

000 001 FOE-RL: FLEXIBLE ONLINE REINFORCEMENT 002 LEARNING FOR EFFICIENT INFERENCE IN LARGE 003 REASONING MODELS 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Recent advancements in large reasoning models have significantly enhanced their
014 reasoning abilities. However, recent studies have shown that these models often
015 experience "overthinking," even when handling relatively simple questions. In
016 this paper, we propose a flexible online reinforcement learning method that esti-
017 mates the difficulty of a problem in real-time and predicts an appropriate output
018 length. Based on this, we design a length reward function and a flexible reward
019 trend monitor, which dynamically activates or deactivates the length reward ac-
020 cording to smoothed correctness rewards. Experimental results demonstrate the
021 effectiveness of our approach. Compared to training methods that rely solely on
022 correctness rewards, our approach significantly improves model accuracy while
023 substantially reducing the average response length. On the MATH dataset, our
024 method reduces the output token count by over 40% and increases accuracy by
025 more than 4%. Across multiple testing benchmarks, it maintains or even enhances
026 model performance while consistently lowering token usage. Furthermore, we ob-
027 serve that the method exhibits a self-regulating output length capability: depend-
028 ing on the model's own capacity and question difficulty, it automatically converges
029 toward an optimal output length range, achieving higher accuracy in the process.
030
031

1 INTRODUCTION

032 In recent years, large reasoning models (LRMs) like OpenAI's o1 (Jaech et al., 2024) and
033 DeepSeek's R1 (Guo et al., 2025) have demonstrated strong capabilities in complex reasoning tasks
034 such as mathematics (Cobbe et al., 2021) and programming (Jain et al., 2024). By incorporat-
035 ing chain-of-thought reasoning, these models perform multi-step logical deductions before answer-
036 ing, improving performance on challenging problems. This ability is often enhanced by reinforce-
037 ment learning-based post-training, which equips models with self-reflection and error-correction
038 skills (Gandhi et al., 2025) and enables exploration of multiple solution strategies. Research also
039 shows that such reasoning mechanisms can be integrated into multimodal large models Wang et al.
040 (2025) to enhance their effectiveness. As a result, the reasoning paradigm of large models is increas-
041 ingly shifting toward deeper, "slow thinking"-based inference.
042

043 However, the "slow thinking" approach introduces a significant issue: "overthinking." Un-
044 like traditional non-reasoning models, reasoning-based LRMs generate an analytical "chain of
045 thought" (Wang et al., 2022) before producing a final answer. Recent studies indicate that even
046 for simple questions, these models can produce reasoning chains that are significantly longer than
047 responses from traditional models, while the final answer remains unchanged (Chen et al., 2024;
048 Shen et al., 2025). This overthinking not only increases latency and exacerbates KV Cache pressure
049 but also slows down the subsequent reinforcement learning fine-tuning process.
050

051 To enhance the reasoning efficiency and accuracy of large language models, mitigating overthinking
052 has become a critical research direction. As a result, several recent studies have begun focusing on
053 mitigating overthinking in reasoning models, such as through reinforcement learning methods based
054 on length reward (Team et al., 2025; Luo et al., 2025; Aggarwal & Welleck, 2025; Shen et al., 2025)
055 or efficient chain-of-thought supervised fine-tuning (SFT) strategies (Xia et al., 2025; Kang et al.,
056 2025; Han et al., 2024). However, most existing approaches aim to encourage the model to produce
057
058

054 output that is as concise as possible, rather than guiding it to find a reasonable and adaptive response
 055 strategy. In fact, for certain complex problems, shorter answers are not necessarily better (Shen et al.,
 056 2025). Moreover, different models may exhibit distinct output behaviors across various datasets.
 057 Therefore, this research aims to explore a sustainable reinforcement learning training framework
 058 that enables models to adaptively adjust their output length range through long-term training, thereby
 059 effectively suppressing overthinking and supporting stable long-term optimization.

060 Based on the above discussion, this paper proposes a flexible online reinforcement learning method.
 061 Inspired by ideas from previous studies (Zhang et al., 2025; Shen et al., 2025), we estimate the diffi-
 062 culty of problems in real-time during online reinforcement learning based on the model’s sampling
 063 results, and design a function to map problem difficulty to the expected response length. The differ-
 064 ence between the expected length and the actual response length is then computed. To controllably
 065 tolerate deviations in length, we use a Gaussian function to map this difference into a length reward.
 066 After appropriate scaling, the length reward is added to the correctness reward to form the final
 067 reward signal.

068 During training, we observed that continuously applying the length reward could lead to excessive
 069 sensitivity of the length reward once the correctness reward begins to converge. When training steps
 070 are numerous, this may cause an excessive reduction in response length in later stages, ultimately
 071 impairing model performance. Therefore, we designed a reward trend monitor that uses an expo-
 072 nentially moving averaged correctness reward to track trends from short-term to long-term. Based
 073 on these trends, the length reward is dynamically enabled or disabled to ensure that the correct-
 074 ness reward can converge adequately in later phases, thereby safeguarding the final performance of
 075 the model. Experimental results demonstrate that our method effectively guides the model’s output
 076 length distribution toward an optimum, thereby enabling the accuracy to converge more rapidly to a
 077 higher level. The contributions of this paper are summarized as follows:

- 078 • We propose a flexible function for predicting the desired output length and a corresponding
 079 mechanism for calculating length rewards.
- 080 • We design a reward trend monitor that automatically enables or disables the length reward
 081 based on an analysis of trends from short-term to long-term.
- 082 • Our approach adaptively converges to an appropriate output length range based on the
 083 model’s inherent capability and the difficulty of the task, which in turn effectively promotes
 084 higher accuracy.

