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Abstract

Modern convolutional neural networks (CNNs) have massive identical convolu-
tion blocks, and, hence, recursive sharing of parameters across these blocks has
been proposed to reduce the amount of parameters. However, naive sharing of
parameters poses many challenges such as limited representational power and the
vanishing/exploding gradients problem of recursively shared parameters. In this
paper, we present a recursive convolution block design and training method, in
which a recursively shareable part, or a filter basis, is separated and learned while
effectively avoiding the vanishing/exploding gradients problem during training. We
show that the unwieldy vanishing/exploding gradients problem can be controlled by
enforcing the elements of the filter basis orthonormal, and empirically demonstrate
that the proposed orthogonality regularization improves the flow of gradients dur-
ing training. Experimental results on image classification and object detection show
that our approach, unlike previous parameter-sharing approaches, does not trade
performance to save parameters and consistently outperforms overparameterized
counterpart networks. This superior performance demonstrates that the proposed
recursive convolution block design and the orthogonality regularization not only
prevent performance degradation, but also consistently improve the representation
capability while a significant amount of parameters are recursively shared.

1 Introduction

Modern convolutional neural networks (CNNs) such as ResNets have massive identical convolution
blocks and recent analytic studies (Jastrzebski et al., 2018) show that these blocks perform mostly
iterative refinement of features rather than learning new features. Inspired by these results, recursive
sharing of weights has been studied as a promising direction to parameter-efficient CNNs (Jastrzebski
et al., 2018; Guo et al., 2019; Savarese & Maire, 2019). However, naive sharing of parameters across
many convolution layers incurs several problems. First of all, recursive sharing of parameters can
result in the vanishing and the exploding gradients problem, which is one of the main reasons that
recurrent neural networks (RNNs) are so hard to train properly (Pascanu et al., 2013; Jastrzebski
et al., 2018). Another problem is that overall representation power can be limited by iterative sharing
of parameters. Due to these challenges, most compression approaches based on parameter-sharing
suffer from performance degradation.

In this work, we conjecture that convolution layers or blocks can be separated into inherently
shareable parts and non-shareable parts, and can be trained effectively by avoiding the vanishing and
the exploding gradients problem. To achieve this, for a full convolution operator, we first replace
it with a factorized version that splits the convolution operator into two separate operators; one
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operator with inherently shareable filters, called a filter basis, and the other operator with non-shared
filters, called coefficients. When successive convolution blocks share a common filter basis, they are
positioned in the same vector subspace. However, their representation capability is retained through
non-shared coefficients that learn diverse features by linearly combining the shared filter basis.

By separating shareable parts from non-shareable parts, we can impose desirable properties on the
shared parameters. To avoid performance degradation from recursive sharing of parameters, we
propose the orthogonality regularization, in which the vanishing/exploding gradients problem is
controlled by enforcing the elements of a shared filter basis orthonormal during training. We both
theoretically and empirically show that the proposed orthogonality regularization improves the flow
of the gradients during training and reduces the redundancy in parameters effectively.

For efficient CNNs such as MobileNets (Howard et al., 2017), we do not need to factorize convolution
operators to uncover a shared filter basis since these networks already have factorized convolution
block structures for computational efficiency. For such networks, our approach can be applied simply
by identifying one or two convolution operators of repeating convolution blocks as a filter basis that
shares weights across the repeating blocks. Other convolution operators in each convolution block
become block-specific non-shared coefficients.

Since our focus is not on pushing the state-of-the-art performance, we demonstrate the effectiveness
of our work using widely-used models as base models on image classification and object detection.
Without bells and whistles, simply applying the proposed convolution block design and the orthog-
onality regularization saves a significant amount of parameters while consistently outperforming
over-parameterized counterpart networks. For example, our method can save up to 46.0% of param-
eters of ResNets while consistently achieving lower test errors. Even in compact models, such as
MobileNetV2, our approach can achieve further 8-21% parameter savings while outperforming the
original models. This superior performance demonstrates that the proposed recursive convolution
blocks and orthogonality regularization enables effective learning of better feature representations
while a significant amount of parameters are shared recursively.

