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Abstract

We propose a greedy search-and-score algorithm for ancestral graphs, which in-1

clude directed as well as bidirected edges, originating from unobserved latent2

variables. The normalized likelihood score of ancestral graphs is estimated in terms3

of multivariate information over relevant subsets of vertices, C, that are connected4

through collider paths confined to the ancestor set of C. For computational effi-5

ciency, the proposed two-step algorithm relies on local information scores limited6

to the close surrounding vertices of each node (step 1) and edge (step 2). This7

computational strategy is shown to outperform state-of-the-art causal discovery8

methods on challenging benchmark datasets.9

1 Introduction10

The likelihood function plays a central role in the selection of a graphical model G based on11

observational data D. Given N independent samples from D, the likelihood LD|G that they might12

have been generated by the graphical model G is given by [1],13

LD|G =
1

ZD,G
exp

(
−NH(p, q)

)
(1)

whereH(p, q) = −
∑

x p(x) log q(x) is the cross-entropy between the empirical probability distribu-14

tion p(x) of the observed data D and the theoretical probability distribution q(x) of the model G and15

ZD,G a data- and model-dependent factor ensuring proper normalization condition for finite dataset. In16

short, Eq.1 results from the asymptotic probability that the N independent samples, x(1), · · · ,x(N),17

are drawn from the model distribution, q(x), i.e. LD|G ≡ q(x(1), · · · ,x(N)) =
∏

i q(x
(i)), rather18

than the empirical distribution, p(x). This leads to, logLD|G =
∑

ilog q(x(i)), which converges19

towards N
∑

x p(x) log q(x) = −N H(p, q) in the large sample size limit, N → ∞, with20

logZD,G = O(logN).21

The structural constraints of the model G translate into the factorization form of the theoretical22

probability distribution, q(x) [2–6]. In particular, the probability distribution of Bayesian networks23

(BN) factorizes in terms of conditional probabilities of each variable given its parents, as qBN(x) =24 ∏
i q(xi|paXi

), where paXi
denote the values of the parents of node Xi in G, PaXi

. For Bayesian25

networks, the factors of the model distribution, q(xi|paXi
), can be directly estimated with the26

empirical conditional probabilities of each node given its parents as, q(xi|paXi
) ≡ p(xi|paXi

),27

leading to the well known estimation of the likelihood function in terms of conditional entropies28

H(Xi|PaXi
) = −

∑
x p(xi,paXi

) log p(xi|paXi
),29

LD|GBN
=

1

ZD,G
BN

exp
(
−N

vertices∑
Xi∈V

H(Xi|PaXi
)
)

(2)
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This paper concerns the experimental setting for which some variables of the underlying Bayesian30

model are not observed. This frequently occurs in practice for many applications. We derive an31

explicit likelihood function for the class of ancestral graphs, which include directed as well as32

bidirected edges, arising from the presence of unobserved latent variables. Tian and Pearl 2002 [7]33

showed that the probability distribution of such graphs factorizes into c-components including subsets34

of variables connected through bidirected paths (i.e. containing only bidirected edges). Richardson35

2009 [6] later proposed a refined factorization of the model distribution of the broader class of acyclic36

directed mixed graphs in terms of conditional probabilities over “head” and “tail” subsets of variables37

within each ancestrally closed subsets of vertices. However, unlike with Bayesian networks, the38

contributions of c-components or head-and-tail factors to the likelihood function cannot simply be39

estimated in terms of empirical distribution p(x), as shown below. This leaves the likelihood function40

of ancestral graphs difficult to estimate from empirical data, in general, although iterative methods41

have been developped when the data is normally distributed [8–13].42

The present paper provides an explicit decomposition of the likelihood function of ancestral graphs43

in terms of multivariate cross-information over relevant ‘ac-connected’ subsets of variables, Figs. 1.,44

which do not rely on the head-and-tail factorization but coincide with the parametrizing sets [14]45

derived from the head-and-tail factorization. It suggests a natural estimation of these revelant46

contributions to the likelihood function in terms of empirical distribution p(x). This result extends47

the likelihood expression of Bayesian Networks (Eq. 2) to include the effect of unobserved latent48

variables and enables the implementation of a greedy search-and-score algorithm for ancestral graphs.49

For computational efficiency, the proposed two-step algorithm relies on local information scores50

limited to the close surrounding vertices of each node (step 1) and edge (step 2). This computational51

strategy is shown to outperform state-of-the-art causal discovery methods on challenging benchmark52

datasets.53

2 Theoretical results54

2.1 Multivariate cross-entropy and cross-information55

The theoretical result of the paper (Theorem 1) is expressed in terms of multivariate cross-information56

derived from multivariate cross-entropies through the Inclusion-Exclusion Principle. The same57

expressions can be written between multivariate information and multivariate entropies by simply58

substituting q({xi}) with p({xi}) in the equations below and will be used to estimate the likelihood59

function of ancestral graphs (Proposition 3).60

As recalled above, the cross-entropy between m variables, V = {X1, · · · , Xm}, is defined as,61

H(V ) = −
∑
{xi}

p(x1, · · · , xm) log q(x1, · · · , xm) (3)

62 where p({xi}) is the empirical joint probability distribution of the variables {Xi} and q({xi}) the63

joint probability distribution of the model. Bayes formula, q({xi}, {yj}) = q({xi}|{yj}) q({yj}),64

directly translates into the definition of conditional cross-entropy through the decomposition,65

H({Xi}, {Yj}) = H({Xi}|{Yj}) +H({Yj}) (4)

Multivariate (cross) information, I(V ) ≡ I(X1; · · · ;Xm), are defined from multivariate (cross)66

entropies through Inclusion-Exclusion formulas over all subsets of variables [15–18] as,67

I(X) = H(X)

I(X;Y ) = H(X) +H(Y )−H(X,Y )

I(X;Y ;Z) = H(X) +H(Y ) +H(Z)−H(X,Y )−H(X,Z)−H(Y, Z) +H(X,Y, Z)

I(V ) = −
∑
S⊆V

(−1)|S|H(S) (5)

where the semicolon separators are needed to distinguish multipoint (cross) information from joint68

variables as {X,Z} in I({X,Z};Y ) = I(X;Y )+I(Z;Y )−I(X;Y ;Z). Below, implicit separators69

between non-conditioning variables in multivariate (cross) information will always correspond to70

semicolons, e.g. as in I(V ) in Eq. 5. Unlike multivariate (cross) entropies, which are always positive,71
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H(X1, · · · , Xk) > 0, multivariate (cross) information, I(X1; · · · ;Xk), can be positive or negative72

for k > 3, while they remain always positive for k < 3, i.e. I(X;Y ) > 0 and I(X) > 0.73

In turn, multivariate (cross) entropies can be expressed through the Principle of Inclusion-Exclusion74

into the same expression form but in terms of multivariate (cross) information,75

H(V ) = −
∑
S⊆V

(−1)|S|I(S), (6)

Conditional multivariate (cross) information I(V |Z) are defined similarly as multivariate (cross)76

information I(V ) but in terms of conditional (cross) entropies as,77

I(V |Z) = −
∑
S⊆V

(−1)|S|H(S|Z) (7)

Eqs. 5 & 7 lead to a decomposition rule relative to a variable Z, Eq. 8, which can be conditioned78

on a set of joint variables, A = {A1, · · · , Am}, with implicit comma separators for conditioning79

variables in Eq. 9,80

I(V ) = I(V |Z) + I(V ;Z) (8)
I(V |A) = I(V |Z,A) + I(V ;Z|A) (9)

Alternatively, conditional (cross) information, such as I(X;Y |A), can be expressed in terms of81

non-conditional (cross) entropies using Eq. 4,82

I(X;Y |A) = H(X|A) +H(Y |A)−H(X,Y |A)

= H(X,A) +H(Y,A)−H(X,Y,A)−H(A) (10)
which can in turn be expressed in terms of non-conditional (cross) information as,83

I(X;Y |A) = I(X;Y )− · · · (−1)k
∑

i1<···<ik

I(X;Y ;Ai1 ; · · ·;Aik) + · · · (−1)mI(X;Y ;A1; · · ·;Am)

=

X,Y ∈S′∑
S′⊆S

(−1)|S
′|I(S′), (11)

where S = {X,Y } ∪A. This corresponds, up to an opposite sign, to all (cross) information terms84

including both X and Y in the expression of the multivariate (cross) entropy, H(X,Y,A), Eq. 6.85

2.2 Graphs and connection criteria86

2.2.1 Directed mixed graphs and ancestral graphs87

Two vertices are said to be adjacent if there is an edge (of any type) between them, X∗ ∗Y , where88

∗ stands for any (head or tail) end mark. X and Y are said to be neighbors if X Y , parent and89

child if X → Y and spouses if X ←→ Y in G.90

A path in G is a sequence of distinct vertices V1, . . . , Vn consecutively adjacent in G, as,91

V1∗ ∗V2∗ ∗ · · · ∗ ∗Vn−1∗ ∗Vn. In particular, a collider path between V1 and Vn has the form92

V1∗→ V2 ←→ · · · ←→ Vn−1 ←∗Vn and a directed path corresponds to V1 → V2 → · · · → Vn.93

X is called an ancestor of Y and Y a descendant of X if X = Y or there is a directed path from94

X to Y , X → · · · → Y . AnG(Y ) denotes the set of ancestors of Y in G. By extension, for any95

subset of vertices, C ⊆ V , AnG(C) denotes the set of ancestors for all Y ∈C in G.96

