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ABSTRACT

In this paper, we introduce a novel perspective on Parameter-Efficient Fine-Tuning
(PEFT) by viewing the weight update matrix as a k-sparse approximation in the
spatial domain, departing from the commonly used low-rank structure assumption.
We propose a compressive sensing-based approach that leverages under-complete
measurement matrices to analyze the approximation capabilities of the weight up-
date matrix. Our method ensures bounded error in the reconstruction of the weight
updates, as guaranteed by theoretical results in compressive sensing. However,
the vectorization of the weight update matrix leads to a high-dimensional problem
(d2), which can potentially result in large error bounds. To address this issue,
we introduce a block-structured approximation scheme that partitions the weight
update matrix into smaller blocks and applies the k-sparse approximation to each
block independently. We theoretically analyze the approximation error bounds of
our approach and demonstrate that the block-structured scheme achieves tighter
error bounds compared to the non-block approach. Empirically, we validate the ef-
fectiveness of our proposed method on various downstream NLP tasks, showcasing
its ability to achieve competitive performance with a reduced number of trainable
parameters. Our approach offers a new direction for parameter-efficient fine-tuning
of large language models. Notably, our experiments demonstrate competitive per-
formance with only 500 learnable parameters, while offering greater memory and
computational efficiency than LoRA in a rank-1 setting.

1 INTRODUCTION

The rapid advancement of large pre-trained language models has revolutionized natural language
processing (NLP) tasks. Models such as BERT (Devlin et al., 2019), GPT (Radford et al., 2018),
and T5 (Raffel et al., 2020b) have attained remarkable performance in a wide range of downstream
tasks. However, the scaling up of large foundation models has led to soaring costs in fine-tuning and
parameter storage, rendering extensive adaptations impractical. For instance, regular full fine-tuning
of a LLaMA2-7B parameter model(Chen et al., 2023) requires more than 60GB of GPU memory,
which exceeds the capacity of common consumer GPUs(Pan et al., 2024). This challenge has sparked
the development of Parameter-Efficient Fine-Tuning (PEFT) techniques(Houlsby et al., 2019). They
adapt large pre-trained language models to downstream tasks by only fine-tuning a small number of
(extra) model parameters, which simultaneously diminishing the quantity of trainable parameters and
retaining high-level performance (Ding et al., 2023).

Among PEFT techniques, Low-Rank Adaptation (LoRA) (Hu et al., 2022) has gained signifi-
cant attention due to its effectiveness and efficiency. Comparable or better downstream perfor-
mances has been observed on various NLP tasks, including text classification, question answer-
ing, and language generation (Mao et al., 2024). LoRA adapts pre-trained models by introducing
low-rank update matrices to the model’s weights. Specifically, LoRA represents the weight up-
date matrix as the product of two low-rank matrices which are learned during fine-tuning, while
the pre-trained weights remain frozen. Although LoRA achieves parameter efficiency by intro-
ducing pluggable low-rank matrices. As these LoRA plugins accumulate, the computation cost
of is increasing and unignorable. It is necessary to further enhance the computation efficiency
of LoRA. Ongoing efforts have been made to further improve the computational efficiency of
LoRA from the perspectives of parameter freezing, parameter pruning, and parameter sharing
(Wu et al., 2024; Zhang et al., 2023a; Liu et al., 2024b; Bałazy et al., 2024; Zhou et al., 2024).
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Figure 1: Efficiency vs. effectiveness on the GLUE
dataset with RoBert-Large. Our PISA enjoys high
average and uses fewer params. than competitors.

In the domain of Parameter-Efficient Fine-
Tuning (PEFT) for large language models, low-
rank adaptations have been the prevailing ap-
proach. However, the limitations of low-rank
structures in capturing complex patterns have
led us to a crucial insight: weight updates
in transformers can often be represented very
sparsely in an appropriate basis. This obser-
vation naturally points us towards compressive
sensing, a paradigm uniquely suited to exploit
such sparsity. We introduce comPressIve Sens-
ing Adaption (PISA), a method that reimagines
weight updates as highly sparse signals in a high-
dimensional space, offering unprecedented flex-
ibility and efficiency in model adaptation. While this shift to high-dimensionality initially seems to
present a challenge – as the Restricted Isometry Property (RIP) typically predicts larger error bounds
in such spaces – the extreme sparsity of weight updates allows us to overcome this hurdle. To fully
leverage this sparsity, we propose a novel block-structured k-sparse approximation scheme. This
approach partitions the weight update matrix into manageable blocks, enabling efficient computation
and tighter error bounds. By further exploiting properties of the Fourier transform, such as Hermitian
symmetry and ℓ1 minimization as projections, we enhance parameter efficiency and effectiveness
even more. Our comprehensive theoretical analysis provides rigorous error bounds and computational
complexity assessments, while extensive empirical validation demonstrates PISA’s competitive
performance on various NLP tasks with significantly fewer parameters than existing methods. The
main contributions of this paper are as follows:

1. We propose a block-structured k-sparse approximation scheme that partitions the weight
update matrix into smaller blocks, allowing for more efficient computation and tighter error
bounds. This approach, combined with properties of the Fourier transform such as Hermitian
symmetry, significantly enhances parameter efficiency.

2. We provide a comprehensive theoretical analysis of PISA, including error bounds and
computational complexity. Our analysis reveals how the interplay between sparsity, block
size, and measurement matrix properties affects the adaptation quality and computational
efficiency.