2 Related Work

Recursive networks and parameter sharing: Recurrent neural networks (RNNs) (Graves et al.,
2013) have been well-studied for temporal and sequential data. As a generalization of RNNs,
recursive variants of CNNs are used extensively for visual tasks (Socher et al., 2011; Liang &
Hu, 2015; Xingjian et al., 2015; Kim et al., 2016; Zamir et al., 2017). For instance, Eigen et al.
(2014) explore recursive convolutional architectures that share filters across multiple convolution
layers. They show that recurrence with deeper layers tends to increase performance. However,
their recursive architecture shows worse performance than independent convolution layers due to
overfitting. In contrast, we share only fundamentally shareable parts, or filter bases, that are separated
from conventional convolution operators. By separating shareable parts from non-shareable parts,
we can impose desirable properties on the shared parameters that prevents the vanishing/exploding
gradients problems without damaging representational capability of the networks.

More recently, Jastrzebski et al. (2018) show that iterative refinement of features in ResNets suggests
that deep networks can potentially leverage intensive parameter sharing. Guo et al. (2019) introduce
a gate unit to determine whether to jump out of the recursive loop of convolution blocks to save
computational resources. These works show that training recursive networks with naively shared
blocks leads to bad performance due to the problem of gradient explosion and vanish like RNN
(Pascanu et al., 2013; Vorontsov et al., 2017). In order to deal with the problem of gradient explosion
and vanish, they suggest unshared batch normalization strategy. In our work, we propose the
orthogonality regularization of shared filter bases to further address this problem.

A few recent works generate convolution filters by combining shared building blocks (Bhalgat et al.,
2020; Savarese & Maire, 2019; Yang et al., 2019; Qiu et al., 2018). Although these approaches are
different in details, they are similar to our work since they all share a set of filters and combine them
to build layer-specific filters. However, they save parameters at the cost of accuracy loss. For example,
in ResNet50 on ImageNet, Yang et al. (2019)’s work incurs 0.9% accuracy drop, while our method
achieves performance improvement. We believe that this performance gap comes from the gradients
issue of shared parameters and these previous works could benefit more from the improved flow of
gradients of our approach.
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(a) Full convolution (b) A filter basis and coefficients
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Figure 1: A full convolution operator in (a) with a filterW can be replaced by two separate convolution
operators, as in (b): one operator with a filter basis (Wbasis) and the other operator with coefficients
(αs). A filter basis is inherently shareable for convolution operators in the same vector subspace,
and, hence, a recursive architecture is suggested, as in (c). The filter basis shared by recursive
convolution layers can be learned through typical gradient-based training while avoiding potential
vanishing/exploding gradients problem by enforcing its elements orthonormal.

Model compression and efficient convolution block design: Reducing storage and inference time
of CNNs has been an important research topic for both resource constrained mobile/embedded
systems and energy-hungry data centers. A number of research techniques have been developed such
as filter pruning (LeCun et al., 1990; Polyak & Wolf, 2015; Li et al., 2017; He et al., 2017b), low-rank
factorization (Denton et al., 2014; Jaderberg et al., 2014), and quantization (Han et al., 2016), to
name a few. Several model compression techniques factorize trained filters to reduce the computation
complexity (Zhang et al., 2015; Li et al., 2019a). Our proposed block structure also benefit from the
reduced computational complexity too by factorizing convolution filters. However, most previous
compression techniques have been suggested as post-processing steps that are applied after initial
training. Therefore, their accuracy is usually bounded by the approximated base models. In contrast,
our primary goal in factorizing convolution operators is to find a common filter basis shared by
iterative convolution layers, so the weights of the shared filter basis are learned from scratch, not from
decomposing pretrained filters. Hence, unlike previous compression techniques, the performance
of our approach is not limited by the original models, and the experimental results show that our
parameter-sharing approach consistently outperforms the overparameterized counterpart networks on
various datasets and tasks.

3 Proposed Method

In this section, we describe the design of recursive convolution blocks and discuss how to train them
to deal with the vanishing/exploding gradients problem.

3.1 Recursive Sharing of a Filter Basis

Naive sharing of convolution filters across repetitive layers degrades the overall performance due to
limited representation power of individual layers. We argue that convolution filters can be separated
into fundamentally shareable components and non-shareable components, and the performance
degradation can be prevented by sharing only fundamentally shareable parts.