A directed mixed graph is a vertex-edge graph G = (V ,E) that can contain two types of edges:97

directed (→) and bidirected (←→) edges.98

A directed cycle occurs in G when X ∈ AnG(Y ) and X ← Y . An almost directed cycle occurs99

when X ∈ AnG(Y ) and X ←→ Y .100

Definition 1. An ancestral graph is a directed mixed graph:101

i) without directed cycles;102

ii) without almost directed cycles.103

An ancestral graph is said to be maximal if every missing edge corresponds to a structural indepen-104

dence. If an ancestral graph G is not maximal, there exists a unique maximal ancestral graph Ḡ by105

adding bidirected edges to G [8].106
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2.2.2 ac-connecting paths and ac-connected subsets107

Let us now define ancestor collider connecting paths or ac-connecting paths, which entail simpler108

path connecting criterion than the traditional m-connecting criterion, discussed in the Appendix A.109

Yet, ac-connecting paths and ac-connected subsets will turn out to be directly relevant to character-110

ize the likelihood decomposition and Markov equivalent classes of ancestral graphs.111

Definition 2. [ac-connecting path] An ac-connecting path between X and Y given a subset of112

variables C (possibly including X and Y ) is a collider path, X ∗→ Z1 ←→ · · · ←→ ZK ←∗Y ,113

with all Zi ∈ AnG({X,Y } ∪C), that is, with Zi in C or connected to {X,Y } ∪C by an ancestor114

path, i.e. Zi → · · · → T with T ∈ {X,Y } ∪C.115

Definition 3. [ac-connected subset] A subset C is said to be ac-connected if ∀X,Y ∈C, X and116

Y are connected (through any type of edge) or there is an ac-connecting path between X and Y117

given C.118

2.3 Likelihood decomposition of ancestral graphs119

Theorem 1. [likelihood of ancestral graphs] The cross-entropy H(p, q) and likelihood LD|G of an120

ancestral graph G is decomposable in terms of multivariate cross-information, I(C), summed over121

all ac-connected subsets of variables, C (Definition 3),122

H(p, q) = −
ac−connected∑

C⊆V

(−1)|C|I(C)

LD|G =
1

ZD,G
exp

(
N

ac−connected∑
C⊆V

(−1)|C|I(C)
)

(12)

where N is the number of iid samples in the dataset D and ZD,G a data- and model-dependent123

normalization constant.124

The proof of Theorem 1 is left to the Appendix B. It is based on a partition of the cross-entropy (Eq. 6)125

into cross-information contributions from ac-connected and non-ac-connected subsets of variables,126

which do not rely on head-and-tail factorizations. Hu and Evans [14] proposed an equivalent result127

(Proposition 3.3 in [14]) with a proof using head-and-tail decomposition to define parametrizing128

sets, which happen to coincide with the ac-connected sets defined here (Definition 3). Theorem 1129

characterizes in particular the Markov equivalence class of ancestral graphs [8, 19–24] as,130

Corollary 2. Two ancestral graphs are Markov equivalent if and only if they have the same ac-131

connected subsets of vertices.132

Note, in particular, that Eq. 12 holds for maximal ancestral graphs (MAG), for which all pairs of133

ac-connected variables are connected by an edge, and their Markov equivalent representatives, the134

partial ancestral graphs (PAG) [8, 25–27].135

Proposition 3. The likelihood decomposition of ancestral graphs (Eq. 12, Theorem 1) can be136

estimated by replacing the model distribution q by the empirical distribution p in the retained137

multivariate cross-information terms I(C) corresponding to all ac-connected subsets of variables, C.138

Hence, Proposition 3 amounts to estimating all relevant cross-information terms in the likelihood139

function with the corresponding multivariate information terms computed from the available data,140

while assuming by construction that the model distribution obeys all local and global conditional inde-141

pendences entailed by the ancestral graph. The corresponding factorization of the model distribution142

can be expressed in terms of empirical distribution, assuming positive distributions, see Appendix C.143

Fig. 1 illustrates the cross-entropy decomposition for a few graphical models in terms of cross-144

information contributions from their ac-connected subsets of vertices. In particular, an unshielded145

non-collider (e.g. X → Z →W , Fig. 1A), is less likely (i.e. higher cross-entropy) than an unshielded146

collider or ‘v-structure’ (e.g. X → Z ←W , Fig. 1B), if the corresponding three-point information147

term is negative, I(X;Z;W ) < 0, in agreement with earlier results [28, 29]. However, this early148

approach, exploiting the sign and magnitude of three-point information to orient v-structures, does149

not include higher order terms involving multiple v-structures, which can lead to orientation conflicts150

between unshielded triples, in practice. Resolving such orientation conflicts requires to include151
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Figure 1: Cross-entropy decomposition of ancestral graphs. Examples of cross-entropy decomposition of
ancestral graphs (red edges, lhs) in terms of relevant multivariate cross-information contributions I(C) with
C ⊆ V (red nodes, rhs). Simple graphs: (A) without unshielded colliders, (B) with a single or non-overlapping
unshielded colliders, (C) with overlapping unshielded colliders through three or more (conditionally) independent
parents or (D) through a two-(or more)-collider path. (E) Bayesian graph corresponding to the head-and-tail
factorization of the two-collider path in (D) estimated using the empirical distribution p(.), see Appendix C. (F)
Simple Bayesian graph not Markov equivalent to an ancestral graph (G) sharing the same edges and unshielded
collider [24]. Solid black edges correspond to direct connections or collider paths confined to the corresponding
ac-connected subset C, while wiggly edges indicate collider paths extending beyond C yet indirectly connected
to C by an ancestor path, marked with dashed edges, see Definition 2. By contrast, graphs H and I illustrate the
fact that collider paths may not be unique nor conserved between two Markov equivalent graphs (i.e. sharing the
same cross-information terms) [24].

information contributions from higher-order ac-connected subgraphs, such as star-like ac-connected152

subsets including three or more parents, Fig. 1C. Similarly, the cross-entropies of collider paths153

involving several colliders also include higher-order terms, as with the simple example of a two-154
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collider path, Fig. 1D. By contrast, the cross-entropy based on the head-and-tail factorization of the155

same two-collider path, i.e. q(x, z, y, w) = q(z, y|x,w)q(x)q(w) [6], is found to be equivalent to156

the cross-entropy of a Bayesian graph without bidirected edge, Fig. 1E, when estimated with the157

empirical distribution p(.), see Appendix C. This observation illustrates the difficulty to estimate the158

likelihood functions of ancestral graphs using head-and-tail factorization.159

Further examples of graphical models, Figs. 1F-I, show the relative simplicity of the decomposition160

with only few (non-trivial) ac-connected contributing subsets C with |C| > 3, as compared to161

the much larger number of non-ac-connected non-contributing subsets, that cancel each other by162

construction due to conditional independence constraints of the underlying model. Note, in particular,163

that most contributing multivariate information I(C) only concern direct connections or collider164

paths within a single component subgraph induced by C (solid line edges in Fig. 1). However,165

occasionally, collider paths extending beyondC into AnG(C) \C (marked with wiggly edges) with166

corresponding ancestor path(s) (marked with dashed edges) do occur, as shown in Fig. 1G.167

In addition, the present information-theoretic decomposition of the likelihood of ancestral graphs168

can readily distinguish their Markov equivalence classes according to Corollary 2. For instance, the169

ancestral graphs of Fig. 1F and Fig. 1G, despite sharing the same edges and the same unshielded170

collider (X → Z ← T ), turn out not to be Markov equivalent, as discussed in [24]. Indeed, their171

cross-entropy decompositions differ by two ac-connected contributing terms: a three-point cross172

information I(X;Y ;T ) with a collider path not confined in C (i.e. X  Z ! T ←→ Y and173

corresponding ancestor path Z 99K Y ) and a four-point information term I(X;Y ;Z;T ) due to174

the two-collider path (X → Z ←→ T ←→ Y ). More quantitatively, it shows that the graph of175

Fig. 1G with a two-collider path is more likely than the graph of Fig. 1F whenever I(X;Y ;T ) −176

I(X;Y ;Z;T ) = I(X;Y ;T |Z) = I(X;Y |Z)− I(X;Y |Z, T )<0. Finally, the Markov equivalent177

graphs of Fig. 1H and Fig. 1I, also due to [24], illustrate the fact that the actual ancestor collider path178

between unconnected pairs does not need to be unique nor conserved between Markov equivalent179

graphs (as long as their cross-entropies share the same multivariate cross-information decomposition).180

3 Efficient search-and-score causal discovery using local information scores181

The likelihood estimation of ancestral graphs (Theorem 1 and Proposition 3) enables the implemen-182

tation of a search-and-score algorithm for this broad class of graphs, which has attracted a number183

of contributions recently [11–13, 30–32]. Our specific objective is not to develop an exact method184

limited to simple graphical models with a few nodes and small datasets but to implement an efficient185

and reliable heuristic method applicable to more challenging graphical models and large datasets.186

