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ABSTRACT

Learning from imbalanced data remains a major challenge for graph neural net-
works (GNNGs), as minority nodes are not only rare but also structurally marginal-
ized within the graph. We address this issue with CLARA, a hierarchical learn-
ing framework that decomposes node classification into two stages: a coarse
subgraph-level classifier that selects regions likely to contain minority instances,
followed by a fine-grained node-level predictor within these regions. This de-
sign improves sensitivity while maintaining scalability, filtering out irrelevant ar-
eas and focusing learning on topologically meaningful neighborhoods. Experi-
ments on benchmark graph datasets demonstrate substantial gains over established
imbalance-handling methods, with CLARA reaching an F1-score of 88.3%. The
same strategy achieves significant improvements in protein-ligand binding site
prediction, underscoring its broad and consistent effectiveness across both biolog-
ical and general graph learning tasks.

1 INTRODUCTION

Class imbalance is a well-known and persistent challenge in machine learning (ML), where one or
more classes are significantly underrepresented (Niaz et al |2022). Although well-explored in do-
mains like computer vision and natural language processing (Henning et al., 20225 |Qu et al., |[2025)),
graph-structured data introduces unique challenges for handling class imbalance: their irregular,
non-Euclidean nature and rich relational dependencies often leave minority-class nodes sparse, pe-
ripheral, and structurally disadvantaged (Ma et al.,[2025} |Liu et al., 2025). Graph Neural Networks
(GNNs), which rely on message passing across the graph, tend to exacerbate this issue: signals from
high-degree, majority-class nodes tend to dominate, overwhelming the representations of minority-
class nodes (Xu et al., 2024; Ju et al., [2024). In critical applications of graph-structured data such
as disease diagnosis or equipment failure detection, such biases can lead to deceptively high over-
all accuracy while entirely missing rare but essential cases (Yuan et al., [2022; |Pandey et al., [2024;
Walke et al., [2024). This problem is particularly pronounced in protein-ligand binding site predic-
tion, where only a small fraction of residues are functionally active, making them difficult to detect
amid a structurally dominant background (Xia et al., 2024)).

Recent efforts to address class imbalance in graphs can be broadly grouped into three categories:
data augmentation (Zhao et al., 2021} L1 et al.| [2023)), loss-function design (Song et al., 2022; |Chen
et al.| 2025)), and topological correction (Liu et al., [2021; Zhao et al., [2022; Liu et al., [ 2023)). These
approaches have achieved progress by either generating additional minority samples, reweighting
losses, or reshaping message passing. However, they typically assume that minority-class nodes are
diffusely distributed, overlooking scenarios where minority instances cluster in compact, topolog-
ically meaningful subregions, conditions frequently encountered in biological and other scientific
networks. In such cases, purely resampling or smoothing strategies may fall short, motivating the
need for frameworks that explicitly exploit the localized structure of minority regions.

In this work, we introduce CLARA (Coarse-to-fine Localized Adaptive Region Attention), a hierar-
chical learning framework for addressing class imbalance in graphs. CLARA progressively refines
node classification through two stages: a coarse subgraph-level classifier first isolates regions en-
riched with minority nodes, and a fine-grained node-level predictor then operates within these re-
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gions. This design enhances sensitivity to rare classes while preserving scalability, as computation
is shifted from the entire graph to localized substructures. A further strength of CLARA lies in
its heuristic-based subgraph modeling, which allows domain knowledge, such as solvent-accessible
surface area in proteins, to guide region selection and improve the quality of candidate subgraphs.
While the framework is broadly applicable across domains, it is originally inspired by biological set-
tings such as protein—ligand binding sites, where minority residues naturally cluster into compact,
functionally meaningful regions.

To demonstrate the effectiveness and generality of our approach, we focus on protein—ligand binding
site prediction, an emblematic case of class imbalance in structured biological data. Identifying these
sites is a fundamental task in structural bioinformatics, with implications for understanding protein
function, virtual screening, and drug design (Konc & JaneziC, 2014; |[Boike et al., 2022; |Che et al.}
2024). Binding residues typically represent less than 6% of all amino acids, forming compact and
functionally critical regions within the protein structure (Kulandaisamy et al.,|2017). This makes the
task particularly challenging for learning algorithms, especially those sensitive to data imbalance.
By modeling proteins as residue-level graphs with spatially defined edges, we naturally capture the
structural context of binding sites while exposing the inherent sparsity and imbalance that charac-
terize the task. We evaluate CLARA not only on biologically grounded datasets for protein-ligand
binding site prediction but also on widely used graph benchmarks under controlled imbalance set-
tings. This dual evaluation confirms the relevance of our method across both application-driven and
general-purpose scenarios.

The main contributions of our work are: (i) introducing a subgraph-based modeling strategy that
decomposes large graphs into localized neighborhoods, improving scalability and reducing noise;
(ii) proposing a hierarchical coarse-to-fine learning pipeline that concentrates prediction capacity
on structurally informative regions, enhancing minority-class sensitivity; and (iii) incorporating
heuristic-based subgraph modeling, such as solvent accessibility in proteins, while remaining flexi-
ble enough to integrate diverse criteria in other domains. Together, these elements provide a scalable
framework particularly well suited for scenarios where minority classes are concentrated in local-
ized graph regions, yielding state-of-the-art results with up to 88.3% macro-F1 on benchmark graph
datasets and 68.6% F1-score in protein—ligand binding site prediction.

