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Figure 1: Overview of CARE. In automated medical imaging analysis, biomarkers are often
computed from network predictions. To quantify the uncertainty of ratio-based biomarkers, we
introduce CARE, a confidence-aware estimation method that provides reliable confidence intervals.

ABSTRACT

Ratio-based biomarkers – such as the proportion of necrotic tissue within a tumor –
are widely used in clinical practice to support diagnosis, prognosis, and treatment
planning. These biomarkers are typically estimated from soft segmentation outputs
by computing region-wise ratios. Despite the high-stakes nature of clinical deci-
sion making, existing methods provide only point estimates, offering no measure
of uncertainty. In this work, we propose a unified confidence-aware framework
for estimating ratio-based biomarkers. Our uncertainty analysis stems from two
observations: i) the probability ratio estimator inherently admits a statistical confi-
dence interval regarding local randomness (bias and variance), ii) the segmentation
network is not perfectly calibrated. We conduct a systematic analysis of error propa-
gation in the segmentation-to-biomarker pipeline and identify model miscalibration
as the dominant source of uncertainty. We leverage tunable parameters to control
the confidence level of the derived bounds, allowing adaptation towards clinical
practice. Extensive experiments show that our method produces statistically sound
confidence intervals, with tunable confidence levels, enabling more trustworthy
application of predictive biomarkers in clinical workflows.

1 INTRODUCTION

The success of deep learning in medical image analysis, particularly since the introduction of UNet
architectures (Ronneberger et al., 2015; Isensee et al., 2021), has enabled automated segmentation of
anatomical and pathological structures across a range of clinical imaging tasks. However, segmenta-
tion is rarely the end goal in clinical workflows. Instead, it often serves as an intermediate step toward
computing biomarkers – quantitative metrics such as volumes (Popordanoska et al., 2021; Rousseau
et al., 2025; Kazerouni et al., 2023; Abdusalomov et al., 2023) and fraction scores (Ronneberger
et al., 2015; Isensee et al., 2021; Bahna et al., 2022; Kim et al., 2008) – that are used to assess disease
progression, guide treatment decisions, or monitor therapeutic response. As shown in Fig. 1, the
ratio-based biomarker is usually derived from two volume measurements. Since segmentation models
provide per-pixel prediction, they allow automated ratio estimation. Nevertheless, relying solely on a
single point estimate offers no quantification of uncertainty, which limits the clinical adoption and
undermines its value as a decision-making reference. To address this, we study confidence-aware
ratio estimation for medical biomarkers.
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Figure 2: Medical background of ratio estimation and its role in clinical support. (a): Ratio-based
biomarkers (Baid et al., 2021; Myronenko et al., 2023) exist in many organs and modalities. (b):
An illustrative example where a high-risk threshold is defined as 0.25; CARE calls for human check
when the confidence interval crosses the threshold.

As shown in Fig. 2a, ratio-based biomarkers are widely utilized across various organs and imaging
modalities. These biomarkers provide quantitative measures for clinical decision-making. For
example, the necrosis-to-tumor ratio (NTR) (Henker et al., 2019; 2017) quantifies the proportion of
necrotic (non-viable) tissue within a tumor, while the tumor-to-kidney ratio (TKR) Herts et al. (2002)
indicates the extent of tumor infiltration within the kidney. Accurate estimation of these biomarkers
is crucial for supporting personalized treatments and monitoring their efficacy. A straightforward
method for computing these ratios involves using segmentation models to identify the subregion and
the whole foreground region, and then calculating the ratio based on averaged softmax confidence
scores over these regions. However, the interpretation of this point estimate can change once the
confidence interval is considered. As illustrated in Fig. 2b, consider a clinical threshold of 0.25 for
initiating aggressive treatment. Based on point estimates alone, Patient A would receive aggressive
treatment (high ratio) while Patient B would receive mild treatment (low ratio). However, if the
associated confidence interval spans the decision threshold (case 2), the estimation is flagged for
mandatory expert review to mitigate potential misdiagnosis risk. Such double-check procedures
are essential in clinical practice, as they provide an additional safeguard for patients and enhance
the robustness of downstream decision-making. Despite their clinical importance, most efforts still
focus on improving upstream segmentation accuracy (Ronneberger et al., 2015; Isensee et al., 2021;
Hatamizadeh et al., 2021), while the uncertainty and reliability of downstream ratio-based biomarkers
remain largely unexplored.

We propose CARE, the first confidence-aware estimation framework specifically for ratio-based
biomarkers, offering several key advantages: i) guaranteed coverage, i.e., the actual coverage proba-
bility of containing the true ratio is greater than the stated nominal confidence level; ii) instance-wise
adaptiveness, i.e., providing dynamic intervals that capture varying uncertainty degrees; iii) tunable
confidence level with user-controlled tightness; iv) applicable as a plug-in module to any pretrained
NN requiring neither architectural modifications nor training from scratch; v) computationally
efficient, avoiding multiple sampling or repeated forward passes.

Furthermore, we identify sources of error and quantify their individual impacts on the overall
confidence intervals. Specifically, we establish a ratio estimator bound using Markov’s inequality
(Resnick, 2003) and derive a squared error estimator from volume predictions. We also address
the issue of overconfident predictions from deep learning models, which represents another critical
limitation undermining ratio estimation reliability. To quantify the error caused by miscalibration,
we provide theoretical insights into the relationship between model calibration and ratio estimation
and propose a miscalibration-based bound, building on recent advances in calibration error (CE)
estimation (Guo et al., 2017; Popordanoska et al., 2022).

Beyond theoretical contributions, our framework is designed for practical clinical deployment.
CARE operates with linear time complexity O(n), making it lightweight and reliable. Compared with
Bayesian methods, CARE is well-suited for clinical settings where real-time performance is essential
and large-scale computing resources are unavailable. Experiments further confirm that the proposed
confidence bounds are conservative, adaptive and computationally efficient.
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In summary, our main contributions are:

1 We propose CARE, a principled framework for confidence-aware ratio estimation for medical
biomarkers in an automated estimation workflow (Sec. 3).

2 We analyze the sources of error across the entire segmentation-to-biomarker pipeline (Sec. 3) and
empirically demonstrate that miscalibration is the dominant factor (Sec. 4).

3 Experiments confirm that CARE effectively tracks the prediction uncertainty, represented as the
coverage of erroneous predictions and the distinguishability of segmentation difficulties (Sec. 4).

