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ABSTRACT

A prominent self-supervised learning paradigm is to model the representations
as clusters, or more generally as a mixture model. Learning to map the data
samples to compact representations and fitting the mixture model simultaneously
leads to the representation collapse problem. Regularizing the distribution of data
points over the clusters is the prevalent strategy to avoid this issue. While this is
sufficient to prevent full representation collapse, we show that a partial prototype
collapse problem still exists in methods using a prototypical formulation, that
leads to significant redundancies in the prototypes. Such prototype redundancies
serve as shortcuts for the method to achieve a marginal latent class distribution that
matches the prescribed prior. We show that by encouraging the model to use diverse
prototypes, the partial prototype collapse can be mitigated. Effective utilization of
the prototypes enables the methods to learn more fine-grained clusters, encouraging
more informative representations. We demonstrate that this is especially beneficial
when pre-training on a long-tailed fine-grained dataset.

1 INTRODUCTION

Self-supervised learning (SSL) is an effective approach to learn representations from unlabelled
datasets. SSL methods have progressed rapidly in recent years and even surpassed the performance
achieved by supervised training on several downstream tasks (Grill et al., 2020; Chen et al., 2021;
Caron et al., 2021; Zhou et al., 2022; He et al., 2022). Broadly, SSL methods can be categorized
into contrastive and non-contrastive methods. Garrido et al. (2023) show that several non-contrastive
methods that use covariance regularization (Zbontar et al., 2021; Bardes et al., 2022; Ermolov et al.,
2021) are also contrastive in terms of the dimensions instead of the samples.

In sample-contrastive methods, all data samples repel all other data samples resulting in an ap-
proximately uniform distribution of representations in the latent space (Wang & Isola, 2020). This
formulation requires large batch sizes to perform well but this limitation can be overcome by us-
ing specialized techniques like memory banks (He et al., 2020; Misra & Maaten, 2020). Recent
state-of-the-art SSL methods Grill et al. (2020); Chen & He (2021); Zhou et al. (2022); He et al.
(2022) use Vision Transformers (Dosovitskiy et al., 2021) and non-contrastive training methods. The
prototypical formulations used in the DINO family of methods Caron et al. (2021); Li et al. (2022a);
Zhou et al. (2022); Govindarajan et al. (2023); Oquab et al. (2023) enable data samples belonging to
the same semantic cluster to concentrate while only repelling other clusters. Such methods are shown
to learn representations that are effective at nearest neighbor tasks and few-shot learning.

A common problem in this family of methods is the representation collapse. This originates from
the simultaneous learning of the image representations as well as the clustering parameters for the
representations. All existing methods regularize the marginal latent class distribution in order to
prevent collapse. We show that these methods are still affected by a partial prototype collapse
(i.e. some groups of prototypes converge to the same vector), resulting in much fewer unique
prototypes compared to the initialized number. Moreover, varying the hyperparameter for the number
of prototypes has limited effect on the number of unique prototypes. The consequence is that the
number of clusters learned by the method cannot be reliably controlled through the hyperparameter.
Hence, it is thus far unclear what impact varying the number of clusters will have on these methods.

Contributions: We formally define a partial prototype collapse and demonstrate its occurrence in the
DINO family of methods, the most prominent clustering-based SSL methods currently. We propose
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KoLeo-proto regularization to prevent such a collapse by explicitly encouraging diverse prototypes
by maximizing their differential entropy. As the name suggests, we use the Kozachenko-Leonenko
differential entropy estimator (Kozachenko & Leonenko, 1987). Recently, Oquab et al. (2023)
proposed to add a similar KoLeo regularization but in the context of maximizing the differential
entropy of the data representations instead, which we refer to as KoLeo-data. However, this comes
with the same limitation as in contrastive learning that data representations from the same semantic
cluster also repel each other. Through empirical findings, we argue that it is better to maximize the
diversity of the prototypes, while still allowing data representations to concentrate in clusters.

We find that effective utilization of the prototypes marginally improves performance in ImageNet
downstream tasks, especially few-shot classification. However, we observe a trade-off that exists
between few-shot learning performance on the pre-training dataset and transfer performance, that is
consistent with other methods that also report improved ImageNet few-shot learning performance. For
long-tailed fine-grained pre-training datasets such as iNaturalist-2018, we observe a clear performance
improvement when classifying the same dataset without affecting the transfer performance.

2 BACKGROUND

SSL methods are characterized using pretext tasks. The DINO-family of methods (Caron et al., 2021;
Zhou et al., 2022; Assran et al., 2022; 2023; Li et al., 2022a; Govindarajan et al., 2023) use the pretext
task of assigning data to K latent classes with multi-view class consistency. Object-centric datasets
like ImageNet (Deng et al., 2009) are multi-view consistent and benefits from self-distillation training
(Allen-Zhu & Li, 2023). Consider an encoder model that produces a L2-normalized representation
y = gθ(x) such that ∥y∥ = 1, for a data point x using parameters θ. The probability of assigning a
data point to a latent class k under the assumption of a latent class prior πk is given by:

Pk(y) = Pr(z = k|y) = πkPr(y|z = k)∑K
j=1 πkPr(y|z = j)

.

With a uniform class prior πk ≡ 1/K (which is true in most prior work (Assran et al., 2022)),
Govindarajan et al. (2023) showed that the prototypical formulation in the DINO family corresponds
to a von Mises-Fisher mixture model, with parameters {µk, κk} and a normalization constant Cp(κk)

Pk(y) =
Cp(κk) exp⟨κkµk,y⟩∑K
j=1 Cp(κj) exp⟨κjµj ,y⟩

. (1)

Here, µk is the mean vector (a.k.a prototype) with ∥µk∥ = 1 and κk > 0 is the precision, which is
a measure of concentration around the mean vector. The pre-training objective minimizes the KL-
divergence between the latent class distributions of multiple views of each image. The representation
learning parameters θ as well as the mixture model parameters {µk, κk} are learned simultaneously.
This task has a trivial solution where all data points can be mapped to the same representation and
be perfectly modelled using a single mixture component. To prevent this collapse, it is essential to
add some form of regularization to the training objective. The regularization techniques used in such
methods can be motivated using the two requirements: (i) the model should learn distinct clusters and
(ii) spread the data over all these clusters. The collapse where one or a few components dominate
violates requirement-(ii). The collapse of individual probability distributions to uniform distributions
implies that all the prototypes are equidistant from all the data representations. In practice, such a
collapse leads to all prototypes collapsing to the same vector, which violates requirement-(i).

