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Abstract

Despite advancements in large language mod-
els (LLMs), they still face challenges in multi-
turn decision-making tasks (i.e., agent tasks),
where models need to make a sequence of in-
telligent decisions based on environment feed-
back. In this work, we explore training pro-
cess reward models (PRMs) to evaluate each
decision and guide model’s search in agent
tasks. Unlike LLM reasoning, where each step
is scored based on correctness, actions in agent
tasks do not have a clear-cut correctness. In-
stead, they should be evaluated based on their
proximity to the goal and the progress they have
made. Building on this insight, we redefine the
PRM for agent tasks, and introduce AgentPRM
to capture both the interdependence between
sequential decisions and their contribution to
the final goal. This allows for better progress
tracking and exploration-exploitation balance.
To scalably obtain labeled data for training
AgentPRM, we employ a TD-based estimation
method combined with Generalized Advantage
Estimation (GAE). Experiments across sam-
pling strategies, models and tasks demonstrate
that our method consistently outperforms base-
lines, is more compute-efficient, and it exhibits
a more stable and robust improvement trend
as inference compute scales. Furthermore, it
generalizes well on mathematical reasoning. '

1 Introduction

With the development of large language models
(LLMs), they have achieved significant advance-
ment in text completion and generation tasks,
such as summarization, translation, and reason-
ing (QwenTeam, 2024; OpenAl, 2024; Anil et al.,
2023). However, they still face challenges in
multi-turn decision-making tasks (i.e., agent tasks),
where the models need to make a sequence of in-
telligent decisions based on feedback from the en-
vironment (Xi et al., 2023; Zeng et al., 2024). In

'We will release our codes and data for further research.
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Figure 1: Average Best-of-N performance across three
agent tasks. AgentPRM outperforms other baselines. It
is more than 8 x compute-efficient than ORM and PVM
baselines. Moreover, it demonstrates a more stable and
robust improvement trend as inference compute scaling.

agent tasks, the decisions made at each step are not
isolated, but rather form a chain of dependencies,
where each decision influences subsequent deci-
sions and ultimately the outcome (Liu et al., 2024b;
Chen et al., 2024b; Xi et al., 2024). Hence, to
achieve excellent performance, models are required
to possess task knowledge, understand environ-
mental information, and engage in forward-looking
planning (Xi et al., 2023; Wang et al., 2024b).

Previous work primarily focuses on fine-tuning-
based (Zeng et al., 2024; Chen et al., 2024b) or
prompt engineering-based approaches (Yao et al.,
2023; Liu et al., 2023; Shinn et al., 2023). The
former involves collecting expert data to have the
model imitate decisions, which lacks sufficient ex-
ploration by the model itself and an understanding
of the value and reason behind each decision. The
latter leverages state-of-the-art commercial mod-
els like GPT-4 to perform self-reflection, which is
limited by APIs, making it costly and difficult to
train or customize for deployment. As a result, the
performance meets bottlenecks (Yang et al., 2023;
Koh et al., 2024).
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Figure 2: Overview of AgentPRM and other baselines.
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In training, AgentPRM takes into account both the probability

of each step achieving the goal (promise) and the interdependence between sequential steps (progress). This boosts

AgentPRM’s performance at inference-time.

To this end, we draw inspiration from process
supervision in LLM reasoning and explore train-
ing process reward models (PRMs) to guide the
search and exploration of LLMs on agent tasks
(Uesato et al., 2022; Wang et al., 2024c; Lightman
et al., 2024; Setlur et al., 2024; Li and Li, 2024). In
LLM reasoning, PRMs are used to rate each step
based on its correctness and guide the decoding
process. However, in agent tasks, they face three
key challenges: (1) actions in agent tasks do not
have a definitive correctness, making evaluation
non-trivial. For example, in web navigation, even
if the model makes a poor decision, it can still
correct it by backtracking (Yao et al., 2022; Zhou
et al., 2024). (2) Previous methods treat each step
independently and do not account for the dependen-
cies and nuances among steps within a trajectory
(Li and Li, 2024), which is inconsistent with the
nature of agent tasks. (3) Previous methods for
training PRMs often require expert-level annota-
tions or a large amount of sampling (Wang et al.,
2024c; Luo et al., 2024), which can be very costly
for real-world agent tasks.

In this work, we propose AgentPRM to address
the challenges. It measures the proximity of steps
to the goal state and the progress made by LLMs.
Specifically, AgentPRM predicts the contribution
of each decision to the final goal and captures
the dependencies between sequential decisions, en-
abling better progress tracking and a balance be-
tween exploration and exploitation. To scale the
acquisition of training data, we employ an auto-

mated TD-based method with GAE (Schulman
et al., 2016), which is more efficient than pre-
vious Monte-Carlo-based methods (Wang et al.,
2024c). Extensive experiments across various mod-
els and tasks show that AgentPRM consistently
outperforms baselines while being more compute-
efficient. For example, across three agent tasks and
multiple sampling strategies, it achieves an average
compute efficiency that is more than 8x greater
than baseline RMs with Qwen2.5-3B. Additionally,
AgentPRM exhibits a more stable and robust im-
provement trend as inference compute scales, high-
lighting its promising potential for training more
policy LMs through self-improvement or reinforce-
ment learning (RL).