More formally, we consider a convolution layer, shown in Figure 1 (a), that has S input channels,
T output channels, and a set of filters W = {Wt ∈ Rk×k×S , t ∈ [1..T ]}. Each filter Wt can be
decomposed into a filter basis Wbasis and coefficients α:

Wt =

R∑
r=1

αr
tW

r
basis, (1)

where Wbasis = {W r
basis ∈ Rk×k×S , r ∈ [1..R]} is a filter basis, and α = {αr

t ∈ R, r ∈ [1..R], t ∈
[1..T ]} is scalar coefficients. In Equation 1, R is the rank of the basis. In a typical convolution layer,
output feature maps Vt ∈ Rw×h×T , t ∈ [1..T ] are obtained by the convolution between input feature
maps U ∈ Rw×h×S and filters Wt, t ∈ [1..T ]. With Equation 1, this convolution can be rewritten as
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follows:

Vt = U ∗Wt = U ∗
R∑

r=1

αr
tW

r
basis =

R∑
r=1

αr
t (U ∗W r

basis), where t ∈ [1..T ]. (2)

In Equation 2, the order of the convolution operation and the linear combination of filter basis is
reordered according to the linearity of convolution operators. Therefore, a conventional convolution
layer can be replaced with two successive convolution layers as shown in Figure 1-(b).

This factorized convolution filters suggest a recursive architecture, shown in Figure 1-(c), in which a
common filter basis is used for iterative convolution layers. Since all filters in the recursive loop have
a common filter basis, they are positioned in the same vector subspace. However, their representation
capability is still retained since their coordinates in the subspace are diversified by their respective
non-shared coefficients.

3.2 Orthonormality of Shared Filter Bases

For recursive sharing of a filter basis, as in Figure 1-(c), we need to find an optimal filter basis that
can be used by iterative convolution layers without loss of performance. Although this optimal filter
basis can be searched by typical gradient-based optimization such as SGD, one major problem is
that the exploding/vanishing gradients problem of recursively shared filter bases can prevent proper
search of optimization space (Pascanu et al., 2013).

More formally, we consider a series of N factorized convolution blocks, in which a filter basis Wbasis

is shared N times, as in Figure 1-(c). Let xi be the input of the i-th convolution block, and ai+1 be
the output of the convolution of xi with the filter basis Wbasis

ai(xi−1) = W>basisx
i−1. (3)

In Equation 3, Wbasis ∈ Rk2S×R is a reshaped filter basis that has basis elements at its columns. We
assume that input x is properly adapted (e.g., with im2col operations) to express convolutions using a
matrix-matrix multiplication. Since Wbasis is shared by N recursive convolution blocks, the gradient
of Wbasis for some loss function L is:

∂L

∂Wbasis
=

N∑
i=1

∂L

∂aN

N−1∏
j=i

(
∂aj+1

∂aj

)
∂ai

∂Wbasis
, (4)

, where
∂aj+1

∂aj
=
∂aj+1

∂xj

∂xj

∂aj
= Wbasis

∂xj

∂aj
(5)

If we plug Wbasis
∂xj

∂aj in Equation 5 into Equation 4, we can see that
∏

∂aj+1

∂aj is the term that makes
gradients unstable since Wbasis is multiplied many times. This exploding/vanishing gradients can
be controlled to a large extent by keeping Wbasis close to orthogonal (Vorontsov et al., 2017). For
instance, if Wbasis admits eigendecomposition, [Wbasis]

N can be rewritten as follows:

[Wbasis]
N = [QΛQ−1]N = QΛNQ−1, (6)

where Λ is a diagonal matrix with the eigenvalues placed on the diagonal and Q is a matrix composed
of the corresponding eigenvectors. If Wbasis is orthogonal, [Wbasis]

N neither explodes nor vanishes,
since all the eigenvalues of an orthogonal matrix have absolute value of 1. This result shows that
a shared filter basis with orthonormal elements ensures that forward and backward signals neither
explode nor vanish.