Connection to contrastive learning: Contrastive learning typically uses the normalized temperature-
scaled cross entropy loss based on cosine similarities. Then, the probability distribution of a query
representation yq being similar to a set of candidate representations yk is defined as:

Pk(yq) =
exp(⟨yq,yk⟩/τ)∑K
j=1 exp(⟨yq,yj⟩/τ)

. (2)

SimCLR (Chen et al., 2020) uses candidate representations from the same batch which requires
large batch sizes to achieve good performance. MoCo (He et al., 2020) overcomes this limitation by
using a memory bank of representations. Comparing Eq. (2) and Eq. (1), one can observe that the
prototypes in DINO can be viewed as exemplary representatives of the dataset, replacing the memory
bank. Based on this interpretation, the DINO family of methods can be viewed as a sparse variant of
sample-contrastive methods (Garrido et al., 2023).
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3 MARGINAL LATENT CLASS DISTRIBUTION

Before discussing a newly identified mode of collapse in the next section, we review some of the
regularization techniques proposed in the literature to avoid collapse. We define the marginal latent
class distribution (MLCD) as the probability vector with elements, p̄k = Ex[Pk(gθ(x))]. To our
knowledge, all existing methods avoid representation collapse by regularizing the MLCD. Specifically,
the MLCD is encouraged to match a prescribed prior distribution. A uniform prior is the default
choice except for Assran et al. (2023), who propose a power law distribution to better adapt the
model to long-tailed data. In a self-distillation setup, the MLCD can be encouraged to match a
prior distribution either by adjusting the teacher/target distributions or by adding a penalty on the
online/student distributions. In such regularization methods, sharpening is necessary to prevent
individual probability distributions from collapsing to uniform distributions (Caron et al., 2021).

Adjusting the target distributions such that the MLCD matches a prior distribution can be posed
as an entropy-regularized optimal transport problem, which can be efficiently solved using the
Sinkhorn-Knopp (SK) algorithm (Cuturi, 2013). SK is typically run for a few iterations (typically
at least 3) and adds a small but noticeable computational overhead. Caron et al. (2021) proposed a
simpler and computationally efficient method to adjust the target distributions, known as centering.
A key distinction between Sinkhorn-Knopp and centering is that they adjust the target distributions
P

(target)
k (y) based on batch estimates and moving average estimates of the MLCD, respectively.

On the other hand, Assran et al. (2022; 2023) add a prior-matching penalty on the batch-estimates
of MLCD obtained from the online distributions P

(online)
k (y). The penalty is defined as the KL

divergence between the MLCD and the prior distribution. With a uniform prior, this is equivalent to
maximizing the entropy of MLCD, known as mean entropy maximization (ME-MAX).

Is the centering adjustment ad-hoc? At first glance, the centering adjustment in DINO might appear
somewhat ad-hoc. However, we find that the probability centering as formulated by Govindarajan
et al. (2023) is closely connected to SK. Consider a batch of B logit scores over K latent classes
L ∈ RB×K and corresponding probability distributions P . The SK adjusted (1 iteration) probability
distributions are obtained as follows (refer A.2 for derivation):

P̃
(sk1)
b,k =

exp(Lb,k − log( 1
B

∑
b Pb,k))∑K

j=1 exp(Lb,j − log( 1
B

∑
b Pb,j))

. (3)

On the other hand, the probability centered distributions are obtained as follows, where the centering
parameter ck is calculated as a moving average estimate with momentum parameter m:

P̃
(pc)
b,k =

exp(Lb,k − ck)∑K
j=1 exp(Lb,j − cj)

, ck ← mck + (1−m) log

[
1

B

B∑
b=1

Pb,k

]
. (4)

Comparing Eq. (3) and Eq. (4), we observe that probability centering is equivalent to one iteration of
Sinkhorn-Knopp with the key distinction that the logit adjustment is calculated as a moving average
instead of a batch estimate. We investigate this numerically in section 6.1.

4 PARTIAL PROTOTYPE COLLAPSE

Regularizing the MLCD enables the methods to meet the requirement of spreading data over clusters.
However, since the MLCD depends on both the data representations and the prototypes, the prototypes
can be manipulated in such a way that the MLCD matches the prior distribution. In other words, given
a set of frozen data representations, a method can achieve MLCD matching a prior distribution simply
by modifying the prototypes. Sharpening prevents the extreme case when all prototypes collapse to
the same vector. However, except for this limited guardrail, the existing regularization techniques do
not ensure that the methods learn unique prototypes. We define the term partial prototype collapse,
where only a significantly small proportion of the learned prototypes are unique.
Definition 4.1 (Partial prototype collapse). Consider the set W = {µk : k = 1, ...,K} of K
prototype vectors, µk such that ∥µk∥ = 1. A partial prototype collapse (of degree M and ϵ distance)
is said to have occurred if there exists a set of M disjoint partitions of prototype vectors Vm ⊂W ,
m = 1, ...,M , and M representative prototype vectors vm ∈ Vm, such that for all m = 1, ...,M ,
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Figure 1: We reassign data to only the M
unique representative prototypes and com-
pute the average proportion of data assigned
to prototypes having specific redundancy
factors. We find that the models tend to
assign a larger proportion of data to proto-
types with higher redundancy factors. This
holds true for standard and vMF variants of
DINO and iBOT with different backbones.
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Table 1: Number of unique prototypes in existing mod-
els with ϵ = 0.025 (default pre-training: ImageNet-1K,
∗: iNat-2018, ∗∗: ImageNet-22K)

Backbone Method
Initialized
prototypes

(K)

Unique
prototypes

(M )

ViT-S/16 DINO 65536 1078
ViT-B/16 DINO 65536 804
ViT-S/16 DINO-vMF 65536 1157
ViT-B/16 DINO-vMF 65536 939
ViT-S/16 iBOT 8192 3242
ViT-B/16 iBOT 8192 875
ViT-B/16 iBOT-vMF 8192 1170
ViT-L/16 iBOT 8192 969
ViT-B/16 iBOT∗∗ 8192 1241
ViT-L/16 iBOT∗∗ 8192 1037
ViT-S/16 MSN∗ 8142 3363
ViT-S/16 PMSN∗ 8142 3005

1− vT
mµj < ϵ, for all µj ∈ Vm. The set of M unique prototypes is defined as U = {vm}Mm=1. For

each representative prototype, the redundancy factor rm is defined as the size of the corresponding
set partition, rm = |Vm|.

Investigating learned MLCD and prototypes: When training the prototypes and the representations
simultaneously with MLCD regularization, the methods are prone to partial prototype collapse since
it enables the method to spread probability mass associated with each unique prototype across its
ϵ-set of redundant prototypes. This acts as a shortcut to match the MLCD to the specified prior
distribution. Govindarajan et al. (2023) make an empirical observation that the DINO models used
significantly smaller number of unique prototypes compared to the hyperparameter K. However, this
problem is neither studied further nor addressed by their proposed method. Based on our definition
of partial prototype collapse and using a cosine distance metric, we investigate the prototypes learned
by several self-supervised clustering methods that use a prototypical formulation, from SwAV (Caron
et al., 2020) to iBOT (Zhou et al., 2022). In Table 1 and Table 9, we show that such a collapse exists
in all the considered methods. We observe that prototypes with a higher redundancy factor tend to be
assigned a larger proportion of the data samples (see Figure 1). Hence, the partial prototype collapse
serves as a shortcut to achieve a MLCD closer to a uniform distribution. In addition, this means that
the hyperparameter K does not play its intended role of controlling the number of clusters.

