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ABSTRACT

Knowledge Graph Completion (KGC) mainly devotes to link predicting for an
entity pair in Knowledge Graph (KG) according to known facts. In this work, we
present a novel model for this end. In this model, Quantum and Translation Em-
bedding are used as components for logic and structural feature capturing in the
same vector subspace, respectively. The two components have synergy with each
other and achieve impressive performance at low cost which is close to the effi-
cient model TransE. Surprisingly, the performance on challenging datasets such as
fb15k237 and WN18RR are up to 94.89% and 92.79% in metric Hits@1 while
the dimension of embedding is only 4 in the process of training. The insight of
this work enlightens the notion of dense feature model design for KGC which is
a new alternative to Deep Neural networks (DNN) in this task or even a better
choice.

1 INTRODUCTION

KGs are broadly applied in information retrieval, question answering, recommendation, E-
commerce, etc. They can supply prior knowledge or capability of reasoning, which enables many
applications to be more intelligent. Unfortunately, almost all KGs suffer from incompleteness(West
et al., 2014; Krompaß et al., 2015) which harms downstream tasks. To be specific, some necessary
relations among existing entities are missing, and thus applying such KGs can lead to incorrect re-
sults, which causes applications broken. For this reason, KGC has attracted considerable attention
and effort. Hence, the motivation in this work is manifold. The recent proposed models including
DNN based ones become more complex while the performance of them are still not so promising as
expected. Furthermore, KG is a data with manifold properties such as logic, structural, graphic, etc.
On the contrary, the abundant properties are usually not made full used. As an important property
of this data, logic is underlying the KGs due to they are built in description logic and the things
described in KG is logic. Consequently, logic rules based models are always a kind of very im-
portant research line of KGC. However, this line is somewhat declined in recent years owing to
their inefficient and being weak in generalization. Although some progress is achieved (Niu et al.,
2019; Meilicke et al., 2020), they also introduced DNN and greatly increasing the complexity. The
statistical or probabilistic features of logic in data is well studied (Qu & Tang, 2019; Cheng et al.,
2020).

Roughly, the models involve in logic rules can be attributed to four groups. The first one is logic
mining system used as a reasoning engine such as AMIE(Galárraga et al., 2015), FOIL(Quinlan,
1990), ALEPH(Muggleton, 1995), etc. The second one is logic embedding and this group is usually
based on first order logic, and they are used as a component to improve the performance of model
such as RUGE(Guo et al., 2018). In other words, the embedding model is dominant in these mod-
els. The third group is based on other algebraic methods such as ASP(Nguyen et al., 2018) and a
newly proposed model E2R(Garg et al., 2019). In this group, logic is no longer symbolic but being
projected onto vector space. Furthermore, the latter models achieved promising performance for
the task of KGC. The fourth group is based on neural networks, the logic feature usually mined as
abstract features by increasing the number of layers or modifying the structure of their networks.
Recent years, DNN achieves great success in many fields. The same thing may occur in the repre-
sentation learning for KGC task, for instance, pLogicNet(Qu & Tang, 2019), pGAT(Vardhan et al.,
2020), AnyBURL (Meilicke et al., 2020) are the models of this kind. Although a little improvement
in performance is achieved, the time and space complexity is also increased at the meantime.
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To alleviate these problems in existing models, a novel model named QLogicE is proposed. It is
an embedding method based on Quantum Logic and Translation Emebedding co-work together, and
then they are adjusted to the same subspace and achieve amazing performance.

2 RELATED WORKS

In this section, Quantum Embedding (QE) based model E2RB and KGE model TransE are the two
components of the proposed model.

2.1 QUANTUM EMBEDDING (QE)

E2R(Garg et al., 2019) is a newly proposed QE approach as a Statistical Relational Learning (SRL)
model for KGC which runs on Quantum Logic (QL). And this approach is claimed with the capabil-
ity of preserving underlying logic structure. It is based on a logic language QL which is proposed to
explain the mechanism of quantum mechanics (Birkhoff & Von Neumann, 1936). This logic is built
on the basis of quantum theory in vector space. E2R keeps the logic with distributive law holding
by constraining the embedding space axis-parallel. Therefore, the vector space is more suitable for
logic features characterizing and KG datasets mining.

