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Abstract001

Despite advancements in large language mod-002
els (LLMs), they still face challenges in multi-003
turn decision-making tasks (i.e., agent tasks),004
where models need to make a sequence of in-005
telligent decisions based on environment feed-006
back. In this work, we explore training pro-007
cess reward models (PRMs) to evaluate each008
decision and guide model’s search in agent009
tasks. Unlike LLM reasoning, where each step010
is scored based on correctness, actions in agent011
tasks do not have a clear-cut correctness. In-012
stead, they should be evaluated based on their013
proximity to the goal and the progress they have014
made. Building on this insight, we redefine the015
PRM for agent tasks, and introduce AgentPRM016
to capture both the interdependence between017
sequential decisions and their contribution to018
the final goal. This allows for better progress019
tracking and exploration-exploitation balance.020
To scalably obtain labeled data for training021
AgentPRM, we employ a TD-based estimation022
method combined with Generalized Advantage023
Estimation (GAE). Experiments across sam-024
pling strategies, models and tasks demonstrate025
that our method consistently outperforms base-026
lines, is more compute-efficient, and it exhibits027
a more stable and robust improvement trend028
as inference compute scales. Furthermore, it029
generalizes well on mathematical reasoning. 1030

1 Introduction031

With the development of large language models032

(LLMs), they have achieved significant advance-033

ment in text completion and generation tasks,034

such as summarization, translation, and reason-035

ing (QwenTeam, 2024; OpenAI, 2024; Anil et al.,036

2023). However, they still face challenges in037

multi-turn decision-making tasks (i.e., agent tasks),038

where the models need to make a sequence of in-039

telligent decisions based on feedback from the en-040

vironment (Xi et al., 2023; Zeng et al., 2024). In041

1We will release our codes and data for further research.
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Figure 1: Average Best-of-N performance across three
agent tasks. AgentPRM outperforms other baselines. It
is more than 8× compute-efficient than ORM and PVM
baselines. Moreover, it demonstrates a more stable and
robust improvement trend as inference compute scaling.

agent tasks, the decisions made at each step are not 042

isolated, but rather form a chain of dependencies, 043

where each decision influences subsequent deci- 044

sions and ultimately the outcome (Liu et al., 2024b; 045

Chen et al., 2024b; Xi et al., 2024). Hence, to 046

achieve excellent performance, models are required 047

to possess task knowledge, understand environ- 048

mental information, and engage in forward-looking 049

planning (Xi et al., 2023; Wang et al., 2024b). 050

Previous work primarily focuses on fine-tuning- 051

based (Zeng et al., 2024; Chen et al., 2024b) or 052

prompt engineering-based approaches (Yao et al., 053

2023; Liu et al., 2023; Shinn et al., 2023). The 054

former involves collecting expert data to have the 055

model imitate decisions, which lacks sufficient ex- 056

ploration by the model itself and an understanding 057

of the value and reason behind each decision. The 058

latter leverages state-of-the-art commercial mod- 059

els like GPT-4 to perform self-reflection, which is 060

limited by APIs, making it costly and difficult to 061

train or customize for deployment. As a result, the 062

performance meets bottlenecks (Yang et al., 2023; 063

Koh et al., 2024). 064
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Figure 2: Overview of AgentPRM and other baselines. In training, AgentPRM takes into account both the probability
of each step achieving the goal (promise) and the interdependence between sequential steps (progress). This boosts
AgentPRM’s performance at inference-time.

To this end, we draw inspiration from process065

supervision in LLM reasoning and explore train-066

ing process reward models (PRMs) to guide the067

search and exploration of LLMs on agent tasks068

(Uesato et al., 2022; Wang et al., 2024c; Lightman069

et al., 2024; Setlur et al., 2024; Li and Li, 2024). In070

LLM reasoning, PRMs are used to rate each step071

based on its correctness and guide the decoding072

process. However, in agent tasks, they face three073

key challenges: (1) actions in agent tasks do not074

have a definitive correctness, making evaluation075

non-trivial. For example, in web navigation, even076

if the model makes a poor decision, it can still077

correct it by backtracking (Yao et al., 2022; Zhou078

et al., 2024). (2) Previous methods treat each step079

independently and do not account for the dependen-080

cies and nuances among steps within a trajectory081

(Li and Li, 2024), which is inconsistent with the082

nature of agent tasks. (3) Previous methods for083

training PRMs often require expert-level annota-084

tions or a large amount of sampling (Wang et al.,085

2024c; Luo et al., 2024), which can be very costly086

for real-world agent tasks.087

In this work, we propose AgentPRM to address088

the challenges. It measures the proximity of steps089

to the goal state and the progress made by LLMs.090

Specifically, AgentPRM predicts the contribution091

of each decision to the final goal and captures092

the dependencies between sequential decisions, en-093

abling better progress tracking and a balance be-094

tween exploration and exploitation. To scale the095

acquisition of training data, we employ an auto-096

mated TD-based method with GAE (Schulman 097

et al., 2016), which is more efficient than pre- 098

vious Monte-Carlo-based methods (Wang et al., 099

2024c). Extensive experiments across various mod- 100

els and tasks show that AgentPRM consistently 101

outperforms baselines while being more compute- 102

efficient. For example, across three agent tasks and 103

multiple sampling strategies, it achieves an average 104

compute efficiency that is more than 8× greater 105

than baseline RMs with Qwen2.5-3B. Additionally, 106

AgentPRM exhibits a more stable and robust im- 107

provement trend as inference compute scales, high- 108

lighting its promising potential for training more 109

policy LMs through self-improvement or reinforce- 110

ment learning (RL). 111

To summarize, our main contributions are: 112

1. We propose AgentPRM, a new process reward 113

model to evaluate LLMs’ actions in agent 114

tasks and guide their search, which captures 115

the dependency between sequential steps and 116

their contribution to the final goal. 117

2. We propose an automated, scalable method 118

for training AgentPRM. We perform extensive 119

experiments to demonstrate the efficiency and 120

effectiveness of AgentPRM. 121

3. We conduct in-depth ablation and analysis to 122

show how it works. We hope AgentPRM pro- 123

vides insights for developing better language 124

model agents for the community. 125
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2 Preliminary and Background126