4.1 REGULARIZING PROTOTYPE DISTRIBUTION

The number of latent classes is an important choice in clustering and mixture models. In a SSL method,
this choice controls the fine-grainedness of the clusters. Firstly, this controls the difficulty of the self-
supervision task. Secondly, more informative representations are required to discriminate between
more fine-grained latent classes. With this motivation, we believe that the number of prototypes is an
important design choice in SSL as well. However, prior works have found inconsistent results when
ablating for this choice, likely because of the occurrence of partial prototype collapse.

Given that we want the prototypes to be as diverse as possible, a meaningful choice is to encourage
the prototypes W = {µ}Kk=1 to be uniformly distributed in the latent space. We propose to achieve
this by maximizing the differential entropy of the prototype vectors, obtained using the Kozachenko-
Leonenko estimator (Kozachenko & Leonenko, 1987; Beirlant et al., 1997; Sablayrolles et al., 2019),

LKP = hkl(W ) = − 1

K

K∑
k=1

log(dk); dk = min
i ̸=k
∥µk − µi∥. (5)

We efficiently compute an estimate of hkl(W ) by randomly partitioning the prototypes into batches,
that adds negligible computational overhead in terms of memory and time (see A.3 for details).
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5 RELATED WORK

Connection to DINOv2: Our proposed KoLeo-proto regularization is similar to Sablayrolles et al.
(2019). Recently, DINOv2 (Oquab et al., 2023) proposed the KoLeo-data regularization which uses a
similar formulation but applied to spread the data representations instead of the prototypes. Hence,
DINOv2 can be viewed as an interpolation between the uniformly distributed representations of
contrastive learning and clustered representations of the DINO family. In contrast, KoLeo-proto
preserves the clustered representations of DINO and encourages the method to learn diverse clusters.

Regularizations in clustering-based SSL: We provide an extended discussion of clustering-based
SSL methods in A.1 and focus our discussion on the regularization methods in this section. A
common limitation of simultaneously learning representations and clustering them is that there are
degenerate solutions that perfectly solve the clustering task but fail to learn informative representations.
Caron et al. (2018) proposed uniform pseudo-label sampling that is equivalent to weighting the loss
contribution of an input by the inverse of its assigned cluster’s size. Asano et al. (2020); Caron
et al. (2020) viewed the clustering task with MLCD regularization as an entropy regularized optimal
transport problem and use the Sinkhorn-Knopp algorithm to assign pseudo-labels to data points
(Cuturi, 2013). This is shown by Assran et al. (2023) to encourage the MLCD to match a uniform prior.
While Sinkhorn-Knopp requires multiple iterations for convergence, a simpler and computationally
cheaper approach known as centering is proposed in DINO (Caron et al., 2021) and also used in
EsViT (Li et al., 2022a) and iBOT (Zhou et al., 2022). Govindarajan et al. (2023) proposed probability
centering, that computed the centering parameter in the probability space instead of the logit space.
Assran et al. (2023) proposed to add an explicit prior matching penalty to encourage the MLCD to
align with a prescribed prior distribution. With a uniform prior we obtain mean entropy maximization
(Assran et al., 2022). Methods using the prior-matching penalty and Sinkhorn-Knopp depend on batch
estimates of the MLCD. On the other hand, centering uses moving average estimates; we showed the
connection of probability centering to Sinkhorn-Knopp in section 3 and investigate how methods
using batch and moving average MLCD estimates compare at different batch sizes in section 6.1.
While all the above methods regularize the MLCD, we show the occurrence of a partial prototype
collapse by investigating the prototypes learned by existing pre-trained models. We propose a new
KoLeo-proto regularization to prevent this collapse and effectively utilize the prototypes.

Pre-training on long-tail datasets: Most SSL methods are evaluated by pre-training on ImageNet, a
well-curated dataset with a uniform class distribution. To the contrary, real-world data collection often
results in long-tailed distributions over visual concepts and pre-training on such datasets is of practical
interest. We note that there is limited research on pre-training SSL methods on such long-tailed
datasets. Caron et al. (2019) investigated pre-training on a large uncurated dataset. Recently, Kukleva
et al. (2023) explored the benefits of using temperature schedules in the context of contrastive learning.
Assran et al. (2023) showed that pre-training on a long-tailed dataset can benefit from choosing an
appropriate long-tail prior. We investigate the impact of our proposed KoLeo-proto regularization by
pre-training on the long-tailed and fine-grained iNaturalist-18 dataset in section 7. Yang et al. (2022)
overcame a minority collapse issue (Fang et al., 2021) in supervised long-tailed classification with a
fixed classification layer based on ETF geometry. However, this comes with the implicit assumption
that all class prototypes should be equidistant which is a strong assumption for the latent classes
learned in SSL. The KoLeo-proto regularization is a soft penalty that encourages the prototypes to
remain distinct while still allowing semantically similar clusters to have more similar prototypes.
This enables the SSL method to learn better semantically meaningful representations.

6 IMAGENET EXPERIMENTS

To study the MLCD and prototype regularizations, we focus on iBOT, which is a strong recent
baseline among the DINO family of methods and also used as the foundation for DINOv2 (Oquab
et al., 2023). We pre-train the models on the ImageNet-1K dataset (Deng et al., 2009) by modifying
the public codebase of iBOT. We use the same hyperparameter settings as in iBOT for different ViT
backbones (refer A.4.1 for details) and use the vMF normalized variants (Govindarajan et al., 2023),
which are shown to produce stable trainings and improved performance. In A.5.3, we additionally
study the DINO method with a Resnet backbone. We start with ablation experiments to choose the
MLCD regularization technique in section 6.1, evaluate the impact of adding our proposed prototype
regularization in section 6.2 and finally perform full-scale pre-training experiments.

5



Under review as a conference paper at ICLR 2024

6.1 MLCD REGULARIZATION

Firstly, we run ablation experiments to select the method to regularize MLCD. We pre-train ViT-
Small/16 backbone with different MLCD regularization techniques - Sinkhorn-Knopp (SK), probabil-
ity centering (PC) and mean entropy maximization (ME-MAX). For PC, we use the vMF normalized
version of iBOT. For SK and ME-MAX, we chose to use a smaller teacher temperature based on a
hyperparameter search (refer A.4.1 for details). We also consider three different compute budgets (2,
4 and 8 GPUs for 2 days), which allows us to evaluate the impact of batch size on these techniques.
With more GPUs, we can accommodate a larger batch size. The number of epochs is adjusted such
that the total number of iterations are the same for all the compute budgets. We do this to avoid
the expensive process of optimizing the learning rates for each compute budget and regularization
method. Overall, from Figure 2, we find that probability centering performs better than the other
alternatives at different compute budgets. Interestingly, PC achieves performance on par or better
than the alternatives, even at half of the compute budget (e.g. PC/4GPUs vs ME-MAX/8GPUs).
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Figure 2: ImageNet top-1 kNN accu-
racy with different MLCD regularization
approaches. Probability centering per-
forms better than SK and ME-MAX at
different compute budgets.