Indeed, search-and-score structure learning methods need to rely on heuristic rather than exhaustive187

search, in general, given that the number of ancestral graphs grows super-exponentially as the number188

of vertices increases. This can be implemented for instance with a Monte Carlo algorithmic scheme189

with random restarts, which efficiently probes relevant graphical models. Here, we opt, instead, to190

use the prediction of an efficient hybrid causal discovery method, MIIC [29, 33, 34], as starting point191

for a subsequent search-and-score approach based on the proposed likelihood estimation of ancestral192

graphs (Eq. 12 and Proposition 3).193

Moreover, while the likelihood decomposition of ancestral graphs may involve extended ac-connected194

subsets of variables, as illustrated in Fig. 1, we aim to implement a computationally efficient search-195

and-score causal discovery method based on approximate local scores limited to the close surrounding196

vertices of each node and edge. Yet, while MIIC only relies on unshielded triple scores, the novel197

search-and-score extension, MIIC_search&score, uses also higher-order local information scores to198

compare alternative subgraphs, as detailed below.199

The proposed method is shown to outperform MIIC and other state-of-the-art causal discovery200

methods on challenging datasets including latent variables.201

3.1 MIIC, an hybrid causal discovery method based on unshielded triple scores202

MIIC is an hybrid causal discovery method combining constraint-based and information-theoretic203

frameworks [29, 35]. Unlike traditional constraint-based methods [4, 5], MIIC does not directly204

attempt to uncover conditional independences but, instead, iteratively substracts the most significant205

three-point (conditional) information contributions of successive contributors, A1, A2, ..., An, from206
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the mutual information between each pair of variables, I(X;Y ), as,207

I(X;Y )− I(X;Y ;A1)− I(X;Y ;A2|A1)− · · · − I(X;Y ;An|{Ai}n−1) = I(X;Y |{Ai}n) (13)

where I(X;Y ;Ak|{Ai}k−1) > 0 is the positive information contribution from Ak to I(X;Y )208

[28, 36]. Conditional independence is eventually established when the residual conditional mutual209

information on the right hand side of Eq. 13, I(X;Y |{Ai}n), becomes smaller than a complexity210

term, i.e. kX;Y |{Ai}(N) > I(X;Y |{Ai}n) > 0, which dependents on the considered variables and211

sample size N .212

This leads to an undirected skeleton, which MIIC then (partially) orients based on the sign and213

amplitude of the regularized conditional 3-point information terms [28, 29]. In particular, negative214

conditional 3-point information terms, I(X;Y ;Z|{Ai})<0, correspond to the signature of causality215

in observational data [28] and lead to the prediction of a v-structure, X → Z ← Y , if X and Y216

are not connected in the skeleton. By contrast, a positive conditional 3-point information term,217

I(X;Y ;Z|{Ai})>0, implies the absence of a v-structure and suggests to propagate the orientation218

of a previously directed edge X → Z Y as X → Z → Y .219

In practice, MIIC’s strategy to circumvent spurious conditional independences significantly improves220

recall, that is, the fraction of correctly recovered edges, compared to traditional constraint-based221

methods [28, 29]. Yet, MIIC only relies on unshielded triple scores to reliably uncover significant222

contributors and orient v-structures, as outlined above. MIIC has been recently improved to ensure223

the consistency of the separating set in terms of indirect paths in the final skeleton or (partially)224

oriented graphs [37, 34] and to improve the reliably of predicted orientations [33, 34].225

The predictions of this recent version of MIIC, which include three type of edges (directed, bidirected226

and undirected), have been used as starting point for the subsequent local search-and-score method227

implemented in the present paper.228

3.2 New search-and-score method based on higher-order local information scores229

Starting from the structure predicted by MIIC, as detailed above, MIIC_search&score method230

proceeds in two steps.231

3.2.1 Step 1: Node scores for edge orientation priming and edge removal232

The first step consists in minimizing a node score corresponding to the local normalized log likelihood233

of each node w.r.t. its possible parents or spouses amongst the connected nodes predicted by MIIC.234

To this end, the node score assesses the conditional entropy of each node w.r.t. a selection of235

parents, spouses or neighbors, Pa′
Xi
⊆ Pa

Xi
∪ Sp

Xi
∪Ne

Xi
, and a factorized Normalized Maximum236

Likelihood (fNML) regularization [28], see Appendix D for details,237

Scoren(Xi) = H(Xi|Pa′
Xi

) +
1

N

qxi∑
j

log Crxi
nj (14)

where qxi
corresponds to the combination of levels of Pa′

Xi
, while rxi

is the number of levels of Xi,238

and nj the number of samples corresponding to a particular combination of levels j in each summand,239

with
∑

j nj = N , the total number of samples. log Crxi
nj is the fNML regulatization cost summed240

over all combinations of levels, qxi
, [38, 39], see Appendix D.241

This first algorithm is looped over each node, priming the orientations of their surrounding edges (as242

directed, bidirected or undirected), until convergence. Edges without orientation priming at either243

extremity are removed at the end of Step 1.244

3.2.2 Step 2: Edge orientation scores245

The second step consists in minimizing an edge orientation score corresponding to the local normal-246

ized log likelihood of each edge w.r.t. its nodes’ parents and spouses inferred in Step 1. To this end,247

the edge score assesses the conditional information and a fNML complexity cost with respect to the248

type of orientation, given three sets of parents and spouses of X and Y , i.e. Pa′
X\Y = Pa

X
∪ Sp

X
\Y ,249

Pa′
Y\X = Pa

Y
∪ Sp

Y
\X and Pa′

XY
= Pa′

X\Y ∪Pa′
Y\X with their corresponding combinations of250
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levels, q
y\x , q

x\y and qxy . These orientation scores, listed in Table 1, include symmetrized fNML com-251

plexity terms to enforce Markov equivalence, ifX and Y share the same parents or spouses (excluding252

X and Y ), see Appendix D. Indeed, all three scores become equals if Pa′
Y\X = Pa′

X\Y = Pa′
XY

253

implying also the same combinations of parent and spouse levels, q
y\x = q

x\y = q
xy

.254

This second algorithm is looped over each edge to compute an orientation score decrement, given the255

orientations of its surrounding edges. The orientation change corresponding to the largest orientation256

score decrement is then chosen at each iteration until convergence or until a limit cycle is reached257

and stopped at the lowest sum of local orientation scores.258

Table 1: Local scores for the orientation of a single directed or bidirected edge.

Edge Information Symmetrized fNML complexity (Markov equivalent)

X → Y −I(X;Y |Pa′
Y\X ) 1

2N

(∑q
x\yry

j log Crxnj
−
∑q

x\y
j log Crxnj

+
∑q

y\xrx

j log Crynj −
∑q

y\x
j log Crynj

)
X ← Y −I(X;Y |Pa′

X\Y ) 1
2N

(∑q
x\yry

j log Crxnj
−
∑q

x\y
j log Crxnj

+
∑q

y\xrx

j log Crynj −
∑q

y\x
j log Crynj

)
X ↔ Y −I(X;Y |Pa′

XY ) 1
2N

(∑qxy ry
j log Crxnj

−
∑qxy

j log Crxnj
+
∑qyxrx

j log Crynj −
∑qyx

j log Crynj

)

4 Experimental results259

We first tested whether MIIC_search&score orientation scores (Table 1) effectively predicts bidirected260

orientations on three simple ancestral models, Fig. 3, when the end nodes do not share the same261

parents (Fig. 3, Model 1), share some parents (Fig. 3, Model 2) or when the bidirected edge is part of262

a longer than two-collider paths (Fig. 3, Model 3). The prediction of the edge orientation scores are263

summarized in Table 3, Appendix E, and show good predictions for large enough datasets.264

Beyond these simple examples, focussing on the discovery of bidirected edges in small toy models265

of ancestral graphs, we also analyzed more challenging benchmarks from the bnlearn repository266

[40], Fig. 2. They concern ancestral graphs obtained by hiding up to 20% of variables in Bayesian267

Networks of increasing complexity (number of nodes and parameters), such as Alarm (37 nodes, 46268

links, 509 parameters), Insurance (27 nodes, 52 links, 984 parameters), and Barley (48 nodes, 84269

links, 114,005 parameters). We then assessed causal discovery performance in terms of Precision,270

TP/(TP + FP ), and Recall, TP/(TP + FN), relative to the theoretical PAGs, while counting as271

false positive (FP ), all correctly predicted edges but without or with a different orientation as the272

directed or bidirected edges of the PAG.273

Fig. 2 compares MIIC_search&score performance to MIIC results used as starting point for274

MIIC_search&score and to FCI [41]. MIIC and MIIC_search&score settings were set as described275

in section 3 above. The open-source MIIC R package (v1.5.2, GPL-3.0 license) was obtained at276

https://github.com/miicTeam/miic_R_package. FCI from the python causal-learn package277

(v0.1.3.8, MIT license) [41] was obtained at https://github.com/py-why/causal-learn and278

run with G2-conditional independence test and default parameter α = 0.05.279

Overall, MIIC_search&score is found to outperform MIIC in terms of edge precision with little to no280

decrease in edge recall, Fig. 2, demonstrating the benefit of MIIC_search&score’s rationale to improve281

MIIC predictions by extending MIIC information scores from unshielded triples to higher-order282

information contributions. These originate from ac-connected subsets including nodes with more than283

two parents or spouses, or ac-connected subsets including two-collider paths. MIIC_search&score is284

also found to outperform FCI on complex ancestral benchmark networks with many parameters, such285

as Barley (114,005 parameters), Fig. 2. However, FCI is found to reach similar or better precision286

scores on easier benchmarks with fewer parameters (i.e. Alarm and Insurance), although its recall287

remains usually lower than MIIC_search&score, especially at small sample size, as expected for a288

purely constraint-based causal discovery approach.289

Importantly, the benchmark PAGs used to score the causal discovery results with increasing propor-290

tions of latent variables, Fig. 2, include not only bidirected edges originating from hidden common291

causes but also additional directed or undirected edges arising, in particular, from indirect effects of292
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Figure 2: Benchmark results on ancestral graphs of increasing complexity. Benchmark results on ancestral
graphs obtained by hiding 0%, 5%, 10% or 20% of variables in Bayesian Networks of increasing complexity
(see main text): Alarm (lhs), Insurance (middle), and Barley (rhs). MIIC_search&score results are compared
to MIIC results used as starting point for MIIC_search&score and FCI [41]. Causal discovery performance is
assessed in terms of Precision and Recall relative to the theoretical PAGs, while counting as false positive all
correctly predicted edges but without or with a different orientation as the directed or bidirected edges of the
PAG. Error bars (±σ): standard deviations.