The agent task can be formalized as a Partially127

Observable Markov Decision Process (POMDP)128

(U ,S,A,O, T , r) (Hausknecht and Stone, 2015;129

Xi et al., 2024), where U is the instruction space,130

S is the state space, A is the action space, O is the131

observation space, T : S ×A → S is the determin-132

istic state transition function, and r : S ×A → R133

is the reward function. Given a task instruction134

u ∈ U , the initial observation o0 ∈ O, and the ini-135

tial state s0 = {u, o0}, the agent task requires the136

language model to generate an action a0 ∼ πθ(·|s0)137

based on its policy πθ parameterized by θ, where138

a0 ∈ A. The agent receives an observation o1 ∈ O139

from environment, and the state is then transitioned140

to s1 = {u, s0, a0, o1} according to T . Following141

the process, the agent proposes a sequence of ac-142

tions {at}Tt=0, where T is the number of steps, to143

interact with the environment until the task is com-144

pleted or the maximum number of steps is reached:145

τ = (u, o0, a0, o1, · · · , oT , aT ). Then for a lan-146

guage model, the agent task can be formalized as:147

πθ(τ |s0) =
T∏
t=0

πθ(at|st), (1)148

where st represents the interaction history up to149

timestep t. Finally, the environment e provides an150

outcome reward r(u, τ) ∈ [0, 1] to describe the151

completion of the agent task.152

Outcome Reward Model (ORM). An ORM153

rorm takes a trajectory τ as input and outputs a score154

to predict whether this trajectory has completed the155

instruction u (Uesato et al., 2022; Ouyang et al.,156

2022). The ORMs are trained using data sam-157

pled from the policy model πθ, which generates158

instruction-trajectory pairs. The model is trained159

to fit the output of the outcome reward function r160

(Cobbe et al., 2021; Ouyang et al., 2022; Liu et al.,161

2024a).162

Process Reward Model (PRM). A PRM scores163

the actions or states at each step of a trajectory164

(Lightman et al., 2024; Wang et al., 2024c; Zhang165

et al., 2024). In the field of LLM reasoning, the166

scoring criterion is usually the correctness of the167

steps (Lightman et al., 2024; Wang et al., 2024c;168

Zhang et al., 2024). However, this is not suitable169

for the agent tasks we are studying, which will170

be elaborated in Section 3 and we will provide171

appropriate evaluation criteria. During training,172

annotated labels for each step are collected, and 173

PRMs are trained to fit these labels (Lightman et al., 174

2024; Wang et al., 2024c; Luo et al., 2024). 175

Best-of-N (BoN) with reward models. With in- 176

creased inference compute, we can apply BoN 177

(Best of N) for improved performance (Touvron 178

et al., 2023). The process involves first sampling 179

N trajectories τNi=1 using the policy πθ, then scor- 180

ing these trajectories using reward models. The 181

trajectory with the highest score is selected as the 182

final output. Note that BoN can also be executed 183

with PRMs (Lightman et al., 2024). In this work, 184

we use the score of the last step as the score of a 185

trajectory. 186

Search with process reward models. During the 187

inference phase, we can conduct step-level search 188

against PRMs for agent tasks. Among the vari- 189

ous step-level search algorithms, beam search is 190

a widely used method that achieves a balance be- 191

tween performance and efficiency (Zhang et al., 192

2024; Chen et al., 2024a). In each iteration, beam 193

search expands M candidate action nodes for each 194

node and uses PRM to score the candidates. Only 195

the top-N scored nodes are retained in each iter- 196

ation, and we select the terminal state with the 197

highest score as the final response. 198

3 Methodology 199

3.1 Motivation 200

In LLM reasoning, researchers train PRMs by col- 201

lecting annotated data to score each step based on 202

its correctness. However, for agent tasks, we face 203

three major challenges: (1) Decisions in agent tasks 204

do not have a clear-cut correctness, making evalu- 205

ation non-trivial. For example, in web navigation, 206

if the model makes a poor decision by clicking a 207

button and navigating to a new page, it can immedi- 208

ately correct this by using the back button to return 209

to the previous state (Yao et al., 2022; Zhou et al., 210

2024). (2) Previous PRMs typically treat each state 211

independently and do not account for the dependen- 212

cies between different decisions (Li and Li, 2024; 213

Setlur et al., 2024). However, in agent tasks, the 214

decisions made at each step are not isolated, but 215

rather form a chain of dependencies, where each 216

decision influences subsequent decisions and ul- 217

timately the outcome (Yao et al., 2022; Xi et al., 218

2023, 2024; Chevalier-Boisvert et al., 2019). (3) 219

Previous methods for training PRMs often require 220

expert annotations or a large amount of sampling, 221
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making them expensive (Lightman et al., 2024;222

Wang et al., 2024c; Luo et al., 2024).223

Therefore, our research question includes: how224

to define appropriate rewards for decisions and ef-225

ficiently train such process reward models.226

3.2 AgentPRM: Re-Defining Process Rewards227

for Decisions in Agent Tasks228

Measuring expected future success probability
with value functions. An agent task typically
requires making a sequence of intelligent decisions
to reach the goal state. Conceptually, this means
we need to evaluate whether a decision brings the
state closer to the goal (Yao et al., 2022; Xi et al.,
2023; Liu et al., 2024b). In RL, this is often defined
as the action-value function Qπ(st, at) (Sutton and
Barto, 2018), which measures the likelihood of
future success after taking a particular action at
based on state st:

Qπ(st, at) = Eτ∼π(·|st,at) [r(u, τ)] .

Similarly, we can define the state-value function
V (st) (Sutton and Barto, 2018) with:

V π(st) = Eat∼π(·|st) [Q
π(st, at)] .