085 2 RELATED WORKS

086 2.1 LARGE REASONING MODELS AND THE PHENOMENON OF OVERTHINKING

087 Large reasoning models, by employing mechanisms such as Chain-of-Thought (CoT) and self-
 088 reflection that resemble human reasoning processes, can allocate more cognitive resources when
 089 tackling complex problems. This significantly enhances their capabilities in tasks like mathematical
 090 reasoning and program verification (Xu et al., 2025; Li et al., 2025b; Chen et al., 2025). OpenAI’s
 091 O1 model (Jaech et al., 2024) highlighted that increasing the length of reasoning during the re-
 092 sponse generation process can markedly improve model performance, leading to the introduction
 093 of their reasoning model. Subsequently, other large reasoning models such as DeepSeek-R1 (Guo
 094 et al., 2025), Kimi (Team et al., 2025), and QWQ (Team, 2024) have been proposed. Among these,
 095 models following the R1 style—which encapsulate the reasoning process within special tokens like
 096 `<think>` and `</think>`—have become a benchmark paradigm for reasoning models in the
 097 open-source community. Although lengthy CoT reasoning significantly boosts accuracy, this step-
 098 by-step thinking mechanism also results in verbose output responses, consequently introducing sub-
 099 stantial computational overhead and increased inference latency (Chen et al., 2024; Team et al.,
 100 2025). Furthermore, studies suggest that long contexts generated by over-thinking may increase
 101 the uncertainty and variance of outputs, potentially even leading to a decline in accuracy (Ghosal
 102 et al., 2025). Concurrently, over-thinking might make models more susceptible to malicious attacks,
 103 posing potential security risks (Kuo et al., 2025; Fang et al., 2025). Therefore, effectively guiding
 104 models to produce reasonable and efficient outputs has become a critical problem requiring urgent
 105 resolution.

108
109

2.2 REINFORCEMENT LEARNING-BASED INFERENCE LENGTH CONTROL

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

To reduce overthinking in deep reasoning models, a solution is to incorporate a reward for response brevity during reinforcement learning training. For instance, Training (Arora & Zanette, 2025) penalizes longer responses directly in the reward function to steer the model toward shorter outputs. ThinkPrune (Hou et al., 2025) sets a length threshold and assigns a zero reward to answers that exceed this threshold without solving the problem. O1-Pruner (Luo et al., 2025) pre-samples to estimate the baseline performance of the language model and subsequently employs an off-policy approach for training. L1 (Aggarwal & Welleck, 2025) introduces a fixed length budget into the reinforcement learning process and penalizes responses that exceed this budget. Recent studies focus on adaptive thinking length, which dynamically allocates reasoning effort based on problem difficulty. DAST (Shen et al., 2025) constructs length preference data according to question difficulty and length budget, and uses the SimPO method for training. ACPO (Cheng et al., 2025) estimates problem difficulty and length budget online to enable adaptive switching between fast and slow thinking modes. AALC (Li et al., 2025a) utilizes validation set rewards to dynamically adjust the weight of the length reward. Similar to prior work, this paper employs a difficulty-based length budget. However, we redesign the reward calculation and budget estimation functions, and introduce a distinct two-phase scheduling strategy: the length reward is emphasized early to accelerate convergence and de-emphasized later to prioritize accuracy.

126
127
128

3 METHOD

129
130
131
132

As illustrated in Figure 1, our method can be divided into three modules: first, an estimated length function is applied, followed by the calculation of a length reward based on the estimated length. Finally, a reward trend monitor performs real-time trend monitoring to dynamically adjust the length reward.

133
134

3.1 PROBLEM SETUP

135
136
137
138
139
140
141
142

This paper focuses on the research of "slow thinking" models with explicit reasoning capabilities in Large Language Models (LLMs), such as Chain-of-Thought (CoT) models. The aim is to optimize the balance between the conciseness and effectiveness of their reasoning processes. Specifically, we intend to minimize the length of intermediate reasoning steps (measured by the number of tokens) as much as possible without compromising the model's performance. This problem can be formulated as a constrained optimization problem: under the condition of ensuring that the model's prediction accuracy is close to its theoretical upper limit of capability, we seek a reasoning strategy that minimizes the length of intermediate reasoning.

143
144
145
146

Let \mathcal{M} be a large language model with reasoning ability. For an input question x , it can generate an intermediate reasoning process r and finally output an answer a . The variables are defined as follows:

147
148
149
150
151
152

- $q \in \mathcal{Q}$: input question;
- $r \in \mathcal{R}$: The intermediate reasoning text generated by the model, with a length of $L(r)$ (counted by the number of tokens);
- $a \in \mathcal{A}$: The final answer output by the model;
- $y \in \mathcal{Y}$: The true answer to the question.