2 RELATED WORK

Ratio-based biomarkers are quantitative metrics that express the relative size, volume, or intensity
of a target anatomical structure as a proportion of a reference region (Fig. 1). They are widely
used across clinical domains to capture compositional, structural and functional changes, enabling
standardized assessment of disease progression and treatment response. Examples include: ejection
fraction – representing the fraction of blood ejected from the ventricle during each cardiac cycle;
coronary artery stenosis – quantifying the percent narrowing of a coronary vessel, and fat fraction –
measuring the proportion of fat within an organ such as liver or kidney. Ratio-based biomarkers are
particularly valuable for detailed tumor characterization (Fig. 2). Key metrics include necrosis-to-
tumor ratio (NTR) and core-to-tumor ratio (CTR), which quantify the internal structure of the tumor,
as well as tumor invasion rate, which reflects the extent of tumor infiltration into surrounding tissues.
In summary, the ratio-based measures offer standardized, comparable metrics that can be applied
across imaging modalities, organs, and disease contexts.

Typically, clinicians compute these ratios using volumetric information from imaging data (e.g., MRI)
(Henker et al., 2019; 2017). With the advancement of computational pathology and the growing
availability of annotated medical data, recent studies (Ye et al., 2023) have developed AI-based
workflows for automated ratio assessment. These methods offer scalable and consistent evaluations,
effectively overcoming the limitations of subjective human judgment in manual assessments. Despite
promising developments, existing methods typically provide only point estimates (Ho et al., 2020),
neglecting the associated uncertainty. Although intuitive, results computed from the outputs of
segmentation networks inherit the known overconfidence tendency of neural networks (Guo et al.,
2017). As a result, naïve ratio estimations from miscalibrated outputs are often biased from true values.
Current research predominantly focuses on improving network calibration and segmentation accuracy
(Rousseau et al., 2025; Wang et al., 2023; Mehrtash et al., 2020; Wang et al., 2022; Hatamizadeh
et al., 2021), while overlooking the downstream task of biomarker estimation. Our work addresses
this gap by proposing a confidence-aware framework for ratio estimation from segmentation models.

Uncertainty quantification (UQ) provides many statistical methods to estimate prediction uncer-
tainty. Conformal prediction (CP) (Vovk et al., 1999; Papadopoulos et al., 2002; Vovk et al., 2005;
Angelopoulos & Bates, 2021; Karimi & Samavi, 2023; Angelopoulos & Bates, 2021) constructs
prediction intervals that guarantee valid coverage under finite samples, without any distributional
assumptions. Its key strength is the distribution-free nature and finite-sample validity, providing
strong theoretical guarantees regardless of the base predictive model. Resampling methods are
non-parametric techniques for estimating the sampling distribution of a statistic, applicable when
the underlying distribution is unknown or difficult to derive. Specifically, Bootstrapping (Mooney
et al., 1993; Freedman, 1981) repeatedly samples N data points with replacement from the original
data, whereas subsampling (Politis & Romano, 1994) takes a subset of the original data without
replacement, repeating the process multiple times to construct an empirical distribution of the statistic.
Bayesian methods achieve robust segmentation by averaging multiple predictions, using techniques
like deep ensemble (Lakshminarayanan et al., 2017) and Monte Carlo dropout (Srivastava et al., 2014).
These approaches enable confidence interval estimation by computing standard deviation across
several feedforward inferences. However, they require proper prior specification and cannot provide
tunable quantiles due to the limited number of inference samples (usually ≤ 10). Moreover, these
universal methods are either computationally expensive or fail to provide informative conclusions.

Calibration error (CE) estimation has attracted extensive research attention (Kull & Flach, 2015;
Vaicenavicius et al., 2019; Kumar et al., 2019; Zhang et al., 2020; Popordanoska et al., 2022; Gruber
& Buettner, 2022). In medical segmentation, classwise and canonical calibration error are used to
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evaluate per-structure and overall calibration levels. Derived from individual channel masks, the
classwise CE in multi-class segmentation simplifies to binary CE for each channel. In addition,
Popordanoska et al. (2021) proves that the absolute value of volume bias (V-Bias) is upper-bounded
by CE. Many calibration methods like temperature scaling (Guo et al., 2017) and isotonic regression
(Zadrozny & Elkan, 2002) have been proposed to improve the calibration of classification scores.
However, no previous work analyzes how miscalibration affects downstream ratio-based estimates.

3 METHODS

We begin with relevant definitions in Sec. 3.1 to establish the theoretical background. In Sec. 3.2, we
present our main contribution, the uncertainty decomposition and corresponding confidence intervals.

3.1 PRELIMINARIES

The ratio-based biomarker is clinically defined as the ratio between two volumes VA and VB (Henker
et al., 2019; 2017). We consider the ratio estimation within a standard segmentation framework,
where VA and VB are calculated from predicted probabilities.
Definition 3.1 (Ratio from Segmentation Networks). Given per-pixel inputs {zi}ni=1, labels
{yA,i, yB,i}ni=1 and segmentation model g: zi → gA(zi), gB(zi) ∈ [0, 1], the labeled ratio rgt
and predicted ratio r̂ within n pixels are calculated by:

rgt =
ȳA
ȳB

=

∑n
i=1 yA,i∑n
i=1 yB,i

, and r̂ =
ḡA
ḡB

=

∑n
i=1 gA(zi)∑n
i=1 gB(zi)

. (1)

Proposition 3.2 (Conformal Prediction for Regression (Shafer & Vovk, 2008)). Given groundtruth
rgt, prediction r̂ and the absolute error residual AEr := |rgt − r̂|, let qr,δ denote the 1− δ quantile
of the instance-wise AEr on a validation (calibration) set. Then, with probability at least 1− δ

rgt ∈ [r̂ − qr,δ, r̂ + qr,δ] , (2)

From Def. 3.1, the predicted ratio r̂ is determined by the probability volumes predicted by the network.
Since the network is not perfectly calibrated, quantifying the uncertainty in its predictions is closely
tied to assessing the uncertainty of the derived biomarker. To this end, we introduce two metrics:
volume bias and the calibration error.
Definition 3.3 (Volume Bias (Popordanoska et al., 2021)). Given a segmentation model g : Z → [0, 1]
that predicts the probability of y ∈ {0, 1}, the volume bias is defined as:

V-Bias (g) := E(z,y)∼P [g (z)− y] . (3)

Definition 3.4 (Calibration Error (Kumar et al., 2019)). Given a model g : Z → [0, 1] that predicts
the probability of y ∈ {0, 1}, the calibration error is defined as:

CE(g) := E(z,y)∼P [|g(z)− E [y = 1 | g (z)]|] , (4)

Proposition 3.5 (The Relationship of V-Bias and CE (Popordanoska et al., 2021)). Given segmenta-
tion model g : Z → [0, 1], the absolute value of volume bias is upper bound by the calibration error,
i.e., |V-Bias(g)| ≤ CE(g).

Leveraging the upper bound relationship and statistical properties, we decompose the uncertainty of
the ratio estimation pipeline and give respective confidence intervals in Sec. 3.2.

