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ABSTRACT

Self-supervised pre-training has emerged as a critical paradigm for learning trans-
ferable representations from unlabeled medical volumetric data. Masked autoen-
coder based methods have garnered significant attention, yet their application to
volumetric medical image faces fundamental limitations from the discrete voxel-
level reconstruction objective, which neglects comprehensive anatomical structure
continuity. To address this challenge, We propose MedGMAE, a novel framework
that replaces traditional voxel reconstruction with 3D Gaussian primitives recon-
struction as new perspectives on representation learning. Our approach learns
to predict complete sets of 3D Gaussian parameters as semantic abstractions to
represent the entire 3D volume, from sparse visible image patches. MedGMAE
demonstrates dual utility across medical imaging applications. For representation
learning, sparse Gaussian prediction produces superior encoder representations
that outperform traditional MAE baselines on downstream segmentation, classifi-
cation, and registration tasks. For volumetric reconstruction, the Gaussian decoder
leverages pretrained anatomical priors to accelerate 3D CT volume reconstruction
convergence. Extensive experiments across multiple medical imaging datasets
demonstrate that our approach achieves superior performance, establishing a new
framework for medical image pre-training. Code will be released soon.

1 INTRODUCTION

Volumetric medical imaging modalities, such as Computed Tomography (CT) and Magnetic Reso-
nance Imaging (MRI), have become indispensable cornerstones of modern clinical practice, provid-
ing three-dimensional anatomical information crucial for diagnosis, treatment planning, and prog-
nostic assessment. The advent of deep learning has heralded a new era in the automated analysis
of these data, demonstrating unprecedented performance across a spectrum of tasks (Zhou et al.,
2023c; Litjens et al., 2017). However, the full potential of these data-hungry models is severely
constrained by a fundamental bottleneck: the scarcity of large-scale, expertly annotated datasets
(Willemink et al., 2020; Ravı̀ et al., 2016). Recent work explores train-free paradigms that lever-
age pretrained 2D foundation models to extract semantic information from 3D volumes ((An et al.,
2025)), demonstrating an alternative.

This challenge sparks an increasing interest in self-supervised pre-training methods that can har-
ness unlabeled 3D data to improve performance in downstream tasks, such as segmentation, reg-
istration, and diagnosis. Due to the high anatomical similarity across different medical volumes,
Masked Image Modeling (MIM) has emerged as a powerful 3D pre-training approach for learning
local representations by reconstructing masked regions from visible context. Despite its promising
results, we identify three fundamental yet underexplored challenges that limit the effectiveness of
directly reconstructing masked regions via voxel-level regression: (i) Discrete reconstruction con-
flicts with anatomical continuity: conventional MIM methods typically regress discrete intensity
voxels of masked regions (He et al., 2022; Chen et al., 2023). While this teaches the model to “fill
in blanks” based on immediate spatial context works well for photorealistic data, it is ill-suited for
capturing the underlying semantic continuity and geometric abstraction of anatomical structures in
volumetric space. Discrete voxel regression often fails to model shape-consistent features, which
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Figure 1: MedGMAE overview. (a) our MedGMAE pre-training with 3D Gaussian Splatting recon-
struction leverages CT volume sparsity (anatomical organs occupy only 11.8% of space) to achieve
99.25% parameter reduction and superior coherence compared to voxel-based MIM methods. (b)
Pre-trained encoder fine-tuning for downstream tasks: our MedGMAE could learn a strong encoder
representation for downstream segmentation, registration, and classification tasks across multiple
medical datasets. (c) our MedGMAE could bring a zero-shot capability for 3DGR-based CT recon-
struction with 1.39× speed-up.

are crucial for understanding medical images and transferring knowledge to downstream tasks. (ii)
Non-transferable decoder representations: A common yet overlooked issue in voxel-based MIM
is that the decoder is designed purely for reconstructing low-level pixel intensities (Xie et al., 2022b;
Tang et al., 2024; Tian et al., 2023). The pre-trained decoder is typically discarded, and the features
it learns are rarely leveraged for downstream tasks, while its zero-shot capability is inherently con-
strained by the reliance on pixel-level reconstruction. (iii) Sparse anatomical distribution leads to
parameter inefficiency: Unlike natural 2D images that contain dense textural information through-
out, 3D medical images are inherently sparse in both semantic and intensity distributions. Redundant
voxel-based representation fails to achieve optimal reconstruction efficiency.

To address these limitations, we introduce Medical Gaussian Masked Autoencoder (MedGMAE),
a novel self-supervised framework tailored for 3D medical image pretraining grounded in a key
insight: learning sparse 3D Gaussian representations instead of reconstructing dense voxel in-
tensities. As shown in Fig.1(a), our approach leverages 3D Gaussian primitives as an intermediate
representation that naturally addresses the aforementioned challenges through three key advantages:
(i) Continuous geometric modeling for anatomical coherence: 3D Gaussian primitives provide
continuous, differentiable representations that inherently capture geometric abstractions and shape
consistency across anatomical structures. Each Gaussian primitive encodes spatial position, orienta-
tion, and scale information, enabling the model to learn semantically meaningful geometric features
that align with the continuous nature of anatomical boundaries (as shown in Fig.1(b)). (ii) Trans-
ferable decoder: Our Gaussian-based decoder remains useful after pre-training, directly serving
as sophisticated initialization for Gaussian representation 3D medical reconstruction (as shown in
Fig.1(c), faster 1.39× for coverage). (iii) Parameter-efficient representation:Our Gaussian-based
approach naturally aligns with the sparse anatomical distribution in medical volumes, achieving
superior parameter efficiency (99% reduction in parameters).

The main contributions of this work can be summarized as follows:

• First, we introduce MedGMAE, the first framework to successfully adapt and extend
Gaussian-based masked autoencoding for self-supervised pre-training on 3D volumetric
medical data. Our approach learns parameter-efficient representations that better cap-
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tures continuous anatomical boundaries, enabling models to develop more structured and
anatomically-aware representations.

• Second, we demonstrate a novel application for the pre-trained decoder by using it
as a zero-shot, geometry-aware initializer for downstream 3D CT reconstruction tasks.
The learned anatomical priors from pre-training significantly accelerate 3D Gaussian
Representation-based CT reconstruction convergence, thus bridging self-supervised pre-
training with practical medical image reconstruction applications.