3. Through extensive empirical validation on various downstream NLP tasks, we demonstrate
that PISA achieves competitive performance with significantly fewer trainable parameters
compared to existing PEFT methods. Our experiments showcase the practical viability of
our approach in adapting large language models efficiently.

2 RELATED WORKS

Large Language Models. Large language models, such as BERT (Devlin et al., 2019), RoBERTa
(Liu, 2019), GPT (Radford et al., 2018), and LLaMA (Touvron et al., 2023a);(Touvron et al.,
2023b);(inc, 2024) have achieved remarkable success in various natural language processing tasks.
The swift expansion of the parameter scales of pre-training language models considerably improves
their generalization performance and gives rise to the emergence of novel capabilities. Nevertheless,
the capabilities of large language models (LLMs) on some downstream tasks remains limited due
to their inherent knowledge boundaries. To expand the knowledge boundaries, it is necessary to
fine-tune LLMs on the downstream tasks. Over the past few years, the parameter scales of pre-training
language models have witnessed a several-thousand-fold increase. For instance, it has gone from a
model with 330 million parameters like BERT (Devlin et al., 2019) to one with 540 billion parameters
such as PaLM (Chowdhery et al., 2022). This characteristic renders fine-tuning them for specific
tasks is extremely computationally expensive and resource-intensive.

Parameter-Efficient Fine-Tuning. Fine-tuning large language models for downstream tasks typ-
ically involves updating all the model parameters using task-specific training data. Nevertheless,
as the model size escalates, this approach becomes impractical due to the substantial computa-
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tional resources and storage overhead it demands. To reduce the computational cost, numerous
parameter-efficient fine-tuning (PEFT) methods have been proposed (Ding et al., 2023). These meth-
ods enable large language models (LLMs) to adapt to downstream tasks by fine-tuning only a small
number of (additional) model parameters.One notable approach is the LoRA (Low-Rank Adaptation)
method (Hu et al., 2022), which introduces low-rank matrices to approximate the weight updates
during fine-tuning. LoRA factorizes the weight updates into low-rank matrices, significantly reducing
the number of trainable parameters. However, LoRA still necessitates storing the low-rank matrices,
which can be memory-consuming for large models. Other parameter-efficientfine-tuning methods
comprise adapter-based approaches (Houlsby et al., 2019),which introduce small trainable modules
between the layers of the pre-trained model, and prefix-tuning (Li & Liang, 2021), which prepends
trainable continuous prompts to the input sequences. Although these methods have demonstrated
promising outcomes in reducing the number of trainable parameters, they still encounter challenges
in terms of memory efficiency and the capacity to capture complex weight update patterns.

Compressive Sensing Compressive sensing has emerged as a powerful framework for efficient
signal acquisition and reconstruction, with applications spanning various fields including signal pro-
cessing, imaging, and machine learning (Candès et al., 2006; Donoho, 2006). The foundational work
of Candes et al. (2006) and Donoho (Donoho, 2006) established theoretical guarantees for recovering
sparse signals from a small number of linear measurements. These guarantees rely on properties
such as the Restricted Isometry Property (RIP) (Candes & Tao, 2005), which has been shown to
hold for various classes of measurement matrices, including random Gaussian matrices and partial
Fourier matrices (Rudelson & Vershynin, 2008). Simultaneously, in the domain of parameter-efficient
fine-tuning, methods like LoRA (Hu et al., 2021) have garnered popularity due to their capability
to adapt large pre-trained models with a small number of parameters. LoRA accomplishes this by
learning low-rank update matrices, where the number of parameters is determined by the selected
rank. Our work bridges these two areas, applying compressive sensing principles to parameter-
efficient fine-tuning of large language models. Unlike traditional compressive sensing approaches,
we concentrate on approximating weight update matrices rather than input signals. In contrast to
LoRA,the parameter efficiency of our method is based on the chosen number of parameters rather
than a rank value, thereby offering enhanced flexibility.

3 PRELIMINARIES

In this section, we introduce the notation and formally define the problem of parameter-efficient
fine-tuning for large language models. We begin by discussing the general form of weight updates
and then present the LoRA method as a specific instantiation. Finally, we introduce the concept of
basis representations, which serves as a foundation for our proposed PISA method.

Notation Let W ∈ Rd×d be the weight matrix of a pre-trained language model, where d is the
dimension of the model’s hidden states. During fine-tuning, we aim to learn an update matrix
∆W ∈ Rd×d that adapts the pre-trained weights to a specific downstream task. The updated weight
matrix W′ can be expressed as:

W′ = W +∆W (1)
The adapted weights W’ are then used in the linear layer to compute the output y:

y = W ′x = (W +∆W )x (2)

Reparameterized Fine-tuning. The weight update matrix ∆W acts as a filter that modifies the
linear transformation performed by the pre-trained weights W. The filter ∆W learns to emphasize or
suppress certain patterns or features in the input x that are relevant to the downstream task. We can
represent the filter ∆W using a basis set A and a learnable representation B:

∆W = AB (3)

The choice of the basis set A determines the type of patterns or structures that the filter ∆W can
learn to capture. In LoRA, both A and B are learned simultaneously, allowing the filter ∆W to
capture task-specific patterns and structures. The low-rank structure of A and B reduces the number
of trainable parameters. In LoRA-FA (Zhang et al., 2023a), only B is learned, while A remains fixed.
This approach further reduces the number of trainable parameters compared to LoRA, as the basis set
is predetermined. The fixed basis set A captures general patterns or structures relevant to the task.
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Compressive Sensing for PEFT. Compressive sensing is a signal processing technique that enables
the reconstruction of a sparse signal from a small number of linear measurements (Candès & Wakin,
2008). We propose that ∆W can be approximated using compressed measurements (Donoho, 2006),
leveraging principles from compressive sensing. This approach is motivated by the following key
result:

Lemma 1 (Approximation from Compressed Measurements (Baraniuk et al., 2008)) Let x be
an N -dimensional vector, and let xk be its best k-sparse approximation. Let A be an r × d matrix
satisfying certain properties, where r ≥ C · (k log(d/k) + log(1/δ))/ε2 for some constants C > 0
and 0 < δ < 1. Then, with probability at least 1− δ, the error of approximating x using the matrix
A satisfies:

∥x−A†Ax∥2 ≤ ∥x− xk∥2 + ε∥x∥2 (4)

where A† denotes the Moore-Penrose pseudoinverse of A.

This lemma provides a theoretical foundation for our approach, suggesting that we can achieve accu-
rate reconstruction of ∆W from compressed measurements, provided that ∆W is well-approximated
by a sparse matrix. The error bound consists of two terms: the approximation error of the best k-sparse
representation and a term proportional to ε, which can be controlled by the number of measurements.

4 METHODOLOGY

Measurements

Sparse 
Signal

None-zero
elements

Figure 2: Comp. sensing Adaption (k-sparse).

In this section, we reframe Parameter-Efficient
Fine-Tuning (PEFT) within the context of com-
pressive sensing, viewing the weight update ma-
trix as a k-sparse signal in a high-dimensional
space. This novel perspective allows us to ad-
dress the parameter inefficiency problem inher-
ent in full fine-tuning by leveraging the power of
sparse representations. Specifically, we propose
to approximate the weight update matrix using
a compressed sensing framework, where a small
number of measurements can capture the essen-
tial information of the sparse update. However, this high-dimensional approach initially faces the
challenge of potentially large error bounds, as predicted by the Restricted Isometry Property (RIP). To
overcome this, we introduce a block-structured k-sparse approximation scheme, which partitions the
weight update matrix into smaller, more manageable blocks. This approach not only allows for more
efficient computation but also leads to tighter error bounds. We provide a comprehensive theoretical
analysis of our method, utilizing the RIP to derive approximation error bounds and demonstrate the
effectiveness of our block-structured approach. Through this analysis, we establish the conditions
under which our method can achieve accurate approximations with significantly fewer parameters
than traditional fine-tuning or other PEFT techniques.

4.1 PROBLEM DEFINITION AND COMPRESSIVE SENSING FRAMEWORK

We propose a novel perspective that views ∆W through the lens of compressive sensing. Instead
of assuming a low-rank structure, we posit that ∆W can be approximated as a k-sparse matrix
in the spatial domain. To leverage compressive sensing techniques, we first vectorize ∆W as
vec(∆W) ∈ Rd2

. Our compressive sensing problem for weight updates can then be formulated as:

b = Avec(∆W) (5)

where A ∈ Rm×d2

is a measurement matrix, and b ∈ Rm represents m linear measurements of
vec(∆W). Crucially, we work with under-complete measurements, meaning m < d2. This formula-
tion allows us to potentially capture more complex update patterns than the low-rank approximation,
while still maintaining parameter efficiency. However, it also introduces two significant challenges:
Memory Inefficiency and High Dimensionality. The measurement matrix A, despite being fixed
during training, requires storing m × d2 parameters. For large language models where d can be
in the thousands, this becomes prohibitively memory-intensive. The vectorization of ∆W results

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

in a very high-dimensional vector (d2), which can lead to large error bounds in the compressive
sensing reconstruction (Lemma 1). In the following subsections, we introduce novel techniques to
address these challenges, enabling the practical application of compressive sensing principles to
parameter-efficient fine-tuning of large language models.

4.2 ADDRESSING PARAMETERS INEFFICIENCY

To tackle the challenge of memory inefficiency in storing the large measurement matrix A, we
introduce two key concepts: the Kronecker product in conjunction with the Restricted Isometry
Property (RIP), and the use of subsampled Fast Fourier Transform (FFT) matrices.

Kronecker Product and RIP. The Restricted Isometry Property (RIP) is a fundamental concept
in compressive sensing that guarantees the stability of sparse signal recovery. A matrix Φ ∈ Rm×n

satisfies the RIP of order k with constant δk ∈ (0, 1) if, for all k-sparse vectors x ∈ Rn:

(1− δk)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δk)∥x∥22 (6)
To extend this property to our two-dimensional weight update matrix, we leverage the Kronecker
product. Let Φ1 ∈ Rm1×d and Φ2 ∈ Rm2×d be matrices satisfying the RIP. We can construct our
measurement matrix A as:

A = Φ1 ⊗Φ2 (7)
where ⊗ denotes the Kronecker product. Importantly, if Φ1 and Φ2 satisfy the RIP of order k with
constants δ1 and δ2 respectively, then A satisfies the RIP of order k2 with constant δ1 + δ2 + δ1δ2
(Duarte & Baraniuk, 2010; 2011). This construction allows us to work with structured measurement
matrices, reducing the storage requirements from O(md2) to O(m1d+m2d). However, while this
is a significant improvement, it still requires storing parameters for the measurement matrix.

