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ABSTRACT

Recent advancements in large reasoning models have significantly enhanced their
reasoning abilities. However, recent studies have shown that these models often
experience ”overthinking,” even when handling relatively simple questions. In
this paper, we propose a flexible online reinforcement learning method that esti-
mates the difficulty of a problem in real-time and predicts an appropriate output
length. Based on this, we design a length reward function and a flexible reward
trend monitor, which dynamically activates or deactivates the length reward ac-
cording to smoothed correctness rewards. Experimental results demonstrate the
effectiveness of our approach. Compared to training methods that rely solely on
correctness rewards, our approach significantly improves model accuracy while
substantially reducing the average response length. On the MATH dataset, our
method reduces the output token count by over 40% and increases accuracy by
more than 4%. Across multiple testing benchmarks, it maintains or even enhances
model performance while consistently lowering token usage. Furthermore, we ob-
serve that the method exhibits a self-regulating output length capability: depend-
ing on the model’s own capacity and question difficulty, it automatically converges
toward an optimal output length range, achieving higher accuracy in the process.

1 INTRODUCTION

In recent years, large reasoning models (LRMs) like OpenAI’s o1 (Jaech et al., 2024) and
DeepSeek’s R1 (Guo et al., 2025) have demonstrated strong capabilities in complex reasoning tasks
such as mathematics (Cobbe et al., 2021) and programming (Jain et al., 2024). By incorporat-
ing chain-of-thought reasoning, these models perform multi-step logical deductions before answer-
ing, improving performance on challenging problems. This ability is often enhanced by reinforce-
ment learning-based post-training, which equips models with self-reflection and error-correction
skills (Gandhi et al., 2025) and enables exploration of multiple solution strategies. Research also
shows that such reasoning mechanisms can be integrated into multimodal large models Wang et al.
(2025) to enhance their effectiveness. As a result, the reasoning paradigm of large models is increas-
ingly shifting toward deeper, ”slow thinking”-based inference.

However, the ”slow thinking” approach introduces a significant issue: ”overthinking.” Un-
like traditional non-reasoning models, reasoning-based LRMs generate an analytical ”chain of
thought” (Wang et al., 2022) before producing a final answer. Recent studies indicate that even
for simple questions, these models can produce reasoning chains that are significantly longer than
responses from traditional models, while the final answer remains unchanged (Chen et al., 2024;
Shen et al., 2025). This overthinking not only increases latency and exacerbates KV Cache pressure
but also slows down the subsequent reinforcement learning fine-tuning process.

To enhance the reasoning efficiency and accuracy of large language models, mitigating overthinking
has become a critical research direction. As a result, several recent studies have begun focusing on
mitigating overthinking in reasoning models, such as through reinforcement learning methods based
on length reward (Team et al., 2025; Luo et al., 2025; Aggarwal & Welleck, 2025; Shen et al., 2025)
or efficient chain-of-thought supervised fine-tuning (SFT) strategies (Xia et al., 2025; Kang et al.,
2025; Han et al., 2024). However, most existing approaches aim to encourage the model to produce
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output that is as concise as possible, rather than guiding it to find a reasonable and adaptive response
strategy. In fact, for certain complex problems, shorter answers are not necessarily better (Shen et al.,
2025). Moreover, different models may exhibit distinct output behaviors across various datasets.
Therefore, this research aims to explore a sustainable reinforcement learning training framework
that enables models to adaptively adjust their output length range through long-term training, thereby
effectively suppressing overthinking and supporting stable long-term optimization.

Based on the above discussion, this paper proposes a flexible online reinforcement learning method.
Inspired by ideas from previous studies (Zhang et al., 2025; Shen et al., 2025), we estimate the diffi-
culty of problems in real-time during online reinforcement learning based on the model’s sampling
results, and design a function to map problem difficulty to the expected response length. The differ-
ence between the expected length and the actual response length is then computed. To controllably
tolerate deviations in length, we use a Gaussian function to map this difference into a length reward.
After appropriate scaling, the length reward is added to the correctness reward to form the final
reward signal.