In this case, the logic elements can be projected onto vector space. Furthermore, complex number is
proved to be isomorphic to a double dimension real vector space in this case. As a result, the whole
model works in real number space. This idea is coordinate with the distribution representation learn-
ing. This work is not only project the logic atoms, propositions, membership and predicates onto
vector space, but also the logic conjunction, disjunction, negation and even universal type restric-
tion. Consequently, the logic semantic and restriction are mapped into vector space and formulated
as loss function. And then it obtains the solutions learned from known facts.

2.2 KNOWLEDGE GRAPH EMBEDDING (KGE)

Recent years, KGE is a kind of popular models for KGC task. The typical one is TransE(Bordes
et al., 2013) and it is enlightened by word2vec(Mikolov et al., 2013) under additive compositionality
assumption. In this model, the entities and relations are represented as low-dimension vectors and
learning from the KG data to predict new facts unobserved in it. It arouses widespread interest due
to its simplicity and efficiency.

After its putting forward, a series of extensions are developed such as TransH(Wang et al., 2014),
TransR(Lin et al., 2015), TransD(Ji et al., 2015), TransA(Jia et al., 2016), etc. These extensions are
from different aspects to fill the gap between TransE and actual requirement. In TransH, to enable
the model to deal with the relations one to many, many to one and many to many, a hyperplane
is introduced. With the similar notion, TransR introduces a space to overcome the incapability of
handling the three kinds of relations in TransE. TransD is a simplified version of TransR. In this
model, the projection matrix is factorized into two vectors to capture the diversity of features in
relation. However, they suffer from higher cost and relative lower performance.

2.3 COMBINATION OF KGE AND QE

Combining KGE with logic is not a new topic but with QL is. For the former, KALE(Guo et al.,
2016) and RUGE(Guo et al., 2018) combined the KGE and logic rules by enriching the training
dataset to improve the performance of KGC task. Recently, there is a model UniKER(Cheng et al.,
2020) devoting to combining KGE and logic rules more closely. The logic rules are restricted as
Horn rules to explore the logic knowledge for better reasoning. These models are based on mining
statistical features from the logic rules in the form of Horn rules. However, the gathered evidences
are far from containing whole logic semantic in KG data and thus without significant performance
improvements. E2R models logic elements including rules explicitly. Therefore, the whole logic
language runs in a vector subspace. KGE models are also projecting all entities and relations onto
a low dimension vector space. As a result, there is very important in common between them. In
other words, both of them run in vector subspaces. Hence, there is a possibility that adjusts them to
co-work seamlessly.
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3 METHODOLOGY

Our model is composed of binary relation version of quantum embedding(Garg et al., 2019) (E2RB)
and a canonical KGE model TransE(Bordes et al., 2013).

3.1 QUANTUM LOGIC COMPONENT (E2RB)

Representation. QL is an algebraic logic and all its elements are represented in vectors space with
some constraints. On the contrary to Boolean Logic, it is not only binary but also multi-valued. It
runs in the continuous vector space. Furthermore, this model is devised not only for binary relations
but also unary relations. In this work, only binary relations are considered due to the datasets of
KGC are binary only. As a consequence, it is tailored into a binary version and named E2RB.

The relation is modeled as a 2d-dimension complex vector. For instance, a relation
isFather(Bob, Ann) is represented as risFather = vBob + ıvAnn, where entity vectors
vBob,vAnn ∈ Rd and relation vectors risFather ∈ Cd. For entity alone, taking Bob for instance,
the vector is eBob = vBob+ıv0, where v0 is a d-dimension 0 vector. Similarly, eAnn = v0+ıvAnn.
Due to the 2d-dimension complex apace is isomorphic to vector space C2d. In other words, the rela-
tion vector assumed to be isomorphic to a vector subspace R2d, consequently, there exists a bijection
map F : Cd 7→ R2d. As a result, the entity pair can be represented as eBA =

(
vBob
vAnn

)
. Formally,

for a fact, the head entity, relation and tail entity vector are represented as er =
(
vh
vt

)
, eh =

(
vh
0

)
,

et =
(

0
vt

)
, where er, eh, et ∈ R2d and vh,vt ∈ Rd.