Based on this result, we propose the orthogonality regularization 2 to enforce orthonormality to shared
filter bases during training. For instance, when convolution operators in each residual block group
of a ResNet shares a filter basis, the objective function LR can be defined to have the orthogonality
regularization term in addition to the original loss L:

LR = L+ λ

G∑
g

‖W (g)
basis

> ·W (g)
basis − I‖

2, (7)

2Technically, the columns (or rows) of an orthogonal matrix form an orthonormal basis. However, we use
the term orthogonality regularization since orthonormal bases have no proper term for their matrix-form.
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(a) Shared block for ResNet34 (b) Shared block for ResNet50
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Figure 2: The structure of residual blocks with a shared filter basis. For ResNet34, two full convo-
lution operators are factorized to uncover a shared filter basis. For ResNets with bottleneck blocks
(ResNet50/101) and MobileNetV2, one or two computationally expensive convolution operators
of each convolution block are selected as shared filter bases and the other convolution operators
are designated as non-shared coefficients. In (a), the filter basis has non-shared elements to further
increase representation capability.

where W (g)
basis is a shared filter basis for g-th residual block group and λ is a hyperparameter.

In Equations 4 and 5, we also need to ensure that the norm of ∂xj

∂aj is bounded for stability during
forward and backward passes (Pascanu et al., 2013). It is shown that batch normalization after non-
linear activation at each convolution layer ensures healthy norms (Ioffe & Szegedy, 2015; Guo et al.,
2019; Jastrzebski et al., 2018). In Section 4.4, we empirically show that the proposed orthogonality
regularization and batch normalization similarly improve the flow of gradients during training.

3.3 Enhancing Representation Capability

When convolution operators share a common filter basis, they are all in the same vector subspace.
Therefore, if the rank of the filter basis is too low, it might limit the representation capability of the
convolution operators sharing the filter basis. Conversely, if the rank of the shared filter basis is too
high (e.g., R ≥ T ), the computational gain of factorized structure is mitigated. One way to increase
the representational power of each convolution operator, while still maintaining its computational
complexity low, is placing the convolution operators in different subspace by adding a small number
of non-shared elements to the filter basis. For instance, we build a filter basis Wbasis by combining
shared elements and non-shared elements:

Wbasis = Wbs_shared ∪Wbs_unique, (8)

where Wbs_shared = {W r
bs_shared ∈ Rk×k×S , r ∈ [1..n]} are shared filter basis elements, and

Wbs_unique = {W r
bs_unique ∈ Rk×k×S , r ∈ [n+1..R]} are non-shared filter basis elements. For

example, Figure 2-(a) shows that the filter basis of ResNet34 is compose of both shared and non-
shared elements. One disadvantage of this hybrid scheme is that non-shared filter basis elements
require more parameters. The ratio of non-shared basis elements can be varied to control the tradeoffs.
But, our results in Section A.1 show that providing only a few non-shared elements to a filter basis is
enough to achieve high performance.

4 Experiments

In this section, we perform a series of experiments on image classification and object detection
using several modern networks as base models. We also analyze the effect of the orthogonality
regularization.

For ResNets with conventional convolution filters (e.g, ResNet34), a filter is replaced by the proposed
factorized convolution block as shown in Figure 2-(a). A filter basis is shared within a residual block
group having same kernel dimensions. Throughout the experiments, we denote by ResNetL-SsUu
a ResNet with L layers that has a filter basis with a s-to-u ratio of shared elements and non-shared
elements.
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ResNets with bottleneck blocks (e.g., ResNet50) and MobileNetV2 already have decomposed block
structures. Therefore, we designate one or two convolution operators with the largest parameters in
each block as filter bases sharing weights across iterative blocks, as shown in Figure 2-(b) and -(c).
During the training, the proposed orthogonality regularization is applied to enforce the elements of
the shared filter bases orthonormal. In these models, we leave at least one convolution operator as
non-shared coefficients to improve expression ability. In Section 4.1, we explore the effect of sharing
both a filter basis and coefficients in residual groups.

During experiments, all programs for training and evaluation run on PCs equipped either with four
RTX 2080Ti GPUs or two RTX 3090 GPUs and an Intel i9-10900X CPU @3.7GHz.