Now, given annotated labels for each state-action229

tuple, DQ = {st, at, V̂ (st, at)}, we train our PRM230

Mϕ parameterized by ϕ to predict the action value231

with mean squared error (MSE) loss (Chen et al.,232

2024a):233

LQ(ϕ) = Est,at∼DQ

[
1

2
(Mϕ(st, at)− Q̂(st, at))

2

]
.

(2)234

After training, Based on the predictions ofMϕ, we235

can perform inference-time search or BoN.236

Capturing dependencies between steps with ad-237

vantages. Nevertheless, the aforementioned238

Mϕ considers only the actions’ contribution to239

the final goal, and fails to effectively capture the240

relationships and dependencies between consec-241

utive states or decisions (Li and Li, 2024; Setlur242

et al., 2024). In other words, it primarily mea-243

sures promise but not progress. This often leads244

to high exploitation while lacking a balance with245

exploration (Setlur et al., 2024; Snell et al., 2024).246

However, in many agent tasks, models need suffi-247

cient exploration to successfully achieve the final248

goal (Chevalier-Boisvert et al., 2019; Yao et al.,249

2022; Zhou et al., 2024). For example, in a web250

navigation task, the model needs to first navigate251

to the login page to log in, and then return to the 252

current page to post a comment. Although the ac- 253

tion of entering the login page may temporarily 254

move the model away from the target page, it is 255

still crucial because it is a necessary step to log in 256

before posting. 257

Therefore, we point out that in addition to
promise, process rewards for agent decisions
should capture the dependencies between steps to
measure local progress. This can be measured by
advantage in RL (Sutton et al., 1999), which quan-
tifies the change in the likelihood of success before
and after a given action:

Aπ(st, at) = Qπ(st, at)− V π(st).

The value of Aπ(st, at) can be either positive or 258

negative. If it is positive, it indicates that the cur- 259

rent action has contributed to positive progress; 260

otherwise, it indicates negative progress. 261

Hence, to train our model Mϕ to capture 262

progress and dependencies between actions, we 263

introduce the loss for fitting advantage: 264

LA(ϕ) = Est,at∼DQ

[
(Aϕ(st, at)− Â(st, at))

2
]
,

(3) 265

where Â(st, at) is the annotated labels for advan- 266

tage. Next, we show how to integrate the fitting 267

optimization of the advantage into the training of 268

our PRM. As the state transition in our setting is de- 269

terministic, we have (Li and Li, 2024; Setlur et al., 270

2024): 271

Q(st, at)− V (st) = Q(st, at)−Q(st−1, at−1)
(4) 272

So the loss term for advantage LA(ϕ) becomes: 273

Est,at∼DQ

[(
((Mϕ(st, at)−Mϕ(st−1, at−1))

− (Q̂(st, at)− Q̂(st−1, at−1))
)2]

.

(5) 274

In this way, we can optimize our PRMs for consid- 275

ering not only the contribution to the final outcome 276

but also the dependencies between adjacent actions, 277

and our final loss for AgentPRM becomes: 278

LAgentPRM(ϕ) = LQ(ϕ) + β × LA(ϕ), (6) 279

where β is a scaling factor that balances the two 280

loss terms. 281

3.3 Practical Implementation for Training 282

AgentPRMs 283

In the previous section, we demonstrate how to 284

optimize our AgentPRM based on the estimated or 285
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Figure 3: Performance of Best-of-N evaluation. AgentPRM outperforms other baselines, is more compute-efficient,
and demonstrates a more stable and robust improvement trend as inference compute scales.

annotated data. Next, we explore how to obtain the286

data in an effective and scalable way.287

MC-based estimation. A common method for288

automatically estimating the Q-value of an action289

is based on Monte Carlo (MC) sampling (Wang290

et al., 2024c; Luo et al., 2024). Specifically, it291

first samples NTraj seed trajectories {τi}
NTraj
i=1 from292

the policy πθ. Then, for each action ai,t in each293

trajectory τi, we start from the next state si,t+1294

derived from the action and perform Nmc rollouts295

{τ ′j}
Nmc
j=1 with πθ. As in previous work, if any of296

the rollouts reaches the goal state, the value of this297

action is set to be 1:298

Q̂(st, at) =

{
1 ∃τ ′j , τ ′j is successful,
0 otherwise,

(7)299

Though MC-based estimation is effective, it still300

suffers from efficiency and cost issues because it301

requires a large number of rollouts for estimating302

different actions. Therefore, we explore using other303

more efficient methods.304

TD-based estimation with GAE. To explore305

more efficient estimation methods, we are inspired306

by previous work (Sutton, 1988; Schulman et al.,307

2016; Ouyang et al., 2022; Sutton et al., 1999) and308

introduce TD-based methods, using GAE (General-309

ized Advantage Estimation) to reduce variance and310

improve stability (Schulman et al., 2016). First, we311

define the TD residual for a state as follows: 312

δ(st, at) = rt +M(st, at)−M(st−1, at−1),
(8) 313

where rt is the instant reward at timestep t, and 314

in our setting, sparse rewards are only assigned 315

when t = T . Next, we estimate the advantage 316

for different actions using Generalized Advantage 317

Estimation (GAE): 318

Â(st, at) =
T∑

k=t+1

λk−tδ̂(st), (9) 319

where λ is the discount factor. Finally, the current 320

estimated Q̂(st, at) can be considered as the return 321

of the next state Ĝ(st+1): 322

Q̂(st, at) = Ĝ(st+1) = Â(st, at) +Mϕ(st, at).
(10) 323

In implementation, we sample NTD trajectories 324

{τi}NTD
i=1 from the policy πθ for training. Since our 325

estimation process involves prediction ofMϕ, we 326

iteratively sample a batch from the trajectory set, 327

conduct estimation based on the current model, and 328

update the model with Equation 5. We summarize 329

the training algorithm of AgentPRM in Algorithm 330

1 of Appendix A. 331

From the efficiency perspective, TD-based esti- 332

mation with GAE does not require additional roll- 333

outs from each state like MC-based method, saving 334

a significant amount of computational resources 335
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Model Method WebShop BabyAI TextCraft