Score for Logic As mentioned above, the datasets only involve in binary relations. Therefore, only
these relations are modeled, and the score function is as follows according to the vectors of every
proposition and its negation are orthogonal with each other.

fE2RB = ‖(1− er) · er‖p (1)

where p is the kind of vector norm, that is p ∈ {`1, `2}, p = `1 here.
Loss for Logic To keep the projection running properly, there are some constrains to be satisfied.

Lh =

∥∥∥∥er �
(

1d

0d

)∥∥∥∥2 ,Lt =

∥∥∥∥er �
(

0d

1d

)∥∥∥∥2 (2)

The Equation 2 ensures the entity vectors learning into expecting form and the similar reason for
relation vector as follows.

Lri =

(
min

{
0, I>ri

(
0d

1d

)
− 1

})2

+

(
min

{
0, I>ri

(
1d

0d

)
− 1

})2

(3)

where Iri is an indicator. Due to the dimension of it is 2d, Iri = 12d is true. To ensure it is a binary
relation and Iri to be as close 12d as possible, the loss term has to meet with

LIi =
∥∥Iri � Īri

∥∥2 (4)

where Īri is the bit flipped version of Iri , that is, Iri + Īri = 12d. For membership (i.e. Lri∈R,
this means ri is a relation included in the relation set R of KG.), the loss term constructed via the
residual length of the projection. This relation is multi-hop one, that means this model contains
multi-hop relations via projection of the entity and relation onto vector space and learns it via the
loss term Equation 5.

Lri(h,t) =
∥∥Īri � er

∥∥2 +

(
1>2d

(((
1d 0d

0d 1d

)
Īri

)
� er

))2

+
(
1− e>h et

)2
+

∥∥∥∥(0d

1d

)
� er − eh

∥∥∥∥2 +

∥∥∥∥(1d

0d

)
� er − et

∥∥∥∥2 (5)

For logic inclusion, it is one relation between other two relations. In this sense, it may be also
multi-hop relation and the loss term can be formulated as follows.

Lrivrj =
∥∥Iri � Īrj

∥∥2 (6)
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For logic conjunction and disjunction, these are very important relations in logic, and so they are
latent in KG data. The loss terms can be devices as

L(ri=rjurk) =
∥∥Iri − Irj � Irk

∥∥2 L(ri=rjtrk) =
∥∥Iri −max(Irj , Irk)

∥∥2 (7)

and logic negation is also a category of relation between relations in KG and the loss term is

L(ri=¬rj) =
(
I>riIrj

)2
+

(̄
I>ri Īrj

)2
(8)

then the loss terms are added together to learn the logic features latent behind the symbolic KG data
via vector operations.

LpE2RB = Lh +Lt +Lri +Lri∈R+LIr +Lrivrj +L(ri=rjurk) +L(ri=rjtrk) +L(ri=¬rj) (9)

Although the paper(Garg et al., 2019) also pointed out that the universal type restriction could be
expressed. It is ignored due to it involves in unary relations. To avoid subspace collapsing, two
regular terms are formulated. Owing to there exists both logic negation and universal type restriction
in the datasets, they are also ignored accordingly. Furthermore, the negative sample loss LnE2RB is
also computed similar LE2RB . Finally, the loss function of logic semantic is

LE2RB = max{0, γ + LpE2RB + LnE2RB} (10)

3.2 KNOWLEDGE GRAPH EMBEDDING COMPONENT (TRANSE)

TransE is not the only choice for KGE component, and any other KGE model are candidates and the
representations, score functions and loss functions should be adapted, accordingly.
Presentation. In this model, for a fact, the head entity, relation and tail entity vector represented as
h, r, t ∈ R2d, respectively.
Score for KGE Every entity and relation are project to a vector space, according the additive com-
positionality assumption for word embedding(Mikolov et al., 2013), the positive sample score is
devised

fTransE = ‖h + r− t‖p (11)

It is known that, KG data is not including negative samples.
Loss for KGE (TransE) Due to the KGE model TransE is chosen for simplicity, the loss function
of it can be formulated as

LTransE = max{0, γ + fTransE + f ′TransE} (12)