hidden variables with observed parents. Irrespective of their orientations, all these additional edges293

originating from indirect effects of hidden variables generally correspond to weaker effects (i.e. lower294

mutual information of indirect effects due to the Data Processing Inequality) and are more difficult to295

uncover than the edges of the original graphical model without hidden variables.296

5 Limitations297

The main limitation of the paper concerns the local scores used in the search-and-score algorithm,298

which are limited to ac-connected subsets of vertices with a maximum of two-collider paths.299

While this approach could be extended to higher-order information contributions including three-300

or more collider paths, it allows for a simple two-step search-and-score scheme at the level of301

individual nodes (step 1) and edges (step 2), as detailed in section 3. This already shows a significant302

improvement in causal discovery performance (i.e. combing good precision and good recall on303

challenging benchmarks) as compared to existing state-of-the-art methods.304
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Appendix / supplemental material410

A Preliminaries: connection and separation criteria411

A.1 m-connection vs m’-connection criteria412

An ancestral graph can be interpreted as encoding a set of conditional indepencence relations by413

a graphical criterion, called m-separation, based on the concept of m-connecting paths, which414

generalizes the separation criteria of Markov and Bayesian networks to ancestral graphs.415

Definition 4. [m-connecting path] A path π between X and Y is m-connecting given a (possibly416

empty) subset C ⊆ V (with X,Y /∈ C) if:417

i) its non-collider(s) are not in C, and418

ii) its collider(s) are in AnG(C).419

Definition 5. [m-separation criterion] The subsetsA andB are said to be m-separated by C, noted420

A⊥mB|C, if there is no m-connecting path between any vertex inA and any vertex inB given C.421

The probabilistic interpretation of ancestral graph is given by its global and pairwise Markov properties422

(which are equivalent [8]): if A and B are m-separated by C, then A and B are conditionally423

independent given C and ∀X ∈ A and ∀Y ∈ B, there is a probability distribution P faithful424

to G such that their conditional mutual information vanishes, i.e. IP (X;Y |C) = 0, also noted425

X ⊥⊥P Y |C.426

However, as discussed above, the proof of Theorem 1 will require to introduce a weakerm′-connection427

criterion defined below.428

Definition 6. [m′-connecting path] A path π between X and Y is m′-connecting given a subset429

C ⊆ V (with X,Y possibly in C) if:430

i) its non-collider(s) are not in C, and431

ii) its collider(s) are in AnG({X,Y } ∪C).432

Note, in particular, that an m-connecting path is necessary an m′-connecting path but that the433

converse is not always true. For example, the path X→Z←→T←→Y in Fig. 1G (with Z → Y ) is434

an m′-connecting path given T (as Z ∈ AnG({X,Y } ∪ T )) but not an m-connecting path given T435

(as Z /∈ AnG(T )).436

However, Richardson and Spirtes 2002 [8] have shown the following lemma,437

Lemma 4. [Corollary 3.15 in [8]] In an ancestral graph G, there is a m′-connecting path µ between438

X and Y given C if and only if there is a (possibly different) m-connecting path π between X and439

Y given C.440

Hence, Lemma 4 implies that m′-separation and m-separation criteria are in fact equivalent, as an441

absence of m′-connecting paths implies an absence of m-connecting paths and vice versa. This442

enables to reformulate the m-separation criterion above as,443

Definition 7. [m′-separation (and m-separation) criteria] The subsets A and B are said to be m′-444

separated (or m-separated) by C, if all paths from any X ∈ A to any Y ∈ B have either445

i) a non-collider in C, or446

ii) a collider not in AnG({X,Y } ∪C).447

The probabilistic interpretation of an ancestral graph is given by its (global) Markov property: ifA448

andB are m-separated (or m′-separated) by C, thenA andB are conditionally independent given449

C, noted as,A ⊥m B|C.450

A.2 ac-connecting paths and ac-connected subsets451

Let us now recall the definition of ancestor collider connecting paths or ac-connecting paths,452

which is directly relevant to characterize the likelihood decomposition and Markov equivalent classes453

of ancestral graphs (Theorem 1). We give here a different yet equivalent definition of ac-connecting454

paths as defined in the main text (Definition 2) in order to underline the similarities and differencies455

with the notion of m′-connecting path (Definition 6).456
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Definition 8. [ac-connecting path] A path π between X and Y is an ac-connecting path given a457

subset C ⊆ V (with X and Y possibly in C) if:458

i) π does not have any noncollider, and459

ii) its collider(s) are in AnG({X,Y } ∪C).460

Hence, more simply (following Definition 2 in the main text), an ac-connecting path given C is a461

collider path, X ∗→ Z1 ↔ · · · ↔ ZK ←∗Y , with all Zi ∈ AnG({X,Y } ∪C), i.e. with Zi in C or462

connected to {X,Y } ∪C by an ancestor path, Zi → · · · → T with T ∈ {X,Y } ∪C.463

Definition 9. [ac-separation criterion] The subsetsA andB are said to be ac-separated byC if there464

is no ac-connecting path between any vertex inA and any vertex inB given C.465

Previous definitions and Lemma 4 readily lead to the following corollary between the different466

connection and separation criteria:467

Corollary 5.468

i) m-connecting path π =⇒ m′-connecting path π469

ii) ac-connecting path π =⇒ m′-connecting path π470

iii) m-separation ⇐⇒ m′-separation471

iv) m/m′-separation =⇒ ac-separation472

Finally, we recall the notion of ac-connected subset (Definition 3 in the main text), which is central473

for the decomposition of the likelihood of ancestral graphs (Theorem 1): A subset C is said to be474

ac-connected if ∀X,Y ∈ C, there is an ac-connecting path between X and Y w.r.t. C.475

B Proof of Theorem 1.476

In order to prove that the likelihood function of an ancestral graph, Eq. 12, contains all and only the477

ac-connected subsets of vertices in G (Definition 3), we will first show (i) that all non-ac-connected478

subsetsS′ are included in a cancelling combination of multivariate information terms I(X;Y |A) = 0,479

with X,Y ∈ S′ and S′ ⊆ S = {X,Y } ∪A. Conversely, we will then show (ii) that cancelling480

combinations of multivariate information terms associated to pairwise conditional independence,481

I(X;Y |A) =
∑X,Y ∈S′

S′⊆S (−1)|S
′|I(S′) = 0 do not contain any ac-connected subset S′. Finally, we482

will prove (iii) that the information terms which appear in multiple cancelling combinations from483

different pairwise independence constraints do not modify the multivariate information decomposition484

of the likelihood function of ancestral graphs, Eq. 12, as these shared/overlapping terms in fact all485

cancel through more global Markov independence relationships involving higher order (three or more486

points) vanishing multivariate information terms, such as I(X;Y ;Z|A) = 0.487

i) Let’s first prove that all non-ac-connected subsets S′ are included in at least one cancelling488

combination of multivariate information terms, I(X;Y |A) = 0, withX,Y ∈S′ andS′⊆{X,Y}∪A.489

If S′ is a non-ac-connected subset, there is at least one disconnected pair X and Y for which each490

path πj between X and Y contains either some collider(s) not in AnG(S′) or, if all colliders along491

πj are in AnG(S′), there must be some non-collider(s) at node(s) Zj but not necessarily in S′. Let’s492

define S = S′ ∪j Zj . X and Y can be shown to be m-separated given S \ {X,Y }, as for each493

path πj between X and Y , its non-collider(s) are in S at node(s) Zj (when all collider(s) along πj494

are in S′) or there is some collider(s) not in AnG(S′), which are not in AnG(S′) either. The latter495

statement is proven by contradiction assuming that there is a collider at Z /∈ AnG(S′) such that496

Z ∈ AnG(S). There is therefore a directed path Z → · · · → W with W ∈ S. Hence, W ∈ S′ or497

there is a noncollider at W ∈ Zj which is on a path πj between X and Y along which all colliders498

are in AnG(S′) by construction of S. This leads by induction to Z → · · · →W → · · · → T where499

T ∈ S′ and thus Z ∈ AnG(S′), which is a contradiction. Hence, all non-ac-connected subsets S′500

are included in a cancelling combination of multivariate information terms I(X;Y |A) = 0, with501

X,Y ∈ S′ and S′ ⊆ S = {X,Y } ∪A.502

ii) Conversely, we will now show that cancelling combinations of multivariate information terms503

associated to pairwise conditional independence, I(X;Y |A) =
∑X,Y ∈S′

S′⊆S (−1)|S
′|I(S′) = 0, do504

not contain any ac-connected subset S′.505

We will prove it by contradiction assuming that there exists a subset W ⊆ A, such that S′ =506

{X,Y }∪W is ac-connected. In particular, there should be an ac-connecting path between X and Y507
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confined to AnG(S′) and thus to AnG(S) ⊇ AnG(S′), which is an m′-connecting path between X508

and Y givenA, contradicting the above hypothesis of m′-separation givenA, i.e. I(X;Y |A) = 0.509