• Third, extensive experiments across downstream tasks including segmentation, classifica-
tion, and registration validate the superiority of our proposed approach compared to voxel-
based masked representation methods. Additionally, experiments on low-dose CT recon-
struction tasks demonstrate the zero-shot initialization capability of our proposed frame-
work, showing significant acceleration in convergence while maintaining reconstruction
quality.
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Figure 2: MedGMAE architecture. (a) MedGMAE pre-training framework that processes patchi-
fied and masked input through an encoder-decoder architecture to predict 3D Gaussian parameters,
which are then rendered and optimized via reconstruction loss. (b) Extended MedGMAE* with
multi-level residual blocks for progressive Gaussian parameters refinement.

2 RELATED WORK

2.1 PATCH-BASED MASKED IMAGE MODELING

Masked autoencoders learn representations by reconstructing masked input regions. MAE (He et al.,
2022) uses a ViT encoder (Dosovitskiy et al., 2020) processing only 25% visible patches and a
lightweight decoder for reconstruction, enabling efficient pretraining. In medical imaging, existing
self-supervised methods focus on different architectural designs and masking strategies to improve
representation learning (Zhou et al., 2023b; Xie et al., 2022b; Tang et al., 2024; Tian et al., 2023;
Tang et al., 2022a; Goncharov et al., 2023). Despite their architectural variations and different mask-
ing mechanisms, all these approaches remain fundamentally constrained by the voxel-level recon-
struction objective, which encourages local interpolation rather than global structural understanding
of anatomical features. We propose a fundamentally different approach using 3D Gaussian parame-
ter prediction instead of voxel-level reconstruction. Unlike discrete intensity prediction, our method
reconstructs anatomy through continuous geometric primitives, enabling structured representation
learning aligned with anatomical continuity.

2.2 3D GAUSSIAN SPLATTING FOR MEDICAL IMAGING

3D Gaussian Splatting (3DGS) was developed for rendering 3D natural scenes (Kerbl et al., 2023).
This approach has since been applied across diverse medical reconstruction scenarios, including 3D
CT reconstruction (Li et al., 2025; Cai et al., 2024; Zha et al., 2024), coronary artery reconstruction
(Fu et al., 2024), and 4D CT reconstruction (Fu et al., 2025; Yu et al., 2025).
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Limitations and motivation. While Gaussian Masked Autoencoders ((Rajasegaran et al., 2025))
pioneered this approach for 2D images—using the z-axis of 3D Gaussians to infer abstract 2.5D
layers for spatial understanding—our motivation is fundamentally different. Instead of inferring
abstract structure, we leverage the continuous and parameter-efficient nature of 3D Gaussians to
holistically represent true 3D anatomical volumes, directly addressing the limitations of discrete
voxel models for capturing continuous anatomy. This objective is better suited for downstream 3D
tasks like segmentation and registration, and also unlocks a novel application in accelerating CT
reconstruction. Our key insight is: leverage 3D Gaussian primitives as intermediate representations
for masked autoencoder pre-training, learning geometric structures rather than discrete voxels. This
shifts the objective from local reconstruction to geometric reasoning, encouraging spatial reasoning
and anatomical priors while addressing initialization challenges in existing 3DGS medical methods.

3 METHOD

3.1 PRELIMINARIES

3D Gaussian primitives and volume rendering. In medical imaging domain, each 3D Gaussian
primitives is parameterized by a center position µ ∈ R3 and a covariance matrix Σ ∈ R3×3, which
jointly define the spatial distribution and morphology of the Gaussian primitive. In addition, each
Gaussian carries an intensity value I that represents the intensity at the Gaussian center. In our im-
plementation, we follow the standard practice of decomposing the covariance matrix Σ = RSSTRT

into a scaling matrix S = diag(s) ∈ R3×3 represented by a scale vector s ∈ R3, and a rotation
matrix R ∈ R3×3 parameterized by a rotation quaternion ϕ ∈ R4. Consequently, each Gaussian
is represented by an 11-dimensional parameter vector g = {µ, s, ϕ, I} ∈ R11. For volumetric
rendering, we reconstruct the complete 3D volume by evaluating the Gaussian field at discrete grid
positions corresponding to the target volumetric dimensions. Each Gaussian contribution to any
spatial position X is mathematically described by:

Gi(X|gi) = Ii · e−
1
2 (X−µi)

TΣ−1
i (X−µi), (1)

where X ∈ R3 denotes a position in the 3D space, and gi = {µi, si, ϕi, Ii} represents the param-
eters of the i-th Gaussian. The exponential term defines the spatial decay of the Gaussian influence
based on the Mahalanobis distance from its center, naturally encoding the ellipsoidal shape through
the covariance structure. The final volumetric intensity is computed as a spatially-localized aggre-
gation of contributions from nearby Gaussians:

V (X|gi) =
∑

i:||X−µi||≤di

Gi(X|gi), (2)

where di defines the effective radius of influence for each Gaussian, typically set based on the
eigenvalues of the covariance matrix to ensure computational efficiency while maintaining rendering
quality. This localized aggregation strategy enables efficient rendering by avoiding computations for
Gaussians with negligible contributions, making the differentiable rendering process tractable for
large-scale medical volumes.

3.2 PROPOSED APPROACH

We propose MedGMAE, a framework that replaces voxel-level reconstruction with 3D Gaussian
parameters prediction for medical volumetric representation learning in Fig.2(a).

MedGMAE representation learning: The model consists of a Vision Transformer (ViT)-based
encoder, a lightweight Transformer decoder, and a differentiable Gaussian renderer specifically de-
signed for volumetric medical data reconstruction. For a given 3D medical image patch with di-
mensions 96 × 96 × 96, we first patchify it into N non-overlapping patches of size 12 × 12 × 12,
resulting in N = 512 patches. We then randomly mask these patches with a masking ratio r, typ-
ically set to 0.75, yielding n visible patches where n = N × (1 − r). The ViT encoder processes
only the visible patches and encodes them from raw patch representations to latent embeddings
xi ∈ Rdenc , where i ∈ {1, 2, 3, . . . , n}. The decoder employs k learnable query tokens qj ∈ Rddec ,
j ∈ {0, 1, 2, . . . , k − 1}, where k represents the number of 3D Gaussians to be predicted. Impor-
tantly, k can be set to any value independent of the number of masked tokens, providing flexibility in
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controlling the reconstruction granularity. We project the encoder latent embeddings to the decoder
dimension space as x̂i ∈ Rddec and construct the decoder input by concatenating three components:
the encoder class token, the learnable Gaussian query tokens, and the remaining encoder tokens:

Xdec = {x̂1} ∪ {qj}kj=1 ∪ {x̂i}ni=2 (3)

The decoder processes the Xdec tokens through multiple Transformer blocks with multi-head self-
attention mechanisms. This allows the query tokens to attend to the visible patch embeddings and
aggregate spatial-semantic information necessary for accurate 3D Gaussian parameter prediction.
The decoder outputs k sets of Gaussian parameters, with each query token predicting one 3D Gaus-
sian primitive through dedicated parameter heads. Each predicted 3D Gaussian is an 11-dimensional
vector comprising position coordinates µ ∈ R3, anisotropic scaling factors s ∈ R3, rotation quater-
nion ϕ ∈ R4, and intensity I ∈ R1. The conversion from decoder features to Gaussian parameters
is accomplished through four specialized linear prediction heads: a Gaussian center head, a scale
head, a rotation head, and an intensity head. Each head applies appropriate activation functions to
ensure parameter validity: sigmoid activation for positions and densities to constrain values within
[0,1], and L2 normalization for rotation quaternions to maintain unit length. To ensure stable train-
ing and balanced parameter distributions across the three spatial dimensions, we employ custom
initialization strategies for the prediction heads. All heads utilize Xavier uniform initialization for
weights, while biases are initialized specifically for each parameter type: position and rotation heads
use zero initialization, the scale head employs a constant bias of -1.386 (resulting in approximately
0.2 after sigmoid activation), and the density head uses a bias of -0.405 (yielding approximately 0.5
after sigmoid activation). This initialization scheme promotes consistent scale distributions across
x, y, and z dimensions while providing reasonable starting values for Gaussian intensity.

Differentiable volumetric rendering and training: Once we obtain k predicted 3D Gaussians, we
employ a differentiable volumetric renderer to reconstruct the 3D medical image. The renderer ac-
cumulates the contributions of all Gaussians within the volume space, with each Gaussian influence
determined by its spatial extent and intensity. During training, we apply the reconstruction loss only
to the originally masked regions, computed as the mean squared error between the rendered volume
and the ground truth image. This masked reconstruction objective encourages the model to learn
meaningful 3D representations while maintaining computational efficiency.

Extended MedGMAE for reconstruction: For enhanced reconstruction performance, we further
present MedGMAE* with multi-level residual blocks (a hierarchically extended MedGMAE struc-
ture Hyun & Heo (2024)), utilizing more Gaussians to capture fine-grained volumetric details in
Fig.2(b). We define a hierarchical structure with levels l ∈ {0, 1, 2}, from coarse to fine granularity,
where each level contains a set of Gaussian parameters. Specifically, we establish dependencies
between Gaussian parameters of adjacent levels, where Level 0 contains N0 base Gaussians, Level
1 expands to m1 × N0 Gaussians, and Level 2 expands to m2 × N0 Gaussians. We model the 3D
representation in a coarse-to-fine manner by assigning coarser- and finer-level Gaussians for coarser
and finer details. For scale parameters, we enforce hierarchical reduction as:

sl = s0 + ŝl · σscale −∆sl (4)

where σscale = 0.1 controls the residual magnitudes, and ∆sl > 0 to ensure monotonic scale re-
duction. ∆s1 = 0.02 for Level 1 and ∆s2 = 0.05 for Level 2 are adopted. For other parameters, we
compute new positions as: µl = µ0 + µ̂l ·σµ,where µ̂l are the predicted residual position parameters.
We define residual transformations as: I l = I0 + Î l · σI , ϕl = normalize(ϕ0 + ϕ̂l · σrot) where
σµ, σI , σrot control the residual magnitudes. Note that all residual prediction modules adopt tanh
activation functions to ensure bounded residual outputs and stable training dynamics. This hierarchi-
cal densification enables coarse-to-fine reconstruction while maintaining spatial coherence through
base Gaussian constraints, significantly enhancing the model’s ability to capture fine-grained details
in CT reconstruction.

4 EXPERIMENTS

4.1 DATASETS

Pre-training datasets. For self-supervised pre-training, we utilize the AbdomenAtlas1.0Mini
dataset (Li et al., 2024a), which contains 5,195 CT scans. All scans are first resampled spacing
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Table 1: Comparison of different methods with different proportions on AMOS (Ji et al., 2022),
FLARE’22 (Ma et al., 2024), BTCV (Landman et al., 2015) and SegTHOR (Lambert et al., 2020).
The DSC (%) is reported. val (bold) / val (underline) : top method / second method. † denotes we
utilize official pre-training weights. ‡ denotes the results are copied from VoCo (Wu et al., 2024b).

Pretrain Method AMOS FLARE’22 BTCV SegTHOR
1% 10% 100% 1% 10% 100% 1% 10% 100%‡ 1% 10% 100%

Training from scratch
UNETR 23.67 60.06 77.02 22.47 56.46 70.81 28.05 42.85 79.82 42.31 72.72 85.82
SwinUNETR 28.94 63.45 82.51 35.89 63.38 75.38 27.71 51.33 80.53 44.82 73.93 87.35
General self-supervised methods
SparK 36.14 71.68 84.07 36.48 71.74 80.67 30.69 51.26 - 44.76 80.36 88.08
MAE 54.67 72.94 83.61 62.35 77.01 82.56 62.04 75.01 - 66.72 83.60 88.52
Medical self-supervised methods
MG† 25.72 46.94 62.99 27.30 48.18 57.33 29.27 38.04 81.45 36.96 60.16 83.79
TransVW† 18.72 66.91 82.58 4.81 62.07 75.78 5.63 8.42 - 8.91 31.30 87.46
UniMiSS† 29.49 66.34 79.92 24.92 60.99 74.71 32.95 47.08 - 42.92 76.59 84.34
SUP† 25.60 64.95 82.45 33.72 60.35 74.96 28.75 49.67 81.54 41.74 73.46 87.22
PCRLv2† 21.07 39.07 54.14 27.71 42.97 54.29 24.01 30.48 81.74 40.22 74.71 85.77
GVSL† 24.25 63.45 81.38 26.33 59.54 73.27 24.86 41.79 81.87 42.56 77.40 86.98
vox2vec† 32.76 62.30 74.78 34.11 61.99 70.33 35.29 51.77 - 47.21 73.98 86.77
HySparK† 34.50 64.32 85.58 37.54 73.60 82.35 35.81 51.54 - 58.81 83.95 88.74
VoCo† 55.81 73.34 84.44 57.66 78.84 83.12 73.20 77.85 83.85 67.12 83.87 88.70
MedGMAE 58.79 75.65 84.90 62.72 78.72 83.77 66.19 77.11 83.22 70.92 83.91 89.15

of 1.5mm×1.5mm× 1.5mm using trilinear interpolation. The Hounsfield Unit (HU) values are then
clipped to the range [-175, 250]. Finally, the intensity values are normalized to the range [0, 1].