2 RELATED WORKS

Recent progress in machine learning and Graph Neural Networks (GNNs) has enabled advances
across domains like chemistry, social networks, and biology (Wittmann et al.l 2021} |[Kedi et al.
2024; Sharma et al., [2024; |Abadal et al,, |2021). However, real-world graphs often present chal-
lenges such as skewed label distributions and irregular topologies. This section reviews two research
directions central to our work: approaches for handling class imbalance in graphs and methods for
protein binding site prediction, the primary application of our proposed framework.

Class Imbalance in Graph Learning. Addressing class imbalance in graph-based learning has
become increasingly important, as graph data presents unique challenges not encountered in tra-
ditional settings. Node interdependence, structural irregularities, and non-Euclidean topology can
amplify the effects of skewed label distributions, making conventional solutions less effective (Liu
et al., 2025). To mitigate these issues, various methods have been proposed, including resampling
techniques, loss function engineering, and graph-specific architectural adaptations (Haixiang et al.,
2017; Ma et al.l 2025). Below, we outline key strategies developed for node classification under
imbalance and discuss their limitations, which motivate the structured design of our hierarchical
learning framework.

Recent surveys on class-imbalanced learning in graphs highlight the unique challenges posed by
graph-structured data, including bias propagation through message passing, structural imbalance,
and the difficulty of applying traditional techniques like oversampling, without disrupting topology
(Ma et al} 2025} Ju et al., [2024; [Liu et al.| |2025). These works propose taxonomies that catego-
rize methods by problem type (e.g., node vs. graph classification, class vs. structure imbalance)
and strategy (e.g., cost-sensitive learning, topology-aware sampling), while also emphasizing the
need for context-aware, generalizable models. Notably, they underscore the importance of devel-
oping graph-specific solutions, like our hierarchical approach, that can simultaneously handle data
imbalance and structural sparsity in a principled manner.
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Approaches to address class imbalance in graphs generally fall into three main categories: data
augmentation, loss function design, and topological correction. Data augmentation methods focus
on over-sampling the minority class. GraphSMOTE (Zhao et al., [2021)) synthesizes new nodes in
the learned embedding space while generating edges that preserve local structure. GraphSHA (Li
et al |2023) enhances minority-class representations by creating harder examples and employing a
SemiMixup module to balance informativeness and stability. Loss function design offers an alterna-
tive route. TAM (Song et al., [2022) adapts decision boundaries using local topological cues, while
NodeImport (Chen et al.l [2025) dynamically reweights training based on node importance, priori-
tizing those that contribute most to generalization. Topological correction strategies explicitly target
structural imbalance: Tail-GNN (Liu et al., [2021) transfers information from high to low-degree
nodes, and Topolmb (Zhao et al., [2022) leverages motif-aware regularization. BAT (Biased Atten-
tion Transformer) (Liu et al.,|2023) proposes a lightweight topological augmentation framework that
mitigates predictive bias by correcting structural deficiencies without explicit class reweighting.

Collectively, these works highlight that addressing class imbalance in graphs requires not only data
augmentation or loss design, but also architectural and topological adaptations tailored to graph
structure. Nonetheless, most approaches still struggle when minority instances are highly local-
ized and structurally concentrated, as often observed in biological networks. Recently, complemen-
tary directions have emerged that exploit large language models (LLMs), such as LA-TAG (Wang
et al.,2024)), which generates synthetic minority nodes in text-attributed graphs using LLM-based
augmentation. While promising in settings with rich semantic information, these methods remain
largely unexplored for structural domains, underscoring the need for frameworks like CLARA that
directly exploit the clustered nature of minority instances.

Protein Binding Site Prediction. Identifying ligand-binding residues is a foundational task in struc-
tural bioinformatics, underpinning efforts in drug discovery and protein function analysis (Konc &
Janezic, 2014; Boike et al.} 2022). The task involves identifying residues within a protein structure
that are responsible for interacting with ligands or other biomolecules. Over the years, a variety of
computational methods have been developed to automate this process, ranging from geometry-based
heuristics to machine learning models trained on annotated datasets (Zhao et al., [2020). More re-
cently, deep learning (DL) approaches have leveraged structural and sequence-based representations
to improve prediction accuracy (Rohulia et al., [2025). Following, we highlight representative tools
and models that have shaped the field and serve as comparative baselines in our evaluation.