3.3 QLOGICE

Representation. Because of the E2RB and TransE model representing entity and relation according
to different theories, every fact is represented in the corresponding form. Thus, they have to be han-
dled and coordinated with each other. This causes space complexity increasing in reasonable scale.
Score for QLogicE The final score is the result of the weighted sum of the two score functions.

fQLogicE = fE2RB + λsfTransE (13)

where λs is the weight of fTransE , it is used for adjusting the score value to suitable scale for
fE2RB .
Loss for QLogicE. Loss function is composed of several loss terms according to conditions they
have to satisfy. They are the components of objective function. This function drives the training
process convergence to reasonable value. They are also the reflection of the notions behind the
whole model. It is known that, there is no negative sample in KG. To improve the generalizing
capacity of the model, usually corrupting the positive samples to obtain negative ones which follows
the paradigm of TransE(Bordes et al., 2013).

The loss function of QLogicE is also a weighted sum of the loss functions of E2RB and TransE.

LQLogicE = LE2RB + λlLTransE (14)

where λl is the weight ofLTransE . The results of the model are sensitive to this value. The objective
of training is to minimize the loss function LQLogicE .
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4 EXPERIMENTS

To empirically evaluate the model proposed for the KGC task, link prediction experiments on the
widely used datasets are conducted. Furthermore, the proposed model shows good complexity per-
formance, and this point is also verified by further experiments.

4.1 DATASETS

There are seven widely used datasets to be tested. However, three results of them thought to be more
challenging shows in the paper, and the left are in appendices. FB15K237 is a subset of FB15K. In
paper(Toutanova & Chen, 2015), the author believed that FB15K was test leakage for some models
which get negative samples by swapping head entity with tail entity. Therefore, the inverse relations
in the dataset were deleted to avoid testing leakage. It is usually considered to be more challenging
than FB15K. WN18RR is the subset of WN18 for the same reason by similar operating(Dettmers
et al., 2018). And then this dataset becomes widely used dataset for evaluating the capacity of
new proposed models. Together with FB15K237, they become more popular for evaluating new
devised models. YAGO3-10 is the subset of real world KG YAGO 1 and it was selected in work
(Mahdisoltani et al., 2015). This is a multiple language KG and based on Wikipedias. It is used for
KGC evaluation task in(Dettmers et al., 2018).

Table 1: The statics of datasets and parameters for the best performance on them.

Dataset Entity Relation Train Valid Test Triple Parameters

d b µ γ λs λl

Kinships 104 25 8,544 1,068 1,074 10,686 4 2,848 0.1 2 0.1 3
UMLS 135 46 5,216 652 661 6,529 4 2,500 0.2 2 0.2 2
FB15k 14,951 1,345 483,142 50,000 59,071 592,213 4 219,610 0.05 2 0.2 2
WN18 40,943 18 141,442 5,000 5,000 151,442 4 141,442 0.1 2 0.1 2
FB15k237 14,505 237 272,115 17,535 20,466 310,116 4 90,705 0.1 2 0.1 2
WN18RR 40,943 11 86,835 3,034 3,134 93,003 4 86,835 0.2 2 0.1 2
YAGO3-10 123,182 37 1,079,040 5,000 5,000 1,089,040 4 359,680 0.1 2 0.1 2

4.2 EXPERIMENTAL SETUP

4.2.1 RUNNING ENVIRONMENT AND EXPERIMENTAL SETUP

The algorithm QLogicE is implemented by Python 3.7.6 with PyTorch 1.1.0 on operating system of
Ubuntu 18.04. The code is trained with Stochastic Gradient Descent (SGD) with Adam algorithm.
The hardware is a computer with an Intel Core i5-3350P CPU that has 8 cores with a 2.30 GHz main
frequency and 12 GB RAM. GPU is Nvidia GeForce GTX 1080Ti. The code can be found at site 2.

4.2.2 HYPERPARAMETERS

There are mainly six hyperparameters in the proposed model when it trains. d is the dimension of
entity or relation vectors. b is the batch-size in every epoch of training. γ is the margin of ranking
criterion and composed of two parts from the both components. µ is learning rate, which is also
sensitive for the model. These parameters are inherent in the models. Our model introduces the
other two ones. λs is the coefficient of additional score term from KGE model and λl is for loss
term. For the best performance, the parameters are as the Table 1. The running epochs is 1000 for
all datasets in the experiments. Besides, the negative sample ratio is also a parameter that can be set
before running the model. In all experiments, any positive sample corresponding to a negative one.