The methods discussed above have all been proposed in
the literature as ways to regularize the MLCD. We argue
that the main difference between them is whether the reg-
ularization is done over a single batch (SK, ME-MAX) or
based on moving average statistics (PC). We observe that
PC performs significantly better than the alternatives at the
lowest compute budget, which uses a small batch size. As
we increase the compute budget and thereby also the batch
size, the gap is reduced. This indicates that PC is more
robust to the choice of batch size. We conjecture that this
is due to too noisy estimates of the MLCD when computed
over a batch, which is not surprising considering that we
estimate probability vectors in a high-dimensional space.
In the following experiments, we use the vMF normalized
iBOT with MLCD regularized using probability centering.

6.2 PROTOTYPE REGULARIZATION

We add our proposed KoLeo-proto regularization to the iBOT-vMF baseline, resulting in the overall
loss objective, L = LiBOT + λLKP. These results are indicated by "(kp)". Similarly, we indicate the
KoLeo-data regularization used by Oquab et al. (2023) as "(kd)". We use λ = 0.1, similar to DINOv2
and observe that such a small λ is sufficient to mitigate partial prototype collapse and ensure that
almost all of the initialized prototypes remain unique. In Figure 3, we compare the number of unique
prototypes when we vary the initialized number of prototypes hyperparameter K. With the baseline
and KoLeo-data regularization, changing the number of prototypes has no impact on the number of
unique prototypes learned by the method, which is significantly smaller than the initialized number
of prototypes. This indicates the occurrence of partial prototype collapse.

We observe that the baseline shows similar performance at different numbers of initialized prototypes.
On the other hand, with KoLeo-data, the performance is worse than the baseline but continues to
improve as the number of prototypes are increased. KoLeo-data encourages the data to spread on
the hypersphere. Hence, data is assigned to more diverse prototypes compared to the baseline in the
initial training phase. We conjecture that this initial training dynamic benefits from having more
prototypes, even if many of these prototypes eventually collapse to the same vector. The performance
with KoLeo-data is expected to improve further as the number of prototypes are increased, as noted
by Oquab et al. (2023) when using 128K prototypes. Applying KoLeo-proto leads to improved
performance over the baseline and KoLeo-data and continues to improve further as we increase the
number of prototypes. We limit the maximum number of prototypes to 10240 due to computational
limitations. Computing probability distributions for all the tokens over more dimensions adds a
large computational overhead. However, the KoLeo regularization itself only adds a negligible
computational overhead (both memory and time, cf. A.3). We observe around 0.1% improvement in
accuracy when adding every 2K additional prototypes. Overall, increasing the number of prototypes
from 2K to 10K results in a 0.4% improvement. Further scaling of the number of prototypes can bring
larger performance gains which should be feasible with the efficient implementation in DINOv2.
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Figure 3: (left) The number of unique prototypes are similar for the baseline and KoLeo-data
regularization at different number of initialized prototypes. With KoLeo-proto, most of the initialized
prototypes remain unique. (right) The number of initialized prototypes has no impact on the baseline
performance. With any form of KoLeo-regularization, more prototypes lead to better performance.
KoLeo-proto generally produces the best performance at varying numbers of prototypes.

6.3 IMAGENET CLASSIFICATION

We pre-train iBOT-vMF with the KoLeo regularization applied to the prototypes for ViT-Small/16 and
ViT-Base/16 backbones. To ensure fair comparison, we set the number of prototypes to 8192, similar
to iBOT. Hence, any changes in performance can be associated to only our proposed KoLeo-proto
regularization. In Table 2, we report the top-1 accuracies obtained using kNN and linear classification
based on frozen backbone features, few-shot accuracies averaged over 3 different splits and the
accuracy obtained after fine-tuning. For kNN and linear evaluation, we follow the same protocol
as in DINO and iBOT. We perform few-shot evaluation similar to Assran et al. (2022) and use the
provided data splits. We use the fine-tuning recipe from iBOT (Zhou et al., 2022) and BeIT (Bao et al.,
2022), using a layer-wise learning rate decay. We compare against the iBOT-vMF baseline, MSN
and the best performing models from WE-SSL (Ruan et al., 2023). We observe on par or marginal
improvements for kNN, linear and fine-tuned classification performance. The kNN performance
improvement with respect to the baseline at 8192 prototypes after full-scale pre-training mirrors the
improvement (+0.2%) observed after the small-scale ablation pre-training in Figure 3. This suggests
that by using an even larger number of prototypes one can improve the performance further with
KoLeo-proto regularization (cf Figure 3), which we found to not be the case for the baseline in
ablation experiments (unfortunately we lack the computational resources to verify this empirically).

We find larger gains for few-shot learning performance when adding KoLeo-proto to the baseline,
even at 8192 prototypes. Note that the prediction head architecture and other hyperparameters are
tuned in WE-SSL to achieve the best few-shot learning performance with ViT-Small/16. We do
not perform any such specific tuning and this explains the significantly better results achieved by
WE-SSL with ViT-Small/16. With ViT-Base/16, iBOT-vMF (kp) outperforms WE-SSL at 1% and 5
img/cls settings. Note that iBOT-vMF can be tuned similar to WE-SSL but we have not investigated
this. Instead, we focus on studying the impact of effective utilization of the prototypes on general
downstream performance and do not perform any tuning for a specific task.

6.4 TRANSFER LEARNING WITH IMAGENET PRE-TRAINING

We conduct linear classification experiments on the standard suite of datasets trained using features
extracted from a frozen pre-trained model. In Table 3, we report the linear classification accuracy
on the validation/test set depending on availability. We evaluate the impact of adding the KoLeo-
proto regularization to the iBOT-vMF baseline. We also report results from DINO-vMF (Caron
et al., 2021; Govindarajan et al., 2023), MSN (Assran et al., 2022) and WE-SSL (Ruan et al., 2023)
methods. We observe on par or decreased transfer performance when adding our proposed KoLeo-
proto regularization compared to the iBOT-vMF baseline. Interestingly, we note that the transfer
performance decreases also in other methods that improve few-shot learning performance such
as MSN (Assran et al., 2022) and WE-SSL (Ruan et al., 2023) compared to their DINO baseline
(note that transfer results for ViT-Base/16 are not reported for WE-SSL). This indicates that tuning
for few-shot learning performance can potentially harm transfer performance. Compared to these
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Table 2: ImageNet classification with full data (kNN, linear, finetuning) and few-shot scenarios.