Recent reviews have provided comprehensive insights into protein-ligand binding site (LBS) predic-
tion from different angles. Xia et al.| (2024)) provides an in-depth overview of protein-ligand bind-
ing site prediction, highlighting its critical role in protein function annotation and drug discovery.
Dhakal et al.|(2022) explore the role of artificial intelligence in protein-ligand interaction prediction,
reviewing ML-based techniques for predicting binding sites, affinities, and poses. The authors note
that binding site prediction suffers from severe class imbalance, which challenges conventional ML
algorithms. To address this, ensemble methods with random undersampling have been proposed.
Moreover, attention-based neural architectures, proven effective in protein structure prediction, are
identified as promising alternatives to traditional convolutional or recurrent models. The survey ad-
vocates for multi-task frameworks capable of jointly modeling site, affinity, and pose predictions to
better exploit their interdependencies. A recent review by Rohulia et al.|(2025)) surveys state-of-the-
art deep learning methods for binding site prediction, covering model architectures, data resources,
and evaluation practices. The work emphasizes the role of CNNs and GNNs in advancing predictive
accuracy and highlights how curated databases underpin the development of these models.

A wide range of methods has been developed for ligand binding site prediction, from classical
heuristic-based tools to modern deep learning models. Traditional approaches like COACH (Yang
et al., |2013) combine sequence and structural similarity in a meta-predictor framework, while
Fpocket (Le Guilloux et al., [2009) uses geometric criteria to efficiently detect cavities, recovering
the majority of known sites. GRaSP (Santana et al., [2022), in turn, applies a residue-centric graph-
based strategy, achieving strong performance with reduced runtime. More recent machine learning
methods include P2Rank (Polak et al.,2025)), which predicts ligandability scores from local features
without templates, and PUResNetV2.0 (Jeevan et al., [2024), a deep model combining U-Net and
ResNet modules with sparse representations. LigBind (Xia et al., [2023)) further advances the field
by incorporating ligand-specific context through relation-aware graph neural networks. Together,
these methods reflect the shift toward scalable, structure-informed, and learning-based approaches
for accurate binding site identification. In this context, our method CLARA also operates as a bind-
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ing site predictor, but distinguishes itself by explicitly addressing the severe class imbalance of the
task through hierarchical subgraph-based learning, thereby improving sensitivity to the minority
residues that define functional binding regions.

More recently, large language models (LLMs) have opened new perspectives for binding site pre-
diction by leveraging sequence-based representations. For example, recent work demonstrated that
unsupervised LLMs trained on enzyme—substrate reactions can recover more than 50% of binding
site residues directly from sequence data, capturing signals of substrate recognition and atomic-level
interactions without explicit structural supervision (Teukam et al.,[2024)). Similarly, protein language
models such as ESM and ESMFold (Lin et al.,2023)) have shown that scaling transformer architec-
tures to billions of parameters enables accurate atomic-level structure prediction directly from single
sequences, bypassing the need for multiple sequence alignments. While these advances highlight
the potential of LLMs to encode structural determinants of binding sites, they do not directly address
the extreme class imbalance inherent to residue-level prediction. CLARA complements these direc-
tions by introducing a scalable graph-based framework tailored to scenarios where binding residues
occur as compact and highly localized minority regions.

3 METHODOLOGY

The problem of class imbalance arises when certain classes, typically those of greatest interest, are
underrepresented compared to others in the training data. This issue is widespread across domains
such as disease diagnosis, fraud detection, cybersecurity, and rare event modeling (Wheelus et al.,
2018} [Yuan et al., [2022)). Imbalance can be either intrinsic, stemming from natural distributions
(e.g., most patients are healthy), or extrinsic, introduced through biased data collection (Wang et al.,
2021). Regardless of its origin, imbalance compromises the performance of standard machine learn-
ing models, especially in complex tasks (Niaz et al.| [2022). Traditional metrics like accuracy are
misleading in this context, as models may achieve high scores while completely ignoring the mi-
nority class (Japkowicz, 2013). A common measure of imbalance severity is the imbalance ratio,
defined as maxy, |Cy|/ ming |Ck|, where |Cy| denotes the number of samples in class k. In the fol-
lowing, we first present our general hierarchical framework for learning under class imbalance in
graphs, and in Section [3.1| we detail its application to the task of protein binding site prediction.

Graphs provide a natural representation for relational data, where a graph G = (V, E) is defined
by a set of nodes V' and edges E that encode relationships between entities. In this work, we
focus on node classification, where the goal is to assign a label to each node in the graph. Graph
Neural Networks (GNNs) address this task by propagating information through message passing,
learning embeddings that integrate both node features and topological context (Huang et al., [2022).
However, under class imbalance, GNNs face unique challenges: minority-class nodes are not only
rare but also structurally marginalized, often appearing in peripheral or sparsely connected regions
(Ju et al.| 2024)). This topological isolation reduces the effectiveness of message passing and biases
learned representations toward majority classes (Liu et al.| 2025)).
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Figure 1: Schematic of the hierarchical framework for addressing class imbalance in graphs. The
pipeline combines subgraph decomposition, graph-level filtering, and node-level classification to
focus learning on structurally relevant regions.
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To address these challenges, we introduce CLARA (Coarse-to-fine Localized Adaptive Region At-
tention), a hierarchical learning framework tailored to class-imbalanced node classification. CLARA
consists of two stages: (i) a coarse subgraph-level classifier that identifies regions likely to contain
minority nodes, and (i) a fine-grained node-level classifier applied within these regions. This coarse-
to-fine strategy progressively narrows the model’s focus, improving sensitivity to underrepresented
classes while reducing noise from majority-dominated regions. An overview of the pipeline is shown
in Figure[T]