153
154
155
156

The reasoning ability of the model is influenced by the generated r , and the correctness of the final answer is represented by the indicator function $\mathbb{I}(a = y)$. We assume that there exists a theoretical upper limit of ability P^* , which is the maximum accuracy that the model can achieve under the optimal reasoning strategy:

$$P^* = \max_{r \sim \mathcal{M}} \mathbb{E}_{q,y} [\mathbb{I}(a = y)] \quad (1)$$

157
158
159
160
161

In the actual generation process, the model typically generates r using various decoding strategies. Therefore, we introduce an inference strategy π to control the generation method of r (such as sampling temperature, maximum generation length, prompt strategy, etc.). Our goal is to find the optimal strategy π^* , which minimizes the average length of intermediate inference under the premise

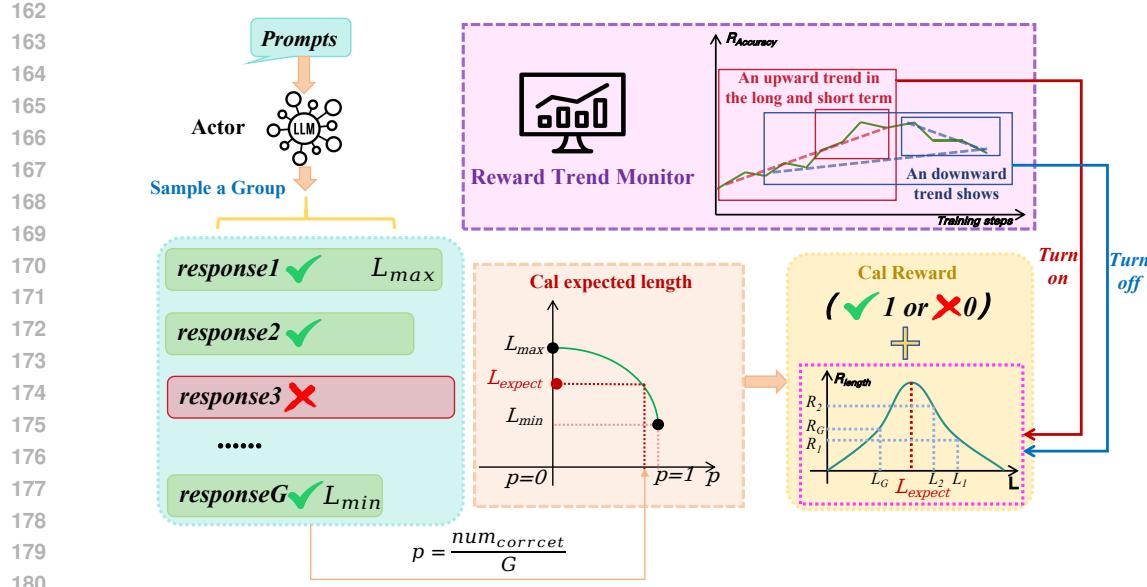


Figure 1: Our Method

that the accuracy rate is not lower than $P^* - \delta$ (where $\delta \geq 0$ represents the tolerable performance loss):

$$\begin{aligned} \pi^* &= \arg \min_{\pi} \mathbb{E}_{q, r \sim \mathcal{M}_{\pi}} [L(r)] \\ \text{s.t. } \mathbb{E}_{q, y} [\mathbb{I}(a = y)] &\geq P^* - \delta \end{aligned} \quad (2)$$

To further formalize this problem, we define the following functions:

- $f(\pi) = \mathbb{E}_{q, y} [\mathbb{I}(a = y)]$: Accuracy under strategy π ;
- $g(\pi) = \mathbb{E}_{q, r \sim \mathcal{M}_{\pi}} [L(r)]$: The average reasoning length under strategy π .

Then the optimization problem can be written as:

$$\min_{\pi} g(\pi) \quad \text{s.t.} \quad f(\pi) \geq P^* - \delta \quad (3)$$

Finally, we can also introduce a weighted objective function to unify accuracy and conciseness:

$$\mathcal{J}(\pi) = \lambda \cdot (1 - f(\pi)) + (1 - \lambda) \cdot \frac{g(\pi)}{T} \quad (4)$$

Here, T is the normalization factor (e.g., the maximum allowable growth length), and $\lambda \in [0, 1]$ is the weight coefficient. At this point, the problem is transformed into minimizing $\mathcal{J}(\pi)$.

3.2 LENGTH REWARD DESIGN

Our method is applicable to common large-model reinforcement learning algorithms (such as PPO (Schulman et al., 2017), GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025)). This paper will take GRPO as an example to conduct method derivation and experiments.