Qwen2.5-0.5B

Fine-tuning-based-methods
SFT 30.5 37.6 27.8
RFT 39.0 54.4 32.9

Reward-Model-based Beam Search
@2× 2 @4× 4 @8× 8 @2× 2 @4× 4 @8× 8 @2× 2 @4× 4 @8× 8

ORM 19.5 18.5 8.0 73.8 74.9 78.8 25.7 24.7 27.8
PVM 30.0 50.0 57.5 84.6 86.5 88.1 25.7 26.8 26.8
AgentPRM 30.5 51.5 62.5 82.9 87.7 90.4 28.8 29.9 32.9

Fine-tuning-based-methods

Qwen2.5-3B

SFT 46.0 67.4 29.8
RFT 48.0 64.5 36.0

Reward-Model-based Beam Search
@2× 2 @4× 4 @8× 8 @2× 2 @4× 4 @8× 8 @2× 2 @4× 4 @8× 8

ORM 51.0 59.0 57.0 83.9 83.5 83.7 38.1 41.2 43.3
PVM 50.5 59.0 54.5 72.7 84.9 89.1 39.1 40.2 44.3
AgentPRM 61.0 72.5 76.0 84.4 89.6 89.8 47.4 51.5 56.7

Table 1: Evaluation results of fine-tuning-based methods and beam search on agent tasks. The best performance is
in bold. Our method is marked in blue . We set the @N ×M in each beam search setting.

(See Section 5.3). From the performance perspec-336

tive, though TD-based methods have concerns re-337

garding high variance, we introduce GAE to reduce338

variance and improve stability, ultimately achieving339

better performance.340

4 Experiments341

4.1 Experimental Setup342

Tasks. We conduct our experiments on three chal-343

lenging agent environments: WebShop (Yao et al.,344

2022), BabyAI (Chevalier-Boisvert et al., 2019),345

and TextCraft (Prasad et al., 2024). The detailed346

description is in Appendix B. To show the compre-347

hensiveness of our method, we include reasoning348

dataset GSM8K (Cobbe et al., 2021) Our imple-349

mentation is based on the AgentGym framework350

(Xi et al., 2024).351

Baselines. We compare our AgentPRM with sev-352

eral fine-tuning and reward model-based methods.353

For fine-tuning-based approaches, supervised fine-354

tuning (SFT) uses expert data to fine-tune the base355

model, while rejection sampling fine-tuning (RFT)356

refines the model by leveraging successful trajec-357

tories generated by the base model. For reward358

model-based methods, we include ORM (Cobbe359

et al., 2021) and PVM (Process Value Models)360

(Lightman et al., 2024). ORM estimates the reward361

for the outcome, while PVM estimates step-level362

values by assigning the reward of a trajectory to in-363

dividual steps. We also include MC-based method364

Math-Shepherd (Wang et al., 2024c) to estimate 365

Q-Value of each step in Section 5.3. 366

Implementation Details. All experiments are 367

conducted with A100-80GB GPUs. Our backbone 368

models include Qwen-2.5-0.5B-Instruct and Qwen- 369

2.5-3B-Instruct. For agent tasks, we use the ReAct 370

format (Yao et al., 2023) for model outputs. To 371

initialize the models, we randomly select 300 tra- 372

jectories from the AgentGym training set. For SFT, 373

we set the learning rate to 1 × 10−5. We report 374

the success rate for WebShop and TextCraft, and 375

the reward for BabyAI. For MC-based estimation, 376

we set NTraj = 1 for each query, and Nmc = 16 377

for each step; for TD-based estimation, we set 378

NTD = 16 for each query. We train reward models 379

for 5 epochs under a learning rate of 1× 10−6. For 380

AgentPRM, we set β = 1.0 and λ = 0.95. See 381

more details in Appendix C. 382

4.2 Main Results 383

Result 1: Compared to greedy decoding, intro- 384

ducing RMs for BoN and search can improve 385

LM performance on agent tasks. The experi- 386

mental results are shown in Figure 3 and Table 387

1. Compared to the greedy decoding of SFT and 388

RFT methods, using reward functions for BoN 389

and search can significantly improve model perfor- 390

mance, especially when increasing inference com- 391

pute for more sampling. This is consistent with 392

previous work on test-time scaling (Snell et al., 393

2024; Bansal et al., 2024). 394
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Figure 4: Evaluation results of Best-of-N on GSM8K.

Result 2: AgentPRM is more compute-efficient395

than other reward models, and outperforms396

them consistently in both Best-of-N and test-397

time search. As shown in Figure 3, under dif-398

ferent sampling budgets in Best-of-N evaluation,399

our method consistently outperforms ORM and400

PVM across different tasks, demonstrating its ef-401

fectiveness. Figure 1 shows that, on average, Agent-402

PRM is 8×more compute-efficient than PVMs and403

ORMs. This highlights the potential of AgentPRM404

in training stronger agentic LLMs with methods405

like reinforcement learning, which we leave for406

future work.407

As listed in Table 1, in beam search, our method408

also outperforms ORMs and PVMs across dif-409

ferent tasks significantly, validating its ability to410

guide model search and achieve a good exploration-411

exploitation balance. For example, using Qwen2.5-412

3B on the WebShop task, with an 8× 8 sampling413

search setting, our method surpasses PVM by more414

than 20.0 points.415

Result 3: As inference compute scaling, Agent-416

PRM demonstrates a more robust and stable417

scaling trend. In Figure 1 and Figure 3, we ob-418

serve that as the sampling budget increases, PVMs419

and ORMs tend to experience performance bottle-420

neck or even degradation. This aligns with the find-421

ings of Wang et al. (2025), and may be attributed422

to issues such as false positives or reward hack-423

ing (Wang et al., 2024a), which could limit their424

effectiveness in future RL and self-improvement-425

based methods for training better policy models. In426

contrast, AgentPRM consistently shows stable im-427

provement, highlighting its robustness and broad-428

ening its potential for future applications.429

5 Discussion and Analysis430

5.1 Performance on Mathematical Reasoning431

To demonstrate the versatility of our method, we432

also conducted experiments on mathematical tasks,433

Model Method
GSM8K

@2× 2 @4× 4 @8× 8

Qwen2.5-0.5B
ORM 39.5 42.9 44.2
PVM 38.9 41.3 42.9
AgentPRM 41.5 44.7 45.7

Qwen2.5-3B
ORM 64.1 70.3 72.9
PVM 63.6 69.6 71.2
AgentPRM 65.1 70.5 73.4

Table 2: Evaluation results of beam search on GSM8K.
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Figure 5: Ablation study on LA with Qwen2.5-3B.