Subgraph Construction. Given an input graph G = (V, E), we construct a collection of subgraphs

G; = (Vi Ei)i]\il by selecting root nodes r; € V and extracting their k-hop neighborhoods. The
choice of root nodes determines both the number and the quality of subgraphs. In principle, any root
selection policy can be adopted; here, we consider two strategies: (i) Randomized coverage via node
coloring. Root nodes are sampled uniformly at random from the set of unassigned nodes. For each
root r;, the k-hop neighborhood G; is extracted, and all nodes in V; are marked as “colored.” Colored
nodes are not eligible to be selected as roots in subsequent iterations, though they may still appear
as neighbors in other subgraphs. This process continues until no uncolored nodes remain or a stop-
ping criterion is met. Compared to exhaustive per-node extraction, which generates |V'| overlapping
neighborhoods, this randomized coverage produces a substantially smaller set of subgraphs, while
still achieving near-complete coverage with reduced redundancy. (ii) Domain-guided selection. In
scenarios where domain knowledge is available, root nodes can be selected according to heuristic
scores s : V — R that reflect task-specific relevance. For example, in protein graphs, residues
with solvent accessible surface area (SASA) (Hubbard & Thornton, [1993)) above a threshold 7 are
chosen as roots, i.e., R = v € V | s(v) > 7. Subgraphs are then constructed as k-hop neighbor-
hoods around R. This approach reduces randomness and concentrates computation on structurally
or functionally meaningful regions, often improving the quality of downstream predictions. To-
gether, these strategies illustrate the trade-off between scalability and task specificity: randomized
coverage provides efficient, domain-independent decomposition, whereas heuristic-based selection
integrates prior knowledge to bias the model toward more informative subregions.

Stage 1: Subgraph-Level Classification. The first classifier operates at the subgraph level and
serves as a coarse filter. Each subgraph G; = (V;, E;) is encoded by a graph neural network fyup,
producing node embeddings that are aggregated into a fixed-length vector h; = p(fuw(G;)) €
R?, where p is a readout function (e.g., mean, sum, or attention pooling) that maps variable-sized
subgraphs to fixed-dimensional representations. A binary classifier ¢gp : R? — {0, 1} then predicts
Ui = dsub(hy), where §; = 1 indicates that G; likely contains at least one minority-class node. This
model is trained independently with ground-truth labels at the subgraph level. At inference time,
it is applied first: subgraphs with ¢, = 0 are pruned, and only those with g; = 1 are forwarded to
Stage 2. This staged inference is crucial under severe class imbalance, since it prevents the node-
level classifier from being overwhelmed by majority-dominated regions. While the two classifiers
are trained separately, their sequential application during inference forms the hierarchical pipeline.
From a computational standpoint, this reduces noise, increases efficiency, and enriches the effective
concentration of minority-class nodes in the subgraphs that reach Stage 2.

Stage 2: Node-Level Classification. The second stage performs fine-grained classification within
the set of subgraphs S identified by Stage 1 during inference. For each subgraph G; = (V;, E;) € S,
a node-level encoder fyo4e produces embeddings H; = fyoae(G;) € RIVilxd  where each row cor-
responds to a node embedding h;. A node-wise classifier ¢noqe : R? — {0,1} then assigns labels
U; = ¢node(hj) fornodes v; € V;. The final prediction for each node in the original graph is obtained
by merging predictions across all retained subgraphs: a node is labeled positive if it is predicted as
such in at least one subgraph, while nodes absent from all positively classified subgraphs are implic-
itly labeled negative. During training, fiode and ¢node are optimized using all available subgraphs,
with supervision applied directly at the node level. At inference time, however, only subgraphs se-
lected by Stage 1 are processed, which reduces noise and improves computational efficiency. This
design yields two main benefits: (i) restricting inference to structurally relevant subgraphs improves
the effective class balance presented to the node-level classifier, and (ii) attention mechanisms in
frode allow the model to prioritize nodes that contribute most to minority-class discrimination, miti-
gating the dilution of minority signals present in global training.
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3.1 HIERARCHICAL LEARNING FOR PROTEIN BINDING SITE PREDICTION

In this subsection, we describe how the proposed hierarchical learning framework is instantiated for
binding site prediction. We outline the main components of the pipeline: (i) graph modeling, where
protein structures are represented as residue-level graphs; (ii) subgraph construction, using either
randomized or heuristic-based strategies; and (iii) the two-stage classification process, combining
coarse subgraph-level filtering with fine-grained node-level prediction.

Problem Definition. Ligand binding site prediction aims to identify which amino acid residues in a
protein are directly involved in interactions with small molecules (Chen et al.,2011). From a bioin-
formatics perspective, these residues are of central functional importance, as they mediate molecular
recognition and drug binding (Zhao et al., [2020). Computationally, however, the task is highly im-
balanced: binding residues typically constitute less than 6% of all residues in a protein, with the vast
majority belonging to the non-binding class (Kulandaisamy et al.,2017). This imbalance poses two
main challenges. First, the scarcity of positive residues makes it difficult for learning algorithms to
detect the subtle patterns that distinguish them from the background. Second, binding residues are
not randomly distributed; rather, they form compact structural clusters on the protein surface. Any
effective method must therefore handle both the label imbalance and the topological concentration
of positives within localized regions of the protein graph.

