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Abstract

The field of cultural NLP has recently experi-001
enced rapid growth, driven by a pressing need002
to ensure that language technologies are effec-003
tive and safe across a pluralistic user base. This004
work has largely progressed without a shared005
conception of culture, instead choosing to rely006
on a wide array of cultural proxies. However,007
this leads to a number of recurring limitations:008
coarse national boundaries fail to capture nu-009
anced differences that lay within them, limited010
coverage restricts datasets to only a subset of011
usually highly-represented cultures, and a lack012
of dynamicity results in static cultural bench-013
marks that do not change as culture evolves. In014
this position paper, we argue that these method-015
ological limitations are symptomatic of a the-016
oretical gap. We draw on a well-developed017
theory of culture from sociocultural linguis-018
tics to fill this gap by 1) demonstrating in019
a case study how it can clarify methodolog-020
ical constraints and affordances, 2) offering021
theoretically-motivated paths forward to achiev-022
ing cultural competence, and 3) arguing that023
localization is a more useful framing for the024
goals of much current work in cultural NLP.025

1 Introduction026

Language and culture are closely linked: language027

can be conceptualized simultaneously as an arti-028

fact of culture as well as a process through which029

culture is created (Ochs, 2009). As language tech-030

nologies become increasingly integrated into the031

everyday lives of a diverse set of users, it is im-032

perative that they are robust to cultural differences033

between user bases (Hershcovich et al., 2022).034

Cultural NLP, sometimes also known as cultural035

alignment, is a subfield within the NLP and ML036

communities that has experienced drastic growth037

in recent years to meet this challenge. Work in038

cultural NLP usually involves building or evalu-039

ating systems that 1) have knowledge of cultural040

facts and 2) apply this knowledge appropriately in041

specific situations where cultural knowledge is rel- 042

evant (Adilazuarda et al., 2024; Liu et al., 2024b). 043

This can include building new evaluation bench- 044

marks or fine-tuning datasets that contain cultural 045

knowledge of some kind, either manually (Lee 046

et al., 2024; Koto et al., 2024) or automatically 047

from a large corpus (Shi et al., 2024; Wang et al., 048

2024a), or creating systems that generate culturally- 049

relevant output (Khanuja et al., 2024). 050

Most work relies on various proxies for defining 051

both cultural boundaries and cultural objects. Prox- 052

ies of cultural boundaries commonly include na- 053

tionality, religion, ethnicity, or other demographic 054

features. Proxies for cultural objects might in- 055

clude culture-specific knowlege of foods, values, 056

or norms (Zhou et al., 2024a; Sorensen et al., 2024; 057

Dwivedi et al., 2023). These works constitute an 058

important step forward in understanding how to 059

build fairer, more inclusive language technologies. 060

However, the disparate array of cultural proxies be- 061

ing evaluated is symptomatic of a theoretical gap: 062

to achieve culturally-competent NLP systems, we 063

must make progress towards a clearer, more unified 064

conception of culture, and what it means for the 065

systems we build to be responsive to that. 066

Fortunately, cultural NLP is not alone in the 067

search for a useful notion of culture, and its theo- 068

retical challenges are not new. Dissatisfaction with 069

the coarseness of demographic cultural boundaries 070

led to the second wave of sociolinguistics, which 071

refocused efforts on identifying local cultural mean- 072

ing within communities of practice (Eckert, 2012). 073

Larger questions, like the utility of the culture con- 074

cept, have been debated in fields like sociocultural 075

anthropology, where some researchers have aban- 076

doned culture altogether as being essentializing and 077

othering (Vann, 2013). Indeed, epistemological and 078

empirical tensions as they relate to the study of cul- 079

ture have been grappled with across such fields as 080

anthropology, sociolinguistics, sociology, cultural 081

studies, among many others. 082
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Figure 1: Two separate spaces of desiderata; the left
represents aspects of competence, while the right repre-
sents aspects coverage. In each space, there often exists
a trade-off between the axes, so that most cultural NLP
work falls into the conceptual area that is shaded.