3.2 CARE: CONFIDENCE-AWARE RATIO ESTIMATION

In this section, we illustrate our insight of uncertainty analysis based on two key observations, as
shown in Fig. 3. The first observation is that the ratio estimator r̂ = ȳ

x̄ is subject to instance-wise
randomness, which we capture using statistical tools such as Markov’s inequality to derive an
estimation-based interval. The second observation is that the network is not perfectly calibrated,
introducing a global, model-level error affecting both the numerator and denominator; this gives rise
to the calibration-based interval. Combining these two sources yields the overall uncertainty bound.
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Figure 3: Our confidence interval considering estimation and miscalibration. (a) shows Markov
bounds from the estimator. (b) illustrates the prediction offset ϵl,u due to miscalibration. (c) is the
overall confidence interval r ∈ [Bl, Bu].

Estimation-based interval. Van Kempen & Van Vliet (2000) provides an approximated theoretical
result for ratio statistics. However, their derivation critically relies on the assumption that the addends
in x̄ and ȳ are independent. Therefore, the result in Van Kempen & Van Vliet (2000) is not directly
applicable in imaging analysis for violating spatial patterns. As a remedy, we construct Markov
bounds as an estimation-based confidence interval for r̂ using Markov inequality (Resnick, 2003).
Although this approach leads to more conservative bounds, it avoids strong assumptions such as pixel
independence, making it more applicable to image data.
Proposition 3.6 (Estimation-based Confidence Interval). Given an estimator r̂ = ȳ

x̄ of the fraction
r = E[y]

E[x] with random variables x and y, it holds with at least 1− α probability that

r ∈ [r̂ − βr,α, r̂ + βr,α] , (5)

where βr,α :=
√
SEr̂√
α

is the half-width of the bound, and SEr̂ := E
[
(r̂ − r)

2
]

is the expected squared
error.

Then we conduct a Taylor expansion of SEr̂ to receive an approximation we can estimate in practice.
Proposition 3.7. Assume all central moments of the independently and identically distributed random
variables (x1, y1) , . . . , (xn, yn) ∼ Pxy in the estimator r̂ = ȳ

x̄ exist, then we have

SEr̂ =
1

n

(
Var (y)

µx
+Var (x)

µ2
y

µ4
x

− 2Cov (x, y)
µy

µ3
x

)
+O

(
1

n2

)
. (6)

The proof is given in the appendix. Then the estimator is:

ŜEr̂ :=
1

n

(
σ̂2
y

x̄
+

σ̂2
xȳ

2

x̄4
− 2

σ̂xy ȳ

x̄3

)
, (7)

with the sample variances σ̂2
x = 1

n−1

∑
i (xi − x̄)

2, σ̂2
y = 1

n−1

∑
i (yi − ȳ)

2, and sample covariance

σ̂xy = 1
n−1

∑
i (xi − x̄) (yi − ȳ). Under i.i.d. assumption, the estimator ŜEr̂ is consistent, i.e.,

ŜEr̂ → SEr̂ in probability for n → ∞. The proof is presented in the appendix B.1.

Calibration-based interval. The estimation-based bounds involve local uncertainty that stems from
statistical properties. Then we analyze the second source of uncertainty: volume bias caused by
miscalibration. Inspired by Prop. 3.2, we propose a fine-grained calibration-based confidence interval
by considering the uncertainty of target (A) and RoI (B) regions separately. Unlike vanilla conformal
prediction, where analysis starts from the final r̂, we adopt quantiles of VA and VB and report the
corresponding interval as CARE (V-Bias). As described in Proposition 3.5, V-Bias of target (A)
and RoI (B) regions is upper bounded by their calibration errors, i.e., |V-Bias (gA)| ≤ CE (gA),
|V-Bias (gB)| ≤ CE (gB). This motivates the more conservative interval named as CARE (ECE).
Proposition 3.8 (Calibration-based Confidence Interval). Consider a segmentation model g(z) =
(gA(z), gB(z)) with the random variable z representing pixel inputs of instance I , and targets yA

5
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and yB . On a validation (calibration) set Dcal, define qA,δ/2 and qB,δ/2 as the 1− δ/2 quantile of
the instance-wise volume bias or calibration errors of gA and gB . Then, it holds with at least 1− δ
probability that

E [yA | I]
E [yB | I]

∈
[
E [gA(z) | I]
E [gB(z) | I]

− ϵl,δ,
E [gA(z) | I]
E [gB(z) | I]

+ ϵu,δ

]
, (8)

where ϵl,δ := E[gA(z)]
E[gB(z)] −

E[gA(z)]−qA,δ/2

E[gB(z)]+qB,δ/2
, ϵu,δ :=

E[gA(z)]+qA,δ/2

E[gB(z)]−qB,δ/2
− E[gA(z)]

E[gB(z)] are the widths of the
lower and upper calibration bounds, respectively.

The proof is presented in the appendix B.2. In experiments, CARE (V-Bias) takes the quantile of
|V-Bias| as qN,T while CARE (ECE) considers ECE (Guo et al., 2017) quantiles. To combine both
intervals, we make the following statement, which is analogous to multiple testing. This way, we can
consider both uncertainties in practice.

Proposition 3.9 (Overall Confidence Interval). Assume we have a ratio estimator r̂ =
∑

i gA(zi,I)∑
i gB(zi,I)

for pixel measurements {zi,I}ni=1 of an instance I based on neural network outputs g(zi,I) =
(gA(zi,I), gB(zi,I)). Let yA and yB be the instance-wise target random variables. Then, it holds
with at least 1− α− δ probability that

E [yA | I]
E [yB | I]

∈
[∑

i gA (zi,I)∑
i gB (zi,I)

− ϵl,δ − βr,α,

∑
i gA (zi,I)∑
i gB (zi,I)

+ ϵu,δ + βr,α

]
, (9)

where βr,α is defined as in Prop. 3.6 and ϵl,δ, ϵu,δ as in Prop. 3.8.

The interval width w = Bu − Bl measures the uncertainty level, as a result, a wide interval over
thresholds alarms for manual examination. In the experiments, we alternate through various α and
δ for a fixed α+ δ with grid search to observe the impact on the interval width. This way, we can
choose the smallest interval under a desired coverage rate.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on two brain tumor segmentation datasets: MSD-Task01 (Antonelli et al.,
2022) and BraTS21 (Baid et al., 2021), which include 484 and 1251 MRI volumes, respectively, with
four modalities (T1, T2, T1ce, FLAIR) and four annotations (edema, necrosis, enhancing tumor,
background). Their necrosis-to-tumor ratio (NTR) is defined as the ratio of necrosis VN to the whole
tumor area VT (edema, necrosis, enhancing). In addition, we include KiTS23 (Myronenko et al.,
2023), a CT dataset of 489 kidney volumes. Its tumor-to-kidney ratio (TKR) is defined as Vtumor

Vwhole kidney
.