1http://yago-knowledge.org
2https://github.com/PandaCoding2020/QLogicE
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4.2.3 EVALUATION PROTOCOL

This work mainly report the metrics MRR and Hits@N. The former is short for Mean Reciprocal
Rank. In this paper, Hits@N are including Hits@1 and Hits@10. It is short for the proportion
of correct entities ranked in the top N. To better adapting to the table, it is written as H@N.

4.3 RESULTS AND ANALYSIS

4.3.1 EXPERIMENTAL RESULTS

In this section, the performance of link prediction and its complexity demonstrates in two tables
and a figure, respectively. We only focus on the three challenging datasets and more results refer to
appendices.

4.3.2 LINK PREDICTION

Link prediction is the key task of KGC. The results are analyzed in this section.

Table 2: Results of QLogicE comparing with current state of the art (SOTA). This table demonstrates
the SOTA results of the three main categories. They are neural network, translation and factorization
based models. These results are adapted from the survey(Rossi et al., 2020).

Model FB15k WN18 FB15k237 WN18RR YAGO3-10

M H1 H10 M H1 H10 M H1 H10 M H1 H10 M H1 H10

ConvE 0.688 59.46 84.94 0.945 93.89 95.68 0.305 21.90 47.62 0.427 38.99 50.75 0.488 39.93 65.75
ConvKB 0.211 11.44 40.83 0.709 52.89 94.89 0.230 13.98 41.46 0.249 5.63 52.50 0.420 32.16 60.47
ConvR 0.773 70.57 88.55 0.950 94.56 95.85 0.346 25.56 52.63 0.467 43.73 52.68 0.527 44.62 67.33
CapsE 0.087 1.934 21.78 0.890 84.55 95.08 0.160 7.34 35.60 0.415 33.69 55.98 0.000 0.00 0.00
RSN 0.777 72.34 87.01 0.928 91.23 95.10 0.280 19.84 44.44 0.395 34.59 48.34 0.511 42.65 66.43

TransE 0.628 49.36 84.73 0.646 40.56 94.87 0.310 21.72 49.65 0.206 2.79 49.52 0.501 40.57 67.39
STransE 0.543 39.77 79.60 0.656 43.12 93.45 0.315 22.48 49.56 0.226 10.13 42.21 0.049 3.28 7.35
CrossE 0.702 60.08 86.23 0.834 73.28 95.03 0.298 21.21 47.05 0.405 38.07 44.99 0.446 33.09 65.45
TorusE 0.746 68.85 83.98 0.947 94.33 95.44 0.281 19.62 44.71 0.463 42.68 53.35 0.342 27.43 47.44
RotatE 0.791 73.93 88.10 0.949 94.43 96.020.336 23.83 53.06 0.475 42.60 57.35 0.498 40.52 67.07

DistMult 0.784 73.68 86.32 0.824 72.60 94.61 0.313 22.44 49.01 0.433 39.68 50.22 0.501 41.26 66.12
ComplEx0.848 81.56 90.53 0.949 94.53 95.50 0.349 25.72 52.97 0.458 42.55 52.12 0.576 50.48 70.35
Analogy 0.726 65.59 83.74 0.934 92.61 94.42 0.202 12.59 35.38 0.366 35.82 38.00 0.283 19.21 45.65
SimplE 0.726 66.13 83.63 0.938 93.25 94.58 0.179 10.03 34.35 0.398 38.27 42.65 0.453 35.76 63.16
HolE 0.800 75.85 86.78 0.938 93.11 94.94 0.303 21.37 47.64 0.432 40.28 48.79 0.502 41.84 65.19
TuckER 0.788 72.89 88.88 0.95194.6495.80 0.352 25.90 53.61 0.459 42.95 51.40 0.544 46.56 68.09

QLogicE 0.969 96.93 96.93 0.914 91.42 91.42 0.949 94.89 94.89 0.928 92.79 92.79 0.937 93.74 93.74

Table 2 displays the results on all five datasets. Our method QLogicE outperforms on all of them ex-
cept WN18. Especially, on the datasets FB15k237, WN18RR and YAGO3-10with large margin. To
be specific, on the dataset FB15k237, our model is better than the state of the art 169.60% in MRR,
266.37% in Hits@1 and 77.00% in Hits@10, respectively. Similarly, on the dataset WN18RR, the
counterpart values are 11.43%, 112.19% and 61.80% and dataset YAGO3-10 are 62.67%, 85.70%
and 33.25%.