Contributions In this paper, we draw on theo-083

retical developments in sociocultural linguistics084

(Bucholtz and Hall, 2005) — itself a collection of085

several adjacent disciplines — to clarify the status086

of cultural knowledge in building culturally com-087

petent NLP systems.088

We first review the goals of cultural NLP, and089

enumerate specific desiderata for culturally-aware090

language technologies that current works pursue091

(§2). Then, we highlight recurring difficulties in092

cultural NLP (§3) by providing a survey of com-093

mon self-stated limitations in existing papers. We094

introduce sociocultural linguistics as a field with a095

useful theoretical framework which we can apply096

to better understand culture as an object of study097

(§4), and provide a case study to illustrate how the098

theory of indexicality can be applied to clarify the099

distinction between learning cultural knowledge100

and learning stereotypes (§5). Finally, we discuss101

the broader implications granted by this understand-102

ing of culture, offering two main claims. First, we103

highlight existing methodological and theoretical104

gaps in achieving the ambitious goal of cultural105

competence, and provide theoretically-motivated106

suggestions for making progress on the task (§6.1).107

Then, we argue that the goal in cultural NLP might108

be reasonably understood as localization instead of109

cultural competence or understanding, providing a110

more tractable and situated framing with which to111

build useful NLP systems (§6.2).112

2 The goals of cultural NLP113

Though the field of cultural NLP does not nec-114

essarily agree on a definition of culture, there is115

general agreement on the goal: to build culturally-116

competent NLP systems (Bhatt and Diaz, 2024).117

Here, we break down this high-level goal into sev-118

eral more specific desiderata that are frequently119

mentioned in cultural NLP papers. We want our 120

language technologies to be: 121

Adaptive. A foundational premise of cultural 122

NLP is that language technologies should be cultur- 123

ally sensitive. In other words, culturally competent 124

language technologies should be responsive to spe- 125

cific cultural contexts when designing their outputs. 126

It would be insufficient for an NLP system to pro- 127

duce the same output for all cultural contexts; many 128

works on bias in NLP have shown and problema- 129

tized the tendency of language technologies to rep- 130

resent, exaggerate, and perpetuate a hegemonic set 131

of values and structures (Voigt et al., 2018; Sheng 132

et al., 2019; Bender et al., 2021). 133

There has been relatively limited exploration 134

in building systems that are explicitly reflexive 135

(Sorensen et al., 2024). Instead, a wide body of 136

work focuses on assessing whether NLP systems 137

can generate different, appropriate outputs in re- 138

sponse to different cultural contexts — by answer- 139

ing value-oriented survey questions in a manner 140

consistent with the target culture, for example (Cao 141

et al., 2024a; Huang and Yang, 2023). Some works 142

that center adaptation as a value focus on extrin- 143

sic evaluation: instead of probing whether lan- 144

guage models know specific cultural facts, they test 145

whether NLP systems respond in a way that demon- 146

strates this knowledge (Bhatt and Diaz, 2024). 147

Discerning. At the same time, there is also a 148

desire that NLP systems not perpetuate reductive 149

stereotypes. Past work has demonstrated that users 150

have differing expectations for cultural adaptation 151

(Lucy et al., 2024), and that cultural adaptation is 152

not equally desired in all settings. For example, 153

users may want technologies to understand their 154

regional or ethnic dialects, but not generate them 155

(Blaschke et al., 2024). This has motivated work 156

on stereotype mitigation (Jha et al., 2023; Ma et al., 157

2023), in which datasets of harmful stereotypes are 158

collected in order to evaluate or engineer systems 159

to avoid generating them. 160

Inclusive. Cultural NLP values breadth: lan- 161

guage technologies should perform well across 162

a large number of cultures. This value is repre- 163

sented by many works in the genre which build 164

benchmarks for a large number of different cultures 165

(Bhutani et al., 2024); these papers usually use na- 166

tionality and surveys as tractable ways of achieving 167

large scale (Zhao et al., 2024; Ramezani and Xu, 168

2023). Some text mining methods for accumulat- 169
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ing cultural knowledge also reflect the emphasis170