A nested five-fold cross-validation is used for all datasets. In the outer loop, four folds are used for
training and validation, and the remaining one fold for testing. Within the inner loop, 10% of the
training data is held out as a validation set Dcal to estimate the quantile of V-Bias and ECE. Predicted
ratio r̂ and labeled ratio rgt are calculated from Def. 3.1.

Segmentation models. We conduct experiments using nnUNet (Isensee et al., 2021), nnFormer
(Zhou et al., 2021) and UNETR++ (Zhou et al., 2021). All models are trained using four-modality
MRI scans, label-based supervision and softmax activation under a single A100 GPU. We investigate
different loss functions as ensemble baselines: cross-entropy (XE) (Bishop & Nasrabadi, 2006),
soft Dice (SD) (Milletari et al., 2016), TopK (Deng et al., 2009), and their combinations (XE-SD,
Top10-SD), while use XE-SD for the main results.

UQ baselines. To control the confidence level to be C = 0.68, we adopt a quantile for each baseline
method. For conformal prediction (Vovk et al., 1999; Papadopoulos et al., 2002) and CARE, we
obtain quantiles from the validation set. Specifically, for conformal prediction we take the 0.68
quantile (0.68Q) of AEr from the validation set as the half-width (Prop. 3.2), while for CARE we
adopt dynamic ECE quantiles or V-Bias quantiles by conducting a grid search under the constraint
of 1 − α − β = 0.68 (Prop. 3.9). To implement resampling, we repeatedly sample pixels from
an instance and calculate its ratio estimate for 100 times, then adopt the [0.16Q, 0.84Q] from 100
repetitions as the 0.68 confidence level. For a volume of N pixels, we take 0.1N random pixels each

6
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Table 1: Comparison of the coverage guarantee on MSD-Task01 dataset (C = 0.68). We report
the overall coverage rate (%) on test-set. CARE always satisfies the desired confidence level, while
other methods fall below in most cases.

Coverage (%) nnUNet2d nnUNet3d nnFormer UNETR++
Subsampling 6.19±0.77 9.28±0.92 5.74±0.72 8.22±0.91

Bootstrap 5.34±0.61 8.18±0.62 5.53±0.75 8.12±0.71

Conformal prediction 71.34±2.00 67.01±3.57 67.39±1.66 65.75±2.16

CARE (V-Bias) 93.61±1.14 86.60±1.49 81.92±1.31 76.43 ±2.21

CARE (ECE) 94.22±0.99 93.61±0.71 87.94±0.97 89.58±1.02

time without replacement for subsampling (Politis & Romano, 1994), and sample N pixels with
replacement each time for bootstrapping (Mooney et al., 1993). For Bayesian methods, conducting
numerous forward passes to estimate a “tunable” quantile is computationally impractical; thus, we
report the results of three standard deviations (3σ).

Metrics. We evaluate the performance of various methods across four criteria: i) Coverage guarantee:
ability to achieve the desired confidence level, quantified by coverage rate, ii) Adaptiveness: capacity
to capture sample variability (e.g., prediction error) and segmentation difficulty (e.g., tumor size);
iii) Tunability: flexibility to choose a user-specified confidence level; iv) Practical deployment:
whether the method operates as a plug-in module (non-intrusive to the model architecture) and
maintains computational efficiency (without requiring multiple sampling or repeated inference steps).

4.2 RESULTS

We demonstrate the claimed properties in Sec. 1 of our method: coverage guarantee, adaptiveness, tun-
ability and practical deployment characteristics (plug-in compatibility and computational efficiency).
Moreover, we analyze the uncertainty source to get an insight into the dominant component.

Coverage guarantee. As described in Sec.1, a conservative confidence interval achieves coverage
probability higher than the nominal confidence level, i.e., achieving over 68% coverage when aiming
for 68% confidence level. We report coverage rate (%) of different UQ methods at 0.68 confidence
level in Table 1, which measures the proportion of samples whose true values fall within the confidence
intervals. Empirically, our intervals show higher likelihoods of satisfying the prescribed confidence
level of 0.68 compared with other UQ methods. Considering the suboptimal performance of sampling-
based methods, our following comparison focuses on CP and CARE.

Adaptiveness. Beyond achieving the guaranteed coverage rate, the confidence interval should be
sample-adaptive to identify unreliable predictions effectively. We demonstrate this capability by
examining the "dataset-level interval" distribution of MSD-Task01 in Fig. 4. As observed, CP values
lie within a narrow range and thus fail to effectively indicate which samples are unreliable. In contrast,
our method produces intervals that vary significantly in width. Given an interval width threshold,
our method can effectively trigger alarms for cases with wide intervals (indicating high uncertainty),
thereby overcoming CP’s limitation of producing uniformly narrow confidence ranges.

F
re

q
u

e
n

c
y
 (

%
)

Interval
0 0.2 0.4 0.6 0.8
0

1

(a) Conformal prediction

Less reliable

Interval
0 0.2 0.4 0.6 0.8 1

(b) CARE (V-Bias)

Interval
0 0.2 0.4 0.6 0.8 1

Less reliable

(c) CARE (ECE)

Figure 4: Comparison of interval distribution on MSD-Task01 dataset (C = 0.68). We report the
frequency histogram of NTR intervals in test-set, where CARE triggers a human-check alarm when
the interval is too wide.
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(a) MSD-Task01 (b) BraTS21 (c) KiTS23

Figure 5: Comparison of tumor-size adaptiveness on nnUNet3d (C = 0.68). For each dataset,
we report the average interval width in three groups categorized by tumor sizes. Intuitively, interval
width should reflect the MSEr tendency in - - - . Compared with the indistinguishable results of CP,
CARE becomes wider for small tumors (hard samples) and tighter for large ones (simple samples).

Furthermore, the uncertainty should correlate appropriately with segmentation difficulty. For instance,
small tumors are hard to detect and segment for their small size, low contrast and susceptibility
to noise. Empirically, hard samples with small sizes or blurry boundaries tend to yield erroneous
predictions (large mean squared error), necessitating wider intervals to ensure coverage. To validate
this adaptive behavior, we present fine-grained analysis of MSEr (error measures) and interval width
(uncertainty measures) in Fig. 5. Specifically, we report NTR for Fig. 5a and 5b, and report TKR
for Fig. 5c. We stratify tumors into small (S), medium (M), and large (L) categories based on the
1
3 and 2

3 quantiles of tumor sizes in test-set. As illustrated, our intervals widths are proportional to
the segmentation difficulty: smaller, more challenging tumors receive wider intervals, while larger,
easier-to-segment tumors receive narrower intervals.