During training, we observed that continuously applying the length reward could lead to excessive
sensitivity of the length reward once the correctness reward begins to converge. When training steps
are numerous, this may cause an excessive reduction in response length in later stages, ultimately
impairing model performance. Therefore, we designed a reward trend monitor that uses an expo-
nentially moving averaged correctness reward to track trends from short-term to long-term. Based
on these trends, the length reward is dynamically enabled or disabled to ensure that the correct-
ness reward can converge adequately in later phases, thereby safeguarding the final performance of
the model. Experimental results demonstrate that our method effectively guides the model’s output
length distribution toward an optimum, thereby enabling the accuracy to converge more rapidly to a
higher level. The contributions of this paper are summarized as follows:

• We propose a flexible function for predicting the desired output length and a corresponding
mechanism for calculating length rewards.

• We design a reward trend monitor that automatically enables or disables the length reward
based on an analysis of trends from short-term to long-term.

• Our approach adaptively converges to an appropriate output length range based on the
model’s inherent capability and the difficulty of the task, which in turn effectively promotes
higher accuracy.

2 RELATED WORKS

2.1 LARGE REASONING MODELS AND THE PHENOMENON OF OVERTHINKING

Large reasoning models, by employing mechanisms such as Chain-of-Thought (CoT) and self-
reflection that resemble human reasoning processes, can allocate more cognitive resources when
tackling complex problems. This significantly enhances their capabilities in tasks like mathematical
reasoning and program verification (Xu et al., 2025; Li et al., 2025b; Chen et al., 2025). OpenAI’s
O1 model (Jaech et al., 2024) highlighted that increasing the length of reasoning during the re-
sponse generation process can markedly improve model performance, leading to the introduction
of their reasoning model. Subsequently, other large reasoning models such as DeepSeek-R1 (Guo
et al., 2025), Kimi (Team et al., 2025), and QWQ (Team, 2024) have been proposed. Among these,
models following the R1 style—which encapsulate the reasoning process within special tokens like
< think > and < /think >—have become a benchmark paradigm for reasoning models in the
open-source community. Although lengthy CoT reasoning significantly boosts accuracy, this step-
by-step thinking mechanism also results in verbose output responses, consequently introducing sub-
stantial computational overhead and increased inference latency (Chen et al., 2024; Team et al.,
2025). Furthermore, studies suggest that long contexts generated by over-thinking may increase
the uncertainty and variance of outputs, potentially even leading to a decline in accuracy (Ghosal
et al., 2025). Concurrently, over-thinking might make models more susceptible to malicious attacks,
posing potential security risks (Kuo et al., 2025; Fang et al., 2025). Therefore, effectively guiding
models to produce reasonable and efficient outputs has become a critical problem requiring urgent
resolution.
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2.2 REINFORCEMENT LEARNING-BASED INFERENCE LENGTH CONTROL

To reduce overthinking in deep reasoning models, a solution is to incorporate a reward for response
brevity during reinforcement learning training. For instance, Training (Arora & Zanette, 2025) pe-
nalizes longer responses directly in the reward function to steer the model toward shorter outputs.
ThinkPrune (Hou et al., 2025) sets a length threshold and assigns a zero reward to answers that
exceed this threshold without solving the problem. O1-Pruner (Luo et al., 2025) pre-samples to
estimate the baseline performance of the language model and subsequently employs an off-policy
approach for training. L1 (Aggarwal & Welleck, 2025) introduces a fixed length budget into the
reinforcement learning process and penalizes responses that exceed this budget. Recent studies fo-
cus on adaptive thinking length, which dynamically allocates reasoning effort based on problem
difficulty. DAST (Shen et al., 2025) constructs length preference data according to question dif-
ficulty and length budget, and uses the SimPO method for training. ACPO (Cheng et al., 2025)
estimates problem difficulty and length budget online to enable adaptive switching between fast and
slow thinking modes. AALC (Li et al., 2025a) utilizes validation set rewards to dynamically adjust
the weight of the length reward. Similar to prior work, this paper employs a difficulty-based length
budget. However, we redesign the reward calculation and budget estimation functions, and intro-
duce a distinct two-phase scheduling strategy: the length reward is emphasized early to accelerate
convergence and de-emphasized later to prioritize accuracy.