Downstream datasets. For segmentation tasks, we conduct experiments on four public datasets:
AMOS (Ji et al., 2022), FLARE’22 (Ma et al., 2024), BTCV (Landman et al., 2015), and SegTHOR
(Lambert et al., 2020), with official training-validation split with 1%, 10% and 100% proportions.
Medical image classification tasks are conducted on the CT-RATE dataset (Hamamci et al., 2024)
with official data partition. For registration tasks we perform experiments on IXI (Kim et al., 2021)
and OASIS (Marcus et al., 2007) with same data split as (Wu et al., 2024a). Also, CT reconstruction
experiments are conducted on the low-dose Chest and Abdomen CT: AAPM-Mayo dataset (Moen
et al., 2021).

Ground Truth GVSL HySparK SUPMAE UniMiSS VoCo Ours

Figure 3: Visualization of one-shot segmentation results for AMOS (row 1), FLARE’22 (row 2) and
SegTHOR (row 3).

4.2 IMPLEMENTATION DETAILS

For pre-training, we sample the pre-training volumes into 96 × 96 × 96 patches using RandCrop-
ByPosNegLabeld with 3 crops per volume. We use the AdamW optimizer, an initial learning rate of
1e-5, and a cosine-annealing scheduler for all experiments. The pre-training uses a batch size of 8
and trains the model for about 100K steps. All experiments use a fixed random seed of 41 to ensure
reproducibility. We evaluate our method using task-specific metrics: Dice Similarity Coefficient
(DSC) for segmentation, Area Under the Curve (AUC) for classification, DSC for registration, and
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) for reconstruc-
tion tasks.
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Table 2: Performance comparison on CT-RATE
dataset for classification task. The AUC (%) is
shown. val (bold) / val (underline) : top method
/ second method. † denotes official pre-training
weights.

Method AUC

Scratch UNETR 71.43
SwinUNETR 74.29

Fine-tuning

VoCo-10K† 72.11
VoCo-
160K†

76.02

SUP† 76.04
MedGMAE 76.40

Table 3: The DSC(%) of registration on IXI and
OASIS datasets. ‡ denotes the results are copied
from VoCo Wu et al. (2024a). The best results
are in bold.

Method IXI OASIS
Training From Scratch
VoxelMorph† 71.5 78.6
TransMorph† 74.5 81.6
SwinUNETR† 72.6 81.8
Fine-tuning
SUP† 67.7 81.5
SuPreM† 72.9 81.2
VoCo† 73.6 84.4
MedGMAE 73.7 85.7

For downstream transfer tasks, we adopt UNETR (Hatamizadeh et al., 2022) as the baseline network
followed as (Chen et al., 2023; Tang et al., 2024). For segmentation task, all the pre-processing
strategies are the same as (Tang et al., 2022b). For classification task, We resample the volume to
1.5 × 1.5 × 3.0 mm, clip the HU range to [−1000, 1000] and rescale it to [0, 1]. The volume size
is set to be 192 × 192 × 96. The model is trained for 100 epochs with a batch size of 96, using
AdamW as the optimizer with a learning rate of 3e-2 and weight decay of 0.05. For registration
task, our registration algorithm based on TransMorph (Chen et al., 2022) and all the registration pre-
processing and training strategies are the same as (Wu et al., 2024a). All experiments are conducted
on NVIDIA H20 GPUs.

For CT reconstruction task, we follow the experimental setup of (Li et al., 2025). The key difference
is that FBP reconstruction results are cropped using non-overlapping sliding windows and fed into
MedGMAE as input. The output Gaussian parameters undergo volume rendering and are concate-
nated back to original size. To reduce FBP artifact interference, we conduct experiments with 80,
120, and 160 projections. All experiments are trained for 15,000 iterations on Nvidia 3090 GPUs.
We evaluate the original 3DGR, 3DGR with MedGMAE initialization, and 3DGR with MedGMAE*
initialization using training time, iterations required to reach PSNR=35 and SSIM=90%, and final
PSNR and SSIM after complete training.

Comparison with state-of-the-art methods. We select both general and medical self-supervised
learning methods for comprehensive comparison. Following (Wu et al., 2024b), we select UNETR
(Hatamizadeh et al., 2022), SwinUNETR (Tang et al., 2022a) as compared baseline model. For
segmentation tasks, we compare against prominent masked image modeling (MIM) methods, in-
cluding MAE (He et al., 2022; Chen et al., 2023) and SparK Tian et al. (2023), under identical
experimental settings. Additionally, we select nine recent and well-known self-supervised methods:
Models Genesis (MG) (Zhou et al., 2021), TransVW (Haghighi et al., 2021), UniMiSS (Xie et al.,
2022a), Swin UNETR Pretrained method (SUP) (Tang et al., 2022a), PCRLv2 (Zhou et al., 2023a),
GVSL (He et al., 2023), vox2vec (Goncharov et al., 2023), HySparK (Tang et al., 2024), and VoCo
(Wu et al., 2024b). For registration tasks, we compare against methods trained from scratch, in-
cluding VoxelMorph (Balakrishnan et al., 2019), TransMorph (Chen et al., 2022), and SwinUNETR
(Hatamizadeh et al., 2021), as well as methods with pre-training such as SUP (Tang et al., 2022b),
SuPreM (Li et al., 2024b), and VoCo (Wu et al., 2024b). To ensure fair comparison, we utilize of-
ficial implementations and loaded official pre-trained weights for all medical SSL methods before
fine-tuning.