on large-scale, broad coverage (Fung et al., 2024;171

Nguyen et al., 2023).172

Nuanced. In addition to breadth, there is a desire173

for depth in the form of more granular and exten-174

sive cultural understanding. The value of nuance175

motivates works which build resources for specific176

languages or resources (Koto et al., 2024; Son et al.,177

2024; Li et al., 2024b) and explore locally mean-178

ingful cultural categories (Dev et al., 2023). These179

works might rely on local informants to provide cul-180

tural knowledge (Koto et al., 2024), trading breadth181

of coverage for richer cultural knowledge that large-182

scale survey-based methods cannot capture.183

Though these four desiderata are not mutually ex-184

clusive, they coalesce into two sets of values that185

are largely unrelated (visualized in fig. 1). The186

first two desiderata reflect two kinds of cultural187

competence: the knowledge of how to respond dif-188

ferentially, and the knowledge of when it is appro-189

priate to do so. The second two desiderata reflect190

an orthogonal value of cultural coverage: we want191

systems that cover many cultures, as well as sys-192

tems that cover many aspects of each culture.193

3 Recurring troubles194

Explicitly stating these desiderata can shed light195

on the motivations of current work, but they do196

not themselves offer any answers about what “cul-197

ture” is. This becomes apparent when we look into198

the limitations sections of many cultural NLP pa-199

pers, where we find recurring themes that point to200

challenges posed by overly narrow definitions of201

culture. We survey the self-stated limitations of 57202

papers from 2022-2024 which explicitly mention203

culture, as well as the cultural proxies they use.1204

This is not meant to be an exhaustive survey, but205

rather illustrative of the general state of the field.206

The most commonly cited limitation was one of207

coverage (40% of papers): the dataset or evaluation208

being presented was only collected with respect209

to a small subset of cultures. Partly, this can be210

explained by the proxies being used for setting211

cultural boundaries. Of the papers we surveyed,212

36% of them used nationality as a demographic213

proxy (Adilazuarda et al., 2024). However, many214

papers problematize this choice in the limitations215

section, since nations are politically defined and216

not culturally homogeneous (Bickham et al.), and217

1The full list of papers can be found in the appendix.

language labels usually reflect a hegemonic notion 218

of a standard variety (Lippi-Green, 2011). 219

Another common limitation was a lack of dy- 220

namicity (12% of papers): culture is constantly con- 221

structed through social negotiation (Ochs, 2009), 222

but benchmarks are largely static collections of ex- 223

amples or facts (Son et al., 2024; Keleg and Magdy, 224

2023; Jin et al., 2024; Li et al., 2024b). In most 225

works, there is no granularity in the temporal di- 226

mension, failing to achieve an aspect of the desired 227

nuance. Uncertainty around the definition of cul- 228

ture also limits nuance in cultural technologies, 229

since most papers focus only on a small subset 230

of culturally-relevant objects through proxies like 231

food, etiquette, or values, without a framework to 232

unify them. Roughly 37% of papers directly prob- 233

lematize their choice of a particular cultural proxy 234

as being limited in its ability to represent culture as 235

a whole, or too coarse to capture intragroup varia- 236

tion (28% of papers mention this specifically). 237

Finally, the tension between adaptation and dis- 238

cernment results in uncertainty about how to ad- 239

dress stereotypes in data. Some papers (14%), 240

which are largely intended for use in aligning mod- 241

els, view the potential of collecting stereotypes as 242

cultural knowledge to be a limitation (Shi et al., 243

2024). Other papers explicitly collect stereotypes 244

in order to build systems which can avoid generat- 245

ing them (Bhutani et al., 2024). 246

Other limitations mentioned in various works 247

include an overemphasis on English-language data 248

and methods, the lack of extrinsic evaluation in fa- 249

vor of multiple-choice knowledge tests, the use of 250

pretrained models to construct datasets, and various 251

concerns with crowdsourced or human-annotated 252

data, including the possibility that individual pref- 253

erences are being construed as cultural ones. 254

Little progress has been made on rigorously ad- 255

dressing these limitations. In many of these in- 256

stances, there are questions in clear need of theoret- 257

ical answers: how do we move past static, global 258

categories when defining culture; how do we con- 259

ceptualize culture in a way that respects its dynamic 260

and constructed quality; how can we unify different 261

facets of culture; how do we appropriately model 262

and study stereotypes to build fairer systems? 263

4 A sociocultural solution 264

The notion of cultural competence is most com- 265

monly referenced in social and health services re- 266

search, where culturally competent care has been 267
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encouraged as a way to reduce disparities in care268