with results shown in Table 2 and Figure 4. As we 434

can see, our method still performs exceptionally 435

well on mathematical tasks, surpassing other base- 436

lines. This also highlights the generalizability and 437

adaptability of our AgentPRM. We expect to ex- 438

tend it to more tasks in future work, such as coding 439

or logical reasoning. 440

5.2 Ablation Study on LA(ϕ) 441

To capture the dependency between steps and eval- 442

uate their progress, we add LA(ϕ) for training 443

AgentPRMs. Here, we conduct an ablation on the 444

advantage term to validate its effect. Results in Fig- 445

ure 5 show that without LA(ϕ), the performance on 446

both agent and mathematical tasks drops regardless 447

of the sampling strategy, showing that capturing 448

progress is important for training AgentPRMs. 449

5.3 Comparing Sampling Efficiency of Our 450

Method with MC-based Estimation 451

In Section 3.3, we introduced TD-based estimation 452

with GAE for the automated labeling process. Here, 453

we compare it with the previously commonly used 454

MC-based estimation. The experimental results are 455

shown in Figure 5. We observe that our method re- 456

quires fewer tokens for labeling the data compared 457

to other methods, yet achieves better performance 458

on Best-of-N and beam search, demonstrating the 459

higher efficiency and effectiveness of our approach. 460
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Task Method Tokens
Best-of-N Beam Search

@8 @16 @32 @64 @4× 4 @8× 8

WebShop
MC-based 1.9× 63.5 67.5 69.0 72.0 67.5 70.5
TD-based 1.0× 64.5 69.0 71.0 74.0 72.5 76.0

BabyAI
MC-based 2.8× 90.5 90.5 91.6 93.1 87.6 88.3
TD-based 1.0× 91.4 91.4 92.4 94.4 89.6 89.8

GSM8K
MC-based 1.5× 61.8 63.3 63.9 65.0 66.1 70.1
TD-based 1.0× 68.9 72.4 73.9 74.7 70.5 73.4

Table 3: Comparing sampling efficiency and perfor-
mance of our method with MC-based estimation.
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Figure 6: Visualization of value distribution of Actions
with AgentPRM.

5.4 Evaluating Value Distributions of Actions461

with AgentPRM462

To further demonstrate the working mechanism of463

AgentPRM, we visualize the value estimates of464

the actions predicted by AgentPRM in WebShop465

and BabyAI across successful and unsuccessful466

trajectories. From the distribution in Figure 6, we467

observe that the model assigns higher scores to the468

actions that lead to positive goals, and lower scores469

to the actions that lead to negative goals, revealing470

that our method is effective in credit assignment.471

We also perform qualitative analysis in Ap-472

pendix D to show how AgentPRM works.473

6 Related Work474

Developing LLMs for agent tasks. To enable475

language models to perform well in multi-turn476

decision-making tasks (Chevalier-Boisvert et al.,477

2019; Yao et al., 2022; Zhou et al., 2024), previ-478

ous work has proposed fine-tuning-based methods,479

where expert-labeled trajectories are collected, and480

the learner imitates them step by step (Chen et al.,481

2023, 2024b). However, this approach is often482

difficult to scale and lacks sufficient exploration483

of the environment by the model, as well as an484

understanding of the value and reasoning behind485

each decision (Chen et al., 2025; Lin et al., 2024).486

Another line of methods is based on state-of-the-487

art commercial models like GPT-4o for prompt488

engineering, which is limited by APIs, making it489

difficult to customize and the performance meets 490

bottleneck (Yang et al., 2023; Koh et al., 2024). 491

In this paper, we explore training PRMs to guide 492

the exploration of LMs, decoupling it from the op- 493

timization of the policy model, and the resulted 494

PRMs can also be used as verifiers for re-ranking 495

and search. 496

PRMs for LLMs. PRMs can provide dense re- 497

ward signals to help LLMs in RL and test-time 498

search or re-ranking (Snell et al., 2024), and are 499

widely used in LLM reasoning (Lightman et al., 500

2024; Wang et al., 2024c; Yu et al., 2024; Li and 501

Li, 2024). However, the data labeling required 502

for this approach is expensive and not scalable 503

(Lightman et al., 2024). Therefore, recent work 504

has explored automated annotating methods based 505

on Monte Carlo sampling to reduce the cost (Wang 506

et al., 2024c; Li and Li, 2024). In agent tasks, some 507

works have also used similar MC sampling meth- 508

ods to label the Q-values of actions (Hao et al., 509

2023; Lin et al., 2024; Zhai et al., 2024). However, 510

they only consider the future success probability 511

of a step, without accounting for the dependencies 512

and progress between steps (Yao et al., 2022; Xi 513

et al., 2023, 2024; Chevalier-Boisvert et al., 2019). 514

Our AgentPRM captures both of these aspects and 515

we perform data labeling more efficiently by using 516

the method of TD-estimation with GAE. 517

More detailed discussion of related work can be 518

found in Appendix E. 519

7 Conclusion 520

In this paper, we present AgentPRM, a process 521

supervision model designed for language model 522

agents. It captures both the probability of each step 523

achieving the goal (promise) and the interdepen- 524

dence between sequential steps (progress). Exten- 525

sive experiments and analysis demonstrate that our 526

method outperforms other baselines across various 527

sampling strategies, models, and tasks. Addition- 528

ally, our approach is more compute-efficient, and 529

its performance shows stable and robust improve- 530

ment as inference compute increases, highlighting 531

its potential for training stronger policy models in 532

the future (e.g., via reinforcement learning). More- 533

over, our method generalizes well to mathematical 534

tasks, showcasing its versatility. We hope our work 535

provides valuable insights for the language model 536

agent field. 537
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Limitations538