5 RESULTS

5.1 PROMISING DOWNSTREAM TRANSFER RESULTS

Medical image segmentation. Following previous work, we fine-tuned pre-trained models using
1%, 10%, and 100% of the training data on AMOS, FLARE’22, BTCV, and SegTHOR datasets,
respectively. The segmentation results are presented in Table 1. MedGMAE achieves the best or
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Table 4: Comprehensive reconstruction comparison across different projection views. 3DGR refers
to the initialization method employed in the original paper Li et al. (2025), whereas MedGMAE and
MedGMAE* indicate initialization using Gaussian points estimated through zero-shot inference by
our proposed model. Values are reported as mean ± standard deviation. The best results are in bold.

Method Time(min) iter(P=35) iter(S=90%) PSNR(full) SSIM(full)
80 projections

3DGR 397±39.5 1670±371.6 1140±145.7 44.6±1.19 98.4±0.32

MedGMAE 303±30.9 1135±95.0 1100±102.5 43.9±1.01 97.5±0.51

MedGMAE* 251±19.8 990±137.5 820±60.0 44.1±0.97 98.0±0.38

120 projections
3DGR 507±47.8 1660±382.6 1150±206.5 45.2±1.49 98.7±0.32

MedGMAE 357±22.0 1040±91.7 980±60.0 46.2±1.17 98.5±0.29

MedGMAE* 335±20.4 920±74.8 780±32.0 45.8±1.15 98.7±0.27

160 projections
3DGR 594±140.5 1711±449.8 1137±211.8 45.1±1.53 98.7±0.34

MedGMAE 373±20.5 1055±85.7 967±69.9 46.8±1.36 98.7±0.25

MedGMAE* 388±36.6 960±96.8 780±33.1 45.8±1.39 98.7±0.21

second-best DSC scores among all compared methods across different data regimes. Notably, our
method demonstrates particularly strong performance in low-data scenarios, outperforming the pre-
vious best method VoCo by 2.98% and 5.06% on AMOS and FLARE’22, respectively, with 1%
data. Compared to training from scratch baselines Hatamizadeh et al. (2022; 2021), our pre-trained
MedGMAE demonstrates substantial improvements, with gains of 20-35% in 1% data scenarios
across all datasets. Even with full training data, pre-training consistently provides meaningful im-
provements of 2-8% over the corresponding from-scratch methods. These results demonstrate that
our method could learn a strong anatomical representation by using Gaussian representation. Fig. 3
shows the visualization results.

Medical image classification. Table 2 presents the performance comparison on the CT-RATE
dataset. Compared to training from scratch, MedGMAE shows substantial improvements over
the best scratch-trained baseline Swin-Bv2 by 2.11%. Among pre-trained methods, MedGMAE
surpasses the previous best performers VoCo-160K and SUP by 0.38% and 0.36% respectively,
demonstrating the effectiveness of our pre-training approach.

Medical image registration. Table 3 presents the DSC performance comparison on IXI and OA-
SIS datasets for medical image registration tasks. MedGMAE achieves the best performance on
OASIS and competitive results on IXI. Compared to the best scratch-trained baselines, our method
provides substantial improvements of 1.1% on IXI and 3.9% on OASIS. Among pre-trained meth-
ods, MedGMAE outperforms the previous state-of-the-art VoCo by 1.3% on OASIS, confirming the
effectiveness of our pre-training approach for medical image registration tasks. It worth noting that
both IXI and OASIS are from unseen MRI modality, which demonstrates the generalization ability
of MedGMAE.

5.2 GEOMETRY-AWARE ZERO-SHOT INITIALIZATION FOR 3DGS-BASED MEDICAL IMAGE
RECONSTRUCTION

As shown in Table 4 and Fig. 4, MedGMAE demonstrates significant acceleration in training con-
vergence across all projection settings. For training efficiency, MedGMAE reduces training time
by 31.0%, 35.0%, and 37.2% compared to 3DGR baseline with 80, 120, and 160 projections re-
spectively. More importantly, MedGMAE substantially accelerates convergence speed, requiring
39.4% and 28.1% fewer iterations to reach PSNR=35 and SSIM=90% benchmarks on average. The
residual-extended MedGMAE* further improves convergence performance, achieving even faster
iteration counts for quality thresholds while maintaining comparable final reconstruction quality.
These results demonstrate that our pre-training approach significantly enhances training efficiency
for 3D Gaussian representation-based CT reconstruction without compromising final image qual-
ity. Statistical analysis using t-tests revealed that our proposed MedGMAE initialization methods
significantly outperformed 3DGR (p < 0.001) in traiing efficiency.
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Med
GMAE

Med
GMAE*

3DGR

500 900 3.4k 15k

Figure 4: CT reconstruction convergence analysis on AAPM-Mayo dataset. Top: Average PSNR
curves with standard error bands showing reconstruction quality improvement over training itera-
tions for different methods. Bottom: Visual comparison of reconstructed CT slices at 500, 900, 3.4k,
and 15k iterations for MedGMAE, MedGMAE*, and 3DGR methods, demonstrating the faster con-
vergence and superior reconstruction quality of our approaches.

5.3 ABLATION STUDY

Table 5 presents the ablation study results on MedGMAE components across three segmentation
datasets. Adding voxel-based SSL provides substantial improvements of 6-12% over the baseline.
Our proposed Gaussian-based SSL further enhances performance by 1-2% compared to voxel-based
approaches, confirming the superiority of 3D Gaussian representation over voxel-based reconstruc-
tion.

Table 5: Transfer ablation on MedGMAE. The DSC (%) is reported.
Proxy SSL AMOS FLARE’22 SegTHORVoxel Gaussian

77.02 70.81 85.82
✓ ✓ 83.61 82.56 88.52

✓ ✓ 84.90 83.77 89.15

6 CONCLUSION

In this paper, we present MedGMAE, a novel self-supervised pre-training framework that replaces
voxel-level reconstruction with 3D Gaussian representation. Leveraging the more efficient and con-
tinuous 3D Gaussian primitives, MedGMAE achieves promising encoder transfer performance on
diverse downstream tasks including segmentation, classification, and registration. Besies, the trans-
ferable decoder enables a 1.39× acceleration compared to original 3DGR-CT reconstruction meth-
ods. Extensive experimental results demonstrate the effectiveness of MedGMAE across multiple
medical imaging applications. However, in CT reconstruction tasks, the result are affected by noise
from FBP reconstruction, which could be improved by training a multi-view 3D Gaussian founda-
tion model.
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7 APPENDIX

7.1 THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed solely to improve the clarity and readability of the
manuscript. They were not involved in the conception of the study, the design or execution of
experiments, the analysis or interpretation of results, or any other scientific aspect of this work.