Method kNN Linear Finetuning 1% data 5 img/cls 2 img/cls 1 img/cls

ViT-Base/16
MSN 73.3 74.8 – 69.1 65.5 58.9 49.8
WE-SSL 77.2 78.9 – 71.5 68.3 62.4 53.7
iBOT-vMF 78.7 80.3 84.1 72.3 68.3 61.1 51.6
iBOT-vMF (kp) 78.8 80.5 84.1 72.7 69.1 62.0 52.5

ViT-Small/16
MSN 74.9 76.6 – 67.2 62.8 55.8 47.1
WE-SSL 75.2 77.4 – 68.7 65.1 58.9 50.1
iBOT-vMF 75.3 77.9 82.3 66.4 60.6 51.1 40.7
iBOT-vMF (kp) 75.5 77.9 82.3 67.0 61.1 51.7 41.6

Table 3: Linear classification accuracy when transferred to other datasets

Method Cal101 C10 C100 DTD Flwrs. Food Pets SUN Avg.

ViT-Base/16
DINO-vMF 94.5 97.1 86.3 74.8 95.7 82.5 94.6 68.7 86.8
iBOT-vMF 95.5 98.0 88.0 74.7 94.8 83.6 93.9 70.2 87.3
iBOT-vMF (kp) 94.6 96.5 84.1 74.3 95.6 83.6 94.0 69.7 86.6
MSN 92.8 96.9 85.3 73.7 92.8 80.0 93.9 66.8 85.3

ViT-Small/16
DINO-vMF 93.7 96.0 83.9 74.1 95.0 80.1 93.9 66.6 85.4
iBOT-vMF 94.1 96.7 84.6 72.8 94.3 80.3 94.1 67.3 85.5
iBOT-vMF (kp) 94.5 96.7 83.9 73.7 94.4 80.5 93.7 67.5 85.6
MSN 93.1 95.9 82.9 72.0 93.3 77.8 92.8 65.5 84.1
WE-SSL 94.6 93.8 81.4 74.9 93.9 79.1 92.8 66.5 84.6

methods, our proposed regularization leads to better transfer performance. There appears to be a
trade-off between few-shot learning performance on the pre-training dataset and transfer learning
performance. Currently, it is unclear why such a trade-off exists and this requires further investigation.

7 INATURALIST-2018 EXPERIMENTS

Table 4: iNat-2018 classification accuracies with
full data (linear probing and fine-tuning)

Method M Linear Fine-tuned

ViT-Small/16
DINO-vMF 1380 49.7 68.5
iBOT-vMF 1804 50.1 69.4
iBOT-vMF (kd) 1843 50.5 69.1
iBOT-vMF (kp) 7895 51.1 69.3
MSN (λ = 1) 3363 43.8 63.5
PMSN (λ = 5) 3005 41.8 64.2

ViT-Base/16
iBOT-vMF (kd) 1634 50.4 73.3
iBOT-vMF (kp) 7573 51.4 74.0

Most SSL methods are pre-trained on ImageNet
which is well-curated and contains uniformly
distributed data across its classes. For practical
use-cases, SSL methods need to be trained on
data collected in the wild, which is often long-
tailed. Hence, it is of interest to study the effect
of pre-training methods on long-tailed datasets
as well, which has gained limited attention. We
consider the iNaturalist-2018 (iNat18) dataset 1

which is around 1/3rd of the size of ImageNet
and contains a long-tail distribution of data from
8142 classes. We pre-train all the models for
300 epochs using the default publicly available
hyperparameters. For MSN and PMSN (Assran
et al., 2022; 2023), we choose the regularization
strength λ based on a hyperparameter search
(see A.4.2 for details). In Table 4, we report the top-1 classification accuracy obtained using a
linear and a fine-tuned classifier. For linear classification, we follow a similar protocol as in the

1This dataset was used for academic purposes only.
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Table 5: Linear classification accuracy when transferred to other datasets (pre-trained on iNat-2018)

Method Cal101 C10 C100 DTD Flwrs. Food Pets SUN Avg.

ViT-Small/16
iBOT-vMF 80.3 87.0 69.2 66.3 93.6 66.4 64.2 47.4 71.8
iBOT-vMF (kd) 79.3 86.3 68.1 64.7 94.2 66.4 65.4 47.6 71.5
iBOT-vMF (kp) 80.1 86.7 69.9 66.8 93.2 66.6 65.5 47.4 72.0
ViT-Base/16
iBOT-vMF (kd) 82.4 87.9 70.8 66.3 94.6 68.6 66.9 48.5 73.2
iBOT-vMF (kp) 82.0 88.7 72.1 66.3 94.7 68.7 68.1 48.7 73.7

ImageNet experiments. For fine-tuning, we use longer trainings with a smaller learning rate as in
DINO (Caron et al., 2021) (see details in A.4.5). We consider iBOT-vMF as our baseline method,
which significantly outperforms MSN and PMSN.

For ViT-Small model, we find that both KoLeo regularization methods bring performance benefits
compared to the baseline. After evaluating the two forms of KoLeo regularization on the ViT-Base
model as well, we conclude that KoLeo-proto regularization performs best. With partial prototype
collapse, models learn more coarse-grained latent classes where the number of unique prototypes
are less than the number of classes (see M in Table 4). Then, the learned clusters are likely to have
merged several of the fine-grained classes. This is mitigated when the prototypes are effectively
utilized, leading to more diverse clusters and hence, more informative representations which are
beneficial for long-tailed and fine-grained classification tasks. Hence, iNat-2018 pre-training benefits
more from utilizing more unique prototypes compared to the Imagenet experiments. We conduct
transfer learning experiments using the same evaluation protocol as with ImageNet pre-training.
The results are reported in Table 5. Here, KoLeo-proto regularization performs slightly better than
KoLeo-data while remaining on par with the iBOT-vMF baseline. This is in contrast to the ImageNet
experiments where KoLeo-proto regularization negatively impacted transfer performance.

8 CONCLUSION

We identified the occurrence of a previously unnoticed mode of collapse in the DINO family of
methods, termed as partial prototype collapse that results in significant redundancies in the prototypes.
As a consequence, the hyperparameter controlling the number of prototypes did not perform its
intended role of controlling the number of clusters learned by the model. We proposed the KoLeo-
proto regularization to encourage the model to learn diverse prototypes. By adding our proposed
regularization, we showed that most of the initialized prototypes are effectively utilized. With
effective prototype utilization, scaling the number of prototypes is useful in learning better image
representations of the underlying dataset. Using the same moderate number of 8K prototypes as
before, we showed that few-shot learning performance can be improved and full data trainings can
be marginally improved. As indicated in our ablation experiments, it seems possible that further
scaling the number of prototypes can result in more significant improvements. However, we observed
a worse transfer performance when learning fine-grained clusters of the pre-training dataset. This
trade-off is consistent with other methods that specifically improve few-shot learning performance.
Investigating this trade-off is an interesting direction for future research. On the other hand, we found
that learning fine-grained clusters on a long-tailed fine-grained dataset such as iNat-2018 is more
beneficial, indicated by the larger performance gains achieved using a similar number of prototypes.