As illustrated in the GRPO diagram, this approach abandons the typical critic model—which is usually the same size as the policy model—and instead estimates a baseline from group scores. Specifically, for each question q sampled from the dataset distribution $P(Q)$, GRPO uses the old policy model $\pi_{\theta_{old}}$ to generate G completions $\{o_1, o_2, \dots, o_G\}$. Subsequently, GRPO optimizes the

216 policy model π_θ by maximizing the following objective:
 217

$$\begin{aligned}
 218 \quad \mathcal{I}_{GRPO}(\theta) &= \mathbb{E}[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)] \\
 219 \quad &\frac{1}{G} \sum_{i=1}^G \left(\min \left(\frac{\pi_\theta(o_i|q)}{\pi_{\theta_{old}}(o_i|q)} A_i, \text{clip} \left(\frac{\pi_\theta(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta \mathbb{D}_{KL}(\pi_\theta || \pi_{ref}) \right), \\
 220 \quad \mathbb{D}_{KL}(\pi_\theta || \pi_{ref}) &= \frac{\pi_{ref}(o_i|q)}{\pi_\theta(o_i|q)} - \log \frac{\pi_{ref}(o_i|q)}{\pi_\theta(o_i|q)} - 1, \\
 221 \quad A_i &= \frac{r_i - \max(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})}.
 \end{aligned}$$

222 where \mathcal{E} and β are hyperparameters, and A_i is the advantage value, computed from the rewards of
 223 the outputs for each set of questions $\{r_1, r_2, \dots, r_G\}$.
 224

225 Due to the fact that the optimization objective represented by Formula 4 cannot be updated through
 226 gradient backpropagation, it can be designed as a reward function. Minimizing Formula 4 is equiv-
 227 alent to maximizing the following formula:
 228

$$\mathcal{C}(\pi) = f(\pi) - \frac{1 - \lambda}{\lambda T} g(\pi) \quad (5)$$

229 Let $\gamma = \frac{1 - \lambda}{\lambda T}$, then Formula 5 can be written as:
 230

$$\mathcal{C}(\pi) = f(\pi) - \gamma g(\pi) = \mathbb{E}_{q, r, a \sim \mathcal{M}_\pi} [\mathbb{I}(a = y) - \gamma L(r)] \quad (6)$$

231 In practice, to estimate the functions $f(\pi)$ and $g(\pi)$, we usually need a labeled dataset $D =$
 232 $\{(x_i, y_i)\}_{i=1}^N$, where N is the number of samples, x_i is the input question, and y_i is the correspond-
 233 ing ground truth answer. Then, for each sample, we run the model M under strategy π to generate
 234 the reasoning text r_i and the final answer a_i . Based on these outputs, we can calculate the estimated
 235 values $\hat{f}(\pi)$ and $\hat{g}(\pi)$:

$$\hat{f}(\pi) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(a_i = y_i), \hat{g}(\pi) = \frac{1}{N} \sum_{i=1}^N L(r_i) \quad (7)$$

236 Therefore, the optimization objective represented by Formula 6 can be written as:
 237

$$\mathcal{C}(\pi) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(a_i = y_i) - \gamma \frac{1}{N} \sum_{i=1}^N L(r_i) \quad (8)$$

238 From Equation 8, it is intuitively thought that to maximize $\mathcal{C}(\pi)$, we can design the reward function
 239 as the following formula:
 240

$$R(q_i, r_i, a_i) = \mathbb{I}(a_i = y_i) - L(r_i)$$

241 However, there are two problems with designing the reward function directly in this way: (1) The
 242 dimensions of $\mathbb{I}(a_i = y_i)$ and $L(r_i)$ are different, requiring balancing; (2) Our goal is not to
 243 blindly minimize the length, but rather to make the length close to a reasonable expected value
 244 L_{expect} . Therefore, we introduce a length penalty term based on the Gaussian kernel to encourage
 245 the length generated by the model to be close to L_{expect} , rather than blindly pursuing shortness.
 246 Meanwhile, the correctness reward is retained. Thus, the reward function is designed as follows:
 247

$$R(q_i, r_i, a_i) = \mathbb{I}(a_i = y_i) + \exp \left(-\frac{(L - L_{\text{expect}})^2}{2 \left(\frac{L_{\text{expect}}}{k} \right)^2} \right) \quad (9)$$

248 As shown in Figure 2a, when the generated length deviates from the expected length, the reward
 249 will decrease. Here, K is a hyperparameter used to control the tolerance for length deviation.
 250

251 Regarding L_{expect} , we conduct real-time estimation during online learning based on the difficulty
 252 level of questions. In GRPO, for each question q_i , multiple answers $\{O_1, \dots, O_G\}$ are sampled.
 253

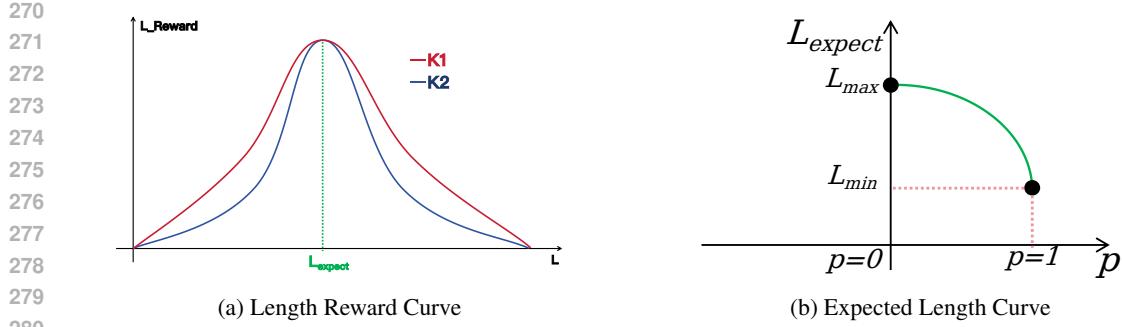


Figure 2: The function curve of length reward varying with length and the function curve of expected length varying with accuracy rate