7.2 ETHICS STATEMENT

This work involves the analysis of human CT scan data exclusively sourced from publicly available
datasets. We acknowledge that the representativeness and potential biases present in these public
datasets may influence the fairness and generalizability of our proposed model. We encourage fu-
ture work to validate our methods on more diverse and representative datasets to ensure equitable
healthcare outcomes. All datasets used in this study were previously collected with appropriate ethi-
cal approvals and consent procedures as documented by the original data contributors. Beyond these
considerations, we have identified no additional ethical conflicts or concerns related to this research.

7.3 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made the following efforts: All architectural
details, hyperparameters, and training procedures for our proposed method are comprehensively de-
scribed in Section 3.2 and Section 4.2 of the main paper. For comparative baseline results, we have
directly reported performance metrics from the original publications to avoid potential inconsisten-
cies that may arise from reimplementation differences, with proper citations provided throughout.
Upon acceptance of this paper, we commit to releasing the complete source code, including training
scripts, model implementations, and evaluation, to facilitate full reproducibility of our results.

7.4 NETWORK ARCHITECTURE CONFIGURATION

Encoder Architecture (ViT Large)

Our MedGMAE employs a Vision Transformer (ViT) Large configuration as the encoder backbone.
The detailed specifications are presented in Table 6.

Table 6: ViT Large Encoder Configuration Details
Component Configuration
Embedding Dimension 1536
Number of Attention Heads 16
Number of Transformer Layers 12
MLP Ratio 4.0
Patch Size 16× 16× 16 or 12× 12× 12
Input Image Size 96× 96× 96
Number of Patches 512 (for 123) or 216 (for 163)
Dropout Rate 0.0
Attention Dropout Rate 0.0
Drop Path Rate 0.1

The encoder processes 3D medical images through the following pipeline:

Decoder Architecture (Lightweight Design)

The decoder employs a lightweight Transformer architecture optimized for Gaussian parameter pre-
diction, as detailed in Table 7.

Decoder Input Token Composition
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Table 7: Gaussian Decoder Configuration Details
Component Configuration
Embedding Dimension 528
Number of Attention Heads 16
Number of Transformer Layers 8
MLP Ratio 4.0
Number of Gaussian Query Tokens 512
Encoder-to-Decoder Projection 1536 → 528 Linear Layer
Dropout Rate 0.0
Attention Dropout Rate 0.0
Drop Path Rate 0.1

The decoder processes a carefully constructed sequence of tokens:

Xdec = {xcls} ∪ {qj}512j=1 ∪ {xi}ni=2 (5)

where:

• xcls: Class token from encoder (1 token)
• {qj}512j=1: Gaussian query tokens (512 tokens)

• {xi}ni=2: Remaining visible patch tokens (127 tokens for 75% masking)

Total decoder input length: 1 + 512 + 127 = 640 tokens.

7.5 GAUSSIAN PARAMETER PREDICTION HEADS

Four Specialized Prediction Heads

Each Gaussian is parameterized by an 11-dimensional vector comprising position, scale, rotation,
and intensity. Four specialized linear heads predict these parameters:

Table 8: Gaussian Parameter Prediction Head Specifications
Parameter Dimension Activation Range Bias Init

Position (µ) 3 Sigmoid [0, 1]3 0.0
Scale (s) 3 Sigmoid [0, 1]3 -1.386
Rotation (ϕ) 4 L2 Normalize Unit Quaternion 0.0
Density (α) 1 Sigmoid [0, 1] -0.405

Custom Initialization Strategy

To ensure balanced parameter distributions across spatial dimensions, we employ specialized ini-
tialization:

Position Head: W ∼ U(−
√
6/d,

√
6/d), b = 0 (6)

Scale Head: W ∼ U(−
√
6/d,

√
6/d), b = −1.386 (7)

Rotation Head: W ∼ U(−
√
6/d,

√
6/d), b = 0 (8)

Density Head: W ∼ U(−
√
6/d,

√
6/d), b = −0.405 (9)

The bias initialization ensures reasonable starting distributions:

• Scale bias of -1.386 results in σ(−1.386) ≈ 0.2 after sigmoid activation
• Density bias of -0.405 results in σ(−0.405) ≈ 0.5 after sigmoid activation
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7.6 DIFFERENTIABLE GAUSSIAN RENDERING ALGORITHM

CUDA Implementation Details

Our CUDA implementation employs several optimization strategies:

CUDA Gaussian Rendering Kernel [1] Gaussian parameters {µi, si,ϕi, αi}Ni=1 Grid points
{xj}Mj=1, Pixel mask M Rendered intensity grid I Initialize shared memory buffers for covariance
matrices and centers gaussian idx = atomicAdd(work counter, 1) < N Load Gaussian parameters
into shared memory Compute bounding box using 2σ rule: expandd = 2.0 × si,d × grid sized
for d ∈ {x, y, z} boundsd = [µi,d − expandd, µi,d + expandd] each voxel xj in bounding box
M[j] = 1 (masked region) Compute ∆x = xj − µi Compute power = −0.5∆xTΣ−1

i ∆x
intensity = αi exp(power) atomicAdd(I[j], intensity)

Sparse Rendering Optimization

For masked regions, we implement sparse rendering that only computes intensities for required
pixels:

[h!] Sparse Gaussian Rendering [1] Sparse grid points {xj}Mj=1 (only masked pixels) Gaussian
parameters {µi, si,ϕi, αi}Ni=1 Sparse intensity values {Ij}Mj=1 each sparse point j in parallel Ij = 0
each Gaussian i Check if point xj within 2σ bounds of Gaussian i within bounds Compute intensity
contribution and add to Ij

This sparse approach reduces computational complexity from O(N ×H ×W ×D) to O(N ×M)
where M is the number of masked pixels (typically 0.75×H ×W ×D).

7.7 TRAINING CONFIGURATION

The training parameters are shown in Table 9.