Subsampled FFT Matrix. To further reduce memory requirements while maintaining the Kro-
necker product structure, we propose using subsampled Fast Fourier Transform (FFT) matrices
(Xu & Xu, 2014) as our measurement matrices Φ1 and Φ2. This approach allows us to efficiently
transform from the spatial domain to the spectral (k-sparse) domain. An additional crucial reason for
using subsampled FFT matrices is their orthogonality property. In the context of LLM fine-tuning,
traditional ℓ1 minimization approaches (solving A∆W = b) become computationally intractable.
However, with orthogonal matrices like subsampled FFT, we can directly compute δW = AHb,
where AH is the Hermitian transpose of A. This simple computation replaces the need for complex
L1 minimization, making our approach feasible and efficient for LLM fine-tuning. Let Fd ∈ Cd×d

denote the 1D discrete Fourier transform (DFT) matrix. We construct our measurement matrices as:
Φ1 = S1Fd, Φ2 = S2Fd (8)

where S1 ∈ Rm1×d and S2 ∈ Rm2×d are random subsampling matrices. Each row of S1 and S2

contains a single 1 in a random position and 0s elsewhere. Our complete measurement matrix A is
then constructed as:

A = Φ1 ⊗Φ2 = (S1Fd)⊗ (S2Fd) (9)
This construction maintains the Kronecker product structure while leveraging the properties of
the Fourier transform. Importantly, subsampled FFT matrices have been shown to satisfy the RIP
with high probability (Haviv & Regev, 2017), making them suitable for our compressive sensing
framework. The use of subsampled FFT matrices in this Kronecker product framework offers
Extreme Memory Efficiency and Computational Efficiency. We only need to store the k-sparse
matrix B in the frequency domain, which requires O(k) memory, where k ≪ d2. We do not need to
store any part of the measurement matrix A. The FFT operation can be implemented very efficiently,
with a time complexity of O(d2 log d) for a d× d matrix. The measurement process can be expressed
as:

b = AHvec(∆W) = vec(S1(F
H
d ∆WFd)S

T
2 ) (10)

where FH
d is the Hermitian transpose of Fd. This formulation allows us to efficiently compute the

measurements using 2D FFT operations followed by subsampling. By combining the Kronecker
product structure with subsampled FFT matrices, we effectively address the memory inefficiency
challenge while maintaining the theoretical guarantees provided by the RIP. This approach allows
us to apply compressive sensing techniques to large-scale neural network fine-tuning in a memory-
efficient and computationally effective manner, leveraging the transition from spatial to spectral
domains.
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4.3 TACKLING HIGH DIMENSIONALITY AND ERROR BOUNDS

While our FFT-based approach significantly reduces memory requirements, we still face challenges
due to the high dimensionality of the weight update matrix ∆W ∈ Rd×d. High dimensionality can
lead to large error bounds in the compressive sensing reconstruction process. To address this, we
introduce two key techniques: exploiting Hermitian symmetry and implementing a block-structured
k-sparse approximation.

Exploiting Hermitian Symmetry. An important property of the Discrete Fourier Transform (DFT)
of real-valued signals is Hermitian symmetry. For our real-valued weight update matrix ∆W, its 2D
Fourier transform F(∆W) exhibits the following symmetry:

F(∆W)[u, v] = F(∆W)∗[−u,−v] (11)

where ∗ denotes the complex conjugate. This symmetry allows us to further reduce the number of
parameters we need to learn and store. Specifically, we only need to learn and store roughly half
of the frequency components in B while the other half can be reconstructed using the Hermitian
symmetry property. This reduction in parameters not only improves memory efficiency but also
potentially reduces the error in the sparse approximation by effectively doubling the sparsity level for
the same number of learned parameters.

Block-Structured k-Sparse Approximation. To further address the challenges posed by high
dimensionality, we introduce a block-structured k-sparse approximation. Instead of treating ∆W as
a single large matrix, we partition it into smaller blocks:

∆W =


∆W11 ∆W12 · · · ∆W1n

∆W21 ∆W22 · · · ∆W2n

...
...

. . .
...

∆Wn1 ∆Wn2 · · · ∆Wnn

 (12)

where each ∆Wij ∈ Rb×b, and b = d/n is the block size. For each block, we apply our FFT-based
k-sparse approximation independently:

bij = vec(S1,ij(F
H
b ∆WijFb)S

T
2,ij) (13)

where S∗,ij is a block-specific subsampling operator. By working with smaller blocks, we reduce the
effective dimensionality of each compressive sensing problem. This leads to tighter error bounds (in
the next section)for the reconstruction of each block. By combining the exploitation of Hermitian
symmetry with the block-structured k-sparse approximation, we effectively address the challenges
posed by the high dimensionality of ∆W. This approach not only leads to tighter error bounds but
also offers greater flexibility and computational efficiency in the fine-tuning process.

4.4 THEORETICAL ANALYSIS

In this subsection, we provide a theoretical analysis of our block-structured k-sparse approximation
approach, focusing on the approximation bounds and expressive power. We leverage results from
compressed sensing theory, particularly the Restricted Isometry Property (RIP), to derive upper
bounds on the approximation error.