The use of m′-separation, i.e. the absence of m′-connecting paths with colliders in AnG(S) rather510

thanm-connecting paths with colliders in AnG(A), is necessary here, see Definitions 4 and 6. Hence,511

no ac-connected subset S′ is included in cancelling combinations of multivariate information terms512

associated to pairwise conditional independence, I(X;Y |A) =
∑X,Y ∈S′

S′⊆S (−1)|S
′|I(S′) = 0.513

iii) Finally, we will show that the information terms which appear in multiple cancelling combina-514

tions from different pairwise independence constraints do not modify the multivariate information515

decomposition of the likelihood function of ancestral graphs, Eq. 12, as these shared/overlapping516

terms in fact all cancel through more global Markov independence relationships involving higher517

order (three or more points) vanishing multivariate information terms, such as I(X;Y ;Z|A) = 0.518

This result requires to use an ordering of the nodes, Xk � Xj � Xi, that is compatible with the519

directed edges of the ancestral graph assumed to have no undirected edges, i.e. Xj /∈ An(Xi) if520

Xj � Xi. Under this ordering, higher order nodes Xk � Xi � Xj can be a priori excluded from all521

separating setsAij of pairs of lower order nodes, i.e. if I(Xi;Xj |Aij) = 0 then Xk /∈ Aij .522

In particular, the two pairwise conditional independence relations I(Xk;X`|Ak`) = 0, with X` �523

Xk, and I(Xi;Xj |Aij) = 0, with Xj � Xi, do not share any multivariate information terms, if524

X` 6= Xj . Indeed, as I(Xk;X`|Ak`) contains all information terms including both Xk and X` as525

well as every subset (possibly empty) of Ak`, none of them includes Xj if X` � Xj . Therefore526

I(Xk;X`|Ak`) does not contain any information term of I(Xi;Xj |Aij) which contains both Xi and527

Xj as well as every subset (possibly empty) ofAij . This property eliminates all multiple counting of528

multivariate informations terms shared if X` 6= Xj . Note that this result does not hold in general for529

ancestral graphs including undirected edges.530

Hence, the issue of redundant multivariate information terms in the likelihood decomposition, Eq. 12,531

is related to the conditional independences of two or more pairs, {Xi, Xr}, {Xj , Xr}, ..., {X`, Xr},532

sharing the same higher order node, Xr. However, this situation also entails a more global Markov533

independence constraint between Xr and {Xi, Xj , · · · , X`}, given a separating setA, which can be534

decomposed into more local independence constraints using the chain rule and the decomposition535

rules of multivariate information (Eq. 9),536

0 = I({Xi, Xj , · · · , X`};Xr|A)

=
(
I(Xi;Xr|A) + I(Xj ;Xr|A, Xi)

)
+
[
I(Xk;Xr|A, Xi, Xj)

]
+ · · ·+ I(X`;Xr|A, · · · )

=
(
I(Xi;Xr|A) + I(Xj ;Xr|A)− I(Xi;Xj ;Xr|A)

)
+
[
I(Xk;Xr|A, Xi)− I(Xj ;Xk;Xr|A, Xi)

]
+ · · ·+ I(X`;Xr|A, · · · )

=
(
I(Xi;Xr|A) + I(Xj ;Xr|A)− I(Xi;Xj ;Xr|A)

)
+
[
I(Xk;Xr|A)− I(Xj ;Xk;Xr|A)− I(Xi;Xk;Xr|A) + I(Xi;Xj ;Xk;Xr|A)

]
+ · · ·

where all the conditional multivariate information terms vanish by induction due to the non-537

negativity of (conditional) mutual information. In particular, the conditional multivariate in-538

formation terms in the last expression, i.e. between Xr and each subset of {Xi, Xj , · · · , X`}539

given the separating set A, all vanish. This result can be readily extended to any subsets540

{Xr, Xs, · · · , Xz} (conditionally) independent of {Xi, Xj , · · · , X`} given a separating set A,541

i.e. I({Xi, Xj , · · · , X`}; {Xr, Xs, · · · , Xz}|A) = 0. Hence, as the final conditional multivari-542

ate cross information terms of the decomposition all vanish while not sharing any subsets of variables,543

it proves the absence of redundancy and a global cancellation of non-ac-connected subsets (from544

pairwise and higher order conditional independence relations) in the likelihood function of ancestral545

graphs without undirected edges, Eq. 12.546

Hence, only ac-connected subsets effectively contribute to the cross-entropy of an ancestral graph547

with only directed and bidirected edges, Eq. 12. �548
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C Factorization of the probability distribution of ancestral graphs549

C.1 Factorization resulting from Theorem 1 and Proposition 3550

Before presenting the factorization of the model distribution of ancestral graphs resulting from551

Theorem 1 and Proposition 3, it is instructive to obtain an equivalent factorization for Bayesian552

graphs, assuming a positive empirical distributions, p(x1, · · · , xm) =
∏m

i=1 p(xi|xi−1, · · · , x1) > 0,553

q(x1, · · · , xm) =

m∏
i=1

q(xi|paxi
) =

m∏
i=1

p(xi|paxi
)

= p(x1, · · · , xm)

m∏
i=1

p(xi|paxi
)

p(xi|xi−1, · · · , x1)

= p(x1, · · · , xm)

m∏
i=1

p(xi|paxi
)p(xi−1\paxi

|paxi
)

p(xi,xi−1\paxi
|paxi

)
(15)

This leads to the following alternative expressions for the cross-entropy H(p, q) =554

−
∑

x p(x) log q(x) in terms of multivariate entropy and information, which only depend on the555

empirical joint distribution p(x),556

H(p, q) =

m∑
i=1

H(xi|PaXi
)

= H(X1, · · · , Xm) +

m∑
i=1

I(Xi;Xi−1\PaXi
|PaXi

) (16)

where
∑m

i=1 I(Xi;Xi−1\PaXi |PaXi) can be decomposed, using the chain rule and Eq. 11, into557

unconditional multivariate information terms, which exactly cancel all the multivariate information558

of the non-ac-connected subsets of variables in the multivariate entropy decomposition, Eq. 6.559

Note, however, that this result obtained for Bayesian networks requires an explicit factorization of the560

global model distribution, q(x), in terms of the empirical distribution, p(x), which is not known and561

presumably does not exist, in general, for ancestral graphs.562

Alternatively, assuming that the empirical and model distributions are positive (∀x, p(x) > 0,563

q(x) > 0), it is always possible to factorize them into factors associated to each (cross) information564

term in the (cross) entropy decomposition, Eq. 6, as,565

q(x) =

m∏
i=1

q(xi)×
m∏
i<j

q(xi, xj)

q(xi)q(xj)
×

m∏
i<j<k

q(xi, xj , xk)q(xi)q(xj)q(xk)

q(xi, xj)q(xi, xk)q(xj , xk)
× · · · (17)

where all the marginal distributions over a subset of variables, e.g. q(xi, xj , xk) =
∑

` 6=i,j,k q(x) or566

p(xi, xj , xk) =
∑
6̀=i,j,k p(x), cancel two-by-two by construction.567

This can be illustrated on a simple example of a two-collider path including one bidirected edge,568

X → Z ←→ Y ←W (Fig. 1D), valid for q(.) and p(.) alike,569

q(x, z, y, w) = q(x) q(z) q(y) q(w)

× q(x, z)

q(x) q(z)

q(z, y)

q(z) q(y)

q(y, w)

q(y) q(w)

q(x, y)

q(x) q(y)

q(x,w)

q(x) q(w)

q(z, w)

q(z) q(w)

× q(x) q(z) q(y) q(x, z, y)

q(x, z) q(x, y) q(z, y)

q(z) q(y) q(w) q(z, y, w)

q(z, y) q(z, w) q(y, w)

× q(x) q(z) q(w) q(x, z, w)

q(x, z) q(x,w) q(z, w)

q(x) q(y) q(w) q(x, y, w)

q(x, y) q(x,w) q(y, w)

× q(x, z) q(z, y) q(y, w) q(x, y) q(x,w) q(z, w) q(x, z, y, w)

q(x, z, y) q(x, z, w) q(x, y, w) q(z, y, w) q(x) q(y) q(z) q(w)
(18)

where all individual distribution marginals on subsets of variables, e.g. q(x), q(x, z), q(x, z, y) (or570

p(x), p(x, z), p(x, z, y)), cancel two-by-two by construction, except q(x, z, y, w) (or p(x, z, y, w)).571
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In addition and only for the model distribution q(.), all ratios in gray in Eq. 18 also cancel due to572

Markov independence relations across non-ac-connected subsets (see proof of Theorem 1). This573

leaves a truncated factorization retaining all and only the ac-connected subsets of variables in the574

graph, which we propose to estimate on empirical data by substituting the remaining q(.) terms by575

their empirical counterparts p(.), see Proposition 3.576

This leads to the following global factorization for q(.) in terms of p(.),577

q(x, z, y, w) ≡ p(x) p(z) p(y) p(w)
p(x, z)

p(x) p(z)

p(z, y)

p(z) p(y)

p(y, w)

p(y) p(w)

× p(x) p(z) p(y) p(x, z, y)

p(x, z) p(x, y) p(z, y)

p(z) p(y) p(w) p(z, y, w)

p(z, y) p(z, w) p(y, w)