We have shown that the hyperparameter for the number of prototypes can be reliably controlled using
our regularization. This has broad implications on applying methods from the DINO family. One can
better understand the impact of using different numbers of clusters in the self-supervised pretext task
for their own dataset and method of choice. This could vary depending on the domain of the dataset
and how fine-grained the semantic concepts are in that domain. Computing probability distributions
over a large number of latent classes comes at a significant computational cost (see A.5.4). If indeed
a small number of clusters are sufficient for some dataset, effectively utilizing fewer prototypes can
help in reducing computational expenses.
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REPRODUCIBILITY STATEMENT

We use the same hyperparameter setup as iBOT (Zhou et al., 2022) which is already publicly
available. Nevertheless, we provide the complete hyperparameter configurations in A.4.1 to help
with reproducing our experiments correctly. We provide details about the implementation of our
proposed regularization method in A.3. For other downstream tasks, we follow standard evaluation
protocol of other works and differences, if any, are discussed in the experiment. We provide additional
experimental details A.4.
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A APPENDIX

A.1 EXTENDED RELATED WORK

Clustering-based self-supervised learning: Self-supervised learning based on the clustering pretext
task is a promising paradigm that has proven to be successful and grown tremendously in recent
years. Initial works (Caron et al., 2018; 2019; Asano et al., 2020) used a two-stage process of
assigning pseudo-labels by clustering the representations and then training the representations using
the pseudo-labels as targets. Caron et al. (2020) used online assignment of pseudo-labels in every
batch by clustering the representations over a small window of batches. By adapting this to ViTs,
Caron et al. (2021) proposed a self-distillation framework where a teacher network produced the
target latent classes. Govindarajan et al. (2023) demonstrated that this objective corresponds to
learning a von Mises-Fisher mixture distribution. Li et al. (2022a) extended the DINO objective to
patch tokens while also leveraging efficient architectures like Swin (Liu et al., 2021). iBOT (Zhou
et al., 2022) is a recent state-of-the-art method that poses the masked image modeling (MIM) task of
BeIT (Bao et al., 2022) as a clustering task. Another branch of works have focused on improving the
few-shot learning performance of these methods (Assran et al., 2022; Ruan et al., 2023). Recently,
DINOv2 (Oquab et al., 2023) built upon iBOT by making several modifications. By pre-training on
the large LVD142M dataset, DINOv2 demonstrated performance surpassing many state-of-the-art
visual benchmarks at image and pixel levels.

A.2 SINKHORN-KNOPP AND PROBABILITY CENTERING

Let the batch of B logit scores be denoted as L ∈ RB×K with corresponding probability distributions
P . Then, the Sinkhorn-Knopp adjusted probability distributions P̃ are obtained by alternating
between normalizing the rows and columns of the matrix exp(L), so that they sum up to 1. Note
that the exponent function is applied element-wise to the matrix. Let the elements of the matrix be
denoted as Lb,k. Then, normalizing along the rows yields,

P̃b,k ←
exp(Lb,k)∑
b exp(Lb,k)

=
1
B exp(Lb,k)

1
B

∑
b exp(Lb,k)

=
1

B
exp(Lb,k − log(

1

B

∑
b

exp(Lb,k))).

Next, normalizing P̃ along the columns we obtain,

P̃b,k ←
exp(Lb,k − log( 1

B

∑
b exp(Lb,k)))∑K

j=1 exp(Lb,j − log( 1
B

∑
b exp(Lb,j)))

.

If we consider the initial logit scores Lb to be already normalized over the components K such that∑
k exp(Lb,k) = 1, then the exponents within the inner sum can be replaced with probabilities. Thus,

we obtain the probability distributions after 1 iteration of Sinkhorn-Knopp adjustment as,

P̃
(sk1)
b,k ←

exp(Lb,k − log( 1
B

∑
b Pb,k))∑K

j=1 exp(Lb,j − log( 1
B

∑
b Pb,j))

.

On the other hand, the probability centered distributions proposed by Govindarajan et al. (2023) are
obtained as follows, where the centering parameter ck is calculated as a moving average estimate
with momentum parameter m:

P̃
(pc)
b,k =

exp(Lb,k − ck)∑K
j=1 exp(Lb,j − cj)

, ck ← mck + (1−m) log

[
1

B

B∑
b=1

Pb,k

]
.

Comparing the above expressions for P̃ (sk1)
b,k and P̃

(pc)
b,k (Eq. (3) and Eq. (4) in section 3), we observe

that probability centering is equivalent to one iteration of Sinkhorn-Knopp with the key distinction
that the logit adjustment is calculated as a moving average instead of a batch estimate.

A.3 KOLEO PROTOTYPES IMPLEMENTATION

Given a set of K prototypes W ∈ RK×D, to compute the KoLeo estimate of the differential
entropy of the prototypes hkl(W ), we require computing nearest neighbor distances for each of
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the prototypes. This can be memory intensive when a large number of prototypes are used. Note
that this is not a problem in the case of DINOv2 (Oquab et al., 2023), as the KoLeo objective is
computed between the B data representations in the batch (B is typically much smaller than K).
Instead, we resort to a stochastic estimate when calculating the loss objective in each batch. For
each batch, we randomly partition the prototypes into disjoint partitions containing 2048 prototypes
each, W = {W1, ...,WT },Wt ∈ R2048×D. Then, we compute the KoLeo estimate as follows:
hkl(W ) =

∑T
t=1 hkl(Wt). This efficient batched implementation adds negligible computational

overhead, in terms of both memory and time (15 MB additional GPU memory when K = 8192 and
unchanged image throughput).

A.4 EXPERIMENTAL DETAILS

A.4.1 HYPERPARAMETER SETTINGS

The complete hyperparameter configuration for full-scale iBOT-vMF pre-trainings on ImageNet using
ViT-Small/16 and ViT-Base/16 models are provided in Table 6. For pre-training on iNaturalist-2018,
we use a similar hyperparameter configuration except that we use pre-train both ViT-Small/16 and
ViT-Base/16 models for 300 epochs. The complete hyperparameter configurations for MSN and
PMSN pre-trainings on the iNaturalist-2018 dataset using the ViT-Small/16 model are provided in
Table 7.