Theorem 1 (Effect of Block Size on Approximation Error) Let vec(∆W) ∈ RN2

be the vector-
ized form of the weight update matrix, and let (vec(∆W))k be its best k-sparse approximation
in the frequency domain. Consider partitioning vec(∆W) into B1 blocks of size N2/B1 and B2

blocks of size N2/B2, where B1 < B2. Let A(1)
i ∈ Cm1×(N2/B1) and A

(2)
i ∈ Cm2×(N2/B2)

be subsampled FFT matrices for the i-th block in each partitioning scheme, satisfying the RIP
of order k with constant ϵ, where m1 ≥ C · (k log(N2/(B1k)) + log(1/δ))/ϵ2 and m2 ≥
C · (k log(N2/(B2k)) + log(1/δ))/ϵ2 for some constants C > 0 and 0 < δ < 1. Then, with
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probability at least 1− δ, the average approximation errors for the two block sizes satisfy:

1

B2

B2∑
i=1

∥vec(∆W)
(2)
i −A

(2)†
i A

(2)
i vec(∆W)

(2)
i ∥2

≤ 1

B1

B1∑
i=1

∥vec(∆W)
(1)
i −A

(1)†
i A

(1)
i vec(∆W)

(1)
i ∥2

≤∥vec(∆W)− (vec(∆W))k∥2 + ϵ∥vec(∆W)∥2,

where vec(∆W)
(l)
i denotes the i-th block of vec(∆W) in the l-th partitioning scheme, and A

(l)†
i is

the pseudoinverse of A(l)
i .

This theorem demonstrates that, under the same conditions (i.e., the same sparsity level k and RIP
constant ϵ), using a larger number of smaller blocks results in a tighter approximation error bound.
The intuition behind this result is that using smaller blocks allows for better adaptation to local
structures within the vectorized weight update, leading to a more accurate approximation in the
frequency domain.

Theorem 2 (Expressive Power of K-Sparse Compressive Sensing) Let f̄(x) = W̄x be the target
linear model and f0(x) =

∏L
l=1 Wlx be the pre-trained linear model, where W̄,Wl ∈ Rd×d for

l ∈ [L]. Define the error matrix E = W̄ −
∏L

l=1 Wl. Let A ∈ Rm×d2

be a measurement matrix
satisfying the RIP of order k with constant δk ∈ (0, 1), where m < d2. For each layer l ∈ [L], let
bl ∈ Rm be a vector such that ∆Wl = vec−1(A†bl), where A† is the pseudoinverse of A and
vec−1 is the inverse vectorization operation. Assume that all weight matrices of the frozen model
(Wl)

L
l=1, and

∏L
l=1 Wl + vec−1(A†bl) are non-singular for any bl ∈ Rm. Then, for the adapted

model f(x) =
∏L

l=1(Wl +∆Wl)x, we have:∥∥∥∥∥vec
(

L∏
l=1

(Wl +∆Wl)− W̄

)∥∥∥∥∥
2

≤ ∥vec(E)−A†Avec(E)∥2+
δk√
1− δk

∥A†Avec(E)∥2, (14)

Moreover, if A has full row rank, there exist bl ∈ Rm for l ∈ [L] such that
∏L

l=1(Wl+∆Wl) = W̄,
implying f = f̄ .

This theorem demonstrates that, under the compressive sensing framework, the approximation error
bound is influenced by the structure of the measurement matrix A and the number of layers L
in the model. Specifically, increasing the number of layers L while keeping the total number of
parameters (determined by m) constant effectively results in using a larger number of smaller "blocks"
to approximate the weight update.

4.5 COMPUTATIONAL COMPLEXITY ANALYSIS

To fully appreciate the efficiency of our proposed method, it’s crucial to analyze its computational
complexity in comparison to traditional approaches like full fine-tuning and LoRA. We consider both
time and space complexity for forward and backward phases. Compared to LoRA, our method can

Table 1: Complexity Comparison of Fine-Tuning Methods
Method Forward Pass Backward Pass Space

Full Fine-tuning O(d2) O(d2) O(d2)
LoRA O(d2 + 2dr) O(d2 + 2dr) O(2dr)
PISA O(d2 + (d/b)2 · (k + b2 log b)) O(d2 + (d/b)2 · (k + b2 log b)) O((d/b)2 · k)

be more efficient when k log b < r, which is often the case for large models with a small number
of significant frequency components. Our method’s space complexity can be lower than LoRA
when k < rb/d. This condition is often met in practice, especially for large models where we can
maintain a high degree of sparsity. In summary, our method offers a favorable trade-off between
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Table 2: Results on GLUE for natural language understanding tasks. We report the overall (matched
and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for other tasks. Higher is better for all metrics. We also report the number of
trainable parameters (#Params) for each method.

Method #Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg

RoB-Base

Fully FT 1000‰ 87.62 94.84 63.58 91.87 92.80 78.80 90.20 91.23 86.37

IA 0.44‰ 84.83 94.15 60.14 87.92 90.39 76.17 87.75 90.23 83.91
SSL 0.22‰ 83.45 93.81 56.02 87.30 89.20 74.01 86.76 89.52 82.51
SSB 0.66‰ 85.80 94.61 60.92 88.65 91.20 76.53 86.76 90.23 84.34
BitFit 0.82‰ 85.29 94.61 59.58 88.10 91.20 79.78 88.73 90.32 84.70
HAdapter 2.50‰ 87.45 94.72 63.88 90.29 92.71 80.14 89.22 90.80 86.15
PAdapter 2.43‰ 87.11 94.15 62.74 89.95 92.71 80.14 87.99 90.13 85.62

LoRA 2.65‰ 87.20 94.38 65.61 89.25 92.07 81.59 87.99 91.01 86.14
TriLoRA 2.65‰ 86.81 94.61 64.47 89.61 91.82 76.53 88.24 90.31 85.30
AdaLoRA 2.65‰ 87.31 94.72 64.33 89.77 92.81 81.95 88.24 90.48 86.20
FLoRA 2.65‰ 87.31 94.38 64.09 89.97 92.77 82.67 87.75 90.77 86.21
DoRA 3.32‰ 86.74 94.50 66.19 90.28 91.95 79.78 88.48 91.01 86.12
PISA 0.22‰ 87.69 95.08 66.80 89.99 92.80 79.88 88.90 91.10 86.53