Tunability. CARE offers two variants that allow clinicians to select either conservative or informative
bounds by choosing CARE (ECE) or (V-Bias). To demonstrate tunability and coverage guarantee
across different confidence levels, we report coverage rates for varying confidence thresholds on
two biomarkers: NTR and CTR in Fig. 6. The coverage rate is expected to increase proportionally
with the increased confidence level. However, conformal prediction shows significant limitations: it
only achieves adequate coverage at isolated points (C = 0.7 for NTR and C = 0.6, 0.7 for CTR),
while falling below the target confidence level at all other tested thresholds. Additionally, conformal
prediction consistently fails to provide adequate coverage for small tumors (NTR-S) across the entire
confidence range, as demonstrated in Fig. 6c. In contrast, both variants of our method consistently
achieve coverage rates above the desired confidence level.

Other baselines. Bayesian UQ methods like deep ensemble (Lakshminarayanan et al., 2017) and
Monte Carlo dropout (Srivastava et al., 2014) require modifications to model architectures or training
procedures, in contrast to the previously discussed plug-in methods. For practical usage, CP and

(a) NTR (b) CTR (c) NTR-S

Figure 6: Performance comparison across confidence levels on MSD-Task01 and nnUNet3d.
Methods over - - - achieve the desired coverage. CARE is tunable to maintain the target coverage at
any confidence level and outperforms CP in detecting high-risk small tumors (NTR-S).
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CARE achieve linear computational complexity with minimal computational overhead. In comparison,
Bayesian methods face significant practical limitations in clinical settings. Performing numerous
ensemble predictions or dropout inferences is computationally expensive and often impractical for
real-time applications.

Table 2: Comparison of UQ methods on
BraTS21 with nnUNet3d. Ensemble and dropout
methods provide too narrow NTR intervals.

Interval Coverage (%)

Ensembleloss 0.088±0.003 46.03±1.21

Ensembleseed 0.041±0.002 43.03±1.13

Dropout0.3 0.033±0.001 27.09±1.02

Dropout0.5 0.038±0.001 29.63±1.03

𝑟gt 𝑰Ƹ𝑟 𝑰ECE

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

R
a
ti
o

Instance

Figure 7: Uncertainty decomposition of 10 sam-
ples. Miscalibration is the main contributor to the
overall uncertainty.

In Table 2, we implement two ensemble configu-
rations on BraTS21 using nnUNet3d: i) training
with five random seeds, and ii) training with five
different loss functions (XE, SD, Top10, XE-
SD, Top10-SD). For dropout configurations, we
add dropout layers to the nnUNet decoder with
dropout probabilities of 0.3 and 0.5, and per-
form 20 stochastic forward passes. The interval
widths of Bayesian methods are set as 3σ to pro-
vide a very conservative interval. Nevertheless,
we find that the intervals of Bayesian methods
are still too narrow to provide valid intervals,
most likely due to the lack of an appropriate
prior (Noci et al., 2021).

Uncertainty source analysis. As described in
Sec. 3.2, we decompose uncertainty into mis-
calibration and intrinsic bias of ratio estimation.
We validate this empirically by analyzing 10 ran-
domly selected volumes from BraTS21, calcu-
lating ECE-based (IECE) and overall CARE con-
fidence intervals (I). The results in Fig. 7 show
that IECE dominates the overall interval I , indi-
cating that model miscalibration is the primary
uncertainty source in ratio estimation.

Discussion about post-hoc calibration We calculate ECE and our intervals on different temperatures
in appendix A.2. For overconfident models, temperature>1 helps for better calibrated performance.
When ECE decreases, our interval becomes tighter consistently.

5 CONCLUSION

We propose CARE, a confidence-aware framework for estimating ratio-based biomarkers from seg-
mentation network outputs. Our method addresses a common limitation of prior works that focus
solely on point estimates without confidence guarantees. We disentangle two key sources of un-
certainty, i.e. network prediction error and statistical bias. Our empirical findings highlight that
miscalibration is a dominant contributor to uncertainty. Our framework offers several practical ad-
vantages: it operates as a model-agnostic plugin module, provides sample-level adaptive uncertainty
estimates in a single forward pass without requiring multiple sampling, and allows users to flexibly
adjust confidence levels. In summary, this work represents an important step toward trustworthy de-
ployment of deep learning in clinical settings by providing practitioners with both accurate biomarker
estimates and reliable confidence bounds.

Limitations and future work. Despite the practical advantages, our work has several limitations.
First, we assume that the validation and test sets are drawn from the same distribution. Although it is
standard in supervised learning settings, but may not hold under domain shifts. In practice, domain
shifts arise due to differences in scanners, acquisition protocols, or patient populations. As a result,
our confidence interval may not remain valid in these scenarios. Addressing this challenge with label-
free calibration error estimators (e.g. Wang et al. (2020); Popordanoska et al. (2024)) is a promising
direction for future work. Second, the calibration quality of the underlying segmentation network has
an impact on the tightness of the derived confidence intervals. Specifically, when the calibration error
is large, the resulting confidence intervals may become overly conservative. Improving calibration in
segmentation networks would directly translate into narrower, more informative confidence intervals
within our approach. Finally, while our framework shows good performance on public datasets,
clinical validation is needed to assess its real-world impact on decision-making and patient outcomes.
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Appendix
In Appendix A, we present additional experimental results, relevant to our methodology and in
support of the main paper. In Appendix B, we offer the proofs of propositions in the main paper.
Finally, we claim the LLM usage in Appendix C.

A MORE EMPIRICAL RESULTS

This section presents additional empirical results. To further examine different components of our
framework, we first provide more visualization in Sec. A.1 to further demonstrate the coverage guar-
antee and adaptiveness of our confidence intervals. In the main paper, we observe that miscalibration
is the main cause of uncertainty. As an extension, we conduct post-hoc calibration in Sec. A.2 to
report ECE and our confidence interval under different temperatures. Finally, in Sec. A.3, we replace
the default ECE metric (Guo et al., 2017) with KDE-based calibration error (Popordanoska et al.,
2022), highlighting the flexibility of our framework with respect to calibration error estimators. All
experiments are conducted at the 0.68 confidence level.

A.1 COVERAGE GUARANTEE AND ADAPTIVENESS

In the main paper, we just visualize the confidence intervals of 10 randomly selected samples in
Fig. 7. To provide a more comprehensive, “bird-eye” view of our method’s behavior, we extend
this analysis to the whole test samples in Fig. A, where we plot rgt and the confidence intervals I
under three methods. For clarity, the sample indices are omitted. As shown here, the ground-truth
ratio rgt (blue point) always lies well within our predicted confidence interval, while for conformal
prediction, rgt occasionally falls outside the interval when the upper or lower bounds are too narrow.
The conservative property of CARE is particularly important in clinical settings to provide a reliable
and informative reference.