Table 3 displays the results of performance on the newly proposed logic rules based models. They
are attributed to two groups according the key technology they based on. The first group comes
from the logic rule based research line and most of them are published recently or to be published in
near future. The second group is the newly proposed models. On the dataset FB15k237, our model
is also outstanding, and they outperform the existing model 33.29% in MRR, 221.77% in Hits@1
and 19.21% in Hits@10. On the dataset WN18RR, the counterpart values are 31.82%, 35.86% and
28.34%. On the large dataset YAGO3-10, our model outperforms the best reported metrics 67.32%
in MRR, 89.83% in Hits@1 and 35.07% in Hits@10.
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Table 3: Results of QLogicE comparing with existing logic or rule based models. RPJE(Niu et al.,
2019), pGAT(Vardhan et al., 2020). In this table, the models are newly proposed, ADRL(Wang
et al., 2020), CoPER-MINERVA(CoPER-ConvE)(Stoica et al., 2020), ParamE-CNN(ParamE-MLP,
ParamE-Gate)(Che et al., 2020). The results are adapted from the original papers.

Model FB15k237 WN18RR YAGO3-10

M H@1 H@10 M H@1 H@10 M H@1 H@10

IterE 0.247 17.90 39.20 0.274 25.40 31.40
pLogicNet 0.330 23.10 52.80 0.230 1.50 53.10
pLogicNet∗ 0.332 23.70 52.40 0.441 39.80 53.70
RARL 0.247 17.90 39.20 0.274 25.40 31.40 0.560 48.20 69.30
AnyBURL 0.346 27.34 52.25 0.555 49.24 68.94 0.556 49.38 69.10
RPJE 0.470 62.50
pGAT 0.457 37.70 60.90 0.459 39.50 57.80
UniKER-TransE 0.522 46.30 63.00 0.307 4.00 56.10
UniKER-DistMult 0.533 50.70 58.70 0.485 43.20 53.80

ADRL 0.712 57.40 79.60 0.704 68.30 72.30
CoPER-MINERVA 0.365 29.49 50.39 0.465 42.66 50.99
CoPER-ConvE 0.426 32.18 62.92 0.483 44.05 56.12
ParamE-MLP 0.314 24.00 45.90 0.407 38.40 44.50
ParamE-CNN 0.393 30.40 57.60 0.461 43.40 51.30
ParamE-Gate 0.399 31.00 57.30 0.489 46.20 53.80
InteractE 0.354 26.30 53.50 0.463 43.00 52.80 0.541 46.20 68.70
HAKE 0.346 25.00 54.20 0.497 45.20 58.20 0.545 46.20 69.40
DPMPN 0.369 28.60 53.30 0.485 44.40 55.80 0.553 48.40 67.90

QLogicE 0.949 94.89 94.89 0.928 92.79 92.79 0.937 93.74 93.74

FB15k WN18 FB15k237 WN18RR YAGO3-10 kinships UMLS

TransE 5231 4405 3645 5929 17351 182 114

QLogicE 5017 1785 3210 1119 13762 133 80
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Figure 1: Illustration the comparison of time complexity, and the time unit is second.

4.3.3 COMPLEXITY

Figures 1 demonstrates the comparison of time complexity. The baseline TransE is considered to
be one of simplest and the most efficient in the existing KGC models. For the sake that the best
performance reported in existing papers usually set the dimension of the embedding as 200 recently
and the best of QLogicE is 4, and thus the dimensions of embedding for TransE and QLogicE are set
as 200 and 4, respectively. The results of TransE are from running the code3, `1 norm for datasets
FB15k, FB15k237, YAGO3-10 and the other ones with `2 norm. For QLogicE, the space number

3https://github.com/ttrouill/complex
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is the highest one in the training or testing process. Concerning time-consuming, the proposed
model is obviously less than TransE. Notably, when the score and loss functions are computed in `1
norm, the time is very close to our model and when they are computed in `2 norm for the sake of
better performance, the time is obviously increased and more expensive than our model. The time
contains training and testing two terms. On the contrary, the space consumption of TransE is 33%
to 76% relative to the QLogicE. There exists a trade-off between time and space in this sense.