4.1 Image Classification on ImageNet

We evaluate our method on the ILSVRC2012 dataset (Russakovsky et al., 2015) that has 1000 classes.
The dataset consists of 1.28M training and 50K validation images. We use ResNets and MobileNetV2
as base models. We train the ResNet-derived models for 150 epochs with SGD optimizer with a mini-
batch size of 256, a weight decay of 1e-4, and a momentum of 0.9. The learning rate starts with 0.1
and decays by 0.1 at 60-th, 100-th, and 140-th epochs. MobileNetV2 and our MobileNetV2-Shared
models are trained for 300 epochs with a weight decay of 1e-5. Its learning rate starts with 0.1 and
decays by 0.1 at 150-th, 225-th, and 285-th epochs.

Table 1: Error (%) on ImageNet. In ResNet50/101-Shared‡ and MobileNetV2-Shared‡, first two
convolution operators of each residual block are designated as recursively shared filter bases. In
ResNet50-Shared-All, both a filter basis and coefficients are shared recursively across blocks of
each residual group. In ResNet50-Shared-NoOrthoReg, orthogonality regulaization is not applied to
ResNet50-Shared during training. Latency is measured on the Nvidia Jetson TX2 embedded board
(GPU, batch size = 1).

Baseline Model Params FLOPs top-1 top-5 Latency

ResNet34
ResNet34 (baseline) 21.80M 3.67G 26.70 8.58 33.6ms
Filter Pruning (Li et al., 2017) 19.30M 2.76G 27.83 - -
ResNet34-S48U1 (ours) 11.79M 3.26G 26.67 8.54 38.6ms

ResNet50

ResNet50 (baseline) 25.56M 4.11G 23.85 7.13 43.8ms
Versatile-ResNet50 (Wang et al., 2018) 19.0M 3.2G 24.5 7.6 -
FSNet (Yang et al., 2020) 13.9M - 26.89 8.63 -
ResNet50-Shared (ours) 20.51M 4.11G 23.64 6.98 43.3ms
ResNet50-Shared‡ (ours) 18.26M 4.11G 23.95 7.14 43.3ms
ResNet50-Shared-All 16.02M 4.11G 24.35 7.41 -
ResNet50-Shared-NoOrthoReg 20.51M 4.11G 24.19 7.34 -

ResNet101 ResNet101 (baseline) 44.55M 7.83G 22.63 6.44 73.2ms
ResNet101-Shared (ours) 29.47M 7.83G 22.31 6.47 72.9ms

MobileNetV2

MobileNetV2 (baseline) 3.50M 0.33G 28.0 9.71 18.4ms
DR-MobileNetV2 (Guo et al., 2019) 2.96M 0.27G 28.2 9.72 -
MobileNetV2-Shared (ours) 3.24M 0.33G 27.61 9.34 17.9ms
MobileNetV2-Shared‡ (ours) 2.98M 0.33G 28.21 9.85 17.8ms

In Table 1, we compare our results with competing techniques. Most parameter-sharing and com-
pression techniques save parameters at the cost of performance. Unlikely, the results in Table 1
show that our approach consistently outperforms the counterpart networks while saving a significant
amount of parameters. For example, ResNet34-S48U1 outperforms the counterpart ResNet34 while
only using 54.0% parameters. Since our models derived from ResNet50/101 and MobileNetV2
already have factorized convolution blocks, their overall parameter-saving is not as high as ResNet34-
S48U1’s. However, they still save about 19.8%, 33.9% and 7.5% parameters, respectively, while
outperforming the baselines. The benefit of our method is more pronounced in deeper networks. In
ResNet101, for example, a filter basis is shared by up to 23 recursive convolution layers, resulting
in 35.7% reduction of parameters. In Table 1, ResNet50-Shared-NoOrhtoReg shows the effect of
not applying the orthogonality regularization on ResNet50-Shared. Our result shows that its top1
accuracy drops to 75.81%, that is 0.34% lower than the counterpart ResNet50. In contrast, when the
orthogonality regularization is applied, the same model achieves 76.35%, which is 0.21% higher than
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the counterpart ResNet50. This 0.55% improvement is obtained simply by applying orthogonality
regularization. In Table 1, ResNet50-Shared-All shows the effect of sharing not only a filter basis but
also coefficients recursively within residual groups. The result shows that we can save further 18%
parameters (reduced from 20.51M to 16.02M) of ResNet50-Shared, but its top-1 (top-5) accuracy
drops to 75.65% (92.59%), which is 0.5% lower than the counterpart ResNet50. This result shows that
having unshared coefficients is important for high performance. Yang et al. (2019) also demonstrates
that sharing coefficients drops the accuracy by additional 2%.