RoB-Large

Fully FT 1000‰ 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.24
BitFit 0.76‰ 89.37 94.84 66.96 88.41 92.24 78.80 87.75 91.35 86.21
HAdapter 2.35‰ 90.10 95.41 67.65 91.19 93.52 83.39 89.25 91.31 87.73
PAdapter 2.29‰ 89.89 94.72 69.06 91.05 93.87 84.48 89.71 91.38 88.02

LoRA 2.49‰ 90.03 93.92 69.15 90.61 93.37 85.56 90.19 90.75 87.95
TriLoRA 2.49‰ 90.22 95.77 69.51 91.18 94.15 87.00 91.07 91.38 88.89
AdaLoRA 2.49‰ 90.40 95.80 69.98 91.43 94.23 87.36 90.43 91.63 88.90
FLoRA 2.49‰ 90.60 96.00 70.20 90.40 94.46 88.81 90.93 90.56 88.80
DoRA 3.12‰ 90.21 94.38 69.33 90.84 93.26 86.94 90.19 91.34 88.31
PISA 0.16‰ 90.91 96.10 70.32 90.84 94.76 86.74 90.59 91.24 88.91

computational complexity and parameter efficiency, especially for large models. It provides a scalable
approach to fine-tuning that can be more efficient than both full fine-tuning and low-rank methods
like LoRA, particularly when the weight updates can be well-approximated by sparse frequency
domain representations.

5 EXPERIMENTS

Setting. We set block_size = 16 and m = 2000 for PISA and rank of LoRA to r = 8 as
default. To ensure a fair comparison, we initially fine-tuned models with PISA following the LoRA
configuration e.g., weight initialization, learning rate, etc., and maintained the same training steps for
both PISA and LoRA when fine-tuning on the same datasets. We conduct experiment on three tasks
inclueding GLUE benchmark, commonsense reasoning, and MMLU. The codebases for baselines
implementation and evaluation are sourced from their official GitHub repositories/library (i.e., Vision
Task, GLUE, and MMLU are from Gao et al. (2024), Si et al. (2024), and Zheng et al. (2024),
respectively).

5.1 GLUE BENCHMARK

In GLUE experiments, we employed one small scales of transformer, RoBERTa-base (Liu, 2019),
as the base model. We used the General Language Understanding Evaluation (GLUE) (Raffel
et al., 2020a) benchmark as our dataset, which comprises two single-sentence classification tasks,
three similarity and paraphrase tasks, and four natural language inference tasks. There are two
prominent series of extension-based methods within parameter-efficient tuning. The first series,
the Adapter derivatives, comprises methods such as those introduced by Houlsby et al. (2019),
Houlsby et al. (2019), and introduced by Pfeiffer et al. (2020); Zaken et al. (2021), which incorporate
small-scale neural modules, or adapters, into existing architectures. The second series, known as
LoRA derivatives, includes developments such as LoRA (Hu et al., 2021), AdaLoRA (Zhang et al.,
2023b), TriLoRA (Feng et al., 2024), FLoRA (Hao et al., 2024), DoRA (Liu et al., 2024a), and
DyLoRA (Valipour et al., 2023), AdaLoRA (Zhang et al., 2023b), These methods primarily rely on
low-rank matrix decomposition techniques.
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Table 3: MMLU scores for PISA and other PEFT methods, showcasing PISA’s ability to achieve
high performance while maintaining parameter efficiency across base models. Best performance is
indicated by the bold face numbers.

FT-Method # Params STEM Social Human Other Average

LLaMA3-8B
FT 1000‰ 52.93 73.40 59.06 69.34 63.26
LoRA 7.00‰ 54.45 74.82 58.96 70.23 64.10
PISA 0.30‰ 54.43 74.90 60.56 70.84 64.77

Mistral-7B
FT 1000‰ 50.00 68.07 53.12 65.01 58.09
LoRA 8.30‰ 50.60 68.87 53.62 65.21 58.99
PISA 0.34‰ 50.50 68.97 53.92 65.28 59.12

LLaMA2-13B
FT 1000‰ 46.23 64.47 49.34 61.23 55.31
LoRA 6.70‰ 46.56 64.77 49.67 61.76 55.69
PISA 0.28‰ 46.44 64.85 49.89 61.80 55.75

Table 4: Comparison of image classification accuracy (%) on various datasets using ViT-Base and
ViT-Large models with Linear Probing (LP), LoRA, and PISA fine-tuning methods. Results show
performance across seven diverse image datasets, with n=3k/6k samples and block_size =
16 for PISA. Best performance for each dataset and model size is highlighted in bold

Method OxfordPets StanfordCars CIFAR10 EuroSAT FGVC RESISC45 CIFAR100 Avg.

ViT-Base
LP 90.28 25.76 96.41 88.72 17.44 74.22 84.28 68.16

LoRA 93.19 45.38 98.78 98.44 25.16 92.70 92.02 77.95
PISA 95.33 53.28 98.20 98.64 31.86 94.07 98.44 81.40

ViT-Large
LP 91.11 37.9 97.78 92.64 24.62 82.02 84.28 72.91

LoRA 94.82 73.25 99.13 98.65 39.92 93.86 93.31 84.71
PISA 97.45 69.67 99.35 98.92 43.63 94.24 93.61 85.27

Table 2 presents the results from experiments on the GLUE benchmark. Note that PISA achieves
competitive performance while using significantly fewer trainable parameters compared to full
fine-tuning and otherLoRA variants (e.g., TriLoRA, AdaLoRA) support the argument that moving
beyond low-rank structures can be beneficial for model adaptation. This aligns with the our goal of
developing more parameter-efficient methods for adapting large language models. The compressive
sensing-based approaches like PISA can offer a new direction for parameter-efficient fine-tuning of
large language models, providing flexibility and efficiency advantages over existing methods.