3 METHOD

As illustrated in Figure 1, our method can be divided into three modules: first, an estimated length
function is applied, followed by the calculation of a length reward based on the estimated length.
Finally, a reward trend monitor performs real-time trend monitoring to dynamically adjust the length
reward.

3.1 PROBLEM SETUP

This paper focuses on the research of ”slow thinking” models with explicit reasoning capabilities in
Large Language Models (LLMs), such as Chain-of-Thought (CoT) models. The aim is to optimize
the balance between the conciseness and effectiveness of their reasoning processes. Specifically,
we intend to minimize the length of intermediate reasoning steps (measured by the number of to-
kens) as much as possible without compromising the model’s performance. This problem can be
formulated as a constrained optimization problem: under the condition of ensuring that the model’s
prediction accuracy is close to its theoretical upper limit of capability, we seek a reasoning strategy
that minimizes the length of intermediate reasoning.

Let M be a large language model with reasoning ability. For an input question x, it can generate
an intermediate reasoning process r and finally output an answer a. The variables are defined as
follows:

• q ∈ Q: input question;
• r ∈ R: The intermediate reasoning text generated by the model, with a length of L(r)

(counted by the number of tokens);
• a ∈ A: The final answer output by the model;
• y ∈ Y: The true answer to the question.

The reasoning ability of the model is influenced by the generated r, and the correctness of the final
answer is represented by the indicator function I(a = y). We assume that there exists a theoretical
upper limit of ability P ∗, which is the maximum accuracy that the model can achieve under the
optimal reasoning strategy:

P ∗ = max
r∼M

Eq,y[I(a = y)] (1)

In the actual generation process, the model typically generates r using various decoding strategies.
Therefore, we introduce an inference strategy π to control the generation method of r (such as
sampling temperature, maximum generation length, prompt strategy, etc.). Our goal is to find the
optimal strategy π∗, which minimizes the average length of intermediate inference under the premise
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Figure 1: Our Method

that the accuracy rate is not lower than P ∗ − δ (where δ ≥ 0 represents the tolerable performance
loss):

π∗ = argmin
π

Eq,r∼Mπ [L(r)]

s.t. Eq,y[I(a = y)] ≥ P ∗ − δ
(2)

To further formalize this problem, we define the following functions:

• f(π) = Eq,y[I(a = y)]: Accuracy under strategy π;

• g(π) = Eq,r∼Mπ [L(r)]: The average reasoning length under strategy π.

Then the optimization problem can be written as:

min
π

g(π) s.t. f(π) ≥ P ∗ − δ (3)

Finally, we can also introduce a weighted objective function to unify accuracy and conciseness:

J (π) = λ · (1− f(π)) + (1− λ) · g(π)
T

(4)

Here, T is the normalization factor (e.g., the maximum allowable growth length), and λ ∈ [0, 1] is
the weight coefficient. At this point, the problem is transformed into minimizing J (π).

3.2 LENGTH REWARD DESIGN

Our method is applicable to common large-model reinforcement learning algorithms (such as
PPO (Schulman et al., 2017), GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025)). This pa-
per will take GRPO as an example to conduct method derivation and experiments.

As illustrated in the GRPO diagram, this approach abandons the typical critic model—which is
usually the same size as the policy model—and instead estimates a baseline from group scores.
Specifically, for each question q sampled from the dataset distribution P (Q), GRPO uses the old
policy model πθold to generate G completions {o1, o2, · · · , oG}, Subsequently, GRPO optimizes the
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policy model πθ by maximizing the following objective:

IGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip

(
πθ(oi|q)
πθold(oi|q)

, 1− ε, 1 + ε

)
Ai

)
− βDKL (πθ||πref )

)
,

DKL (πθ||πref ) =
πref (oi|q)
πθ(oi|q)

− log
πref (oi|q)
πθ(oi|q)

− 1,

Ai =
ri −max({r1, r2, · · · , rG})

std({r1, r2, · · · , rG})
.

where E and β are hyperparameters, and Ai is the advantage value, computed from the rewards of
the outputs for each set of questions {r1, r2, . . . , rG}.