Graph Modeling. To model protein structures as graphs, we represent each residue as a node, and
non-covalent interactions between residues as edges. The presence of an edge between two residues
is determined by whether there exists at least one non-covalent interaction between them. These
interactions are computed based on interatomic distances and atom types, using a kd-tree-based
implementation provided by Biopython (Cock et al., [2009), which enables efficient identification
of interactions without the need to calculate all pairwise distances. The types of interactions con-
sidered include aromatic stacking, disulfide bridges, hydrogen bonds, hydrophobic contacts, salt
bridges, and repulsive forces. We do not use edge features in our model. Instead, each node is rep-
resented by a high-dimensional feature vector obtained from the ESM-2 model (Evolutionary Scale
Modeling), a pretrained protein language model that captures rich biological information based on
protein sequence (Lin et al., 2023)).

Data Preparation. For the binding site prediction task, we used curated protein—ligand interaction
data from BioLiP (Zhang et al.,|2024), where residues are labeled as binding or non-binding. Only
proteins with complete 3D coordinates were retained to ensure structural consistency. Proteins were
then decomposed into local subgraphs capturing residue neighborhoods. We applied two strategies:
(7) randomized coverage with node coloring, which partitions the protein graph into k-hop neighbor-
hoods while reducing redundancy compared to exhaustive per-node extraction; and (ii) a heuristic
approach based on solvent-accessible surface area (SASA), where surface-exposed residues are cho-
sen as subgraph roots. Dataset statistics and implementation thresholds are provided in Appendix [A]

Hierarchical Classification. After subgraph generation, classification proceeds through the two-
stage hierarchical framework described in Section |3} In Stage 1, a subgraph-level classifier deter-
mines whether each subgraph is likely to contain positive residues. In Stage 2, a node-level classifier
refines predictions within the retained subgraphs, and outputs are merged to obtain residue-level la-
bels for the full protein. Both classifiers are implemented with Graph Attention Networks (GATs),
chosen for their ability to adaptively weight neighbors during message passing. Additional architec-
tural and training details are reported in Appendix [B]

4 RESULTS

In this section, we evaluate the proposed hierarchical learning framework in the context of graph im-
balance, comparing against state-of-the-art methods designed to address class imbalance in graph-
structured data. We first present experiments on the Planetoid datasets (Cora, CiteSeer, PubMed)
(Yang et al.l|2016)), widely used benchmarks for node classification under varying degrees of imbal-
ance, where we contrast our approach with representative imbalance-handling strategies. We then
turn to ligand binding site prediction, comparing against specialized structure-based predictors.
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4.1 EVALUATION ON CLASS-IMBALANCED GRAPHS

To evaluate the effectiveness of our framework under controlled imbalance, we conducted experi-
ments on the Planetoid datasets Cora, CiteSeer, and PubMed 2016), each widely used
in graph learning research. Cora contains 2,708 nodes and 5,429 edges, CiteSeer 3,327 nodes and
4,732 edges, and PubMed 19,717 nodes and 44,338 edges. All experiments followed the public
splits with an imbalance ratio of 10. Since the task was multi-class node classification, we adopted
a one-vs-rest (OVR) transformation and report macro-F1, which equally weights all classes and thus
balances precision and recall. This choice is particularly important in class-imbalanced scenarios:
unlike micro-F1 or accuracy, which can be dominated by majority classes, macro-F1 highlights the
model’s ability to correctly identify minority classes, making it a more reliable indicator of overall
performance.

We compared two variants of our framework. (i) CLARA-S, a simplified version that uses subgraph
decomposition but omits hierarchical filtering, applying node-level classification to all generated
subgraphs. (ii) CLARA, the full hierarchical model, where Stage 1 filters candidate subgraphs and
Stage 2 performs fine-grained node classification. In both cases, subgraphs were generated using the
coloring-based strategy described in Section[3] As baselines, we included three imbalance-handling
methods: NodeImport (Chen et al., 2025), BAT (Liu et al., [2023)), and GraphSHA 2023).
NodeImport dynamically reweights the loss to emphasize minority-class nodes, BAT introduces
topology-sensitive augmentation through biased attention, and GraphSHA enhances minority repre-
sentations via semi-supervised hard example generation. All models, including our variants, were
implemented with Graph Convolutional Networks (GCNis) as the backbone. Figure 2]reports macro-
F1 (%) as mean values with 99% confidence intervals across 10 runs.
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Figure 2: Macro-F1 (%) with 99% confidence intervals on the Cora, CiteSeer, and PubMed datasets.
Results are reported for CLARA, CLARA-S, NodeImport, GraphSHA, and BAT.

