) the encoder; (ii) the PQ-MIM entropy masking policy following MaskGiT (Chang et al., 2022).
model ; and (iii) the decoder. Increasing the model size We test a linear and doubling schedules. Quincunx provides
from a XCiT-T6 model (3.5M params) to XCiT-L6 (47M a higher rate saving, even compared to confidence policy
params) increases the performance by typically +0.8dB. with a longer schedule.

method (e.g. TECNICK), our autoregressive variant consistently exceeded the memory limits, even when
using A100 GPUs with 40GB memory. Moreover, raster scan fully-autoregressive models results in extremely
expensive FLOP count since it needs T' separate forward passes per image. On the other hand, our stage-wise
MIM with quincunx pattern requires 4 evaluations, and does not scale with the image resolution as is the
case for raster, making it a more practical solution.

Number of prediction stages. @ We compare the quincunx masking pattern with masking based on
confidence score following MaskGiT (Chang et al., 2022) patch selection procedure for image generation.
In the latter case, at a given step, we pick the patches to transmit dynamically based on their confidence
score. The confidence is defined as the maximum across the probabilities assigned over the vocabulary by the
model." For the quincunx and confidence based masking policy we use the same 5-stage scheme, in which the
number of tokens in subsequent groups doubles in size. We ablate the number of prediction stages S for the
quincunx and confidence-based sampling. For the latter we consider two options: (i) a linear scheme where
each group of tokens contains (approximately) the same number of tokens; and (ii) a doubling scheme where
each subsequent group of tokens is double the size of the previous group, as is also used for the quincunx
pattern. Every point on the curves in Figure 9 corresponds to the bitrate when encoding/decoding with a
given number of steps. For example, S = 2 steps means we have only two steps each encoding/decoding 50%
of the patches. For the 3-steps doubling schedule the groups have sizes of 1/4, 1/4, 1/2, and so on. For all
three patterns the bitrate monotonically decreases with the number of steps, as more tokens can be predicted
from larger contexts.

On the one hand, using confidence-based masking patterns, doubling and linear schemes lead to mostly
comparable bitrates for the same number of steps, with further improvement for linear with more steps
however with diminishing return. On the other hand, quincunx provides a stronger reduction ratio with
strictly 5 steps, even when compared with confidence-based masking with higher number of steps.

Predicting missing patches. When encoding/decoding the discrete image representation q, we reduce
the bitrate with our models by their ability to predict the remaining tokens given those of preceding stages.
To illustrate the predictive ability of our model, we consider an experiment where we remove a subset of the
tokens (sampled randomly), and use our model to fill in the missing patches by conditioning on the observed
ones. We then use the PQ-VAE decoder to decode the discrete latent codes including the filled in ones. In
Figure 10 we show the results obtained when removing 10%, 20%, 30% and 50% of the patches. Our MIM is
able to model redundancies among the patches, which corroborates our findings of its compression ability.

“Note that for decoding the same confidence score can be used to identify the group of tokens to decode.
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Figure 10: PQ-MIM can operate on a partial set of transmitted tokens. Since PQ-MIM is compatible with
generation, the conditional entropy model can be repurposed to predict the PQ codes for missing parts in an image.
We show results for different dropping rates of transmitted tokens. PQ-MIM exhibits strong inpainting abilities. Even
for the extreme case where half of the image patches are dropped, PQ-MIM can still retain a large percentage of the
original image structure and details.

4.4 Limitations

Image compression, and compression of visual data in general, is an important technology to scale the
distribution of visual data. This is ever more important to cope with the growing quantity of visual data
that is streamed in the form of video and for augmented and virtual reality applications. Compression is
also critical to allow users with low-bandwidth connections to benefit from applications relying on sharing of
image, video, or virtual reality data.

Caveats of learned neural compression models: biases and performance. As with any machine
learning model, potential biases in the training data may be transferred into the model via training. In our
setting, this can affect the autoencoding reconstruction abilities for content under-represented in the training
data, as well as the compression abilities of the model for such data. Such biases should be assessed before
deployment of the model. Beyond rate-distortion trade-offs, important evaluation dimensions include the
energy and latency performance of compression models. Current neural compression methods, including ours,
need to be further optimized to be competitive with existing codecs on these criteria.

Specific limitations of our approach. In our work, we specifically focus on a high compression regime,
with compression rate lower than 0.6 bit per pixel. This is a favorable case for our approach: it benefits from
the generative model capability inherited from the VQ-VAE. Compared to VQ, PQ allows for higher rates,
but it becomes comparatively less effective when increasing the number of subquantizers. As one can deduce
from the slopes of the rate-distortion curves in Fig. 5, SQ methods like scale hyperprior exhibits a relatively
stronger performance for the high end of bit-rates.

5 Conclusion

In this paper, we have revisited vector quantization for neural image compression. We introduced a product-
quantization variants of VQ-VAE and shown that it has a better scaling properties in terms of bit-rate.
Additionally, we introduced a novel conditional entropy model based on masked image modeling. We have
shown that combined with the qunicunx partitioning pattern, PQ-MIM provides strong reduction in bit-rate.
PQ-MIM exhibits a competitive performance for PSNR and MS-SSIM metric compared to strong neural
compression baselines. Furthermore, when we train PQ-MIM using perceptual losses, it provides a strong
performance on multiple metrics (e.g. FID, KID and MS-SSIM) compared the strong baseline of HiFiC.
Finally, we have shown that PQ-MIM can operate in a hybrid compression/generation mode where it can fill
the gaps for non-transmitted patches.
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