quality and outcomes (Alizadeh and Chavan, 2016).269

Similar to cultural NLP, these works face opera-270

tional challenges in identifying what cultural com-271

petence should look like (Kirmayer, 2012). Often,272

this literature draws on sociological and anthropo-273

logical work to resolve these challenges. We will274

do the same here, focusing our attention on the275

fields of linguistic anthropology and sociolinguis-276

tics, which study language and culture in tandem.277

For computational linguists, cultural competence278

might evoke the notion of linguistic competence,279

or Gumperz’s more general idea of communica-280

tive competence (Gumperz, 1997): the “knowledge281

of linguistic and related communicative conven-282

tions that speakers must have to initiate and sus-283

tain conversational involvement.” Gumperz argues284

that communication must be understood not only285

in the context of linguistic systems of grammar,286

but within a semiotically rich social space. This287

idea has been widely accepted and refined in both288

linguistic anthropology and sociolinguistics,2 and289

we take social context as a point of departure for290

understanding culture.291

4.1 Text and context292

Insofar as culture can be construed as a structured293

social phenomenon, it makes sense to understand294

it as the aspects of (extralinguistic) social context295

which make themselves interactionally relevant. In296

Gumperz’s terms, this context contributes to a more297

general level of sensemaking in an interaction. Ed-298

wards (1991) points out that even our linguistic cat-299

egories are not subject only to cognitive processes,300

but also to social ones: the semantic category of301

“bird” might evoke an image of a robin or spar-302

row in a test-taking setting, but certainly indexes a303

different one at Thanksgiving dinner.3304

Addressing culture as social context shifts the305

ambiguity from one term to the other. The question306

becomes, what do we take to be social context? It307

is useful to look at the evolution of sociolinguis-308

tics as another quantitative discipline in which this309

question is at the fore. Early sociolinguistic stud-310

ies focused frequently on sociological categories311

like socioeconomic class (Labov, 1985; Guy, 2011)312

or gender (Lakoff, 1973), placing the speaker as a313

passive member of an externally-imposed category314

2Indeed, Gumperz was greatly influential in the establish-
ment and progress of both these fields.

3In the United States, turkey is often a centerpiece in the
Thanksgiving meal.

(Eckert, 2012). This led to concerns about the lim- 315

its of coarse macrosociological categories, much 316

like the critique of nationality in cultural NLP today. 317

In response, the second wave of sociolinguistic re- 318

search incorporated ethnographic methods to better 319

understand local dynamics of language variation, 320

relying on social networks and locally-relevant so- 321

cial categories. While second wave studies focused 322

on local meaning, they still treated social categories 323

as static, an essentializing assumption that equates 324

identity with group affiliation. Third wave stud- 325

ies focus on identity as a performance constructed 326

from a diversity of semiotic resources including, 327

but not limited to, language style. Social context, 328

then, becomes the space within which identity is 329

constructed and performed. 330

This evolution represents not only theoretical 331

developments in response to empirical challenges 332

in sociolinguistics, but also a steady convergence 333

of ideas with other disciplines. Bucholtz and Hall 334

(2005) provide a well-integrated framework for an- 335

alyzing language and sociocultural identity in the 336

form of sociocultural linguistics, which synthesizes 337

a convergent set of ideas from across disciplines 338

to analyze language as well as other semiotic prac- 339

tices. Thus, sociocultural linguistics should not be 340

thought of as a single theory of culture, but rather a 341

concordant collection of theories that have seen rel- 342

ative convergence across fields that study language, 343

culture, and society. 344

We take this framework as the point of departure 345

for the rest of this paper. We describe the foun- 346

dational concepts (§4.2) and provide a case study 347

for how they can clarify the objects and goals of 348

cultural NLP (§5). Then, we take a broader look 349

at how sociocultural linguistic theory can inform 350

computational work on cultural competence (§6.1) 351

and advance the goals of cultural NLP (§6.2). 352

4.2 A primer on sociocultural linguistics 353

Bucholtz and Hall (2005) lay out five core princi- 354

ples of sociocultural linguistics. The terminology 355

they use centers on the idea of identity as the “so- 356

cial positioning of self and other.” As we explained 357

above, this is a useful way of conceptualizing the 358

cultural system more generally. 359

Emergence. Identity emerges through interac- 360

tion. This is the view that language does not come 361

from culture, but rather that culture is constituted 362

through linguistic (and other forms of) interaction. 363

This draws on, among others, the ideas of identity 364
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performance (Butler, 1988) and audience design365