The results consistently favor our hierarchical design. In the Cora dataset, CLARA achieved an
average macro-F1 of 87.6%, compared to 85.3% for CLARA-S, 84.6% for Nodelmport, and 84.1%
for GraphSHA. BAT lagged substantially at 68.3%, showing that biased attention alone is insuffi-
cient under strong imbalance. In the CiteSeer dataset, the gap widened: CLARA obtained 78.0%,
while CLARA-S reached 72.7%, Nodelmport 68.9%, and GraphSHA 70.6%. BAT again performed
poorly, averaging only 57.0%. Finally, in the PubMed dataset, the largest and most structurally di-
verse dataset, CLARA delivered 88.3%, outperforming CLARA-S (85.4%), Nodelmport (83.8%),
and GraphSHA (83.3%). Importantly, the 99% confidence intervals for CLARA do not overlap with
those of any competing method, confirming the statistical significance of its superiority across all
datasets.

A deeper analysis highlights several insights. First, even without hierarchy, CLARA-S already sur-
passes all imbalance-aware baselines, showing that subgraph decomposition alone is a strong strat-
egy for reducing topological noise and improving the local balance of minority instances. However,
CLARA consistently yields an additional performance margin: the hierarchical filter discards irrel-
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evant or majority-dominated subgraphs, concentrating learning on regions more likely to contain
minority nodes. This coarse-to-fine decomposition enables complementary signals, subgraph-level
evidence followed by node-level refinement, that neither subgraphs alone nor traditional imbalance
mitigation methods can fully capture.

Second, the relative margins vary with dataset size and structure. On CiteSeer, where class sepa-
ration is weaker and imbalance effects are stronger, CLARA’s advantage over CLARA-S is more
pronounced (a +5.3% F1 improvement). On PubMed, the gain is smaller in absolute terms (+2.9%)
but still statistically significant, showing that hierarchical filtering remains beneficial even on larger
graphs with richer connectivity. On Cora, the performance gap is moderate (+2.3%), suggesting that
hierarchical benefits are consistent but adapt to the underlying data structure. Together, these pat-
terns show that CLARA generalizes well across graph domains, scaling from small citation networks
to larger text corpora.

4.2 BENCHMARK EVALUATION ON BINDING SITE PREDICTION.

After establishing the effectiveness of our framework on controlled benchmarks, we next evaluate
its performance in a biologically grounded setting. Evaluation was conducted on the COACH100
dataset (Jeevan et al.,2024)), which consists of 65 non-redundant proteins annotated with 100 curated
ligand-binding sites and is widely used to benchmark binding site predictors under realistic yet
relatively simple structural conditions.

For this evaluation, we considered four variants of our method: (i) Flat GNN, a baseline trained
directly on the full residue-level graph without decomposition; (if) CLARA-S, which applies node-
level classification on all subgraphs without hierarchical filtering; (iii) CLARA, our hierarchical
model using randomized coloring for subgraph generation; and (iv) CLARA-SASA, which employs
solvent-accessible surface area (SASA) as a heuristic for subgraph generation. All four approaches
were implemented using Graph Attention Networks (GATs) as the backbone architecture, and relied
on the same graph modeling pipeline described in Section[3.1] including residue-level node features
derived from ESM-2 embeddings, interaction-based edge definitions, and identical training proce-
dures. Further dataset statistics, preprocessing details, and implementation parameters are provided
in Appendix X. Table [T] summarizes results in terms of Matthews Correlation Coefficient (MCC),
precision, recall, and F1-score.

Table 1: Performance comparison on the COACH100 dataset. All methods use the same graph
modeling pipeline (Section[3.T). Results are reported for four configurations of our framework: Flat
GNN (no subgraph decomposition), CLARA-S (subgraphs only), CLARA (hierarchical with ran-
domized coloring), and CLARA-SASA (hierarchical with solvent-accessible surface area heuris-
tic subgraph generation). Competing baselines GRaSP, PUResNet v2.0, NodeIlmport, BAT, and
GraphSHA are also shown for reference.

Method MCC Precision Recall F1-score
GRaSP 0.501 63.5% 43.9% 51.9%
PUResNet v2.0 0.624 61.3% 62.4% 61.8%
BAT 0.630 62.5% 67.5% 64.9%
GraphSHA 0.632 63.0% 62.8% 65.1%
NodelImport 0.637 66.1% 65.0% 65.5%
Flat GNN 0.618 56.1% 66.2% 62.4%
CLARA-S 0.653 76.6 % 60.0% 66.5%
CLARA 0.660 72.0% 63.4% 67.4%

CLARA-SASA  0.674 75.0% 63.2%  68.6%

Comparison with Existing Predictors. We first compared against PUResNet v2.0 (Jeevan et al.,
2024), a point-cloud deep learning model, and GRaSP (Santana et al.|[2022), a graph-based predictor
retrained on local neighborhoods. Both represent strong baselines in the field of binding site predic-
tion, but neither relies on our residue-level graph modeling. As a result, they fall behind even the
simplest variant of our framework. The Flat GNN, trained directly on full protein graphs, achieved
an MCC of 0.618 and an F1-score of 62.4%, surpassing PUResNet (MCC 0.624, F1 61.8%) and sub-
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stantially outperforming GRaSP (MCC 0.501, F1 51.9%). This result underscores two points. First,
residue-level graph modeling (Section is by itself a strong foundation, capturing dependencies
that geometric or neighborhood-only methods overlook. Second, our framework does not merely
introduce a hierarchical pipeline for imbalance handling but also builds on a modeling strategy that
already improves binding site prediction in its own right.