Table 9: Training Hyperparameters
Parameter Value
Batch Size 8
Learning Rate 1× 10−5

Weight Decay 0.05
Optimizer AdamW
Learning Rate Schedule Cosine Annealing
Warmup Steps 2000
Max Training Steps 100000
Gradient Clipping 1.0

Gaussian Parameters
Number of Gaussians 512
Maximum Scale 0.5
Temperature (τ ) 0.5

7.8 ADDITIONAL EXPERIMENTAL RESULTS

Downstream Classification Performance on CT-RATE Dataset

CT Reconstruction Performance Analysis

Figure 6 demonstrates the superior performance of MedGMAE in accelerating CT reconstruction
convergence. Our method shows significant improvements across different projection views (80,
120, and 160 projections), with MedGMAE achieving faster convergence and better reconstruction
quality compared to the baseline 3DGR method.
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Figure 5: Classification performance comparison on CT-RATE dataset. The radar charts show the
Area Under Curve (AUC) scores for different disease categories.
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Figure 6: CT reconstruction performance comparison across different projection views. Top row
shows PSNR convergence, training time, iterations to reach PSNR=35dB, and iterations to reach
SSIM=90%. Bottom row presents the convergence curves and visual reconstruction quality at dif-
ferent iteration stages (500, 900, 3.4k, 15k iterations) for MedGMAE, MedGMAE*, and 3DGR
methods.

7.9 HYPERPARAMETER SENSITIVITY ANALYSIS

To address concerns about parameter selection and validate the robustness of our approach across
different configurations, we conduct systematic ablation studies on two critical hyperparameters:
mask ratio and Gaussian primitive count.
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Table 10: Ablation study on pre-training mask ratio for Segmentation tasks. All models use K=512
Gaussian points. rL2 error is computed on reconstruction quality. AMOS and SegTHOR show
segmentation Dice scores (%). The best results are in bold.

Mask Ratio rL2 error AMOS(100%) SegTHOR(100%)

25% 0.0031 80.03 86.03
50% 0.0068 79.01 86.00
75% 0.0117 84.90 89.15
85% 0.0147 85.17 89.17

Table 11: Ablation study on pre-training Gaussian Numbers (K) for Segmentation tasks. All models
use pre-training mask ratio of 75%. rL2 error is computed on reconstruction quality. AMOS and
SegTHOR show segmentation Dice scores (%). The best results are in bold.

K rL2 error AMOS(100%) SegTHOR(100%)

256 0.0143 79.99 85.82
512 0.0117 84.90 89.15
768 0.0144 79.33 85.40
1024 0.0137 78.87 85.89

Table 12: Ablation study on pre-training mask ratio for zero-shot inference reconstruction. All
models use K=512 Gaussian points. Values are reported as mean ± standard deviation. The best
results are in bold.

Mask Ratio Time(min) iter(P≥35) iter(S≥90%) PSNR(full) SSIM(full)

25% 541.5±60.3 1250.0±158.1 1050.0±70.7 44.6±2.02 98.4±0.39

50% 572.4±38.2 1220.0±122.9 1040.0±51.6 45.3±1.31 98.5±0.30

75% 357.0±22.0 1040.0±91.7 980.0±60.0 46.2±1.17 98.5±0.29

85% 545.9±56.3 1050.0±85.0 1000.0±47.1 46.0±1.36 98.3±0.38

Table 13: Ablation study on pre-training Gaussian Numbers (K) for zero-shot inference reconstruc-
tion. All models use pre-training mask ratio of 75%. Values are reported as mean ± standard
deviation. The best results are in bold.

K Time(min) iter(P≥35) iter(S≥90%) PSNR(full) SSIM(full)

256 498.8±52.9 1220.0±113.5 1080.0±91.9 45.8±1.44 98.4±0.48

512 357.0±22.0 1040.0±91.7 980.0±60.0 46.2±1.17 98.5±0.29

768 488.4±49.8 1140.0±107.5 1040.0±69.9 45.1±0.99 98.3±0.32

1024 546.7±78.7 1070.0±133.7 920.0±63.2 45.2±1.20 98.5±0.34

Effect of Mask Ratio. Tables 10 and 12 jointly investigate the impact of mask ratio on both down-
stream transfer learning and zero-shot CT reconstruction capabilities. We evaluate four mask ratios
(25%, 50%, 75%, 85%) while fixing the number of Gaussian primitives at K=512.

For downstream segmentation tasks (Table 10), the reconstruction quality, measured by recon-
struction L2 (rL2) error on masked regions, naturally degrades as the mask ratio increases—from
0.0031 at 25% to 0.0147 at 85% masking. However, downstream performance on both AMOS and
SegTHOR tells a different story: segmentation scores improve significantly from 25% to 75% mask-
ing (AMOS: 80.03%→84.90%, SegTHOR: 86.03%→89.15%), then plateau at 85%. This trend
demonstrates that higher mask ratios force the model to learn more robust and generalizable repre-
sentations rather than merely memorizing local patterns. Notably, while lower mask ratios (25%,
50%) achieve better reconstruction metrics, they fail to learn representations that transfer effectively
to downstream tasks.

For zero-shot CT reconstruction (Table 12), 75% masking achieves the best overall balance:
it requires significantly shorter training time and fewer iterations to reach quality thresholds
(PSNR≥35dB and SSIM≥90%) compared to lower mask ratios, while maintaining competitive fi-
nal reconstruction quality (PSNR: 46.2±1.17, SSIM: 98.5±0.29). Lower mask ratios require longer
training despite achieving marginally better final metrics, suggesting they learn less efficient initial-
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ization priors. The 85% mask ratio converges slightly faster to SSIM≥90% but results in lower final
quality, indicating potential under-training of the decoder during pre-training. These results consis-
tently demonstrate that 75% masking provides the optimal balance across both transfer learning and
reconstruction tasks, aligning with findings in natural image MAE methods.

Effect of Gaussian Primitive Number. Tables 11 and 13 examine how the number of Gaussian
primitives K affects both transfer performance and reconstruction initialization. We test four config-
urations (K = 256, 512, 768, 1024) while maintaining the 75% mask ratio.

For downstream segmentation (Table 11), reconstruction quality (rL2 error) shows relatively sta-
ble performance across different K values (0.0137–0.0144), suggesting that even moderate numbers
of Gaussian primitives can adequately capture volumetric anatomy. However, downstream perfor-
mance exhibits a clear preference for K=512, achieving the best results on both AMOS (84.90%) and
SegTHOR (89.15%), outperforming both smaller and larger configurations. This non-monotonic re-
lationship suggests that K=512 provides an optimal balance: sufficient capacity to model anatomical
complexity without introducing excessive parameters.