Due to the fact that the optimization objective represented by Formula 4 cannot be updated through
gradient backpropagation, it can be designed as a reward function. Minimizing Formula 4 is equiv-
alent to maximizing the following formula:

C(π) = f(π)− 1− λ

λT
g(π) (5)

Let γ = 1−λ
λT , then Formula 5 can be written as:

C(π) = f(π)− γg(π) = Eq,r,a∼Mπ [I(a = y)− γL(r)] (6)

In practice, to estimate the functions f(π) and g(π) , we usually need a labeled dataset D =
{(xi, yi)}Ni=1, where N is the number of samples, xi is the input question, and yi is the correspond-
ing ground truth answer. Then, for each sample, we run the model M under strategy π to generate
the reasoning text ri and the final answer ai. Based on these outputs, we can calculate the estimated
values f̂(π) and ĝ(π):

f̂(π) =
1

N

N∑
i=1

I(ai = yi), ĝ(π) =
1

N

N∑
i=1

L(ri) (7)

Therefore, the optimization objective represented by Formula 6 can be written as:

C(π) = 1

N

N∑
i=1

I(ai = yi)− γ
1

N

N∑
i=1

L(ri) (8)

From Equation 8, it is intuitively thought that to maximize C(π), we can design the reward function
as the following formula:

R(qi, ri, ai) = I(ai = yi)− L(ri)

However, there are two problems with designing the reward function directly in this way: (1) The
dimensions of I(ai = yi) and L(ri) are different, requiring balancing; (2) Our goal is not to
blindly minimize the length, but rather to make the length close to a reasonable expected value
Lexpect.Therefore, we introduce a length penalty term based on the Gaussian kernel to encourage
the length generated by the model to be close to Lexpect, rather than blindly pursuing shortness.
Meanwhile, the correctness reward is retained. Thus, the reward function is designed as follows:

R(qi, ri, ai) = I(ai = yi) + exp(− (L− Lexpect)
2

2
(

Lexpect

k

)2 ) (9)

As shown in Figure 2a, when the generated length deviates from the expected length, the reward
will decrease. Here, K is a hyperparameter used to control the tolerance for length deviation.

Regarding Lexpect, we conduct real-time estimation during online learning based on the difficulty
level of questions. In GRPO, for each question qi, multiple answers {O1, . . . , OG} are sampled.
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Figure 2: The function curve of length reward varying with length and the function curve of expected
length varying with accuracy rate

Among these answers, let C represent the number of correct ones, p = C/G represent the correct
rate, Lmax represent the length of the longest correct answer, and Lmin represent the length of the
shortest correct answer. Then, we use the following formula to estimate the accuracy rate:

Lexpect = p2Lmin + (1− p2)Lmax (10)

As shown in Figure 2b, as the accuracy rate changes, the expected length also varies between Lmax

and Lmin. When the accuracy rate is close to 1, the expected length will be close to Lmin; this is
to explore the lower limit of the model’s output length on the premise of ensuring accuracy. If the
accuracy rate drops significantly, this function can ensure that the expected length increases rapidly,
thereby guaranteeing the model’s reasoning process. In practice, if the accuracy rate is 0, set Lmax

to the maximum length of the model’s output responses.

Finally, we add a proportional hyperparameter α to the length reward to control the scale of the
length reward relative to the correctness reward, and multiply it by the accuracy rate p. When the
accuracy rate is low, the impact of the length reward is reduced. Therefore, our final reward function
is as follows:

R(qi, ri, ai) = I(ai = yi) + αpexp(− (L− Lexpect)
2

2
(

Lexpect

k

)2 ) (11)

3.3 REWARD TREND MONITOR

To ensure the convergence of the final correctness reward during the training process, we have
designed a Reward Trend Monitor, which is used to track both the long-term and short-term trends
of the reward curve. Based on these trends, it enables or disables the length reward. Specifically,
we record the average value of the correctness reward at each step in the training history, denoted
as {RC1, . . . , RCn}, and then perform an Exponential Moving Average (EMA) smoothing on this
sequence:

St = β ·RCt + (1− β) · St−1

At each step, a linear fit is performed on the exponential moving averages of the short-term historical
data and the long-term historical data to determine the reward growth trend. Let w1, . . . , wl represent
the sizes of multiple monitoring windows ranging from short-term to long-term. Thus, we can obtain
data for multiple trends: {Sn−w1

, . . . , Sn}, . . . , {Sn−wl
, . . . , S(n)}. Perform linear fitting on the

data of each window to get slopes {k1, . . . , kl} corresponding to the multiple windows; these slopes
are used to represent the change trend of correctness reward from short-term to long-term. Set a
hyperparameter kd; when all values in {k1, . . . , kl} are less than kd, the length reward is turned off:

(k1 < kd) ∧ · · · ∧ (ks < kd) =⇒ Rlength = 0

6
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Table 1: A comparison of FOE-RL’s performance on the MATH-TEST and MATH500 datasets,
with bold and underlined values indicating the best results.

Models MATH-TEST MATH500

Acc↑ Tokens↓ ACU↑ Acc↑ Tokens↓ ACU↑

Qwen3-0.6B-ORIGIN 51.88 2308 3.75 49.60 2321 3.56
Qwen3-0.6B-NL 60.70 1897 5.33 63.00 1907 5.51
Qwen3-0.6B-FOE 61.32 1560 6.55 63.40 1564 6.76

Qwen3-1.7B-ORIGIN 50.16 2606 1.13 53.00 2598 1.20
Qwen3-1.7B-NL 72.10 1976 2.14 73.40 1961 2.20
Qwen3-1.7B-FOE 76.10 1158 3.86 77.20 1138 3.99

Table 2: A comparison of FOE-RL’s performance on the AMC23 , AIME2024 and AIME2025
datasets, with bold and underlined values indicating the best results.

Models AMC23 AIME2024 AIME2025

Acc↑ Tokens↓ ACU↑ Acc↑ Tokens↓ ACU↑ Acc↑ Tokens↓ ACU↑

Qwen3-0.6B-ORIGIN 27.50 2808 1.63 6.67 3051 0.36 6.67 3057 0.36
Qwen3-0.6B-NL 30.00 2556 1.96 6.67 3048 0.36 13.33 3031 0.73
Qwen3-0.6B-FOE 40.00 2232 2.99 6.67 3004 0.37 6.67 2986 0.37

Qwen3-1.7B-ORIGIN 25.00 2915 0.5 3.33 3072 0.06 6.67 3072 0.13
Qwen3-1.7B-NL 52.50 2514 1.23 13.33 3064 0.26 13.33 3006 0.26
Qwen3-1.7B-FOE 50.00 1866 1.58 26.67 2848 0.55 16.67 2690 0.36

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics. We trained the Qwen3-0.6B and Qwen1.7B (Team, 2025) mod-
els on the training set of the MATH (Hendrycks et al., 2021) dataset, which contains approximately
7.47K math problems. The models were then evaluated on the test set of MATH, comprising 5K
samples. Additionally, performance was assessed on mathematical benchmarks including AIME24,
AIME25, MATH500, and AMC23. During testing, we have the model generate one sample per
question to calculate the average accuracy. We also record the average response length in tokens for
each dataset, and employ the ACU (Ma et al., 2025) metric to evaluate the balance between accuracy
and length:

ACU =
Accuracy

#Params×#Tokens

Due to computational constraints, both training and testing on the MATH dataset were conducted
with a prompt length limited to 256 tokens and a response length capped at 3072 tokens. As a
result, the actual amount of training data used was slightly smaller than the full dataset size, and
truncation of prompts during testing may have led to some performance degradation. However,
these limitations do not affect the validity of the conclusions drawn in this study.