Among these answers, let C represent the number of correct ones, $p = C/G$ represent the correct rate, L_{max} represent the length of the longest correct answer, and L_{min} represent the length of the shortest correct answer. Then, we use the following formula to estimate the accuracy rate:

$$L_{expect} = p^2 L_{min} + (1 - p^2) L_{max} \quad (10)$$

As shown in Figure 2b, as the accuracy rate changes, the expected length also varies between L_{max} and L_{min} . When the accuracy rate is close to 1, the expected length will be close to L_{min} ; this is to explore the lower limit of the model’s output length on the premise of ensuring accuracy. If the accuracy rate drops significantly, this function can ensure that the expected length increases rapidly, thereby guaranteeing the model’s reasoning process. In practice, if the accuracy rate is 0, set L_{max} to the maximum length of the model’s output responses.

Finally, we add a proportional hyperparameter α to the length reward to control the scale of the length reward relative to the correctness reward, and multiply it by the accuracy rate p . When the accuracy rate is low, the impact of the length reward is reduced. Therefore, our final reward function is as follows:

$$R(q_i, r_i, a_i) = \mathbb{I}(a_i = y_i) + \alpha p \exp\left(-\frac{(L - L_{expect})^2}{2 \left(\frac{L_{expect}}{k}\right)^2}\right) \quad (11)$$

3.3 REWARD TREND MONITOR

To ensure the convergence of the final correctness reward during the training process, we have designed a Reward Trend Monitor, which is used to track both the long-term and short-term trends of the reward curve. Based on these trends, it enables or disables the length reward. Specifically, we record the average value of the correctness reward at each step in the training history, denoted as $\{RC_1, \dots, RC_n\}$, and then perform an Exponential Moving Average (EMA) smoothing on this sequence:

$$S_t = \beta \cdot RC_t + (1 - \beta) \cdot S_{t-1}$$

At each step, a linear fit is performed on the exponential moving averages of the short-term historical data and the long-term historical data to determine the reward growth trend. Let w_1, \dots, w_l represent the sizes of multiple monitoring windows ranging from short-term to long-term. Thus, we can obtain data for multiple trends: $\{S_{n-w_1}, \dots, S_n\}, \dots, \{S_{n-w_l}, \dots, S(n)\}$. Perform linear fitting on the data of each window to get slopes $\{k_1, \dots, k_l\}$ corresponding to the multiple windows; these slopes are used to represent the change trend of correctness reward from short-term to long-term. Set a hyperparameter k_d ; when all values in $\{k_1, \dots, k_l\}$ are less than k_d , the length reward is turned off:

$$(k_1 < k_d) \wedge \dots \wedge (k_s < k_d) \implies R_{length} = 0$$

324 Table 1: A comparison of FOE-RL’s performance on the MATH-TEST and MATH500 datasets,
 325 with bold and underlined values indicating the best results.
 326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	MATH-TEST			MATH500		
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1998 1999 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2098 2099 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2119 2120 212						

hyperparameter K for calculating the length reward was set to 3, and the scaling factor α , which controls the weight of the length reward relative to the correctness reward, was set to 0.01. For the math dataset, the maximum prompt length and maximum response length during both training and testing were set to 256 and 3072, respectively. For all other datasets, the maximum prompt length and maximum response length during testing were configured as 1024 and 3072. The model was trained for one epoch on the MATH training set.