(Bell, 1997). Emergence supports a more nuanced366

representation of culture as one that is dynamic,367

and a more complex notion of adaptation that sup-368

ports the idea that even an individual can inhabit369

multiple cultural roles. This offers one solution to370

the challenge of defining cultural categories: it may371

make sense to instead induce cultural categories la-372

tent in the data.373

Positionality. Identity includes multiple levels of374

categories, including macro-level demographics,375

locally-specific meaning, and contextually-specific376

stances and styles. This is a more inclusive and377

nuanced notion of culture that speaks to one of the378

core limitations of current work. National iden-379

tity is only one level at which identity occurs, and380

the idea of positionality insists that we understand381

more granular categories of identity as well, includ-382

ing ones that are local to a specific community or383

even an interaction.384

Indexicality. Identity is constructed through an385

indexical process involving signs and their con-386

ceptual referents (Silverstein, 2003; Eckert, 2008).387

Indexicality offers a mechanism through which cul-388

ture is constructed; it is the process of drawing389

links between linguistic (and other) forms and so-390

cial meaning. These can play into cultural ide-391

ologies about language, construct stances local to392

specific interactions, consist of overt references to393

identity, and more; this provides a unified mecha-394

nism through which we can conceptualize culture.395

In section 5, we explore an example of how in-396

dexicality provides a useful theoretical account of397

stereotype in cultural NLP.398

Relationality. Identity takes on social meaning399

in relation to other identities. This provides a use-400

ful way of conceptualizing culture that aligns with401

findings in machine learning: contrastive learn-402

ing of feature spaces often result in stronger repre-403

sentations than supervised learning among prede-404

fined categories. Similarity and difference are not405

the only relations available within this framework,406

which also includes authentication-denaturalization407

and authorization-illegitimization, among others.408

If the cultural space is structured through these re-409

lations, computational methods might benefit from410

considering how to encode them.411

Partialness. Finally, any account of culture is412

necessarily incomplete, since it is itself situated413

contextually in relation to the subject it describes.414

Indeed, a person’s identity at a given point in time 415

may be partially deliberate, partially habitual (and 416

subconscious), partially attributable to perception, 417

partially conditioned by the interactional context, 418

and partially subject to the ideologies that surround 419

the interaction. That there is no single ground truth 420

is a troubling statement for those who want to build 421

robust, generalizable systems. However, it also 422

provides a certain freedom from a positivist mi- 423

rage. Instead, researchers and system designers 424

are encouraged to think more critically about their 425

position, and the assumptions encoded in the tech- 426

nology they build, with respect to the users whom 427

these systems impact. 428

5 Case study: culture from text 429

In §4.1, we distinguish between language (the text) 430

as the traditional object of study in linguistics 431

and various ways of assessing culture as the sur- 432

rounding social context. It has become essentially 433

paradigmatic within NLP that we should expect 434

to derive extratextual information (such as world 435

models, for example) from training on text alone. 436

It is reasonable, then, that there is a vein of cul- 437

tural NLP work that mines for facts about specific 438

identities from culturally-centered discourse on so- 439

cial media or the Internet (Shi et al., 2024; Fung 440

et al., 2024; Nguyen et al., 2023). In some cases, 441

large language models are prompted to generate 442

specific culturally-relevant scenarios (Qiu et al., 443

2024b). In many of these papers, authors note the 444

dangerous potential for extracting biased or stereo- 445

typing information. How should we understand the 446

epistemic status of these surfaced facts as cultural 447

knowledge? In this section, we apply indexical 448

theory to demonstrate that these works, in fact, can 449

only learn stereotypes. 450

These papers aim to construct an indexical field. 451

Cultural facts aggregated by these systems gener- 452

ally resemble the form: 453

In cultural group, belief is widely ac- 454

cepted. 455

This is effectively a mapping between the space 456

of beliefs and the cultural groups that they index. 457

Indexicality can occur at different levels of social 458

awareness; a first-order index evidences member- 459

ship in a group. For example, the use of “pop” over 460

“soda” might index membership in the population 461

of Midwestern U.S. English speakers.4 However, 462

4In the Midwest, it is widely accepted that fizzy, sugary
drinks are called “pop.”
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higher-order indices occur as these associations463