For zero-shot CT reconstruction (Table 13), K=512 consistently demonstrates superior efficiency
and quality: it achieves the fastest training convergence and reaches quality thresholds with
fewer iterations, while delivering the best final reconstruction metrics (PSNR: 46.2±1.17, SSIM:
98.5±0.29). Smaller configurations (K=256) require longer training and more iterations despite
achieving similar final quality, suggesting insufficient geometric prior learning. Larger configura-
tions (K=768, 1024) also show degraded efficiency despite having more representational capacity.
This counter-intuitive result indicates that excessive Gaussian primitives may introduce redundancy
and optimization challenges that outweigh the benefits of increased capacity. The superior per-
formance of K=512 across both tasks confirms that our method has learned an effective balance
between geometric expressiveness and computational efficiency.

Key Findings. These comprehensive ablation studies validate our design choices and demonstrate
the robustness of MedGMAE across different configurations for the datasets that we used during
experiments: (1) The 75% mask ratio consistently emerges as near optimal for both transfer learning
and zero-shot reconstruction, balancing reconstruction quality with learned representation quality;
(2) ”K=512 Gaussian primitives” provides the best efficiency-performance trade-off, avoiding both
under-parameterization and over-parameterization; (3) Our method’s performance remains stable
within reasonable hyperparameter ranges.

7.10 RADIAL POWER SPECTRUM ANALYSIS

Frequency-Domain Analysis. We performed comprehensive spectral analysis on 50 volumes from
the BTCV dataset. For each volume: (1) Ground Truth spectrum: 3D FFT followed by radial
binning into 80 frequency bins (normalized frequency range 0-0.5); (2) Voxel MAE reconstruc-
tion: obtained using our pre-trained voxel-based masked autoencoder via sliding window inference
(ROI: 963, overlap: 0.5); (3) Gaussian MAE reconstruction: obtained using our pre-trained Gaus-
sian decoder with differentiable splatting-based rendering. All volumes were center-cropped or
zero-padded to 963 resolution before FFT computation to ensure consistent frequency binning. We
visualized average power spectral density across 10 randomly selected samples with ±1 standard
deviation error bands (Fig. 7), and computed spectral L2 distance averaged across all 50 samples
(Mean: Voxel=0.125±0.015, Gaussian=0.129±0.018, p=0.12, paired t-test).

7.11 ORGAN-SPECIFIC GAUSSIAN PRIMITIVE ANALYSIS

To investigate how our Gaussian-based decoder adapts to different anatomical structures, we ana-
lyzed the distribution of learned Gaussian primitives across major organ types. We selected eight
representative organs from the BTCV dataset covering diverse anatomical characteristics: large solid
organs (liver), hollow organs (stomach), paired organs (kidneys), elongated structures (pancreas),
tubular structures (aorta), and small organs (gallbladder). For each organ, Gaussian primitives were
assigned based on their center positions relative to the ground truth segmentation masks.

Table 14 presents the statistics of Gaussian primitives across 10 validation samples. Several key
observations emerge from this analysis:
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Figure 7: Radial power spectrum comparison across 10 validation samples from BTCV dataset.
Average power spectral density curves for Ground Truth (black), Voxel MAE (red), and Gaussian
MAE (green) are shown with ± standard deviation error bands (shaded regions). Both reconstruction
methods accurately preserve the dominant low-frequency components (ω ≤ 0.3), which contain
over 99% of the spectral energy. In the high-frequency regime (ω > 0.3, marked by the dashed
vertical line), Gaussian MAE demonstrates superior stability with 25% lower variance (std: 0.0031)
compared to Voxel MAE (std: 0.0041), exhibiting smoother spectral decay that more closely follows
the ground truth distribution. This validates that Gaussian splatting-based parameterization naturally
suppresses high-frequency noise artifacts while maintaining anatomical structure fidelity.

Adaptive primitive allocation. The number of Gaussian primitives scales proportionally with organ
volume. The liver, occupying 60.9% of total organ volume, is represented by 1665±747 primitives
on average, while the gallbladder (1.0% volume) requires only 26±16 primitives. This demon-
strates that our decoder automatically allocates representational capacity according to anatomical
complexity without explicit supervision.

Radius adaptation to organ geometry. Mean Gaussian radii vary systematically across organ
types. Small, compact organs like the gallbladder exhibit larger radii (0.153±0.047), enabling ef-
ficient coverage with fewer primitives. In contrast, organs with complex morphology such as the
spleen (0.097±0.031) employ smaller, more granular Gaussians to capture fine-grained structural
details. This self-adaptive behavior emerges naturally from the reconstruction objective without
geometric priors.

Consistent spatial distribution. Notably, the spatial density of primitives (number per mm³, not
shown in table) remains relatively uniform across organs (0.0015–0.0023 primitives/mm³), indicat-
ing that our method does not require higher primitive density for smaller organs. This uniform
coverage suggests that the decoder has learned an efficient and scale-invariant representation strat-
egy.

These findings validate that Gaussian splatting-based decoders learn anatomically meaningful rep-
resentations. The automatic adaptation of primitive count, radius, and intensity to organ-specific
characteristics demonstrates the flexibility of Gaussian parameterization for medical image recon-
struction, without requiring architectural modifications or organ-specific hyperparameters.
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Table 14: Gaussian primitive statistics by organ type across 10 BTCV validation samples. Volume
percentage is relative to total organ volume per sample. Mean radius and intensity values are aver-
aged across all primitives within each organ region.

Organ Volume # Gaussians Mean Radius Mean Intensity
(% of total) (count) (normalized) (0–1)

Liver 60.9% 1665 ± 747 0.128 ± 0.006 0.739 ± 0.052
Stomach 16.6% 502 ± 332 0.117 ± 0.014 0.666 ± 0.109
Spleen 6.3% 134 ± 103 0.097 ± 0.031 0.469 ± 0.079
Right Kidney 4.8% 148 ± 71 0.139 ± 0.013 0.770 ± 0.057
Left Kidney 4.6% 175 ± 73 0.101 ± 0.013 0.514 ± 0.077
Aorta 3.5% 90 ± 109 0.126 ± 0.025 0.753 ± 0.095
Pancreas 2.4% 82 ± 16 0.134 ± 0.020 0.736 ± 0.068
Gallbladder 1.0% 26 ± 16 0.153 ± 0.047 0.704 ± 0.192
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