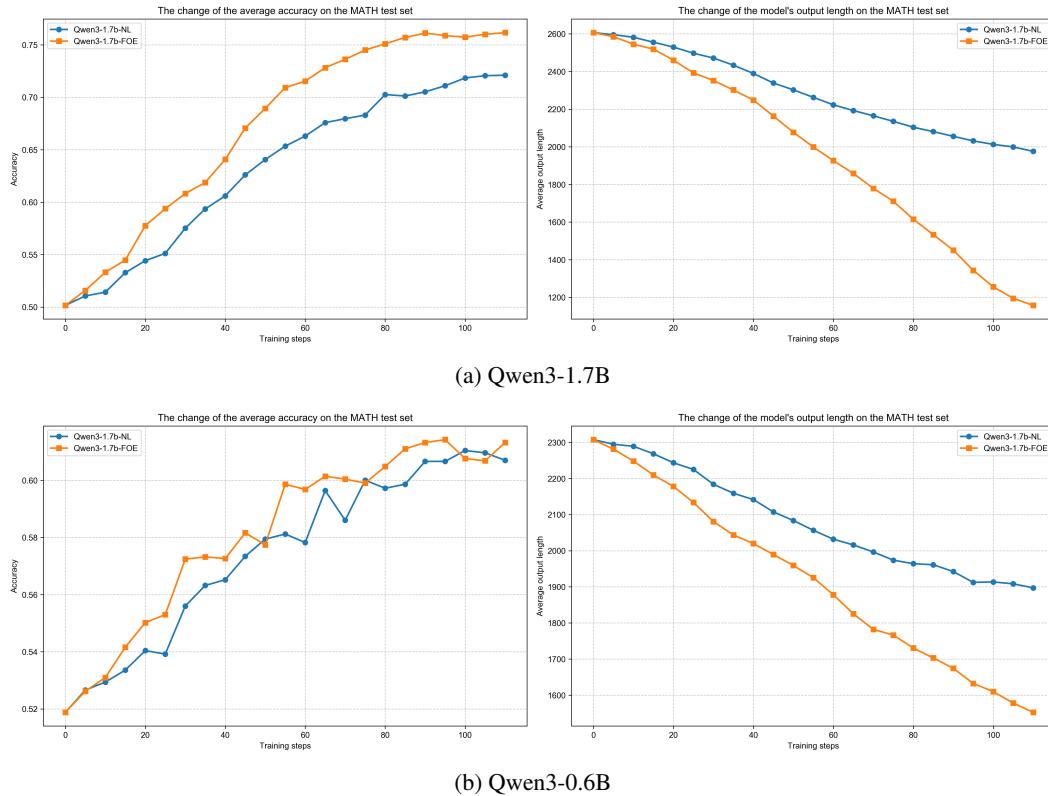


Figure 3: The model’s accuracy and average response length on the MATH test set at different steps during training.

4.2 MAIN RESULTS ANALYSIS

Our main results are presented in Tables 1 and 2. Overall, our method achieves a reduction in token usage across all datasets while improving performance on most of them.

On the larger-scale MATH-TEST and MATH500 datasets, the Qwen3-1.7B model trained with our method achieves a reduction of over 40% in token usage alongside an accuracy improvement of more than 4%, compared to the model trained with only correctness rewards. The less capable Qwen3-0.6B model also demonstrates both reduced token consumption and improved performance under our method. This indicates that our approach can effectively identify an appropriate output length range suitable for the model’s capability and problem difficulty, thereby enhancing model performance.

On the smaller-scale yet highly challenging datasets—AMC23, AIME24, and AIME25—our method consistently reduces token usage compared to models trained solely with correctness rewards, while also improving performance in most cases. For the weaker Qwen3-0.6B model, although significant performance gains are challenging on difficult, small-scale benchmarks like AIME2024 and AIME2025, token usage is still reduced. For the more powerful Qwen3-1.7B model, our method yields substantially greater token savings while maintaining or even matching the accuracy level.

432 Table 3: Comparison between the FOE Method and the Method with the Reward Trend Monitor
 433 Removed

432 Table 3: Comparison between the FOE Method and the Method with the Reward Trend Monitor 433 Removed									
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485									
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485		
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485									
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485									

Furthermore, we observe that more capable models achieve greater token savings, and simpler datasets lead to more pronounced reductions. This robustly demonstrates that our method dynamically finds an optimal balance based on the model’s capability and the problem’s difficulty, effectively guiding the model to converge more quickly to its ideal output length range for different problems.

4.3 TRAINING ANALYSIS

As shown in Figure 3, we evaluated the accuracy of the Qwen3-0.6B and Qwen3-1.7B models—trained with the FOE method versus trained only with correctness rewards—on the MATH test set at intervals of every 5 training steps, while also recording the average length of generated responses at each step.

From Figure 3a, it can be observed that Qwen3-1.7B-FOE consistently achieved higher accuracy than Qwen3-1.7B-NL at every step. After 60 training steps, the performance gap stabilized at over 4 percentage points. Moreover, the response length of Qwen3-1.7B-FOE decreased significantly faster, dropping from above 2600 tokens to below 1100 within 110 steps.

In Figure 3b, due to the relatively weaker capability of Qwen3-0.6B, the accuracy of Qwen3-0.6B-FOE did not substantially surpass that of Qwen3-1.7B-NL, yet it remained higher in most training steps. Additionally, its response length decreased more rapidly, from an average of over 2300 to below 1600, whereas Qwen3-1.7B-NL only decreased to around 1900.

These experimental results demonstrate that more capable models exhibit faster convergence in output length. Furthermore, the proposed method enables accuracy to converge more quickly to a higher level, which benefits from its ability to guide the model’s output length space toward an optimal state.