themselves become embedded in cultural ideology.464

As such, the understanding that Midwesterners say465

“pop” is in and of itself a piece of cultural knowl-466

edge (Eckert, 2008).5467

5.1 Stereotypes all the way down468

The implication of this idea is that works which469

study cultural discourse are primarily studying470

the stereotypes embedded in the ideologies of the471

groups that generated this data, and only inciden-472

tally studying the cultures that are the objects of473

discourse. In fact, Labov (1973) defines stereotype474

exactly as the linguistic forms which are subject to475

metapragmatic discussion.476

By applying the theory of indexical order, we477

gain clarity on the aspects of culture being stud-478

ied. In the case of papers that mine cultural knowl-479

edge from cultural discourse, we find the subjects480

of study to be different from what we initially as-481

sumed. We are not learning about a diverse set of482

international cultures, but rather the world-view of483

the text authors, situated in a specific interactional484

context (perhaps posting about culture shock).485

This is not just a matter of naming, nor a dis-486

missal of the utility of these datasets. Instead, in-487

dexical theory clarifies the extent to which they488

are useful. It shows that these datasets exclude, by489

construction, cultural knowledge that is not subject490

to metapragmatic discussion. It shows that higher-491

order indices can still be useful because their mean-492

ings are tied to the lower-order ones from which493

they arise. But it also illustrates complications that494

we must contend with: higher-order indices might495

persist even when lower-order ones are no longer496

as salient. “Authentic” Pittsburghers, for example,497

might be described as unpretentious, hospitable,498

sports-loving, etc. But this style originally indexed499

the immigrant-heritage, working-class history of500

the formerly industrial city, an identity that may not501

necessarily apply to its current residents, many of502

whom work in the health-care or higher-education503

sectors (Johnstone, 2014).504

5.2 Indexical values are contextual505

It is also a mistake to assume that a given style506

from a given speaker always indexes the same thing,507

because the indexical value is also dependent on508

context, and interactionally interpreted.509

5In the U.S., it is widely accepted that Midwestern U.S.
English speakers use “pop” over “soda.”

Chun (2007), for example, provides an account 510

of a “foreign speaker” language style as deployed 511

by Asian American high schoolers. She notes how 512

this style can be employed both as accommodation 513

to foreign speakers (e.g., a child speaking to her 514

immigrant parents) and as mockery (e.g., between 515

two peers at school). Sometimes, quotatively, an ut- 516

terance can even fulfill both roles depending on the 517

interactional frame through which it is interpreted. 518

The social meaning of an utterance is determined 519

situationally within a specific interactional context. 520

6 Paths forward 521

Sociocultural linguistics paints a picture of cul- 522

ture as a complex, dynamic system through which 523

sense-making occurs. It is one that has proven use- 524

ful in accounting for and describing how semiotic 525

systems are constructed and deployed for social 526

action in everyday interactions. 527

6.1 Culturally competent NLP 528

But there exists a gap between this model of cul- 529

ture and our current computational methods for 530

approaching culture. There is opportunity for NLP 531

work to fill in these gaps. 532

Sociocultural linguistic theory tells us that cul- 533

ture is emergent, and cultural NLP acknowledges 534

that culture is a dynamic process, but currently our 535

datasets are limited to static snapshots of cultural 536

artifacts. It may be fruitful to instead analyze dis- 537

cursive sequences in which cultural knowledge is 538

suggested or contested. When and how are norms 539

enforced in interaction? How is cultural knowledge 540

shared, and how is it taken up by the rest of the 541

community? As an example, consider this interac- 542

tion between two Latina high school students from 543

Mendoza-Denton (2008): 544

Lupe: ¿Qué me ves?
(What are you looking at?)

Patricia: Tschhh, don’t EVEN talk to
me in Spanish, ‘cause your
Spanish ain’t all that.

545

Through contextual information like the partici- 546

pants’ posture, make-up, and social networks (in- 547

cluding the fact that they are rival gang members), 548

we can understand the setting of this interaction: 549

Patricia has interpreted Lupe’s question to be a 550

claim to authenticity. But through the interaction 551

itself we can see the cultural process in action: 552

as Mendoza-Denton (2008) notes, Lupe asserts 553
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her Mexican-ness symbolically through her use554