4.3.4 DENSE FEATURE MODEL AND EMBEDDING DIMENSION

Our model runs on the basis of quantum and translation embedding in a vector subspace. It achieves
promising results both in performance of link prediction and time complexity. Notably, it breaks the
lower bound of the E2R(Garg et al., 2019). We believe that the explicit logic feature modeling is the
key reason for the breakthrough in the KGC task. And the framework is capable of capturing dense
features in unit dimension of embedding which is named dense feature model. The phenomenon
illustrates in Table 1 and Figure 1.

5 CONCLUSIONS AND FUTURE WORKS

In this section, some conclusions can be drawn from the experiments in this section, and further
research works worth doing in the future.

5.1 CONCLUSIONS AND DISCUSSION

From the process of model formulation and experimental results, some conclusions can be drawn,
accordingly. (1) The proposed model improves the performance of KGC task on the widely used and
challenging benchmark datasets, significantly. (2) The proposed model improves performance with
low time complexity and competitive space complexity. (3) The result of FB15k237 and WN18RR
now get close to the datasets of FB15k and WN18 and all performance on the metrics of MRR,
Hits@1 and Hits@10 are over 90%. On the large dataset YAGO3-10, the performance is also up to
93.74%. These promising results are not only better than all existing DNN based models, but also
newly hot spot reinforce learning based ones.

As mentioned above, our model based on E2RB and TransE, these two models are on the basis
of logic and translation, respectively. Embedding couples them together and enable the two com-
ponents synergy with each other by objective function in the process of training. The outstanding
results lead us to insight into the dense feature model can be used as an alternative to DNN for KGC
task. We don’t know whether it can be extended to other type of datasets except KG. Besides, the
logic feature is a very important one lies in KG, deeper mining this kind of feature may also a very
important reason for promising results. The breakthrough of lower bound (Garg et al., 2019) also
needs more work to clarify whether it is caused by the dense feature model.

5.2 FUTURE WORKS

As preciously mentioned, our model is a dense feature one. We believe that it is a very dense
feature model and this is the key reason for the high performance with low cost. It is known that
neural network is universal function for approximating and deep model can capture more abstract
features. However, it increases complexity seriously without expected performance improvements.
As a result, there are some works worth doing: (1) How to measure the terminology of dense feature
model? (2) Why the dimension reduce so much? In fact, it is fewer than the lower bound of
embedding in its original paper acclaimed(Garg et al., 2019). (3) How the two model interact or
co-work with each other and improving the performance so much. (4) How to apply the model to
question answering, recommendation, etc.
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A APPENDIX

A.1 SMALL DATASETS

Kinships were created by Denham(Kemp et al., 2006). It includes anthropological data of relations
from the Central Australia tribe named Alyawarra. It is a typical relational dataset but not a subset
of a real world KG. UMLS was gathered by McCray(McCray, 2003). It is from a special medical
ontology called the Unified Medical Language System4.

Table 4: Results of QLogicE comparing with current state of the art on small datasets. This table
demonstrates the experimental results on the two widely used small datasets. The results are adapted
from the paper(Stoica et al., 2020).