× p(x, z) p(z, y) p(y, w) p(x, y) p(x,w) p(z, w) p(x, z, y, w)

p(x, z, y) p(x, z, w) p(x, y, w) p(z, y, w) p(x) p(y) p(z) p(w)

= p(x, z, y, w)
p(x) p(y)

p(x, y)

p(x) p(w)

p(x,w)

p(z) p(w)

p(z, w)

× p(x, z) p(x,w) p(z, w)

p(x) p(z) p(w) p(x, z, w)

p(x, y) p(x,w) p(y, w)

p(x) p(y) p(w) p(x, y, w)
(19)

where the terms in gray have been passed to the lhs of Eq. 18 applied to p(.). This ultimately578

leads to the analog of the Bayesian Network factorization in Eq. 15 but for the two-collider path,579

X → Z ←→ Y ←W (Fig. 1D),580

q(x, z, y, w) ≡ p(x, z, y, w)
p(x) p(w)

p(x,w)

p(z|x) p(w|x)

p(z, w|x)

p(x|w) p(y|w)

p(x, y|w)
(20)

where the last three factors “correct” the expression of p(x, z, y, w) for the three (conditional)581

independences entailed by the underlying graph, that is, X ⊥W , Z ⊥W |X , and X ⊥ Y |W .582

C.2 Relation to the head-and-tail factorizations583

The head-and-tail factorizations of the model distribution of an acyclic directed mixed graph, intro-584

duced by Richardson 2009 [6], enable the parametrization of the joint probability distribution with585

independent parameters for ancestrally closed subsets of vertices.586

For instance, the head-and-tail factorizations of the simple two-collider path including one bidirected587

edge, X → Z ←→ Y ←W , introduced above, Fig. 1D, are [6],588

q(x,w) = q(x) q(w)

q(x, z) = q(z|x) q(x)

q(y, w) = q(y|w) q(w)

q(x, z, w) = q(z|x) q(x) q(w)

q(x, y, w) = q(y|w) q(w) q(x)

q(x, z, y, w) = q(z, y|x,w) q(x) q(w) (21)

Importantly, these head-and-tail factorizations imply additional relations such as q(y|w) = q(y|x,w)589

(i.e. X ⊥ Y |W ) obtained by comparing the last two relations in Eq. 21 after marginalizing590

q(x, z, y, w) over z. However, such implicit conditional independence relations are not verified591

by the empirical distribution p(.) in general and prevent the estimation of the head-and-tail factoriza-592

tions by substituting the rhs q(.) terms in Eq. 21 with their empirical counterparts p(.), as in the case593

of Bayesian networks, Eq. 15.594

Indeed, while the head-and-tail factorization relations, Eq. 21, obey the local and global Markov595

independence relations entailed by the graphical model, Fig. 1D, leading to the cancellation of all596

factors associated to non-ac-connected subsets in gray in Eq. 18, the remaining head-and-tail factors597

cannot be readily estimated with the empirical distribution p(.).598
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In particular, the cross-entropy of the two-collider path of interest, Fig. 1D, obtained with the head-599

and-tail factorizations corresponds to1 H(p, q)=−
∑
p(x, z, y, w) log q(z, y|x,w) q(x) q(w). Then,600

estimating the q(.) terms with their p(.) counterparts leads to the cross-entropy of a Bayesian graph,601

Fig. 1E, with a different Markov equivalent class than the ancestral graph of interest, Fig. 1D. A602

similar discrepancy is obtained with a c-component factorization which leads to the cross-entropy of603

the Bayesian graph of Fig. 1E without edgeX → Y , corresponding to a different Markov equivalence604

class than the previous two graphs, Figs. 1D & E.605

These examples illustrate the difficulty to exploit the c-component or head-and-tail factorizations to606

estimate the likelihood of ancestral graphs including bidirected edge(s).607

D Node and edge scores based on Normalized Maximum Likelihood criteria608

Search-and-score methods based on likelihood estimates need to properly account for finite sample609

size, as cross-entropy minimization leads to ever more complex models, resulting in model overfitting610

for finite datasets. While BIC regularization is valid in the asymptotic limit of very large datasets, it611

tends to overestimate finite size corrections, leading to lower recall, in general. In order to better take612

into account finite sample size, we used instead the (universal) Normalized Maximum Likelihood613

(NML) criteria [42, 43, 38, 39], which amounts to normalizing the likelihood function over all614

possible datasets with the same number N of samples.615

Node score. We first used the factorized Normalized Maximum Likelihood (fNML) complexity [38,616

39] to define a local score for each node Xi, which extends the decomposable likelihood of Bayesian617

graphs given each node’s parents, Eq. 2, to all non-descendant neighbors, Pa′
Xi

,618

LD|GXi
= e−N. Scoren(Xi) =

e
−NH(Xi|Pa′

Xi
)∑

|D′|=N e
−NH(Xi|Pa′

Xi
)

(22)

= e
−NH(Xi|Pa′

Xi
)−
∑qi

j log Crinj (23)

= e
N
∑qi

j

∑ri
k

njk
N log

(
njk
nj

)
−
∑qi

j log Crinj (24)

=

qi∏
j

∏ri
k

(
njk

nj

)njk

Crinj

(25)

where njk corresponds to the number of data points for which Xi is in its kth state and its non-619

descendant neighbors in their jth state, with nj =
∑ri

k njk. The universal normalization constant Crn620

is then computed by summing the numerator over all possible partitions of the n data points into a621

maximum of r subsets, `1 + `2 + · · ·+ `r = n with `k > 0,622

Crn =
∑

`1+`2+···+`r=n

n!

`1!`2! · · · `r!

r∏
k=1

(
`k
n

)`k

(26)

which can in fact be computed in linear-time using the following recursion [38],623

Crn = Cr−1n +
n

r − 2
Cr−2n (27)

with C1n = 1 for all n and applying Eq. 30 below for r = 2. However, for large n and r, Crn624

computation tends to be numerically unstable, which can be circumvented by implementing the625

recursion on parametric complexity ratios Dr
n = Crn/Cr−1n rather than parametric complexities626

themselves [35] as,627

Dr
n = 1 +

n

(r − 2)Dr−1
n

(28)

log Crn =

r∑
k=2

logDk
n (29)

1Indeed, all terms in Eq. 18 actually cancel two-by-two by construction, whatever their factorization
expression, except for the remaining joint-distribution over all variables, q(x, z, y, w)=q(z, y|x,w) q(x) q(w).
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for r > 3, with C1n = 1 and C2n = D2
n, which can be computed directly with the general formula,628

Eq. 26, for r = 2,629

C2n =

n∑
h=0

(
n

h

)(
h

n

)h(
n− h
n

)n−h

(30)

or its Szpankowski approximation for large n (needed for n > 1000 in practice) [44–46],630

C2n =

√
nπ

2

(
1 +

2

3

√
2

nπ
+

1

12n
+O

(
1

n3/2

))
(31)

'
√
nπ

2
exp

(√
8

9nπ
+

3π − 16

36nπ

)
(32)

631

This leads to the following local score for each node Xi, which is minimized over alternative632

combinations of non-descendant neighbors, Pa′
Xi
⊆ Pa

Xi
∪ Sp

Xi
∪Ne

Xi
, in the first step of the633

local search-and-score algorithm (step 1) detailed in the main text,634

Scoren(Xi) = H(Xi|Pa′
Xi

) +
1

N

qxi∑
j

log Crxi
nj (33)

Edge scores. We then defined several edge scores to optimize the orientation of each edge, X Y ,635

given its close surrounding vertices.636

To this end, we first introduced a local score for node pairs which simply sums the node scores, Eq. 33,637

for each node. The resulting pair scores are listed in Table 2 for unconnected node pairs and for pairs638

of nodes connected by a directed edge, where Pa′
X\Y = Pa

X
∪ Sp

X
\Y and Pa′

Y\X = Pa
Y
∪ Sp

Y
\X639

with their corresponding combinations of levels, q
y\x and q

x\y .640

Table 2: Local scores for node pairs

Pair score Information fNML Complexity

X 6 Y H(X|Pa′
X\Y ) +H(Y |Pa′

Y\X ) 1
N

( ∑q
x\y

j log Crxnj
+
∑q

y\x
j log Crynj

)
X → Y H(X|Pa′

X\Y ) +H(Y |Pa′
Y\X , X) 1

N

( ∑q
x\y

j log Crxnj
+
∑q

y\xrx

j log Crynj

)
X ← Y H(X|Pa′

X\Y , Y ) +H(Y |Pa′
Y\X ) 1

N

( ∑q
x\y ry

j log Crxnj
+
∑q

y\x
j log Crynj

)
Then, edge scores for directed edges, X → Y and Y → X , are defined w.r.t. to the edge removal641

score, X 6 Y , by substracting the pair scores of unconnected pairs to the pair scores of directed642

edges, leading to the following edge orientation scores,643

Score(X → Y ) = −I(X;Y |Pa′
Y\X ) +

1

N

( q
y\xrx∑
j

log Crynj
−

q
y\x∑
j

log Crynj

)
(34)

Score(Y → X) = −I(X;Y |Pa′
X\Y ) +

1

N

( q
x\y ry∑
j

log Crxnj
−

q
x\y∑
j

log Crxnj

)
(35)

However, if rx 6= ry, the fNML complexities of these orientation scores are not identical for644

Markov equivalent edge orientations between nodes sharing the same parents (or spouses) [47],645

Pa′
Y\X = Pa′

X\Y = Pa′ and q
y\x = q

x\y , despite sharing the same conditional mutual information,646

I(X;Y |Pa′) =
1

2

(
H(X|Pa′) +H(Y |Pa′, X)