Table 6: Hyperparameter settings for iBOT

Hyper-parameter ViT-Small/16 ViT-Base/16

training epochs 800 400
batch size 1024 512
learning rate 2e−3 1.5e−3
warmup epochs 10 10
freeze last layer epochs 1 3
min. learning rate 1e−6 2e−6
weight decay 0.04→ 0.4 0.04→ 0.4
stochastic depth 0.1 0.1
gradient clip 3.0 0.3
optimizer adamw adamw
shared head ✓ ✓
fp16 ✓ ✓

momentum 0.996→ 1.0 0.996→ 1.0
global crops 2 2
global crops scale [0.25, 1.0] [0.32, 1.0]
local crops 10 10
local crops scale [0.05, 0.25] [0.05, 0.32]

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✗ ✗
num. prototypes 8192 8192
vmf normalization ✓ ✓
centering probability probability
koleo reg. strength 0.1 0.1

teacher temp. 0.04→ 0.07 0.04→ 0.07
temp. warmup epochs 30 50
student temp. 0.1 0.1

pred. ratio [0.0, 0.3] [0.0, 0.3]
pred. ratio variance [0.0, 0.2] [0.0, 0.2]
pred. shape block block
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Table 7: Hyperparameter settings for MSN / PMSN

Hyper-parameter MSN PMSN

training epochs 300 300
batch size 1536 1536
learning rate 6e−3 6e−3
warmup epochs 15 15
min. learning rate 1e−6 2e−6
weight decay 0.04→ 0.4 0.04→ 0.4
stochastic depth 0.1 0.1
gradient clip 3.0 3.0
optimizer adamw adamw
fp16 ✗ ✗

momentum 0.996→ 1.0 0.996→ 1.0
random crops 1 1
local crops 10 10
patch drop rate 0.15 0.15

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✓ ✓
num. prototypes 8142 8142
kl penalty weight (λ) 1.0 5.0

teacher temp. 0.025 0.025
sinkhorn teacher ✓ ✓
temp. warmup epochs 30 50
student temp. 0.1 0.1

A.4.2 MSN AND PMSN DISCUSION

When pre-training on the iNaturalist-2018 dataset using the ViT-Small/16 model, we run hyperpa-
rameter sweeps to select suitable values for the KL penalty strength parameter λ. We consider the
values {1.0, 5.0, 15.0}. Based on the linear probing results shown in Table 8, we select λ = 1.0
for MSN and λ = 5.0 for PMSN. Using a higher λ with MSN strongly encourages the MLCD to
match a uniform prior distribution. When the pre-training dataset is naturally long-tailed, strongly
encouraging a uniform prior leads to worse performance. However, we find a smaller penalty strength
helps MSN to even outperform PMSN. This indicates that using a weak uniform prior can still be a
reasonable choice when pre-training on long-tailed datasets.

Table 8: iNaturalist-2018 linear probing accuracy with full data

Method K M Overall Head Middle Tail

ViT-Small/16
MSN (λ = 1) 8142 3363 43.8 51.4 43.9 41.8
MSN (λ = 5) 8142 3123 42.3 49.6 42.5 40.4
MSN (λ = 15) 8142 1562 40.9 49.5 40.6 39.1

PMSN (λ = 1) 8142 2919 41.4 48.9 41.3 39.7
PMSN (λ = 5) 8142 3005 41.8 50.2 41.9 39.7
PMSN (λ = 15) 8142 2927 41.0 49.1 41.4 38.7

A.4.3 TRANSFER LINEAR PROBING

We perform our transfer linear classification experiments on the standard suite of datasets used in
self-supervised learning: Caltech101 (Li et al., 2022b), CIFAR10, CIFAR100 (Krizhevsky, 2009),
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DTD (Cimpoi et al., 2014), Flowers (Nilsback & Zisserman, 2008), Food (Bossard et al., 2014),
Pets (Parkhi et al., 2012) and SUN397 (Xiao et al., 2010). We follow the evaluation protocol from
Ericsson et al. (2021); Chen et al. (2020) and train L2-regularized linear classifiers. We select the
regularization strength among a set of 45 values spaced linearly in the range [−6, 5] in log-space and
report the standard evaluation metric for each dataset.

A.4.4 SINKHORN-KNOPP AND MEAN ENTROPY MAXIMIZATION HYPERPARAMETERS

For Sinkhorn-Knopp, we firstly use the vMF normalized version of iBOT and ablate over the
number of iterations 1, 3, 5 and find that 3 iterations to work best. This choice for the number of
iterations is in agreement with DINOv2 (Oquab et al., 2023). For both SK (iter=3) and mean entropy
maximization and for each compute budget (2, 4 or 8 GPUs for 2 days) we ablate over the following
hyperparameters:

• vMF normalization: True / False (Govindarajan et al., 2023)
• Teacher temperature:

– τ = 0.04→ 0.07 (default in Zhou et al. (2022); Govindarajan et al. (2023))
– τ = 0.05→ 0.025 (default in Ruan et al. (2023))

For SK(iter=3), we find smaller teacher temperatures to be beneficial as in Ruan et al. (2023) and
using vMF normalization or not has marginal impact on the performance. For ME-MAX, we find
that not using vMF normalization and a smaller teacher temperature leads to better performance.

A.4.5 FINE-TUNING RECIPES

ImageNet fine-tuning: We fine-tune on the ImageNet dataset by following the fine-tuning recipe
used in BeIT (Bao et al., 2022) and iBOT (Zhou et al., 2022), which is found to produce consistently
good performance in reasonably fewer epochs compared to other fine-tuning recipes. We fine-tune
ViT-Small and ViT-Base models for 200 and 100 epochs respectively and use a batch size of 1024.
We use a layer-wise learning rate decay of 0.75 for ViT-Small and 0.65 for ViT-Base. We report the
best performance achieved after considering 4 different learning rates: {8e−4, 9e−4, 1e−3, 2e−3}.
iNaturalist-2018 fine-tuning: We find the fine-tuning recipe of DeIT (Touvron et al., 2021) using a
smaller learning rate and a larger number of epochs to work better for the iNaturalist-2018 dataset.
This is similar to the transfer fine-tuning setup of iBOT (Zhou et al., 2022). We use a fine-tune both
ViT-Small and ViT-Base models for 360 epochs using a batch size of 1024. We use learning rates of
5e−5 and 7.5e−6 for ViT-Small and ViT-Base respectively.

A.5 ADDITIONAL RESULTS

A.5.1 PARTIAL PROTOTYPE COLLAPSE IN MORE EXISTING MODELS

In addition to investigating partial prototype collapse in Table 1, we also investigate other self-
supervised clustering methods that use a prototypical formulation such as EsViT (Li et al., 2022a)
and SWaV (Caron et al., 2020). We demonstrate in Table 9 that partial prototype collapse also occurs
in these methods. We observe that partial prototype collapse also occurs in methods using Resnet50
(He et al., 2016), ViL (Zhang et al., 2021) and CvT (Wu et al., 2021) backbones. Though we focus
on ViT backbone models in this work, note that partial prototype collapse is not only limited to ViT
backbones.