Comparison with Graph-Based Imbalance Methods. We then evaluated methods designed ex-
plicitly to handle class imbalance: Nodelmport (Chen et al.| 2025), BAT (Liu et al., 2023)), and
GraphSHA (L1 et al. [2023)). All three outperform GRaSP, PUResNet, and also the Flat GNN,
confirming that imbalance-aware training provides measurable benefits in this setting. NodeImport
reached an MCC of 0.637 and an Fl-score of 65.5%, offering the most balanced trade-off. BAT
achieved the highest recall (67.5%), but at the cost of lower precision, while GraphSHA yielded
competitive precision and recall, translating into an F1-score of 65.1%. These results highlight that
reweighting, attention bias, and oversampling indeed strengthen predictions under imbalance. How-
ever, they still treat the problem primarily at the level of sample distribution, without exploiting
the structural concentration of binding residues. In contrast, our framework leverages both model-
ing and hierarchical filtering to focus directly on regions where the minority class is most likely to
occur.

Impact of Hierarchical Learning. Finally, we compared the four variants within our own frame-
work: Flat GNN, CLARA-S, CLARA, and CLARA-SASA. This analysis also serves as an ablation
study. The Flat GNN establishes a competitive baseline but suffers from precision loss (56.1%) due
to majority dominance, despite recall being relatively high (66.2%). CLARA-S alleviates this by
decomposing graphs into subgraphs, raising MCC to 0.653 and F1-score to 66.5%, which confirms
the value of localized decomposition in balancing minority visibility. CLARA further improves by
filtering out irrelevant subgraphs: its hierarchical design increases precision to 72.0% and achieves
an Fl-score of 67.4%. The best results come from CLARA-SASA, which incorporates solvent ac-
cessibility as a heuristic for subgraph generation, reaching the highest MCC (0.674) and F1-score
(68.6%). This progression shows that decomposition improves local balance, hierarchy reduces
structural noise, and heuristics amplify these benefits by guiding the model toward functionally rel-
evant regions. Together, these components establish CLARA-SASA as the most effective approach,
outperforming not only general imbalance methods but also domain-specific predictors.

5 CONCLUSION

We introduced CLARA, a hierarchical learning framework that addresses class imbalance in graphs
by decomposing node classification into two stages: a coarse subgraph-level classifier that filters
structurally relevant regions, followed by a fine-grained node-level predictor. This design improves
sensitivity to minority classes, reduces noise, and maintains scalability by shifting computation from
full graphs to localized substructures. On the COACH100 benchmark for protein-ligand binding site
prediction, CLARA with solvent-accessibility—based subgraph selection achieved an MCC of 0.674
and an Fl-score of 68.6%, surpassing state-of-the-art predictors. Significant gains were also ob-
served on general graph benchmarks, with CLARA reaching 88.3% macro-F1 on PubMed, demon-
strating its effectiveness beyond biological applications. A key strength of CLARA lies in its ability
to leverage heuristic-based subgraph modeling, which allows domain knowledge to guide region
selection, and in its suitability for scenarios where minority instances are concentrated in specific
graph regions rather than uniformly distributed. Comparisons with imbalance-handling methods
such as Nodelmport, BAT, and GraphSHA confirm that while these approaches provide meaningful
improvements, they fall short of the systematic benefits achieved by our hierarchical framework.
Overall, CLARA provides a scalable and general solution for class-imbalanced graph learning, with
broad applicability from molecular biology to diverse graph-structured domains.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. All datasets used are
publicly available: Planetoid benchmarks (Cora, CiteSeer, PubMed) and the COACH100 dataset for
protein—ligand binding site prediction. The procedures for graph construction, subgraph generation
(coloring and heuristic-based strategies), and model architectures are detailed in Sections[3|and[3.1]
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Hyperparameters, training protocols, and additional implementation details are provided in Appen-
dices [A| and |B| Full experimental results, including confidence intervals and mean values across
multiple runs, are reported in Sections [d.1]and [4.2] ensuring that our findings can be independently
verified and reproduced.

DECLARATION OF GENERATIVE Al AND AI-ASSISTED TECHNOLOGIES IN
THE WRITING PROCESS

During the preparation of this manuscript, the authors used Al-assisted tools (Grammarly and Chat-
GPT) exclusively for improving language clarity, grammar, and readability. No part of the research
design, data analysis, or scientific contributions relied on these tools. After their use, the authors
carefully reviewed and revised the text, and they take full responsibility for the final content of the

paper.
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A DATA PREPARATION DETAILS

A.1 DATASET CONSTRUCTION

The dataset used for training and evaluation was derived from the BioLiP database (Zhang et al.,
2024]), which provides curated annotations of biologically relevant ligand—protein interactions. Each
residue in BioLiP is explicitly labeled as binding or non-binding, enabling supervised learning for-
mulations. To avoid redundancy and ensure structural consistency, two filters were applied: (i) only
non-redundant protein entries were retained, and (ii) only structures with complete 3D atomic coor-
dinates available in the Protein Data Bank (PDB) were considered. After preprocessing, the resulting
dataset comprised 71,305 annotated binding residues distributed across 32,209 unique proteins. This
large-scale set served as the pool of training templates for our method.