We propose FOE-RL, a reinforcement learning method that effectively mitigates model “overthinking”. Its core strength lies in guiding the model to converge rapidly to its optimal output length space—a range suited to its capability and the problem’s difficulty. This adaptive length control is key to our method’s success: by avoiding both excessively long and unnecessarily short reasoning paths, FOE-RL enables the model to achieve higher accuracy more efficiently. Experiments confirm that this approach not only significantly reduces token usage but, crucially, accelerates convergence to a superior level of performance. FOE-RL provides a principled solution for developing more efficient and capable reasoning models.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. Our research focuses on improving the efficiency
489 and accuracy of large reasoning models through reinforcement learning, without involving human
490 subjects, sensitive data, or real-world deployment. All datasets used in this study (e.g., MATH,
491 AIME, AMC) are publicly available and contain only mathematical problems with no personal or
492 identifying information. Our methodology is designed to reduce computational overhead and inference
493 latency, which aligns with the goal of promoting environmentally sustainable and accessible AI
494 systems. We have conducted no user studies, and the models used (Qwen3-0.6B and Qwen3-1.7B)
495 are publicly released under permissive licenses. We acknowledge that while our method encourages
496 concise reasoning, it may still reflect biases present in the base models or training data. We encourage
497 future work to assess the fairness and robustness of such efficiency-oriented training approaches
498 in diverse contexts.
499500 REPRODUCIBILITY STATEMENT
501502 To support reproducibility, we have provided detailed descriptions of our method, datasets, and
503 experimental setup in Sections 3 and 4. Key hyperparameters (e.g., learning rate, temperature, $K=3$,
504 $\alpha = 0.01$) are explicitly stated. The MATH, AIME, and AMC datasets are publicly accessible, and
505 we specify the prompt and response length limits used during training and evaluation. The reward
506 function design (Equation 11) and trend monitoring mechanism are fully described. The source
507 code for implementing the FOE-RL framework, including the length reward scheduler and trend
508 monitor, is included as an ancillary file with this submission and will be made publicly available
509 upon acceptance. All model checkpoints used are based on publicly released Qwen3 models.
510511 REFERENCES
512513 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
514 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.515 Daman Arora and Andrea Zanette. Training language models to reason efficiently. *arXiv preprint*
516 *arXiv:2502.04463*, 2025.517 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
518 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-
519 of-thought for reasoning large language models, 2025. URL <https://arxiv.org/abs/2503.09567>.
520521 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
522 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for $2+3=?$ on the overthinking
523 of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.524 Xiaoxue Cheng, Junyi Li, Zhenduo Zhang, Xinyu Tang, Wayne Xin Zhao, Xinyu Kong, and
525 Zhiqiang Zhang. Incentivizing dual process thinking for efficient large language model reasoning.
526 *arXiv preprint arXiv:2505.16315*, 2025.527 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
528 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
529 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
530 2021.531 Junfeng Fang, Yukai Wang, Ruipeng Wang, Zijun Yao, Kun Wang, An Zhang, Xiang Wang, and
532 Tat-Seng Chua. Safemrlm: Demystifying safety in multi-modal large reasoning models. *arXiv*
533 *preprint arXiv:2504.08813*, 2025.534 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
535 tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv*
536 *preprint arXiv:2503.01307*, 2025.

540 Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh
 541 Manocha, Furong Huang, Mohammad Ghavamzadeh, and Amrit Singh Bedi. Does thinking
 542 more always help? understanding test-time scaling in reasoning models. *arXiv preprint*
 543 *arXiv:2506.04210*, 2025.

544 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 545 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 546 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

547 Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
 548 budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*, 2024.

549 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 550 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 551 *preprint arXiv:2103.03874*, 2021.

552 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 553 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint*
 554 *arXiv:2504.01296*, 2025.

555 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 556 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 557 *preprint arXiv:2412.16720*, 2024.

558 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 559 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 560 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

561 Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
 562 without compromising effectiveness. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 563 volume 39, pp. 24312–24320, 2025.

564 Martin Kuo, Jianyi Zhang, Aolin Ding, Qinsi Wang, Louis DiValentin, Yujia Bao, Wei Wei, Hai Li,
 565 and Yiran Chen. H-cot: Hijacking the chain-of-thought safety reasoning mechanism to jailbreak
 566 large reasoning models, including openai o1/o3, deepseek-r1, and gemini 2.0 flash thinking. *arXiv*
 567 *preprint arXiv:2502.12893*, 2025.

568 Ruosen Li, Ziming Luo, Quan Zhang, Ruochen Li, Ben Zhou, Ali Payani, and Xinya Du. Aalc:
 569 Large language model efficient reasoning via adaptive accuracy-length control. *arXiv preprint*
 570 *arXiv:2506.20160*, 2025a.

571 Yunxin Li, Zhenyu Liu, Zitao Li, Xuanyu Zhang, Zhenran Xu, Xinyu Chen, Haoyuan Shi, Shenyuan
 572 Jiang, Xintong Wang, Jifang Wang, Shouzheng Huang, Xinpeng Zhao, Borui Jiang, Lanqing
 573 Hong, Longyue Wang, Zhuotao Tian, Baoxing Huai, Wenhan Luo, Weihua Luo, Zheng Zhang,
 574 Baotian Hu, and Min Zhang. Perception, reason, think, and plan: A survey on large multimodal
 575 reasoning models, 2025b. URL <https://arxiv.org/abs/2505.04921>.

576 Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
 577 and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
 578 *arXiv preprint arXiv:2501.12570*, 2025.

579 Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
 580 compressible chain-of-thought tuning. *arXiv preprint arXiv:2502.09601*, 2025.

581 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 582 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

583 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 584 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 585 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

586 Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
 587 Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning
 588 models. *arXiv preprint arXiv:2503.04472*, 2025.

594 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 595 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 596 llms. *arXiv preprint arXiv:2501.12599*, 2025.

597 Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, 2024. URL <https://qwenlm.github.io/blog/qwq-32b-preview/>. Accessed: [Insert access date].

600 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

602 Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhui Chen. VI-
 603 rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning.
 604 *arXiv preprint arXiv:2504.08837*, 2025.

605 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 606 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 607 *arXiv preprint arXiv:2203.11171*, 2022.