5.2 INSTRUCTION TUNING

We evaluate the downstream task performance of PISA. We utlize three language models LLaMA3-
8B (inc, 2024), Mistral-7B (Jiang et al., 2023), and LLaMA2-13B (Touvron et al., 2023a). we employ
the instruction-following finetuning task with Alpaca GPT-4(en) dataset, which consists instances
generated by GPT-4 (OpenAI, 2023) based on inputs from Alpaca (Taori et al., 2023). We adopt the
The Massive Multitask Language Understanding benchmark (MMLU) (Hendrycks et al., 2020)
to test our model. It consists of multiple-choice questions sourced from various fields, including
humanities, social sciences, and STEM.

Table 3 shows that PISA’s performance is consistently strong across different model sizes and
architectures (LLaMA3-8B, Mistral-7B, LLaMA2-13B), demonstrating its versatility.Despite using
significantly fewer parameters, PISA achieves comparable or better performance than both full
fine-tuning and LoRA across different models and categories.

5.3 VISION TASKS.

We conduct the evaluation of our method on the image classification task. We employ the Base
and Large versions of the popular CV foundation model, Vision Transformer (ViT) (Dosovitskiy,
2020). The ViTs are pretrained on the ImageNet-21K dataset (Ridnik et al., 2021). The datasets for
fine-tuning include OxfordPets

(
372
)
, CIFAR10 (10), DTD (47), EuroSAT (10) and RESISC45 (45)

with small label spaces, as well as StanfordCars (196), FGVC (100) and CIFAR100 (100) with large
label spaces.
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(a) Different m in PISA results, sst2-base dataset,
block_size=16

m #Param Accuracy

500 0.05‰ 92.16
1000 0.11‰ 93.43
2000 0.22‰ 94.46
4000 0.44‰ 94.58

(b) different block_size in PISA results, sst2-
base dataset, m=2000

block_size #Param Accuracy

4 0.22‰ 92.43
8 0.22‰ 93.66
16 0.22‰ 94.46
32 0.22‰ 94.80

Table 4 presents results for image classification tasks using Vision Transformer (ViT) models. PISA
consistently outperforms Linear Probing (LP) across all datasets and both model sizes. It also shows
competitive or superior performance compared to LoRA in most cases. PISA’s strong performance
is maintained across both ViT-Base and ViT-Large models, showing its effectiveness for different
model sizes.

5.4 ABLATION ON HYPERPARAMETERS

To understand the influence of key hyperparameters on our model’s performance, we conducted
ablation studies on two critical factors: the number of measurements (m) and the block size. Tables 5b
and 5a present the results of these studies, showing how different values affect the model’s accuracy
on the sst2-base dataset. Increasing m generally improves accuracy, with diminishing returns beyond
m = 2000. The most significant improvement occurs between m=500 and m=2000. Larger block
sizes consistently yield better accuracy. The improvement is more pronounced for smaller block sizes,
with diminishing returns as block size increases.

6 CONCLUSION

In this paper, we have introduced a novel approach to Parameter-Efficient Fine-Tuning (PEFT)
that leverages the principles of compressive sensing. By viewing the weight update matrix as a
compressed representation in the measurement domain, we depart from the conventional low-rank
structure assumptions prevalent in current PEFT methods. Our theoretical analysis, supported by
empirical evidence, demonstrates that this approach can effectively adapt pre-trained models to new
tasks while significantly reducing the number of trainable parameters. The key innovation of our
method lies in its ability to capture complex adaptation patterns without the constraints of low-rank
structures. This flexibility, combined with the efficiency of working directly in the compressed
domain, addresses several limitations of existing techniques such as LoRA and its variants. Notably,
our approach maintains a constant computational overhead regardless of adaptation complexity, a
significant advantage over methods where computational costs increase with accumulated adaptations.
Our theoretical framework provides clear bounds on the approximation error, offering insights into
the trade-offs between parameter efficiency and adaptation quality. This rigorous foundation not only
enhances our understanding of PEFT but also guides practical implementations. The scalability of our
method becomes particularly apparent as model sizes grow, with compressive measurements scaling
sub-linearly with model size, making it a sustainable approach for adapting very large models. The
empirical validation of our method across various downstream NLP tasks underscores its practical
viability. By achieving competitive performance with a reduced number of trainable parameters, we
demonstrate that theoretical elegance can translate into tangible benefits in real-world scenarios.
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A PROOF

A.1 PROOF OF THEOREM 1

Proof 1 We will prove this theorem in several steps:

Step 1: RIP Property for Individual Blocks For each block i in partitioning scheme l (where
l ∈ {1, 2}), the subsampled FFT matrix A(l)

i satisfies the RIP of order k with constant ϵ. This means
that for any k-sparse vector x of appropriate dimension:

(1− ϵ)∥x∥22 ≤ ∥A(l)
i x∥22 ≤ (1 + ϵ)∥x∥22 (15)