Although ResNet34-S48U1 requires lower FLOPs than the counterpart ResNet34, it takes 14% longer
latency on Jetson TX2. This overhead mostly comes from separated convolution operations for
shared and non-shared filter basis elements. Current GPU-based deep learning libraries are not
optimized to process such separated operations efficiently. Unlikely, ResNet50/101-Shared and
MobileNetV2-Shared do not have such separated convolution operations, and, hence, their latency is
slightly lower on the device that is constrained by limited cache and memory.

4.2 Image Classification on CIFAR

We evaluate the effectiveness of our method on various modern CNNs with the CIFAR dataset
that has 50,000 and 10,000 32 × 32 images for training and testing, respectively. For training
networks, we follow a similar training scheme in He et al. (2016). Standardized data-augmentation
and normalization are applied to input data. Networks are trained for 300 epochs with SGD optimizer
with a weight decay of 5e-4 and a momentum of 0.9. The learning rate is initialized to 0.1 and is
decayed by 0.1 at 50% and 75% of the epochs.

Table 2: Error (%) on CIFAR-100. ‘?’ denotes that the orthogonality regularization is not applied.

Baseline Model Params FLOPs Error

ResNet34
ResNet34 (baseline) 21.33M 1.17G 22.49
ResNet34-S32U1? (ours) 7.73M 0.78G 22.92
ResNet34-S32U1 (ours) 7.73M 0.78G 21.84

DenseNet121 DenseNet121 (baseline) 7.05M 0.91G 21.95
DenseNet121-S16U1 (ours) 5.08M 0.72G 22.15

ResNeXt50 ResNeXt50 (baseline) 23.17M 1.36G 20.71
ResNeXt50-S64U4 (ours) 19.3M 1.19G 20.09

Table 3: Error (%) on CIFAR-10. ‘‡’ denotes having 2 shared bases in each convolution block group.
‘?’ denotes that the orthogonality regularization is not applied.

Baseline Model Params FLOPs Error

ResNet32 ResNet32 (baseline) 0.46M 0.07G 7.51
ResNet32-S16U1‡ (ours) 0.24M 0.08G 6.95

ResNet56

ResNet56 (baseline) 0.85M 0.16G 6.97
Filter Pruning (Li et al., 2017) 0.77M 0.09G 6.94
KSE (Li et al., 2019b) 0.43M 0.06G 6.77
DR-Res 40 (Guo et al., 2019) 0.50M 0.11G 6.51
ResNet56-S16U1? (ours) 0.27M 0.15G 7.70
ResNet56-S16U1 (ours) 0.27M 0.15G 7.46
ResNet56-S16U1‡ (ours) 0.31M 0.15G 6.33

Table 2 shows the results on CIFAR-100. Networks trained with the proposed method consistently
outperform their counterparts. For instance, ResNet34-S32U1 requires only 36.2% parameters and
66.6% FLOPs of the counterpart ResNet34 while achieving lower test error (21.84%) than much
deeper ResNet50 (22.36%). To show the generality of our work, we apply the proposed method to
DenseNet (Huang et al., 2017), and ResNeXt (Xie et al., 2017). Although the overall gain is not
as pronounced as ResNets’, we still observe reduction of resource usages in these networks. For
instance, ResNeXt50-S64U4 outperforms the counterpart ResNeXt50 while saving parameters and
FLOPs by 16.7% and 12.1%, respectively. In ResNeXt, the gain is limited since they mainly exploit
group convolutions; each group convolution is decomposed for filter basis sharing in our network.