In this paper, we introduce AgentPRM to guide539

language models’ search and perform trajectory re-540

ranking for agent tasks, enhancing the performance.541

However, our work still has some limitations: (1)542

Our approach primarily focuses on performance543

improvement and does not address safety concerns.544

Safety in language models and agents has become a545

critical issue (Bai et al., 2022; Zhiheng et al., 2023;546

Xi et al., 2023, 2024; Zheng et al., 2024; Yang547

et al., 2024), especially for digital agents capable548

of manipulating web pages or embodied agents op-549

erating in the real world. Therefore, future work550

should consider reward models aligned with safety551

for agents and integrate them with our approach552

to ensure development within safe boundaries. (2)553

Our experiments were mainly conducted on a series554

of models discussed earlier, and in the future, we555

expect to include a broader range of model types to556

further demonstrate the generalizability of Agent-557

PRM.558
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A Algorithms900

We summarize the training algorithm of Agent-901

PRM in Algorithm 1. We list the process of beam902

search in Algorithm 2.903

B Details of Agent Tasks904

We conducted experiments on three agent tasks:905

WebShop (Yao et al., 2022), BabyAI (Chevalier-906

Boisvert et al., 2019), and TextCraft (Prasad et al.,907

2024).908

WebShop WebShop (Yao et al., 2022) is a simu-909

lated e-commerce website environment with 1.18910

million real-world products. In this environment,911

an agent needs to navigate multiple types of web-912

pages and perform diverse actions to find, cus-913

tomize, and purchase a product given an instruction.914

We set the max interaction rounds to 6.915

BabyAI The BabyAI platform (Chevalier-916

Boisvert et al., 2019) comprises an extensible917

suite of 19 levels of increasing difficulty. The918

levels gradually lead the agent towards acquiring919

a combinatorially rich synthetic language which920

is a proper subset of English. The environment is921

populated with entities of different colors, such as922

the agent, balls, boxes, doors and keys. Objects can923

be picked up, dropped and moved around by the924

agent. Doors can be unlocked with keys matching925

their color. At each step, the agent receives a 7× 7926

representation of its field of view (the grid cells in927

front of it) as well as a Baby Language instruction928

(textual string). We set the max interaction rounds929

to 20.930

TextCraft The TextCraft task (Prasad et al.,931

2024) is designed to test the ability of agents to932

plan and execute complex tasks that require craft-933

ing items from available resources. The dataset fea-934

tures a natural compositional structure, with tasks935

that involve a series of steps of varying complex-936

ity. The agent needs to identify and adapt to the937

varying task complexity. The dataset includes a938

variety of atomic skills, such as crafting and fetch-939

ing items, and uses Minecraft’s crafting recipes to940

specify craftable items and their ingredients. The941

agent’s objective is to obtain target Minecraft items942

by crafting them from available items in the en-943

vironment. We set the max interaction rounds to944

20.945

C More Implementation Details 946

We set the temperature to 1.0 in trajectory collec- 947

tion to maintain diversity in training data. For BoN 948

and beam search, we set the temperature to 0.7. Fol- 949

lowing AgentGym (Xi et al., 2024), we include 100, 950

90, 97 queries for evaluation on WebShop (Yao 951

et al., 2022), BabyAI (Chevalier-Boisvert et al., 952

2019), TextCraft (Prasad et al., 2024), respectively. 953

For GSM8K, we include 1319 evaluation queries 954

as in Cobbe et al. (2021). For math tasks, we ini- 955

tialize the policy model with 5863 trajectories from 956

Math-Shepherd (Wang et al., 2024c). 957

D Qualitative Analysis 958

We perform a qualitative analysis to show how 959

AgentPRM works. We provide examples in Figure 960

7 and Figure 8. 961

The example shown in Figure 7 demonstrates 962

Best-of-N selection on 4 trajectories by ORM and 963

AgentPRM. ORM fails to select the correct trajec- 964

tory and shows little difference in the score esti- 965

mates across the different trajectories. In contrast, 966

AgentPRM successfully identifies the correct tra- 967

jectory, assigning low scores to negative trajecto- 968

ries and high scores to positive ones. 969

The second case shown in Figure 8 compares 970

the process of beam search guided by AgentPRM 971

and the baseline PVM. The policy model success- 972

fully solves this task under the guidance of Agent- 973

PRM, while it fails with PVM. We can also find that 974

AgentPRM effectively distinguishes between good 975

and bad actions (assigning high scores to good ac- 976

tions and low scores to bad ones), whereas PVM 977

does not, with less clear differentiation in scoring 978

between different actions. 979

E More Detailed Discussion of Related 980

Work 981

We list the comparison of our method and other 982

related methods in Table 4. 983

In the LLM agent domain, ARMAP constructs 984

outcome reward models (ORMs) through data la- 985

beling to re-rank trajectories, providing better BoN 986

performance (Chen et al., 2025). Q* AGENT uses 987

the Bellman equation (Barron and Ishii, 1989) to 988

estimate the Q-value of each step to train process 989

reward models (Lin et al., 2024). DPO-Q (Zhai 990

et al., 2024) uses a MCTS-based method for build- 991

ing a planning tree and use DPO (Rafailov et al., 992

2023) to estimate the value of each step. However, 993
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Algorithm 1: Training of AgentPRM.
Input: Initialized AgentPRM modelMϕ; Reward function r; Sample number per query NTD;

Agent task query set {si0}
NTask
i=1 ; Actor πθ; Number of training iterations m.