Step 2: Approximation Error for a Single Block Let x(l)
i be the i-th block of vec(∆W) in the l-th

partitioning scheme, and let (x(l)
i )k be its best k-sparse approximation. From the RIP property and

known results in compressed sensing (Candes et al., 2006), we have:

∥x(l)
i −A

(l)†
i A

(l)
i x

(l)
i ∥2 ≤ ∥x(l)

i − (x
(l)
i )k∥2 + ϵ∥x(l)

i ∥2 (16)

Step 3: Average Error Bound for Partitioning Scheme Taking the average over all blocks in
partitioning scheme l:

1

Bl

Bl∑
i=1

∥x(l)
i −A

(l)†
i A

(l)
i x

(l)
i ∥2 ≤ 1

Bl

Bl∑
i=1

∥x(l)
i − (x

(l)
i )k∥2 + ϵ

1

Bl

Bl∑
i=1

∥x(l)
i ∥2 (17)

Step 4: Relating Block-wise and Global Approximations Let (vec(∆W))k be the best k-sparse
approximation of the entire vector. We can show that:

1

Bl

Bl∑
i=1

∥x(l)
i − (x

(l)
i )k∥2 ≤ ∥vec(∆W)− (vec(∆W))k∥2 (18)

This inequality holds because the left-hand side represents a potentially sub-optimal k-sparse approx-
imation (block-wise) compared to the global optimal on the right-hand side.

Step 5: Applying Cauchy-Schwarz Inequality Using the Cauchy-Schwarz inequality:

1

Bl

Bl∑
i=1

∥x(l)
i ∥2 ≤

√√√√ 1

Bl

Bl∑
i=1

∥x(l)
i ∥22 =

1√
Bl

∥vec(∆W)∥2 (19)

Step 6: Combining Results Substituting the results from Steps 4 and 5 into the inequality from Step 3:

1

Bl

Bl∑
i=1

∥x(l)
i −A

(l)†
i A

(l)
i x

(l)
i ∥2 ≤ ∥vec(∆W)− (vec(∆W))k∥2 +

ϵ√
Bl

∥vec(∆W)∥2 (20)

Step 7: Comparing Block Sizes Since B2 > B1, we have:
ϵ√
B2

<
ϵ√
B1

(21)

Therefore:
1

B2

B2∑
i=1

∥x(2)
i −A

(2)†
i A

(2)
i x

(2)
i ∥2

≤ 1

B1

B1∑
i=1

∥x(1)
i −A

(1)†
i A

(1)
i x

(1)
i ∥2

≤∥vec(∆W)− (vec(∆W))k∥2 + ϵ∥vec(∆W)∥2

(22)

This completes the proof of the theorem.
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A.2 PROOF OF THEOREM 2

Proof 2 Let E = W̄ −
∏L

l=1 Wl be the error matrix. First, we express the adapted model in terms
of the error matrix:

L∏
l=1

(Wl +∆Wl) =

L∏
l=1

Wl +

L∑
l=1

(
L∏

i=l+1

Wi

)
∆Wl

l−1∏
j=1

(Wj +∆Wj)

+ higher order terms

(23)

= W̄ −E+

L∑
l=1

∆Wl + higher order terms, (24)

where we’ve used the fact that
∏L

l=1 Wl = W̄ −E.

Now, let’s consider the vectorized form:

vec

(
L∏

l=1

(Wl +∆Wl)− W̄

)
= −vec(E) +

L∑
l=1

vec(∆Wl) + higher order terms (25)

Recall that ∆Wl = vec−1(A†bl). Substituting this in:

vec

(
L∏

l=1

(Wl +∆Wl)− W̄

)
= −vec(E) +

L∑
l=1

A†bl + higher order terms (26)

We can choose bl such that
∑L

l=1 bl = Avec(E). This gives:

vec

(
L∏

l=1

(Wl +∆Wl)− W̄

)
= −vec(E) +A†Avec(E) + higher order terms (27)

Taking the ℓ2 norm of both sides and using the triangle inequality:∥∥∥∥∥vec
(

L∏
l=1

(Wl +∆Wl)− W̄

)∥∥∥∥∥
2

≤ ∥vec(E)−A†Avec(E)∥2 + ∥higher order terms∥2 (28)

Now, let’s focus on bounding ∥vec(E)−A†Avec(E)∥2. We can write:

∥vec(E)−A†Avec(E)∥22 = ∥vec(E)∥22 − ∥Avec(E)∥22 (29)

This is because (I−A†A) and A†A are orthogonal projections. Using the RIP property of A, we
have:

(1− δk)∥vec(E)∥22 ≤ ∥Avec(E)∥22 ≤ (1 + δk)∥vec(E)∥22 (30)

Substituting this into the previous equation:

∥vec(E)−A†Avec(E)∥22 ≤ δk∥vec(E)∥22 (31)

Taking the square root:

∥vec(E)−A†Avec(E)∥2 ≤
√
δk∥vec(E)∥2 (32)

Now, ∥A†Avec(E)∥2 ≤ 1√
1−δk

∥vec(E)∥2 by the RIP property. Combining these results and
neglecting higher order terms for the upper bound:∥∥∥∥∥vec

(
L∏

l=1

(Wl +∆Wl)− W̄

)∥∥∥∥∥
2

≤
√
δk∥vec(E)∥2 +

δk√
1− δk

∥vec(E)∥2 (33)

For the exact representation case, if A has full row rank, then A†A is the identity when restricted
to the row space of A. Thus, we can choose bl such that

∑L
l=1 A

†bl = vec(E), allowing for exact
representation. This completes the proof.
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