7



The result on CIFAR-10 with ResNets is presented in Table 3. Unlike networks on CIFAR-100,
networks on CIFAR-10 has much fewer channels (e.g. 16 channels in the first residual block group)
and, hence, projecting filters to such low dimensional subspace might limit the performance of the
networks. For instance, in ResNet32-S8U1, filters are supposed to be projected onto 9 dimensional
subspace consisting of 8 shared and 1 non-shared filter basis elements. Further, for deeper networks
such as ResNet56, a filter basis is supposed to be shared by many residual blocks in the group, and
it can damage the performance. For example, every filter basis in ResNet56-S16U1 is shared by 8
residual blocks, or 16 convolution operators. Due to this excessive sharing, though ResNet56-S16U1
saves 41.3% parameters, its testing error (7.46%) is higher than the counterpart ResNet56’s (6.97%).

To remedy this problem, we introduce a variant, in which each residual block group of the networks
uses 2 shared bases; one basis is shared by the first convolution operators of recursive residual blocks,
and the other basis is shared by the second convolution operators. In Table 3, networks with a ‘‡’
mark denote this variant. Though this variant slightly increases the parameters of the networks,
it can prevent excessive sharing of parameters. For example, although ResNet56-S16U1‡ needs
0.04M more parameters for additional shared bases, it still saves 63% parameters of the counterpart
ResNet56 and achieves lower testing error of 6.33%.

In Table 3, we compare our results with similar state-of-the-art techniques. Our method achieves
better performance and parameter-saving than other approaches such as filter pruning (Li et al., 2017),
kernel clustering (Li et al., 2019b), and recursive parameter sharing (Guo et al., 2019).

4.3 Object Detection on MS COCO

In order to explore the generalization ability of our approach, we next use COCO 2017 dataset on
object detection task using Faster R-CNN (Ren et al., 2017), Mask R-CNN (He et al., 2017a), and
RetinaNet (Lin et al., 2017) as detectors. We compare ResNet50/101 and our ResNet50/101-Shared
as backbone networks of the detectors. These backbone networks are pre-trained on ImageNet, then
are transferred to MS COCO by fine-tuning. We use MMDetection (Chen et al., 2019) toolbox and
employ default settings for training and evaluation. All networks are trained on train2017 for 12
epochs using SGD with weight decay of 1e-4, momentum of 0.9 and mini-batch size of 8 (2 examples
per GPU). The learning rate is initialized to 0.01 and decays by 0.1 at 8-th and 11-th epochs.

Table 4: Object detection results on COCO 2017 validation set. ResNet50-Shared‡ uses first two
convolution operators of each residual block as recursively shared filter bases.

Backbone Detector #Params GFLOPs AP AP50 AP75 APS APM APL

ResNet50 (baseline)

Faster
R-CNN

41.53M 207.07 36.4 58.2 39.2 21.8 40.0 46.2
-Shared (ours) 36.70M 206.87 37.2 58.1 40.2 21.6 40.8 47.9
-Shared‡ (ours) 34.46M 206.87 36.6 57.4 39.8 21.4 40.1 47.3
ResNet101 (baseline) 60.52M 283.14 38.7 60.6 41.9 22.7 43.2 50.4
-Shared (ours) 45.67M 282.84 39.0 59.7 42.7 22.4 42.7 50.8
ResNet50 (baseline)

Mask
R-CNN

44.18M 275.58 37.2 58.9 40.3 22.2 40.7 48.0
-Shared (ours) 39.35M 259.94 37.9 58.4 41.4 22.4 41.2 49.2
-Shared‡ (ours) 37.10M 259.94 37.3 57.6 40.7 21.5 40.3 48.5
ResNet101 (baseline) 67.17M 351.65 39.4 60.9 43.3 23.0 43.7 51.4
-Shared (ours) 48.31M 335.91 39.8 60.3 43.6 22.7 43.5 51.9
ResNet50 (baseline)

RetinaNet

37.74M 239.32 35.6 55.5 38.2 20.0 39.6 46.5
-Shared (ours) 32.92M 239.12 36.2 55.0 38.6 20.3 39.7 47.1
-Shared‡ (ours) 30.67M 239.12 35.6 54.1 38.2 19.8 39.2 46.9
ResNet101 (baseline) 56.74M 315.39 37.7 57.5 40.4 21.1 42.2 49.5
-Shared (ours) 41.88M 315.09 37.7 56.8 40.3 21.2 41.5 49.5

Table 5: Instance segmentation results using Mask R-CNN on COCO val2017.