(a) Conformal prediction (b) CARE (V-Bias) (c) CARE (ECE)

Figure A: Visualization of our confidence intervals on MSD and nnUNet3d. The x-axis represents
all test samples sorted by labeled ratio rgt, and the y-axis displays the valid range of ratio estimates.
As an extension of Fig. 5, we show our adaptiveness towards tumor sizes by three different pretrained
models in Fig. B. As the previous setting, all samples are divided into three groups: small (S),
medium (M) and large (L). Since CARE is a plug-in module with the model-agnostic nature, the
adaptiveness holds on all pretrained models.

(a) nnUNet2d (b) UNETR++ (c) nnFormer

Figure B: Comparison of tumor-size adaptiveness on MSD. CARE is adaptive to different tumor
sizes across all models.
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A.2 POST-HOC CALIBRATION

Our main contribution is the confidence interval for ratio estimation. Nevertheless, we acknowledge
that the calibration property is very important for downstream tasks, as demonstrated by Fig. 7.
In this section, we report different temperature parameters on a pretrained nnUNet3d, to observe
the effect of post-hoc calibration. We report the ECE of necrosis and tumor (ECEN, T) and average
interval width of CARE (ECE) under different temperatures in Table A. For illustration, we scale up
ECE by 100. As observed, both ECE and our interval width decrease as the temperature increases.
The consistency demonstrates that better-calibrated models have tighter confidence intervals.

Table A: Comparison of different temperature parameters on MSD and nnUNet3d. When the
temperature moves towards better calibration (ECE ↓), our interval becomes narrower (Interval ↓).

Temperature ECEN ECET CARE (ECE)
0.1 0.112±0.004 0.166±0.006 0.405±0.023

0.5 0.101±0.005 0.141±0.004 0.364±0.012

1.0 0.098±0.006 0.134±0.003 0.355±0.025

1.5 0.097±0.004 0.131±0.006 0.353±0.027

2.0 0.097±0.002 0.129±0.004 0.353±0.023

3.0 0.096±0.029 0.128±0.005 0.352±0.026

4.0 0.096±0.003 0.127±0.007 0.351±0.024

8.0 0.095±0.008 0.126±0.004 0.349±0.035

A.3 OTHER CALIBRATION ERROR ESTIMATORS

We replace the calibration error estimator ECE (Guo et al., 2017) with ECEkde (Popordanoska et al.,
2022) for comparison. In segmentation task, we use binary calibration error which corresponds to
Beta kernel in ECEkde. Since kernel computation is much expensive than bins, and all pixels together
will cause OOM error, we sample 104 pixels once for ECEkde estimation, and repeat 5 times to report
the average value. Observed from 10 volumes in Fig. C, ECEkde tends to provide wider bounds,
which is suitable for conservative preference. Notably, the estimator is flexible to plug into our
framework. We don’t aim to give any recommendations, depending on the priority of tightness or
informativeness. For a conservative estimator, the alarm thresholds of the interval width should also
increase to avoid over-checking. As future work, these differentiable ECE estimator may facilitate
obtaining tighter confidence intervals through carefully designed optimization..

(a) CARE (ECE) (b) CARE (ECEkde)

Figure C: Comparison of different calibration error estimators on BraTS21 and nnUNet3d.
Adopting (a) ECE (Guo et al., 2017) is generally tighter and more informative than (b) KDE.

B PROOFS

In this section, we give the corresponding proof of Markov bounds (B.1) and miscalibration bounds
(B.2) mentioned in Sec. 3.2 of the main paper. In addition, we derive a debiased estimator in Sec.
B.3.
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B.1 MARKOV BOUNDS

Van Kempen & Van Vliet (2000) provides a confidence interval of the ratio estimator ȳ
x̄ based

on asymptotic normal assumptions and by using the variance σ2
r := Var

(
ȳ
x̄

)
. However,

adopting their results assumes that all pixels are independently and identically distributed, i.e.,
(x1, y1) , . . . , (xn, yn)

i.i.d.∼ Pxy. In addition, they perform multiple approximation steps, and some
approximations happen within the square operator. How the estimator behaves facing a violation of
these assumptions is unknown in practice. In the following, we prove the alternative approach, we
proposed in the main paper, which is based on Markov’s inequality (Resnick, 2003). For conciseness,
the “≈” sign is avoided while we directly note the remainder terms for a rigorous analysis.

To avoid relying on any distribution assumptions, we construct a confidence interval via Markov’s
inequality for the estimator r̂ = ȳ

x̄ and target r =
µy

µx
. We have

P
(
|r̂ − r| ≥ k

√
SEr̂

)
= P

(
(r̂ − r)

2 ≥ k2SEr̂

)
≤ 1

k2
(10)

with the squared error SEr̂ := E
[
(r̂ − r)

2
]
. We emphasize that in general

√
SEr̂ ̸= σr.

In main paper, we denote α := 1
k2 as the non-coverage probability. For instance, adopting the

1− α = 75% confidence interval corresponds to α = 1
k2 = 0.25 or k = 2. Then the half-width of

confidence interval is 2
√
SEr̂, i.e., two times the root squared error. This is more conservative than

using the normal assumption, but requires no distribution assumption.

Now, we compute the squared error via Taylor expansion (Spivak, 2006). First, note that

SEr̂ = E

[(
ȳ

x̄
− µy

µx

)2
]
= E

[
ȳ2

x̄2

]
− 2

µy

µx
E
[ ȳ
x̄

]
+

µ2
y

µ2
x

. (11)

We perform a Taylor expansion of ȳ2

x̄2 around µy

µx
to compute its expectation:

ȳ2

x̄2
=

µ2
y

µ2
x

+ 2 (ȳ − µy)
µy

µ2
x

− 2 (x̄− µx)
µ2
y

µ3
x

+ (ȳ − µy)
2 1

µy
+ 3 (x̄− µx)

2 µ2
y

µ4
x

− 4 (ȳ − µy) (x̄− µx)
µy

µ3
x

+
∑

i,j : i+j≥3

(ȳ − µy)
i
(x̄− µx)

j ∂i+j

∂iµy∂jµx

µ2
y

µ2
x

(12)

from which follows

E
[
ȳ2

x̄2

]
=

µ2
y

µ2
x

+
Var (ȳ)

µy
+ 3Var (x̄)

µ2
y

µ4
x

− 4Cov (x̄, ȳ)
µy

µ3
x

+
∑

i,j : i+j≥3

E
[
(x̄− µx)

i
(ȳ − µy)

j
] ∂i+j

(∂µx)
i
(∂µy)

j

µ2
y

µ2
x

.