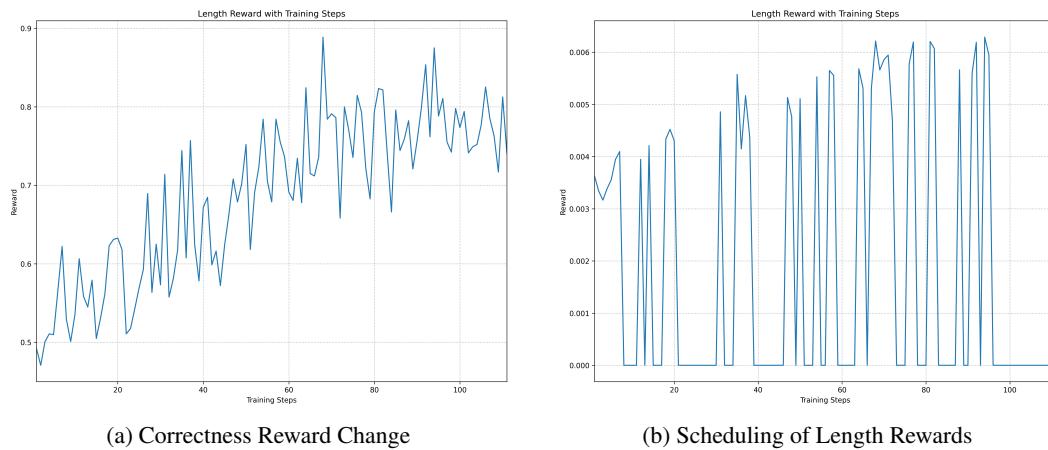
609 Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
 610 chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.

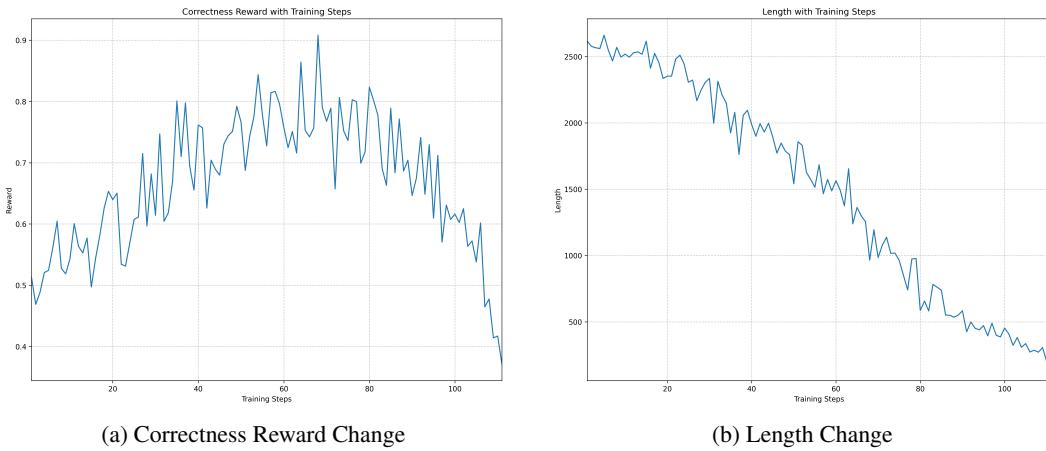
611 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
 612 Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
 613 Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
 614 reasoning models: A survey of reinforced reasoning with large language models, 2025. URL
 615 <https://arxiv.org/abs/2501.09686>.

616 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 617 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 618 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

620 Ruiqi Zhang, Daman Arora, Song Mei, and Andrea Zanette. Speed-rl: Faster training of reasoning
 621 models via online curriculum learning. *arXiv preprint arXiv:2506.09016*, 2025.

622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A APPENDIX**
649650 **A.1 USE OF LLMS**
651652 In this study, large language models were employed solely for the linguistic polishing of cer-
653 tain text portions, with the aim of reducing grammatical errors and enhancing expression clarity,
654 thereby aligning the writing more closely with the stylistic and terminological standards of sci-
655 entific papers. It is important to note that the models were not utilized for any core research activi-
656 ties—including but not limited to research conception, literature search, data analysis, or conclusion
657 formulation—so as to maintain the originality and academic integrity of the research process.
658659 **A.2 ANALYSIS OF LENGTH REWARD SCHEDULING**
660680 Figure 4: The change of correctness reward and scheduling of length rewards in Qwen3-1.7B-FOE
681 during the training process
682683 As shown in Figure 5, which illustrates the variation in correctness reward during the training process
684 of the Qwen3-1.7B model and the deactivation of the length reward, it can be observed that the length
685 reward is disabled whenever any long-term or short-term decline trend occurs in the correctness
686 reward, thereby ensuring an improvement in the correctness reward. Additionally, the appropriate
687 application of the length reward helps the model identify an optimal output length range.
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703 A.3 REWARD ANALYSIS WITHOUT LENGTH REWARD SCHEDULING
704717
718 Figure 5: The changes in correctness rewards and length changes with length rewards enabled
719 throughout the training process
720721
722 As shown in Figure 5a, when the length-based reward scheduling mechanism using the reward trend
723 monitor is removed, the reward continues to rise in the first half of training but declines rapidly
724 in later stages, significantly impairing model performance. Figure 5b indicates that this decline
725 is caused by an excessive reduction in output length, which pushes the model beyond its optimal
726 output length range. Moreover, around step 70, the model achieves the highest reward value, with
727 an average output length of approximately 1000 tokens—consistent with the final output length of
728 Qwen3-1.7B-FOE. This further underscores that our method effectively guides the model to con-
729 verge to an optimal output length range.
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755