Experimental Details. The original model (denoted by the suffix -ORIGIN) and the model trained
only with correctness rewards (denoted by the suffix -NL) will be used as the baselines for com-
parison. During training, the model’s sampling parameters were configured as follows: temperature
= 1, top k = -1 (disabled), and top p = 1. During testing, the sampling settings were adjusted to
temperature = 1, top k = 50, and top p = 0.7. The learning rate was 5e-7. In Equation 11, the

7
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hyperparameter K for calculating the length reward was set to 3, and the scaling factor α, which
controls the weight of the length reward relative to the correctness reward, was set to 0.01. For the
math dataset, the maximum prompt length and maximum response length during both training and
testing were set to 256 and 3072, respectively. For all other datasets, the maximum prompt length
and maximum response length during testing were configured as 1024 and 3072. The model was
trained for one epoch on the MATH training set.

(a) Qwen3-1.7B

(b) Qwen3-0.6B

Figure 3: The model’s accuracy and average response length on the MATH test set at different steps
during training.

4.2 MAIN RESULTS ANALYSIS

Our main results are presented in Tables 1 and 2. Overall, our method achieves a reduction in token
usage across all datasets while improving performance on most of them.

On the larger-scale MATH-TEST and MATH500 datasets, the Qwen3-1.7B model trained with our
method achieves a reduction of over 40% in token usage alongside an accuracy improvement of
more than 4%, compared to the model trained with only correctness rewards. The less capable
Qwen3-0.6B model also demonstrates both reduced token consumption and improved performance
under our method. This indicates that our approach can effectively identify an appropriate output
length range suitable for the model’s capability and problem difficulty, thereby enhancing model
performance.

On the smaller-scale yet highly challenging datasets—AMC23, AIME24, and AIME25—our
method consistently reduces token usage compared to models trained solely with correctness re-
wards, while also improving performance in most cases. For the weaker Qwen3-0.6B model,
although significant performance gains are challenging on difficult, small-scale benchmarks like
AIME2024 and AIME2025, token usage is still reduced. For the more powerful Qwen3-1.7B model,
our method yields substantially greater token savings while maintaining or even matching the accu-
racy level.

8
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Table 3: Comparison between the FOE Method and the Method with the Reward Trend Monitor
Removed

Models MATH-TEST MATH500

Acc↑ Tokens↓ ACU↑ Acc↑ Tokens↓ ACU↑

Qwen3-1.7B-OL 46.74 268 10.26 48.60 258 11.08
Qwen3-1.7B-FOE 76.10 1158 3.86 77.20 1138 3.99

Furthermore, we observe that more capable models achieve greater token savings, and simpler
datasets lead to more pronounced reductions. This robustly demonstrates that our method dynam-
ically finds an optimal balance based on the model’s capability and the problem’s difficulty, ef-
fectively guiding the model to converge more quickly to its ideal output length range for different
problems.

4.3 TRAINING ANALYSIS

As shown in Figure 3, we evaluated the accuracy of the Qwen3-0.6B and Qwen3-1.7B mod-
els—trained with the FOE method versus trained only with correctness rewards—on the MATH
test set at intervals of every 5 training steps, while also recording the average length of generated
responses at each step.

From Figure 3a, it can be observed that Qwen3-1.7B-FOE consistently achieved higher accuracy
than Qwen3-1.7B-NL at every step. After 60 training steps, the performance gap stabilized at over
4 percentage points. Moreover, the response length of Qwen3-1.7B-FOE decreased significantly
faster, dropping from above 2600 tokens to below 1100 within 110 steps.

In Figure 3b, due to the relatively weaker capability of Qwen3-0.6B, the accuracy of Qwen3-0.6B-
FOE did not substantially surpass that of Qwen3-1.7B-NL, yet it remained higher in most training
steps. Additionally, its response length decreased more rapidly, from an average of over 2300 to
below 1600, whereas Qwen3-1.7B-NL only decreased to around 1900.

These experimental results demonstrate that more capable models exhibit faster convergence in out-
put length. Furthermore, the proposed method enables accuracy to converge more quickly to a
higher level, which benefits from its ability to guide the model’s output length space toward an
optimal state.

4.4 ABLATION ANALYSIS OF THE REWARD TREND MONITOR

We removed the length reward scheduling based on the reward monitor and trained the model (suffix
-OL) by applying the length reward throughout the entire process. As shown in Table 3, although the
output length was significantly reduced, the performance dropped to an unacceptable level, resulting
in a performance degradation of over 30%. Furthermore, by analyzing the reward behavior during
training, we found that this approach could not support long-term training effectively. For details,
please refer to the appendix A.3.