A.5.2 ABLATION EXPERIMENT FOR KOLEO-PROTOTYPE REGULARIZATION STRENGTH

We conduct an ablation experiment to evaluate the impact of the regularization strength (λ) of the
KoLeo-proto regularization term. We consider a 100 epoch iBOT-vMF pre-training using 8192
prototypes on the Imagenet dataset and evaluate λ = {0.02, 0.1, 0.5}. From Table 10, we find that
too small λ = 0.02 is unable to fully utilize all the initialized prototypes. We observe improved
performance and effective utilization of the prototypes using λ = 0.1 but do not observe further
improvements from increasing λ further. The main goal of this regularization is to effectively utilize
the prototypes. We use the minimum regularization strength λ = 0.1 which is sufficient to achieve
this in the experiments in this paper.
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Table 9: Number of unique prototypes in existing models with ϵ = 0.025 (pre-trained on ImageNet-
1K)

Backbone Method
Initialized
prototypes

(K)

Unique
prototypes

(M )

Resnet50 SWaV 3000 1669
Resnet50 DINO 60000 984
Swin-Tiny/W=7 EsViT 65536 1157
Swin-Base/W=14 EsViT 65536 4088
ViL EsViT 65536 1741
CvT EsViT 65536 1178

Table 10: Ablation experiment for KoLeo-proto regularization strength (λ)

λ
Initialized
prototypes

(K)

Unique
prototypes

(M )
kNN top-1 accuracy

0.0 8192 1045 72.39
0.02 8192 4693 72.56
0.1 8192 8192 72.62
0.5 8192 8192 72.64

A.5.3 IMAGENET PRE-TRAINING WITH A CNN BACKBONE

In order to explore an additional method and backbone combination, we consider the DINO method
pre-training using a Resnet50 backbone. We base our pre-training settings on the hyperparameter
configuration in the publicly available DINO codebase 2. We use the vMF normalized version,
use probability centering, 8192 prototypes and train for 100 epochs. In Table 11, we observe
that the KoLeo-proto regularization mitigates the partial prototype collapse and achieves improved
performance compared to the baseline and KoLeo-data regularization.

Table 11: ImageNet classification with full data (kNN, linear) using Resnet50 backbone model

Method Epochs M kNN Linear

DINO-vMF 100 684 59.1 69.6
DINO-vMF (kd) 100 1373 59.8 70.4
DINO-vMF (kp) 100 8192 60.1 70.8

A.5.4 COMPUTATIONAL ANALYSIS

The prototype layer in the self-supervised clustering methods that use a prototypical formulation
noticeably contributes to the computational cost of training such methods. The weights associated
with K prototypes consists of a K ×D matrix. Typically, the bottleneck dimension D = 256. The
DINO models use a large K = 65536 and the prototype layer alone adds an additional 16M trainable
parameters to the method. A batch of size B, results in the computation of probability distributions
of size B × K. For iBOT, which computes the probability distributions for all tokens resulting
even larger set of probability distributions of size B × T ×K. The number of prototypes in iBOT
is set to 8192 in the default configuration. Computing such large probability distributions involve
heavy memory GPU usage and longer training times. For the default configurations of iBOT with
ViT-S/16 backbone, we test the GPU memory use for different numbers of prototypes and batch sizes
in the fp16 mode and report the results in Table 12. Consequently, effective utilization of prototypes
can help in reducing the GPU memory required for training such models. For instance, effectively

2https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/args.txt
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Table 12: Computational cost of training iBOT method with different number of prototypes

Batch size (B) Number of prototypes (K) GPU memory (GB)

64 1024 12.9
64 2048 13.7
64 4096 15.3
64 8192 18.6
64 10240 20.2
100 1024 19.7
100 2048 21.0
100 4096 23.5
100 8192 28.6
100 10240 31.1

Baseline

Redundancy
factor, rm

8
16
24
32
40
48

KoLeo-proto

Redundancy
factor, rm

1
2
3
4

Figure 4: t-SNE plot of the M unique prototypes learned by the baseline method and with KoLeo-
proto regularization, colored by their redundancy factors rm. There are fewer unique prototypes in
the baseline (M = 1806), noticeable from their sparse spread in the plot. The baseline prototypes
are impacted by partial prototype collapse, resulting in high redundancy factors. With KoLeo-proto
regularization, the model learns more unique prototypes (M = 7895) with significantly smaller
redundancy factors compared to the baseline. With KoLeo-proto regularization, the method learns
diverse prototypes that are well spread over the latent space.

utilizing only 1024 prototypes is significantly cheaper than using only 1000 unique prototypes out of
8192 initialized prototypes.

A.6 VISUAL EXPLANATIONS

In this section, we present a qualitative comparison of a model trained with and without KoLeo-
proto regularization. We compare the iBOT-vMF baseline method based on the ViT-S/16 backbone
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(a) iBOT-vMF baseline (b) iBOT-vMF with KoLeo-proto

Figure 5: For the exact same set of images, the representations after the head (256 dimensional) are
visualized using TSNE plots. The points are colored based on the latent class that they belong to and
the corresponding prototypes are denoted using the + marker (the prototype markers are slightly
shifted to prevent them from blocking some smaller clusters). The images belong to 7 latent classes
in the iBOT-vMF baseline and the same images belong to 18 latent classes when the KoLeo-proto
regularization is used. Partial prototype collapse in the baseline results in fewer unique prototypes
and coarser clusters. KoLeo-proto regularization encourages diverse prototypes which leads to a
more fine-grained clustering of the same data.

trained on the iNat18 dataset. We visualize the unique prototypes along with their redundancy
factors in Figure 4 using t-SNE plots (Van der Maaten & Hinton, 2008). This illustrates the partial
prototype collapse in the baseline and the impact of adding the KoLeo-proto regularization on the
prototypes. KoLeo-proto regularization encourages diverse prototypes by spreading them out in
the latent space, resulting in a higher number unique prototypes compared to the baseline. We
visualize the representations corresponding to images that are assigned to a set of latent classes by
the iBOT-vMF baseline in Figure 5a. In Figure 5b, we visualize the representations corresponding
to the exact same images based on the iBOT-vMF model trained with KoLeo-proto regularization.
We observe that the KoLeo-proto regularization encourages more fine-grained clusters compared
to the baseline. In Figure 7 and Figure 6, we show a few example images belonging to the latent
classes shown in Figure 5. Without KoLeo-proto regularization, only one coarse latent class is learned
containing images of ducks. With KoLeo-proto regularization, this is further divided into three finer
latent classes. This demonstrates that the model learns more informative representations which enable
it to discriminate between these finer latent classes.
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Figure 6: Sample images from the latent classes shown in 5b obtained from iBOT-vMF with KoLeo-
proto regularization. Same colors are used to indicate the latent classes.

Figure 7: Sample images from the latent classes shown in 5a obtained from iBOT-vMF baseline
method. Same colors are used to indicate the latent classes.
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