(13)

Assuming (x1, y1) , . . . , (xn, yn) ∼ Pxy are i.i.d. further simplifies the terms, like in the following.
Markov’s inequality does not require this assumption, so a violation does not invalidate our approach.
Then, it holds that

Var (x̄) =
1

n
Var (x) , Var (y) =

1

n
Var (y) , Cov (x̄, ȳ) =

1

n
Cov (x, y) . (14)
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Further, for all a = 1, . . . n let zk,a = xa and µzk = µx if 1 ≤ k ≤ i, and zk,a = ya and µzk = µy

if i < k ≤ m := i+ j. Then

E
[
(x̄− µx)

i
(ȳ − µy)

j
]

=
1

ni+j
E

( n∑
a=1

xa − µx

)i( n∑
a=1

ya − µy

)j


=
1

nm
E

[
m∏

k=1

(
n∑

a=1

zk,a − µzk

)]

=
1

nm

m∑
l=1

n∑
al=1

E

[
m∏

k=1

(zk,ak
− µzk)

]
(15)

For all ak holds that E [
∏m

k=1 (zk,ak
− µzk)] = 0 if there exists any non-duplicate index value, due

to independence. It follows that we can reduce the number of indices by at least half, which reduces
the number of addends by a polynomial:

1

nm

m∑
l=1

n∑
al=1

E

[
m∏

k=1

(zk,ak
− µzk)

]
︸ ︷︷ ︸

nm addends

=
1

nm

⌊m/2⌋∑
l=1

n∑
al=1

E

[
m∏

k=1

(zk,ak
− µzk)

]
︸ ︷︷ ︸

n⌊m/2⌋ addends

=
1

n⌈m/2⌉
1

n⌊m/2⌋

⌊m/2⌋∑
l=1

n∑
al=1

E

[
m∏

k=1

(zk,ak
− µzk)

]
︸ ︷︷ ︸

=:Cij

.

(16)

Note that Cij ∈ [−Bm, Bm] with Bm := max{i,j=0,...m|i+j≤m}

∣∣∣E [(x− µx)
i
(y − µy)

j
]∣∣∣, there-

fore, the convergence rate depends not only on the data size n but also on how the moments grow
with m.

Using Eqn. 14 and Eqn. 16 gives

E
[
ȳ2

x̄2

]
=

µ2
y

µ2
x

+
Var (y)

nµy
+ 3Var (x)

µ2
y

nµ4
x

− 4Cov (x, y)
µy

nµ3
x

+
∑

i,j : i+j≥3

1

n⌈(i+j)/2⌉Cij
∂i+j

(∂µx)
i
(∂µy)

j

µ2
y

µ2
x

.

(17)

Similarly, we use Taylor expansion for ȳ
x̄ around µy

µx
to get

ȳ

x̄
=

µy

µx
+ (ȳ − µy)

1

µx
− (x̄− µx)

µy

µ2
x

+ 0 + (x̄− µx)
2 µy

µ3
x

− (ȳ − µy) (x̄− µx)
1

µ2
x

+
∑

i,j : i+j≥3

(ȳ − µy)
i
(x̄− µx)

j ∂i+j

(∂µx)
i
(∂µy)

j

µy

µx
,

(18)

17
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which results in

µy

µx
E
[ ȳ
x̄

]
=

µ2
y

µ2
x

+Var (x̄)
µ2
y

µ4
x

− Cov (ȳ, x̄)
µy

µ3
x

+
∑

i,j : i+j≥3

E
[
(ȳ − µy)

i
(x̄− µx)

j
] µy

µx

∂i+j

(∂µx)
i
(∂µy)

j

µy

µx

=
µ2
y

µ2
x

+Var (x)
µ2
y

nµ4
x

− Cov (x, y)
µy

nµ3
x

+
∑

i,j : i+j≥3

1

n⌈(i+j)/2⌉Cij
µy

µx

∂i+j

(∂µx)
i
(∂µy)

j

µy

µx
.

(19)

Inserting Eqn. 17 and Eqn. 19 into Eqn. 11 results in

SEr̂ = 2
µ2
y

µ2
x

+
Var (y)

nµx
+ 3Var (x)

µ2
y

nµ4
x

− 4Cov (x, y)
µy

nµ3
x

+
∑

i,j : i+j≥3

1

n⌈(i+j)/2⌉Cij
∂i+j

(∂µx)
i
(∂µy)

j

µ2
y

µ2
x

− 2
(µ2

y

µ2
x

+Var (x)
µ2
y

nµ4
x

− Cov (x, y)
µy

nµ3
x

+
∑

i,j : i+j≥3

1

n⌈(i+j)/2⌉Cij
µy

µx

∂i+j

(∂µx)
i
(∂µy)

j

µy

µx

)

=
1

n

(
Var (y)

µx
+Var (x)

µ2
y

µ4
x

− 2Cov (x, y)
µy

µ3
x

)

+
∑

i,j : i+j≥3

1

n⌈(i+j)/2⌉Cij

(
∂i+j

(∂µx)
i
(∂µy)

j

µ2
y

µ2
x

− 2µy

µx

∂i+j

(∂µx)
i
(∂µy)

j

µy

µx

)
︸ ︷︷ ︸

∈O( 1
n2 )

.

(20)

Consequently, we may estimate SEr̂ via

ŜEr̂ :=
1

n

(
µ̂yσ̂

2
x

µ̂4
x

+
σ̂2
y

µ̂x
− 2

µ̂yσ̂xy

µ̂3
x

)
, (21)

which is consistent since the estimators µ̂y = 1
n

∑
i yi, µ̂x = 1

n

∑
i xi, σ̂2

y = 1
n−1

∑
i (yi − µ̂y)

2,
σ̂2
x = 1

n−1

∑
i (xi − µ̂x)

2, and σ̂xy = 1
n−1

∑
i (xi − µ̂x) (yi − µ̂y) are consistent as well.