A.2 DYNAMIC TRAINING REGIME

Instead of training a single static model, we adopt a dynamic training paradigm inspired by the
GRaSP strategy (Santana et al., 2020). For each query protein, homologous proteins are retrieved
from the training set using BLAST sequence alignment. Up to 30 homologs are retained, and the
model is retrained on-the-fly using this subset, producing an instance-specific predictor. This design
ensures that the model specializes according to the structural and evolutionary context of each query
protein, while avoiding overfitting to unrelated proteins. In practice, each prediction benefits from
its own fine-tuned model, rather than relying on a single global model trained on all proteins.

A.3 SUBGRAPH GENERATION STRATEGIES

To represent proteins as graphs, we decompose each structure into localized subgraphs that encode
residue neighborhoods. Two complementary strategies were explored:

* Randomized coverage with node coloring. Subgraphs are generated iteratively to ensure
that all residues are covered while minimizing redundancy. A residue is randomly selected
as the root, and its k-hop neighborhood (with k£ = 3) is extracted to form a subgraph. All
nodes included in this subgraph are marked as “colored,” meaning they will not be reused
as roots in subsequent iterations. This procedure continues until all residues are covered.
Compared to the naive approach of generating a subgraph for every residue, this method
reduces the total number of subgraphs by approximately 80% while retaining essentially
the same structural information.

* Heuristic approach (SASA-based). As an alternative, subgraphs can be seeded using
biologically motivated heuristics. Specifically, solvent accessibility was used as a criterion,
computed with NACCESS (Hubbard & Thornton, 1993). Residues with Solvent Accessible
Surface Area (SASA) greater than 65% of their theoretical maximum were designated as
candidate roots, and their 3-hop neighborhoods were extracted as subgraphs. Unlike the
randomized coverage strategy, no coloring was enforced, allowing overlaps when exposed
residues are spatially close. This redundancy is intentional, as solvent-exposed residues
are more likely to participate in ligand binding and may benefit from multiple overlapping
contexts.
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B HIERARCHICAL CLASSIFICATION DETAILS

B.1 CLASSIFIER DESIGN

The hierarchical framework consists of two classifiers implemented with Graph Attention Networks
(GATs). GATs were selected over alternatives such as GCNs because their attention mechanism
allows the model to dynamically prioritize neighbors during message passing, which is particularly
relevant in protein graphs where neighboring residues may differ widely in functional importance.
Importantly, the two classifiers are trained independently: Stage 1 is optimized to classify subgraphs,
while Stage 2 is optimized to classify residues. The hierarchy emerges only at inference time, when
the predictions are combined.

B.2 STAGE 1: SUBGRAPH-LEVEL CLASSIFICATION

The first stage performs graph-level binary classification, predicting whether each subgraph contains
at least one binding residue. Subgraphs predicted as negative are discarded before Stage 2. Subgraph
embeddings are obtained by passing node features through stacked GAT layers, followed by batch
normalization. A global AddPooling layer aggregates the node embeddings into a fixed-length vec-
tor. Other pooling operators (mean, attention-based) were also tested, but AddPooling consistently
provided a balance between simplicity and effectiveness. During training, ground-truth labels are
used, while at inference Stage 1 predictions determine which subgraphs advance to Stage 2.

B.3 STAGE 2: NODE-LEVEL CLASSIFICATION

The second stage applies residue-level classification within the set of subgraphs retained from
Stage 1. Node embeddings are computed with GAT layers, and each residue is classified inde-
pendently. Since this stage operates only within filtered subgraphs at inference time, it benefits
from a higher local proportion of positives compared to training on the full protein graph. Attention
weights further allow the model to focus on residues most informative for binding. Importantly,
during training, Stage 2 uses all subgraphs (positive and negative), whereas at inference only the
subgraphs predicted as positive by Stage 1 are processed.

B.4 AGGREGATION OF PREDICTIONS

Final residue-level predictions are obtained by merging node-level outputs across all subgraphs that
passed Stage 1. A residue is labeled as positive if it is predicted as positive in at least one subgraph;
residues absent from all positive subgraphs are labeled negative. This aggregation strategy balances
precision and recall: filtering reduces noise, while merging ensures coverage even when subgraphs
overlap.

B.5 TRAINING DETAILS

Both classifiers use two GAT layers with hidden dimension 128, ReL.U activation, dropout of 0.3,
and batch normalization. The Adam optimizer is used with an initial learning rate of 10~3 and
weight decay of 5 x 10~4. Training is performed with class-weighted binary cross-entropy loss to
compensate for imbalance. Early stopping with a patience of 20 epochs is applied, using validation
balanced accuracy as the stopping criterion. Hyperparameters were selected based on preliminary
experiments, balancing performance and stability across both benchmark and biological datasets.
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