Model Kinship UMLS

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

DistMult 0.614 48.70 90.40 0.868 82.10 96.70
ComplEx 0.838 75.40 98.00 0.894 82.30 99.50
Neural LP 0.619 47.50 91.20 0.778 64.30 96.20
NTP-λ 0.793 75.90 87.80 0.912 84.30 100.00
MINERVA 0.720 60.50 92.40 0.841 75.30 96.70
MultiHop-KG 0.865 78.90 98.20 0.940 90.20 99.20
ConvE 0.830 74.21 97.86 0.954 92.89 99.70
CoPER-MINERVA 0.760 66.20 94.23 0.854 77.76 97.43
CoPER-CovE 0.895 83.62 98.42 0.971 95.46 99.70

QLogicE 0.999 99.91 99.91 0.998 99.77 99.77

Table 4 displays the performance on widely used small datasets. The results show that our model
is also outstanding on them. On the dataset Kinship, our model is better than the best metrics
11.51% in MRR, 19.31% in Hits@1 and 1.46% and on the UMLS the counterpart data is 2.68%,
4.44% and -0.3%. In the case of very close to 100%, our model also better than almost all the
metrics expect Hits@10 on UMLS.

A.2 LARGE DATASETS

FB15K and WN18 were first used in paper (Bordes et al., 2013) to evaluate their model TransE. It
is a subset of the real KG of Freebase 5 and WordNet6, respectively. They are widely used datasets
for evaluating new KGC model.

Table 5 records the data of results in two widely used datasets FB15k and WN18. On the dataset
FB15k, our model outperforms the best reported metrics 0.52% in MRR, 0.55% in Hits@1 and
0.55% and on the WN18 the counterpart data is -3.38%, -3.26% and -4.57%.

4https://www.nlm.nih.gov/research/umls/index.html
5http://www.freebase.be/
6https://wordnet.princeton.edu/
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Table 5: Results of QLogicE comparing with existing logic rules based models. In this table, all
data are from their originally paper. They are KALE(Guo et al., 2016), Neural LP(Yang et al.,
2017), RUGE(Guo et al., 2018), RuleN(Meilicke et al., 2018), E2R(Garg et al., 2019), IterE(Zhang
et al., 2019), pLogicNet(pLogicNet∗) (Qu & Tang, 2019), RARL(Pirrò, 2020), AnyBURL(Meilicke
et al., 2020). The results are adapted from the original papers.

Model FB15k WN18

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

KALE 0.523 38.30 76.20
Neural LP 0.760 83.70 0.940 94.50
RUGE 0.768 70.30 86.50
RuleN 77.20 87.00 94.50 95.80
E2R 0.964 96.40 96.40 0.710 71.10 71.10
IterE 0.628 55.10 77.10 0.913 89.10 94.80
pLogicNet 0.792 71.40 90.10 0.832 71.60 95.70
pLogicNet∗ 0.844 81.20 90.20 0.945 93.90 95.80
RARL 0.628 55.10 77.10 0.913 89.10 94.80
RPJE 0.816 90.30 0.946 95.10

QLogicE 0.969 96.93 96.93 0.914 91.42 91.42

B APPENDIX

B.1 ABLATION STUDY

In Table 6 The proposed model captures dense features from data via the binary relation version of
E2RB co-work with TransE.

Table 6: Results of ablation study. The data of TransE is from (Rossi et al., 2020) and E2R is from
(Garg et al., 2019).

Model FB15k WN18 FB15k237 WN18RR YAGO3-10

M H1 H10 M H1 H10 M H1 H10 M H1 H10 M H1 H10

TransE 0.628 49.36 84.73 0.646 40.56 94.87 0.310 21.72 49.65 0.206 2.79 49.52 0.501 40.57 67.39
E2R 0.964 96.40 96.40 0.710 71.10 71.10

QLogicE0.968 96.84 96.84 0.915 91.48 91.48 0.949 94.94 94.94 0.928 92.79 92.79 0.937 93.74 93.74

Table 6 demonstrates the ablation of the models. The results on datasets FB15k our model slightly
better than the baseline E2R but much better than TransE. For the dataset WN18, only in Hits@10,
the performance of TransE is better than our model QLogicE while the 41.64% in MRR and 125.54%
worse than our model, which is promising progress. The paperGarg et al. (2019) didn’t provide re-
sults on the datasets FB15k237 and WN18RR. For them, our model is better than TransE with
206.13% in MRR,337.11% in Hits@1 and 91.22% in Hits@10 on the former and 350.49% in
MRR,3225.81% in Hits@1 and 87.38% in Hits@10. On the dataset YAGO3-10, the result in MRR,
Hits@1 and Hits@10 is better than TransE with margin of 87.03%, 131.06% and 39.10%, respec-
tively.
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