)
+

1

2

(
H(X|Pa′, Y ) +H(Y |Pa′)

)
(36)

This suggests to symmetrize the fNML complexities for edge orientation scores by averaging them647

over each directed orientation, as for the conditional information in Eq. 36, leading to the proposed648

fNML complexity for directed edges given in Table 1 in the main text.649
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For bidirected edges, the proposed local orientation score accounts for all ac-connected subsets in650

close vicinity of the bidirected edge, which concerns all subsets including either X and any combi-651

nation (possibly void) of parents or spouses different from Y (i.e. corresponding to the information652

contributions H(X|Pa′
X\Y )) or Y and any combination of parents or spouses different from X653

(i.e. corresponding to the information contributions H(Y |Pa′
Y\X )) or, else, including both nodes X654

and Y plus any combination of their parents or spouses, corresponding to the following information655

contribution,−I(X;Y |Pa′
XY

), where Pa′
XY

= Pa′
X\Y ∪Pa′

Y\X . This last term,−I(X;Y |Pa′
XY

),656

contains all the remaining information contributions once the bidirected orientation score is given657

relative to the edge removal score (Table 2) as for the two directed orientation scores, above. Finally,658

the symmetrized fNML complexity associated with a bidirected edge should be computed with659

the whole set of conditioning parents or spouses, Pa′
XY

, as indicated in Table 1. Note that this660

bidirected orientation score becomes also Markov equivalent to the two directed orientation scores,661

as required, when the nodes share the same parents and spouses, i.e. Pa′
XY

= Pa′
Y\X = Pa′

X\Y and662

q
xy

= q
y\x = q

x\y in Table 1.663

E Toy models664

Fig. 3 shows three simple ancestral models used to test MIIC_search&score orientation scores665

(Table 1) to effectively predict bidirected orientations when the end nodes do not share the same666

parents (Model 1), share some parents (Model 2) or when the bidirected edge is part of a longer than667

two-collider paths (Model 3).668

The data is generated from the theoretical DAG using the rmvDAG function in the pcalg package669

[48]. Each node follows a normal distribution, and the data is discretized using bnlearn’s discretize670

function using Hartemink’s pairwise mutual information method [40]. For these toy models, the edge671

orientation scores are computed assuming the correct parents of each node.672

The prediction of the edge orientation scores are summarized in Table 3 in % of replicates displaying673

directed edges (wrong) or bidirected edge (correct) as a function of increasing dataset size N .674

Model 2 Model 3Model 1

Figure 3: Simple ancestral graphs.

Table 3: Model 1, X2 X4 Model 2, X2 X4 Model 3, X2 X4 Model 3, X4 X6

N ← → ↔ ← → ↔ ← → ↔ ← → ↔
1000 0 100 0 50 42 8 8 88 4 91.7 6.2 2.1
5000 0 68 32 18 2 80 2 80 18 76 24 0

10000 0 10 90 0 0 100 0 6 94 62 22 16
20000 0 0 100 0 0 100 0 0 100 2 0 98
35000 0 0 100 0 0 100 0 0 100 0 0 100
50000 0 0 100 0 0 100 0 0 100 0 0 100
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NeurIPS Paper Checklist675

1. Claims676

Question: Do the main claims made in the abstract and introduction accurately reflect the677

paper’s contributions and scope?678

Answer: [Yes]679

Justification: The main claims of the paper are supported by the theoretical and experimental680

results shown in Figs. 1 & 2, respectively.681

Guidelines:682

• The answer NA means that the abstract and introduction do not include the claims683

made in the paper.684

• The abstract and/or introduction should clearly state the claims made, including the685

contributions made in the paper and important assumptions and limitations. A No or686

NA answer to this question will not be perceived well by the reviewers.687

• The claims made should match theoretical and experimental results, and reflect how688

much the results can be expected to generalize to other settings.689

• It is fine to include aspirational goals as motivation as long as it is clear that these goals690

are not attained by the paper.691

2. Limitations692

Question: Does the paper discuss the limitations of the work performed by the authors?693

Answer: [Yes]694

Justification: We have added a Discussion & Limitation section at the end of the paper. The695

main limitation of the experimental results is the fact that we did not have sufficient time696

to perform many dataset replicates of the benchmark ancestral graphs. While the obtained697

statistics already support our main experimental results, we intend to perform more dataset698

replicates for the final version of the paper.699

Guidelines:700

• The answer NA means that the paper has no limitation while the answer No means that701

the paper has limitations, but those are not discussed in the paper.702

• The authors are encouraged to create a separate "Limitations" section in their paper.703

• The paper should point out any strong assumptions and how robust the results are to704

violations of these assumptions (e.g., independence assumptions, noiseless settings,705

model well-specification, asymptotic approximations only holding locally). The authors706

should reflect on how these assumptions might be violated in practice and what the707

implications would be.708

• The authors should reflect on the scope of the claims made, e.g., if the approach was709

only tested on a few datasets or with a few runs. In general, empirical results often710

depend on implicit assumptions, which should be articulated.711

• The authors should reflect on the factors that influence the performance of the approach.712

For example, a facial recognition algorithm may perform poorly when image resolution713

is low or images are taken in low lighting. Or a speech-to-text system might not be714

used reliably to provide closed captions for online lectures because it fails to handle715

technical jargon.716

• The authors should discuss the computational efficiency of the proposed algorithms717

and how they scale with dataset size.718

• If applicable, the authors should discuss possible limitations of their approach to719

address problems of privacy and fairness.720

• While the authors might fear that complete honesty about limitations might be used by721

reviewers as grounds for rejection, a worse outcome might be that reviewers discover722

limitations that aren’t acknowledged in the paper. The authors should use their best723

judgment and recognize that individual actions in favor of transparency play an impor-724

tant role in developing norms that preserve the integrity of the community. Reviewers725

will be specifically instructed to not penalize honesty concerning limitations.726
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Question: For each theoretical result, does the paper provide the full set of assumptions and728

a complete (and correct) proof?729

Answer: [Yes]730

Justification: For the theoretical results (notably Theorem 1) we provide the full set of731

assumptions (section 2 and Appendix A)and a complete proof (Appendix B).732

Guidelines:733

• The answer NA means that the paper does not include theoretical results.734

• All the theorems, formulas, and proofs in the paper should be numbered and cross-735

referenced.736

• All assumptions should be clearly stated or referenced in the statement of any theorems.737

• The proofs can either appear in the main paper or the supplemental material, but if738

they appear in the supplemental material, the authors are encouraged to provide a short739

proof sketch to provide intuition.740

• Inversely, any informal proof provided in the core of the paper should be complemented741

by formal proofs provided in appendix or supplemental material.742

• Theorems and Lemmas that the proof relies upon should be properly referenced.743

4. Experimental Result Reproducibility744

Question: Does the paper fully disclose all the information needed to reproduce the main ex-745

perimental results of the paper to the extent that it affects the main claims and/or conclusions746

of the paper (regardless of whether the code and data are provided or not)?747

Answer: [Yes]748

Justification: We provided the full description of the experiments run in the paper (sections 2749

& 3 and Appendix D). The open-source code reproducing the experimental results presented750

in the paper will be provided with the camera-ready version of the paper.751

Guidelines:752

• The answer NA means that the paper does not include experiments.753

• If the paper includes experiments, a No answer to this question will not be perceived754

well by the reviewers: Making the paper reproducible is important, regardless of755

whether the code and data are provided or not.756

• If the contribution is a dataset and/or model, the authors should describe the steps taken757

to make their results reproducible or verifiable.758

• Depending on the contribution, reproducibility can be accomplished in various ways.759

For example, if the contribution is a novel architecture, describing the architecture fully760

might suffice, or if the contribution is a specific model and empirical evaluation, it may761

be necessary to either make it possible for others to replicate the model with the same762

dataset, or provide access to the model. In general. releasing code and data is often763

one good way to accomplish this, but reproducibility can also be provided via detailed764

instructions for how to replicate the results, access to a hosted model (e.g., in the case765

of a large language model), releasing of a model checkpoint, or other means that are766

appropriate to the research performed.767

• While NeurIPS does not require releasing code, the conference does require all submis-768

sions to provide some reasonable avenue for reproducibility, which may depend on the769

nature of the contribution. For example770

(a) If the contribution is primarily a new algorithm, the paper should make it clear how771

to reproduce that algorithm.772

(b) If the contribution is primarily a new model architecture, the paper should describe773

the architecture clearly and fully.774

(c) If the contribution is a new model (e.g., a large language model), then there should775

either be a way to access this model for reproducing the results or a way to reproduce776

the model (e.g., with an open-source dataset or instructions for how to construct777

the dataset).778
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(d) We recognize that reproducibility may be tricky in some cases, in which case779

authors are welcome to describe the particular way they provide for reproducibility.780

In the case of closed-source models, it may be that access to the model is limited in781

some way (e.g., to registered users), but it should be possible for other researchers782

to have some path to reproducing or verifying the results.783

5. Open access to data and code784

Question: Does the paper provide open access to the data and code, with sufficient instruc-785

tions to faithfully reproduce the main experimental results, as described in supplemental786

material?787

Answer: [No]788

Justification: We do not include a new code with the initial submission, as it is not yet789

properly packaged at submission time, but we definitely intend to release this open-source790

code including proper annotation and userguide with the final camera-ready version of the791

paper. MIIC and FCI open-source packages used for benchmark comparison are already792

published and available on public servers.793

Guidelines:794

• The answer NA means that paper does not include experiments requiring code.795

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/796

public/guides/CodeSubmissionPolicy) for more details.797

• While we encourage the release of code and data, we understand that this might not be798