Backbone AP AP50 AP75 APS APM APL

ResNet50 (baseline) 34.1 55.5 36.2 16.1 36.7 50.0
-Shared (ours) 34.5 55.4 36.9 18.9 37.7 46.5
ResNet101 (baseline) 35.9 57.7 38.4 16.8 39.1 53.6
-Shared (ours) 35.9 57.2 38.3 19.1 39.2 48.6
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Table 4 shows the results on val2017 containing 5000 images. Our backbone networks with shared
filter bases consistently outperform baselines in all detectors in terms of COCO’s standard metric
AP while saving up to 28.1% parameters. In Table 5, our models also achieve similar performance
improvement in instance segmentation using Mask R-CNN. This consistent performance improvement
is obtained simply by replacing the backbone networks with ours and it demonstrates that the proposed
recursive convolution block design and the orthogonality regularization enables learning better feature
representations with a smaller amount of parameters.

4.4 Analysis: Effect of Orthogonality Regularization

To investigate the effect of the orthogonality regularization during training, we track the flows of
gradients while training ResNet34-S16U1. Figure 3 shows the traces of the maximum and the mean
gradients flowing in the filter bases during an epoch. On every 10 iterations of a batch, the maximum
and the mean gradients are overlapped on top of the old plots. Therefore, the bars look darker if
bars are more overlapped. Jastrzebski et al. (2018) and Guo et al. (2019) showed that unshared
batch normalization (BN) strategy mitigates the vanishing/exploding gradients problem, and our
result in Figure 3-(b) shows that unshared BNs following shared filter bases improve the flow of
gradients. When the proposed orthogonality regularization is applied to the shared filter bases, in
Figure 3-(c), similar effect is observed on gradients. When both unshared BNs and the orthogonality
regularization are applied together, in Figure 3-(d), further stronger, but still bounded, flows of
gradients are observed. This trend is consistently observed during training. We conjecture that this
healthy flow of gradients enables learning better feature representations during optimization process,
resulting in superior performance on various tasks.
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Figure 3: The flows of gradients in 4 shared filter bases of ResNet34-S16U1 at the same epoch. For
comparison, the orthogonality regularization and the batch normalization (BN) following the filter
bases are turned on and off. In (b) and (c), BNs and the orthogonality regularization, respectively,
improve the flow of gradients. In (d), when both BNs and orthogonality regularization are applied
together, the strongest flow of gradients is observed. This trend is consistently observed during the
training.

Figure 4: Cosine similarities of coefficients of the 2nd and the 3rd residual block groups in ResNet34-
S16U1. X and Y axes are indexes to the coefficients of the residual block groups sharing filter bases.
Brighter colors indicate higher similarity. In (b), when the orthogonality regularization is applied, the
similarity is clearly lowered, implying less redundancy in parameters.
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To further analyze the effect of the orthogonality regularization, in Figure 4, we illustrate absolute
cosine similarities of all coefficients of the 2nd and the 3rd residual block groups of ResNet34-S16U1.
The X and Y axes display the indexes to the coefficients in the residual blocks. In Figure 4-(b), we
can clearly see that coefficients manifest lower similarities when the orthogonality regularization
is applied. In Figure 4-(a), when the orthogonality regularization is not applied, an interesting grid
pattern is observed in Figure 4-(a). This repetitive grid pattern might be related to ResNets’ nature of
iterative feature refinement (Jastrzebski et al., 2018). However, such high cosine similarity is directly
related to the higher redundancy in the networks. When our orthogonality regularization is applied,
such repetitive patterns are less evident, implying that the recursive convolution layers learn better
feature representations with less redundancy.

5 Conclusions

We introduce a recursive convolution block design and effective training method for parameter-
efficient CNNs. In this work, a common filter basis, shared by repeating convolution layers, is
learned while effectively avoiding the vanishing/exploding gradients problem through the proposed
orthogonality regularization. Experimental results on image classification and image detection
show that our approach consistently outperforms over-parameterized counterpart models while
significantly saving parameters. This consistent performance improvement demonstrates that the
proposed approach enables effective learning of better feature representations while a significant
amount of parameters are shared. We believe that the proposed recursive convolution blocks and
training method suggests important possibilities for neural architecture search (NAS) to explore
resource-efficient CNNs.
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