Procedure Trajectories collection
Dtrain ← [ ] ▷ Initialize AgentPRM Train set Dtrain

for si0 in {si0}
NTask
i=1 do

for n = 1 to NTD do
τ ← πθ(s

i
0);

Add τ to Dtrain;
end

end

Procedure AgentPRM model training
for n = 1 to m do

for batch in Dtrain do
for trajectory τ in batch do
Q ← [ ]; ▷ AgentPRM model estimated value list Q
for (st, at) in τ do

Qt ←Mϕ(st, at)
Add Qt to Q;

end
Â← GAE(Q, r(τ));
Q̂← TD(A,Q)
LQ = E

[
1
2(Qn − Q̂n)

2
]

LA = E
[
1
2((Qn −Qn−1)− (Q̂n − Q̂n−1))

2
]

Mϕ ← Back_Propagation(LQ + βLA)
end

end
end

they only consider the promise of each step, with-994

out accounting for the dependencies and progress995

between actions. In contrast, our approach uses TD-996

based estimation with GAE to estimate the value at997

different steps, capturing the dependencies between998

actions.999

In the LLM reasoning domain, PQM also con-1000

siders the relationships between different steps, but1001

unlike us, they use MC-based estimation and intro-1002

duce a ranking loss to optimize the model (Li and1003

Li, 2024). PAV, on the other hand, estimates the1004

reward of the entire trajectory through ORM and1005

incorporates the advantages of individual steps to1006

assist RL and search (Setlur et al., 2024).1007
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Algorithm 2: Beam search with PRM.
Input: Trained PRMMϕ; Policy πθ; Number of actions expanded at each node M ; Size of beam

search N ; Max steps T
Procedure Step-level beam search with PRM
C = [s0] ∗M , t = 0 ▷ Initialize candidates
while t < T and non-terminal path in C do
Ct+1 ← [ ] ▷ Initialize priority queue
for st in C do

Sample
{
a(b)

}B2

b=1
∼ πθ(st)

for b = 1 to M do
st+1 = Concat

[
st,a

(b)
]

Add (st+1,Mϕ(st+1)) to Ct+1

end
C ← Top-N of Ct+1

end
end
return Top-1 of C ▷ Return top-1 as the final solution path

Method Data Labeling Supervision Gra. Progress Task Type

PRM (Lightman et al., 2024) Human Process × Reasoning

Math-Shepherd (Wang et al., 2024c) MC-based Process × Reasoning

PAV (Setlur et al., 2024) MC-based Process ✓ Reasoning

PQM (Li and Li, 2024) MC-based Process ✓ Reasoning

ARMAP (Chen et al., 2025) MC-based Outcome × Agent

Q* Agent (Lin et al., 2024) TD-based Process × Agent

DPO-Q (Zhai et al., 2024) MC-based Process × Agent

AgentPRM(Ours) TD-based Process ✓ Agent, Reasoning

Table 4: Comparison of different process supervision paradigms. “Supervision Gra.” means Supervision Granularity.
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Instruction

Goal: pick up a grey object

Observation: There is a blue key 1 0 steps in front of you and 1 steps to your left.  

There is a red key 1 0 steps in front of you and 2 steps to your left. There is a grey box 

1 3 steps in front of you and 1 steps to your right. You are facing a wall 4 steps away.

Thought 1: Since I have successfully picked up the 

blue key, the next step is to get closer to the grey box 

to grab it.

Action 1: go to grey box 1

Observation 1: There is a grey box 1 right in front of 

you 1 steps away.

Thought 2: The grey box is now right in front of me, 

and I have the grey box.

Action 2: pickup grey box 1

Observation 2: The task is completed.

Value of ORM: 0.9528

Value of AgentPRM: 0.9976

Trajectory 1

Thought 1: The blue key and red key are within range, 

I should approach them to get the grey box.

Action 1: go to blue key 1

Observation 1: There is a blue key 1 right in front of 

you 1 steps away. There is a red key 1 right in front of 

you 2 steps away. There is a purple box 1 2 steps in 

front of you and 1 steps to your left. You are facing a 

wall 3 steps away.

Thought 2: The purple box must contain the grey 

object.

Action 2: pickup grey box 1

Observation 2: The action is not recognized. Please 

check valid actions.

Value of ORM: 0.9534

Value of AgentPRM: 0.4827

Trajectory 2

Thought 1: I should go to the blue key 1 to work on it 

before picking up the grey box 1.

Action 1: go to blue key 1

Observation 1: There is a blue key 1 right in front of 

you 1 steps away. There is a red key 1 right in front of 

you 2 steps away. There is a purple box 1 2 steps in 

front of you and 1 steps to your left. You are facing a 

wall 3 steps away.

Thought 2: The blue key 1 is too close for me to pick 

up, so I need to go to the red key 1 to first work on 

this.

Action 2: go to red key 1

Observation 2: The action is not recognized. Please 

check valid actions.

Value of ORM: 0.8850

Value of AgentPRM: 0.1933

Trajectory 3

Thought 1: To accomplish the given goal of picking 

up a grey object, I need to first locate the grey object, 

which is red, as it was visible in the step I am 

currently in. Next, I should use my yellow pin to pick 

up the red key, as this key is required to open the grey 

box.

Action 1: pickup blue key 1

Observation 1: There is a red key 1 right in front of 

you 2 steps away. There is a purple box 1 2 steps in 

front of you and 1 steps to your left. You are facing a 

wall 3 steps away. You are carrying a blue key.

Thought 2: I have successfully picked up the red key, 

but there are still 2 red keys left to pick up in the blue 

key. I should continue to uncover more objects until 

there are no more red keys left.

Action 2: pickup red key 1

Observation 2: The action is not recognized. Please 

check valid actions.