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not799

including code, unless this is central to the contribution (e.g., for a new open-source800

benchmark).801

• The instructions should contain the exact command and environment needed to run to802

reproduce the results. See the NeurIPS code and data submission guidelines (https:803

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.804

• The authors should provide instructions on data access and preparation, including how805

to access the raw data, preprocessed data, intermediate data, and generated data, etc.806

• The authors should provide scripts to reproduce all experimental results for the new807

proposed method and baselines. If only a subset of experiments are reproducible, they808

should state which ones are omitted from the script and why.809

• At submission time, to preserve anonymity, the authors should release anonymized810

versions (if applicable).811

• Providing as much information as possible in supplemental material (appended to the812

paper) is recommended, but including URLs to data and code is permitted.813

6. Experimental Setting/Details814

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-815

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the816

results?817

Answer: [Yes]818

Justification: We provided the full description of the experiments run in the paper (sections819

2 3 and Appendix D).820

Guidelines:821

• The answer NA means that the paper does not include experiments.822

• The experimental setting should be presented in the core of the paper to a level of detail823

that is necessary to appreciate the results and make sense of them.824

• The full details can be provided either with the code, in appendix, or as supplemental825

material.826

7. Experiment Statistical Significance827

Question: Does the paper report error bars suitably and correctly defined or other appropriate828

information about the statistical significance of the experiments?829

Answer: [Yes]830
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Justification: The 1-sigma error bars are plotted in Fig. 2. While these statistics already831

support our experimental results, we intend to perform more dataset replicates for the832

final version of the paper, which we did not have sufficient time to perform by the time of833

submission. This should reduce some error bars, in particular, those for the results displaying834

large error bars.835

Guidelines:836

• The answer NA means that the paper does not include experiments.837

• The authors should answer "Yes" if the results are accompanied by error bars, confi-838

dence intervals, or statistical significance tests, at least for the experiments that support839

the main claims of the paper.840

• The factors of variability that the error bars are capturing should be clearly stated (for841

example, train/test split, initialization, random drawing of some parameter, or overall842

run with given experimental conditions).843

• The method for calculating the error bars should be explained (closed form formula,844

call to a library function, bootstrap, etc.)845

• The assumptions made should be given (e.g., Normally distributed errors).846

• It should be clear whether the error bar is the standard deviation or the standard error847

of the mean.848

• It is OK to report 1-sigma error bars, but one should state it. The authors should849

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis850

of Normality of errors is not verified.851

• For asymmetric distributions, the authors should be careful not to show in tables or852

figures symmetric error bars that would yield results that are out of range (e.g. negative853

error rates).854

• If error bars are reported in tables or plots, The authors should explain in the text how855

they were calculated and reference the corresponding figures or tables in the text.856

8. Experiments Compute Resources857

Question: For each experiment, does the paper provide sufficient information on the com-858

puter resources (type of compute workers, memory, time of execution) needed to reproduce859

the experiments?860

Answer: [Yes]861

Justification: The computer resource used for all experiments is a simple laptop with intel i7862

processors, 12 cores and 16 threads.863

Guidelines:864

• The answer NA means that the paper does not include experiments.865

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,866

or cloud provider, including relevant memory and storage.867

• The paper should provide the amount of compute required for each of the individual868

experimental runs as well as estimate the total compute.869

• The paper should disclose whether the full research project required more compute870

than the experiments reported in the paper (e.g., preliminary or failed experiments that871

didn’t make it into the paper).872

9. Code Of Ethics873

Question: Does the research conducted in the paper conform, in every respect, with the874

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?875

Answer: [Yes]876

Justification: The paper does not use or produce sensitive data nor concern potentially877

harmful applications.878

Guidelines:879

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.880

• If the authors answer No, they should explain the special circumstances that require a881

deviation from the Code of Ethics.882
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-883

eration due to laws or regulations in their jurisdiction).884

10. Broader Impacts885

Question: Does the paper discuss both potential positive societal impacts and negative886

societal impacts of the work performed?887

Answer: [Yes]888

Justification: The paper does not use or produce sensitive data nor concern potentially889

harmful applications.890

Guidelines:891

• The answer NA means that there is no societal impact of the work performed.892

• If the authors answer NA or No, they should explain why their work has no societal893

impact or why the paper does not address societal impact.894

• Examples of negative societal impacts include potential malicious or unintended uses895

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations896

(e.g., deployment of technologies that could make decisions that unfairly impact specific897

groups), privacy considerations, and security considerations.898

• The conference expects that many papers will be foundational research and not tied899

to particular applications, let alone deployments. However, if there is a direct path to900

any negative applications, the authors should point it out. For example, it is legitimate901

to point out that an improvement in the quality of generative models could be used to902

generate deepfakes for disinformation. On the other hand, it is not needed to point out903

that a generic algorithm for optimizing neural networks could enable people to train904

models that generate Deepfakes faster.905

• The authors should consider possible harms that could arise when the technology is906

being used as intended and functioning correctly, harms that could arise when the907

technology is being used as intended but gives incorrect results, and harms following908

from (intentional or unintentional) misuse of the technology.909

• If there are negative societal impacts, the authors could also discuss possible mitigation910

strategies (e.g., gated release of models, providing defenses in addition to attacks,911

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from912

feedback over time, improving the efficiency and accessibility of ML).913

11. Safeguards914

Question: Does the paper describe safeguards that have been put in place for responsible915

release of data or models that have a high risk for misuse (e.g., pretrained language models,916

image generators, or scraped datasets)?917

Answer: [NA]918

Justification: The paper does not use or produce sensitive data nor concern potentially919

harmful applications.920

Guidelines:921

• The answer NA means that the paper poses no such risks.922

• Released models that have a high risk for misuse or dual-use should be released with923

necessary safeguards to allow for controlled use of the model, for example by requiring924

that users adhere to usage guidelines or restrictions to access the model or implementing925

safety filters.926

• Datasets that have been scraped from the Internet could pose safety risks. The authors927

should describe how they avoided releasing unsafe images.928

• We recognize that providing effective safeguards is challenging, and many papers do929

not require this, but we encourage authors to take this into account and make a best930

faith effort.931

12. Licenses for existing assets932

Question: Are the creators or original owners of assets (e.g., code, data, models), used in933

the paper, properly credited and are the license and terms of use explicitly mentioned and934

properly respected?935
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Answer: [Yes]936

Justification: We have credited all previously published resources (including license details)937

used in the paper.938

Guidelines:939

• The answer NA means that the paper does not use existing assets.940

• The authors should cite the original paper that produced the code package or dataset.941

• The authors should state which version of the asset is used and, if possible, include a942

URL.943

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.944

• For scraped data from a particular source (e.g., website), the copyright and terms of945

service of that source should be provided.946

• If assets are released, the license, copyright information, and terms of use in the947

package should be provided. For popular datasets, paperswithcode.com/datasets948

has curated licenses for some datasets. Their licensing guide can help determine the949

license of a dataset.950

• For existing datasets that are re-packaged, both the original license and the license of951

the derived asset (if it has changed) should be provided.952

• If this information is not available online, the authors are encouraged to reach out to953

the asset’s creators.954

13. New Assets955

Question: Are new assets introduced in the paper well documented and is the documentation956

provided alongside the assets?957

Answer: [NA]958

Justification: We do not include a new code with the initial submission, as it is not yet959

properly packaged at submission time, but we definitely intend to release this open-source960

code including proper annotation and userguide with the final camera-ready version of the961

paper.962

Guidelines:963

• The answer NA means that the paper does not release new assets.964

• Researchers should communicate the details of the dataset/code/model as part of their965

submissions via structured templates. This includes details about training, license,966

limitations, etc.967

• The paper should discuss whether and how consent was obtained from people whose968

asset is used.969

• At submission time, remember to anonymize your assets (if applicable). You can either970

create an anonymized URL or include an anonymized zip file.971

14. Crowdsourcing and Research with Human Subjects972

Question: For crowdsourcing experiments and research with human subjects, does the paper973

include the full text of instructions given to participants and screenshots, if applicable, as974

well as details about compensation (if any)?975

Answer: [NA]976

Justification: The paper does not involve crowdsourcing nor research with human subjects977

Guidelines:978

• The answer NA means that the paper does not involve crowdsourcing nor research with979

human subjects.980

• Including this information in the supplemental material is fine, but if the main contribu-981

tion of the paper involves human subjects, then as much detail as possible should be982

included in the main paper.983

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,984

or other labor should be paid at least the minimum wage in the country of the data985

collector.986
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human987

Subjects988

Question: Does the paper describe potential risks incurred by study participants, whether989

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)990

approvals (or an equivalent approval/review based on the requirements of your country or991

institution) were obtained?992

Answer: [NA]993

Justification: The paper does not involve crowdsourcing nor research with human subjects.994

Guidelines:995

• The answer NA means that the paper does not involve crowdsourcing nor research with996

human subjects.997

• Depending on the country in which research is conducted, IRB approval (or equivalent)998

may be required for any human subjects research. If you obtained IRB approval, you999

should clearly state this in the paper.1000

• We recognize that the procedures for this may vary significantly between institutions1001

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1002

guidelines for their institution.1003

• For initial submissions, do not include any information that would break anonymity (if1004

applicable), such as the institution conducting the review.1005
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