of Spanish. Through both her assertion and Patri-555

cia’s contestation, the social importance of Spanish556

is reinforced as indexing their Mexican identities.557

Analogous computational work might study com-558

ment threads for these kinds of interactions, and ad-559

ditionally incorporate contextual mechanisms like560

flairs or voting that users can employ to express af-561

filiation or pass judgment on platforms like Reddit562

(Gaudette et al., 2021).563

Sociocultural theory tells us that culture is posi-564

tional, operating at multiple levels of identity and565

often composed of features from many different566

styles, but current methods impose coarse, usually567

unidimensional, boundaries like nationality on cul-568

tural categories. Relationality and indexicality offer569

mechanisms through which cultural sensemaking570

occurs — how can we better model positionality571

as a contextually legible field of identities by iden-572

tifying instances of cultural categories being con-573

structed in relation to other categories, or identities574

being assembled by combining different indexical575

signs? Castelle (2022) suggests that modern lan-576

guage models can be usefully conceptualized more577

generally as effective learners of semiotic systems;578

how might we build systems that learn represen-579

tation spaces for other kinds of meaning beyond580

semantics, like social or discursive meaning?581

Indexicality also motivates the need for datasets582

that are contextually rich: culture is the combi-583

nation and construction of different semiotic re-584

sources that make reference to social meaning, yet585

our methods are deployed on datasets that largely586

consist of decontextualized text. Data that con-587

tains social context in other forms (e.g., metadata588

or other kinds of world state) could be one way589

of addressing this limitation (Nguyen, 2025). For590

example, the STAC corpus (Asher et al., 2016) con-591

sists of dialogue situated in a game scenario, and592

includes information about the game state and ac-593

tions. This places linguistic interaction within a594

broader context; future works might extend this595

paradigm to other, more socially relevant metadata.596

Indexical fields also exist beyond text, reach-597

ing into other modalities in the form of gesture,598

prosody, and even extralinguistic semiotic systems599

like fashion (Chun, 2007) and make-up (Mendoza-600

Denton, 2008). Not only is it important to represent601

non-text modalities to capture culture, but combin-602

ing modalities can also be a promising direction to603

learning social meaning (Zhou et al., 2024b).604

There is also much theoretical work at hand to605

account for how a software system might differ 606

from a human in how it is taken up as an interlocu- 607

tor in interaction. Creating systems that perfectly 608

replicate human behavior is neither desirable nor 609

felicitous. Consider this podcast transcript intro- 610

ducing the findings of a scientific paper: 611

Host A: Think about those old Hollywood
films, the ones your grandma might
watch.

Host A: Do those performances feel differ-
ent than what you might see in
movies today?

Host B: Hm, yeah I guess they do. It’s, like,
more dramatic. The emotions are
way more, out there?

612

This serves the discursive purpose of simultane- 613

ously motivating a finding and establishing rapport 614

with the listener by drawing on the presenter’s per- 615

sonal experience. However, if this same script is 616

generated with an LLM,6 the social action becomes 617

infelicitous. The LLM has no grandmother, whose 618

past movie-going experiences are being imagined 619

and described. Instead, the audience must reinter- 620

pet this sequence as a post-hoc rationalization of 621

the source material that is about to be presented, 622

failing to motivate the finding or establish rapport. 623

Not all semiotic resources available to humans are 624

available to the language technologies we build. 625

6.2 Localized NLP 626

All told, we are far from building culturally compe- 627

tent systems, given these clear and pressing theo- 628

retical and methodological gaps. But cultural NLP 629

also faces more immediate goals, which are per- 630

haps more central to the field as it is currently con- 631

figured. We want to create, e.g., web agents that 632

will not make food purchases that violate religious 633

dietary laws (Qiu et al., 2024a) or image generation 634

models that show the local currency when display- 635

ing money (Khanuja et al., 2024). Do we need to 636

achieve cultural competence in the general sense 637

for these more immediate applications? 638

Many would argue that machine translation sys- 639

tems have not yet achieved linguistic competence 640

(and this is perhaps an easier case to make in the 641

multilingual setting). Yet, individual software ap- 642

plications have been internationalized long before 643

MT achieved even its most recent success. When 644

building systems that accommodate more users, a 645

6As, indeed, it was, by NotebookLM (Google, 2024).
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more useful, immediate framing might be one of646