5 CONCLUSION

We propose FOE-RL, a reinforcement learning method that effectively mitigates model ”overthink-
ing”. Its core strength lies in guiding the model to converge rapidly to its optimal output length
space—a range suited to its capability and the problem’s difficulty. This adaptive length control is
key to our method’s success: by avoiding both excessively long and unnecessarily short reasoning
paths, FOE-RL enables the model to achieve higher accuracy more efficiently. Experiments confirm
that this approach not only significantly reduces token usage but, crucially, accelerates convergence
to a superior level of performance . FOE-RL provides a principled solution for developing more
efficient and capable reasoning models.
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This work adheres to the ICLR Code of Ethics. Our research focuses on improving the efficiency
and accuracy of large reasoning models through reinforcement learning, without involving human
subjects, sensitive data, or real-world deployment. All datasets used in this study (e.g., MATH,
AIME, AMC) are publicly available and contain only mathematical problems with no personal or
identifying information. Our methodology is designed to reduce computational overhead and infer-
ence latency, which aligns with the goal of promoting environmentally sustainable and accessible AI
systems. We have conducted no user studies, and the models used (Qwen3-0.6B and Qwen3-1.7B)
are publicly released under permissive licenses. We acknowledge that while our method encourages
concise reasoning, it may still reflect biases present in the base models or training data. We encour-
age future work to assess the fairness and robustness of such efficiency-oriented training approaches
in diverse contexts.

REPRODUCIBILITY STATEMENT

To support reproducibility, we have provided detailed descriptions of our method, datasets, and
experimental setup in Sections 3 and 4. Key hyperparameters (e.g., learning rate, temperature, K=3,
α = 0.01) are explicitly stated. The MATH, AIME, and AMC datasets are publicly accessible, and
we specify the prompt and response length limits used during training and evaluation. The reward
function design (Equation 11) and trend monitoring mechanism are fully described. The source
code for implementing the FOE-RL framework, including the length reward scheduler and trend
monitor, is included as an ancillary file with this submission and will be made publicly available
upon acceptance. All model checkpoints used are based on publicly released Qwen3 models.
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A APPENDIX

A.1 USE OF LLMS

In this study, large language models were employed solely for the linguistic polishing of cer-
tain text portions, with the aim of reducing grammatical errors and enhancing expression clarity,
thereby aligning the writing more closely with the stylistic and terminological standards of scien-
tific papers. It is important to note that the models were not utilized for any core research activi-
ties—including but not limited to research conception, literature search, data analysis, or conclusion
formulation—so as to maintain the originality and academic integrity of the research process.

A.2 ANALYSIS OF LENGTH REWARD SCHEDULING

(a) Correctness Reward Change (b) Scheduling of Length Rewards

Figure 4: The change of correctness reward and scheduling of length rewards in Qwen3-1.7B-FOE
during the training process

As shown in Figure 5, which illustrates the variation in correctness reward during the training process
of the Qwen3-1.7B model and the deactivation of the length reward, it can be observed that the length
reward is disabled whenever any long-term or short-term decline trend occurs in the correctness
reward, thereby ensuring an improvement in the correctness reward. Additionally, the appropriate
application of the length reward helps the model identify an optimal output length range.
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A.3 REWARD ANALYSIS WITHOUT LENGTH REWARD SCHEDULING

(a) Correctness Reward Change (b) Length Change

Figure 5: The changes in correctness rewards and length changes with length rewards enabled
throughout the training process

As shown in Figure 5a, when the length-based reward scheduling mechanism using the reward trend
monitor is removed, the reward continues to rise in the first half of training but declines rapidly
in later stages, significantly impairing model performance. Figure 5b indicates that this decline
is caused by an excessive reduction in output length, which pushes the model beyond its optimal
output length range. Moreover, around step 70, the model achieves the highest reward value, with
an average output length of approximately 1000 tokens—consistent with the final output length of
Qwen3-1.7B-FOE. This further underscores that our method effectively guides the model to con-
verge to an optimal output length range.
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