B.2 VOLUME TO RATIO CONFIDENCE INTERVALS

Note that if a ∈/ [b, c] ⊆ R>0 then 1
a ∈/

[
1
c ,

1
b

]
since x 7→ 1

x is strictly negative monotone. We also
make use of the subadditivity of probability measures (Resnick, 2003) given by

P

(⋃
i

Ai

)
≤
∑
i

P (Ai) . (22)

This is also known as Boole’s inequality. Denote the random variable z representing pixel inputs
of image instance I . Let qT,α and qN,α be empirically determined on a validation set as the 1− α

18
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quantile of the image-wise calibration errors for gT and gN . Then, for α ∈ [0, 1] it holds

α =
α

2
+

α

2

≥ P
(
CEN,I ≥ qN,α/2

)
+ P

(
CET,I ≥ qT,α/2

)
≥ P

(
|E [YN | I]− E [gN (z) | I]| ≥ qN,α/2

)
+ P

(
|E [YT | I]− E [gT (z) | I]| ≥ qT,α/2

)
≥ P

(
|E [YN | I]− E [gN (z) | I]| ≥ qN,α/2 ∨ |E [YT | I]− E [gT (z) | I]| ≥ qT,α/2

)
= P

(
E [YN | I] /∈ [E [gN (z) | I]− qN,α,E [gN (z) | I] + qN,α]

∨ E [YT | I] /∈ [E [gT (z) | I]− qT,α,E [gT (z) | I] + qT,α]
)

= P
(
E [YN | I] /∈ [E [gN (z) | I]− qN,α,E [gN (z) | I] + qN,α]

∨ 1

E [YT | I]
/∈
[

1

E [gT (z) | I] + qT,α
,

1

E [gT (z) | I]− qT,α

])
≥ P

(
E [YN | I]
E [YT | I]

/∈
[
E [gN (z) | I]− qN,α

E [gT (z) | I] + qT,α
,
E [gN (z) | I] + qN,α

E [gT (z) | I]− qT,α

])
.

(23)

It follows that for confidence level 1− α that

E [YN | I]
E [YT | I]

∈
[
E [gN (z) | I]− qN,α

E [gT (z) | I] + qT,α
,
E [gN (z) | I] + qN,α

E [gT (z) | I]− qT,α

]
(24)

Given the previous equation, it further holds that

δ + α ≥

≥ P
(
E [YN | I]
E [YT | I]

∈/
[
E [gN (z) | I]
E [gT (z) | I]

− ϵl,δ,
E [gN (z) | I]
E [gT (z) | I]

+ ϵu,δ

])
+ P

(
E [gN (z) | I]
E [gT (z) | I]

∈/
[∑

i gN (zi,I)∑
i gT (zi,I)

− βr,α,

∑
i gN (zi,I)∑
i gT (zi,I)

+ βr,α

])
≥ P

(
E [YN | I]
E [YT | I]

∈/
[
E [gN (z) | I]
E [gT (z) | I]

− ϵl,δ,
E [gN (z) | I]
E [gT (z) | I]

+ ϵu,δ

]

∨ E [gN (z) | I]
E [gT (z) | I]

∈/
[∑

i gN (zi,I)∑
i gT (zi,I)

− βr,α,

∑
i gN (zi,I)∑
i gT (zi,I)

+ βr,α

])

≥ P
(
E [YN | I]
E [YT | I]

∈/
[∑

i gN (zi,I)∑
i gT (zi,I)

− ϵl,δ − βr,α,

∑
i gN (zi,I)∑
i gT (zi,I)

+ ϵu,δ + βr,α

])
.

(25)

From this follows that with at least probability 1− α− δ that

E [YN | I]
E [YT | I]

∈
[∑

i gN (zi,I)∑
i gT (zi,I)

− ϵl,δ − βr,α,

∑
i gN (zi,I)∑
i gT (zi,I)

+ ϵu,δ + βr,α

]
. (26)

B.3 DEBIASED RATIO ESTIMATION

The naive ratio estimator is biased due to the limited number of samples. Here we extend Popor-
danoska et al. (2022) to derive a debiased ratio estimator to O(n−2). Firstly, the naive estimator
is:

r̂ =
ȳ

x̄
=

µy

µx

(
ȳ

µy

)(
x̄

µx

)−1

=
µy

µx

(
1 +

ȳ − µy

µy

)(
1 +

x̄− µx

µx

)−1

. (27)
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Then we expand
(
1 + x̄−µx

µx

)−1

in Taylor series:

r̂ =
µy

µx

(
1 +

(ȳ − µy)

µy
− (x̄− µx)

µx
− (x̄− µx)(ȳ − µy)

µyµx
+

(x̄− µx)
2

µ2
x

+
(x̄− µx)

2(ȳ − µy)

µ2
xµy

− (x̄− µx)
3

µ3
x

− (x̄− µx)
3(ȳ − µy)

µ3
xµy

+
(x̄− µx)

4

µ4
x

)
+O(n−2.5)

(28)

The bias of r̂ defined by E[r̂]− r is written as:

Biasr =
µy

µx

(
1

n

(
Var(x)

µ2
x

− Cov(x, y)

µxµy

)
+

1

n2

(
(Cov(x2, y)− 2µx Cov(x, y))

µ2
xµy

(29)

− (Cov(x2, x)− 2µx Var(x))

µ3
x

− 3Var(x) Cov(x, y)

µ3
xµy

+
3Var(x)2

µ4
x

))
(30)

And a second-order debiased estimator is defined by rcorr,2 := r̂ − Biasr:

rcorr,2 = r̂ − µy

µx

(
1

n

(
Var(x)

µ2
x

− Cov(x, y)

µxµy

)
+

1

n2

(
(Cov(x2, y)− 2µx Cov(x, y))

µ2
xµy

(31)

− (Cov(x2, x)− 2µx Var(x))

µ3
x

− 3Var(x) Cov(x, y)

µ3
xµy

+
3Var(x)2

µ4
x

))
(32)

Finally, we use plug-in estimators for empirical estimation:

r̂corr,2 :=
µ̂y

µ̂x

(
1− 1

n

(
r∗b − r∗a

)
− 1

n2

( ̂(Cov(x2, y)− 2µ̂x
̂Cov(x, y))

µ̂2
xµ̂y

− ( ̂Cov(x2, x)− 2µ̂xV̂ar(x))

µ̂3
x

− 3V̂ar(x) ̂Cov(x, y)

µ̂3
xµ̂y

+
3V̂ar(x)

2

µ̂4
x

)) (33)

r∗a =
̂Cov(x, y)

µ̂xµy︸ ︷︷ ︸
=ra

(
1 +

1

(n− 1)

(
µ̂y

̂Cov(x2, y) + µ̂x
̂Cov(y2, x)

̂Cov(x, y)µ̂xµ̂y

− 4

)

− 1

(n− 1)

(
V̂ar(x)

µ̂2
x

+
V̂ar(y)

µ̂2
y

+ 2
̂Cov(x, y)

µ̂xµ̂y

)) (34)

r∗b =
V̂ar(x)

µ̂2
x︸ ︷︷ ︸

=rb

(
1 +

4

(n− 1)

( 1
2

̂Cov(x2, x)

µ̂xV̂ar(x)
− 1

)
− 4

(n− 1)

V̂ar(x)

µ̂2
x

)
. (35)

C LLM USAGE

We use ChatGPT (OpenAI, 2025) for polishing the writing of this paper, including improving
grammar and clarity. No part of the paper was generated solely by LLM. All technical content, ideas,
and experimental results were created and validated by the authors.
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