localization rather than cultural competence. Un-647

derstanding the task at hand as building localized648

NLP applications helps us locate ourselves in the649

space of desiderata (fig. 1).650

Localization is tractable because it forces us to651

specify the application domain, constraining the rel-652

evant depth of knowledge. Localized translations653

are generated only for the necessary text within654

an application; culturally localized systems can655

focus on the domain-specific nuances of cultural656

knowledge. Sociocultural approaches to culture657

are contextual and situated, and localization forces658

us to evaluate cultural performance in a situated659

application setting.660

Localization also forces us to enumerate our au-661

dience, constraining and making explicit the cov-662

erage of our systems. Localized translations are663

not provided for an arbitrary, unconstrained set of664

languages or an arbitrary set of text. Furthermore,665

a website that offers its interface in, e.g., “Spanish”666

rarely allows users to choose a specific regional667

dialect, even though different varieties of Spanish668

often show lexical and syntactic variation. This is a669

pragmatic choice, but also an ideological one about670

which language varieties to support, and it is better671

that the ideological choices be made explicitly and672

transparently. In the cultural setting, this can also673

make the choice of cultural boundaries less arbi-674

trary. If the goal is to build a culturally localized675

healthcare chatbot, for example, differing levels676

of medical literacy may be a more salient cultural677

boundary with more actionable interventions than678

something like nationality.679

Finally, localization forces us to consider the680

NLP system as an interlocutor in the human-681

computer interaction. While many existing cultural682

knowledge benchmarks probe large language mod-683

els removed from the specific context of how they684

will be used, approaching the task as localization685

forces us to define the expected behavior within a686

given application context. Developers of a recipe687

application might improve user experience by of-688

fering culture-specific ingredient substitutions (She689

et al., 2024), but a healthcare application might690

benefit from adopting a stance of cultural humil-691

ity instead of potentially stereotyping or stigmatiz-692

ing adaptation (Lekas et al., 2020). Defining the693

bounds of expected cultural performance specifies694

where we want a particular application to lie in the695

discerning / adaptive space.696

Thus, localization allows us to focus on particu-697

lars that may be more tractably implemented and 698

evaluated in real-world systems today. 699

7 Conclusion 700

It is important to build language technologies that 701

are responsive to cultural values. However, the 702

current field of cultural NLP has not found agree- 703

ment on what it means to model culture, settling 704

instead for a wide array of cultural proxies for both 705

categories of identity and categories of indexical 706

features. In this paper, we deconstruct the goals 707

of cultural NLP and highlight how recurring dis- 708

comforts in current work are illustrative of a lack 709

of theoretical alignment. We propose drawing on 710

convergent theoretical insights from a variety of 711

social-scientific disciplines which have centered 712

the study of culture in the context of language and 713

other semiotic systems. 714

When studying such a complex, multifaceted, 715

and dynamic object as culture, it is equally chal- 716

lenging and imperative that the object of study be 717

well-defined. We demonstrate how sociocultural 718

linguistics provides a useful theoretical framework 719

that treats culture as an enacted process, not a static 720

artifact. We explore the implications of this: we 721

show that learning cultural facts through metaprag- 722

matic discourse is limited to learning about stereo- 723

types; we make the case that building culturally 724

competent computational systems requires a dy- 725

namic model of culture as a process, not a collec- 726

tion of trivia, and that sociocultural linguistics pro- 727

vides a powerful model of this process, but method- 728

ological and theoretical gaps still loom large; fi- 729

nally, we argue that many current works in cul- 730

tural NLP can be usefully reframed as localization, 731

which encourages situated, participatory design and 732

evaluation of systems. 733

The growth of cultural NLP reflects the more 734

general state of natural language processing. Until 735

recently, NLP has been largely preoccupied with 736

learning the semantic meaning of textual symbols. 737

But other fields of linguistics have long established 738

that the world around us cannot be extricated from 739

the words we produce and interpret. Gumperz ar- 740

gued fifty years ago that communicative compe- 741

tence reaches beyond grammatical knowledge. As 742

computational methods have become more pow- 743

erful in representing textual semantic meaning, it 744

becomes both tractable and necessary to consider 745

other kinds of meaning, like sociocultural meaning, 746

as equally important objects of study. 747
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8 Limitations748

Though we highlight certain representative works749

in making the case for a theory-led approach to750

cultural NLP, this paper is not meant to be a survey751

of the field. Adilazuarda et al. (2024) and Liu et al.752

(2024b) offer good overviews of recent work.753

We also introduce the specific theoretical frame-754

work of sociocultural linguistics. Though other755

theories of culture certainly exist, we focus on so-756

ciocultural linguistics for its linguistically-oriented757

approach to culture (see §4 for detailed discussion758

about this).759
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Category Description

coverage Makes note of insufficient or limited
coverage.

proxy Notes the limitations of the chosen
proxy.

coarseness Mentions that cultural boundaries are
too coarse.

multilingual Mentions that only one (or a limited
number) of languages are studied.

stereotype Mentions concerns about learning or
perpetuating stereotypes.

culture is dynamic Mentions limitations in capturing the
dynamicity of culture.

intrinsic Mentions the limitations of only per-
forming intrinsic evaluation.

language as
culture

Mentions the limitations of treating
language as cultural boundaries.

crowdsourced Mentions concerns about crowd-
sourced data.

discerning Mentions that not all cultural at-
tributes should be treated the same
way.

LLM-derived Mentions concerns that some part of
the dataset was generated by LLMs.

reductive Mentions concerns that culture is re-
duced to the proxies chosen.

annotator Mentions concerns about human-
annotated data.

unmarked culture Mentions concerns with “universal”
cultural attributes or values.

individual Mentions that individual values in the
data may not be reflective of cultural
ones.
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subjectivity Mentions that cultural annotations
are subjective.

context Notes that the system or datasets
lacks social or situational context.

survey Notes the limitations of relying on
survey data for cultural knowledge.

pluralism Mentions concerns with choosing
which value to align to in pluralistic
situations.

preference v
morality

Notes that aligning to preferences
may not be desirable behavior.

exploited
annotators

Notes that annotators providing pref-
erence data do not generally share in
the benefits.

intersectionality Mentions limitations in covering in-
tersectional identities.

copyright Notes that some data points were re-
moved due to copyright.

based on existing
model

Notes that automated evaluation is
based on existing model.
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