Value of ORM: 0.9350

Value of AgentPRM: -0.0137

Trajectory 4

Figure 7: Example of qualitative analysis on BabyAI. ORM fails to select the correct trajectory and shows little
difference in the score estimates across the different trajectories. In contrast, AgentPRM successfully identifies the
correct trajectory, assigning low scores to negative trajectories and high scores to positive ones.
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Instruction

Goal: pick up a grey ball

Observation: There is a blue ball 1 0 steps 

in front of you and 2 steps to your right.  The 

room has walls around you. You are facing a 

wall 1 steps away.

Instruction

Goal: pick up a grey ball

Observation: There is a blue ball 1 0 steps 

in front of you and 2 steps to your right.  The 

room has walls around you. You are facing a 

wall 1 steps away.

Selected Candidate Steps

Discarded Candidate Steps

Successful Terminal Steps

State 1

Thought: I need to pick up the grey ball, so 

my first step will be to move forward to 

explore the room.

Action: go to blue ball 1
Observation: There is a blue ball 1 0 steps in 

front of you and 2 steps to your right.  The 

room has walls around you. You are facing a 

wall 1 steps away.

Value:0.2622

State 2

Thought: I need to pick up a grey ball. The 

possible actions I have are "turn left," "turn 

right," and "pickup blue ball 1." However, I 

need to give me the "blue ball 1" in order to 

accomplish the goal. I should check which 

action will get me to the blue ball 1 to ensure 

I'm on the right path.

Action: go to blue ball 1
Observation: There is a grey ball 1 0 steps in 

front of you and 1 steps to your right.  The 

room has walls around you. You are facing a 

wall 3 steps away. You are carrying a blue 

ball.

Value:0.1612

State 1

Thought: I need to pick up the blue ball 

located at position 1. I should head in the 

right direction to get closer.

Action: go to blue ball 1

Observation: In front of you in this room, 

you can see several objects: There is a grey 

ball 1 0 steps in front of you and 1 steps to 

your right.  The room has walls around you. 

You are facing a wall 3 steps away. You are 

carrying a blue ball.

Value:1.2188

State 2

Thought: I need to be closer to the green 

ball 1 to pick it up, so I should first get closer 

with my right action until I find blue ball 1.

Action: turn right
Observation: There is a blue ball 1 0 steps in 

front of you and 1 steps to your right.  There 

is a blue ball 2 right in front of you 2 steps 

away.  There is a grey ball 1 1 steps in front 

of you and 1 steps to your right.  The room 

has walls around you. You are facing a wall 4 

steps away.

Value:1.1320

State 7

Thought: I have already moved to front, now I need to move 

towards the grey ball 2 to pick it up. The grey ball is in front of 

me but I need to first reach it to confirm if it's already picked.

Action: go to grey ball 2

Observation: There is a grey ball 1 right in front of you 1 steps 

away.  There is a red ball 1 right in front of you 2 steps away.  

There is a red box 1 1 steps in front of you and 1 steps to your 

right.  There is a red ball 2 2 steps in front of you and 2 steps to 

your right.  There is a grey box 1 2 steps in front of you and 3 

steps to your left.

Value:0.6211

State 8

Thought: I need to continue exploring and find a grey box to pick it 

up, which will help me aim for the grey ball 2. I've already achieved 

two points in exploration so far. Let's add a 'pickup grey box 1' to 

have more options.

Action: pickup grey box 1

Observation: In front of you in this room, you can see several 

objects: There is a blue ball 1 0 steps in front of you and 1 steps to 

your right.  The room has walls around you. You are facing a wall 1 

steps away. You are not carrying anything.

Value:0.1931

State 9

Thought: I need to continue exploring to find the grey ball. Since I 

can't do anything to pickup the grey ball right now, I should continue 

facing the wall to explore further.

Action: go to blue ball 1

Action: No change in state.

Value:0.3952

Thought: The grey ball is 1 step in front of me and 1 step to my 

right. I can use the "pickup grey ball 1" action to pick it up.

Action: pickup grey ball 1

Observation: The task is completed.

Value:0.8913

State 10

State 7

Thought: I need to move forward to pick up the blue ball or the 

grey ball to complete my goal. The grey ball is located to my left, so 

I should first want to pick up the grey ball to reach it.

Action:  go to grey ball 1

Observation : There is a grey ball 1 right in front of you 1 steps 

away.  There is a blue ball 1 2 steps in front of you and 1 steps to 

your left.  There is a grey ball 2 0 steps in front of you and 3 steps to 

your right.  The room has walls around you. You are facing a wall 4 

steps away. 

Value: 0.9916

State 8

Thought: I should pick up grey ball 1 first to maximize my 

chances of successfully picking up the grey ball 2 in the future.

Action: pickup grey ball 1

Observation: The action is not recognized. Please check valid 

actions.

Value:1.0247

State 9

Thought: I need to pick up the grey ball 1 to complete my goal.

Action: pickup grey ball 1

Observation: The action is not recognized. Please check valid 

actions.

Value: 0.9969

State 10

Thought: I need to pick up both the red ball and the grey ball to 

complete the goal.

Action:  go to red ball 1

Observation : In front of you in this room, you can see several 

objects: There is a red ball 1 right in front of you 1 steps away.  

There is a grey ball 1 1 steps in front of you and 1 steps to your right.  

There is a red ball 2 right in front of you 3 steps away.  There is a 

red box 1 2 steps in front of you and 1 steps to your right.  The room 

has walls around you. You are facing a wall 4 steps away. You are 

carrying a blue ball.

Value: 0.9593

Unsolved

Unsolved

Unsolved

Unsolved

Unsolved

Unsolved

Unsolved

Solved

Figure 8: Example of qualitative analysis on beam search. The upper part of this figure demonstrates a successful
solution with beam search guided by AgentPRM, and the lower part demonstrates an unsuccessful one guided by
PVM. The policy model solves this task in 10 steps under the guidance of AgentPRM, while it fails with PVM.
We can also find that AgentPRM effectively distinguishes between good and bad actions (assigning high scores to
good actions and low scores to bad ones), whereas PVM does not, with less clear differentiation in scoring between
different actions.
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