To summarize, our main contributions are:

1. We propose AgentPRM, a new process reward
model to evaluate LLMs’ actions in agent
tasks and guide their search, which captures
the dependency between sequential steps and
their contribution to the final goal.

. We propose an automated, scalable method
for training AgentPRM. We perform extensive
experiments to demonstrate the efficiency and
effectiveness of AgentPRM.

. We conduct in-depth ablation and analysis to
show how it works. We hope AgentPRM pro-
vides insights for developing better language
model agents for the community.



2 Preliminary and Background

The agent task can be formalized as a Partially
Observable Markov Decision Process (POMDP)
U,S, A, O, T,r) (Hausknecht and Stone, 2015;
Xi et al., 2024), where U is the instruction space,
S is the state space, A is the action space, O is the
observation space, 7 : S x A — S is the determin-
istic state transition function, and r : S x A — R
is the reward function. Given a task instruction
u € U, the initial observation oy € O, and the ini-
tial state so = {u, 0p}, the agent task requires the
language model to generate an action ag ~ mg(-|so)
based on its policy 7y parameterized by 6, where
ap € A. The agent receives an observation o; € O
from environment, and the state is then transitioned
to s1 = {u, sp, ag, 01 } according to 7. Following
the process, the agent proposes a sequence of ac-
tions {a;}7_,, where T is the number of steps, to
interact with the environment until the task is com-
pleted or the maximum number of steps is reached:
7 = (u,00,00,01," - ,0r,ar). Then for a lan-
guage model, the agent task can be formalized as:

T
mo(7ls0) = [ [ ma(aulse), (1)
t=0

where s; represents the interaction history up to
timestep ¢. Finally, the environment e provides an
outcome reward 7(u,7) € [0,1] to describe the
completion of the agent task.

Outcome Reward Model (ORM). An ORM
Torm takes a trajectory 7 as input and outputs a score
to predict whether this trajectory has completed the
instruction u (Uesato et al., 2022; Ouyang et al.,
2022). The ORMs are trained using data sam-
pled from the policy model 7, which generates
instruction-trajectory pairs. The model is trained
to fit the output of the outcome reward function r
(Cobbe et al., 2021; Ouyang et al., 2022; Liu et al.,
2024a).

Process Reward Model (PRM). A PRM scores
the actions or states at each step of a trajectory
(Lightman et al., 2024; Wang et al., 2024c; Zhang
et al., 2024). In the field of LLM reasoning, the
scoring criterion is usually the correctness of the
steps (Lightman et al., 2024; Wang et al., 2024c;
Zhang et al., 2024). However, this is not suitable
for the agent tasks we are studying, which will
be elaborated in Section 3 and we will provide
appropriate evaluation criteria. During training,

annotated labels for each step are collected, and
PRMs are trained to fit these labels (Lightman et al.,
2024; Wang et al., 2024c; Luo et al., 2024).

Best-of-N (BoN) with reward models. With in-
creased inference compute, we can apply BoN
(Best of N) for improved performance (Touvron
et al., 2023). The process involves first sampling
N trajectories Tl-]il using the policy 7y, then scor-
ing these trajectories using reward models. The
trajectory with the highest score is selected as the
final output. Note that BoN can also be executed
with PRMs (Lightman et al., 2024). In this work,
we use the score of the last step as the score of a
trajectory.

Search with process reward models. During the
inference phase, we can conduct step-level search
against PRMs for agent tasks. Among the vari-
ous step-level search algorithms, beam search is
a widely used method that achieves a balance be-
tween performance and efficiency (Zhang et al.,
2024; Chen et al., 2024a). In each iteration, beam
search expands M candidate action nodes for each
node and uses PRM to score the candidates. Only
the top-N scored nodes are retained in each iter-
ation, and we select the terminal state with the
highest score as the final response.

3 Methodology

3.1 Motivation

In LLM reasoning, researchers train PRMs by col-
lecting annotated data to score each step based on
its correctness. However, for agent tasks, we face
three major challenges: (1) Decisions in agent tasks
do not have a clear-cut correctness, making evalu-
ation non-trivial. For example, in web navigation,
if the model makes a poor decision by clicking a
button and navigating to a new page, it can immedi-
ately correct this by using the back button to return
to the previous state (Yao et al., 2022; Zhou et al.,
2024). (2) Previous PRMs typically treat each state
independently and do not account for the dependen-
cies between different decisions (Li and Li, 2024,
Setlur et al., 2024). However, in agent tasks, the
decisions made at each step are not isolated, but
rather form a chain of dependencies, where each
decision influences subsequent decisions and ul-
timately the outcome (Yao et al., 2022; Xi et al.,
2023, 2024; Chevalier-Boisvert et al., 2019). (3)
Previous methods for training PRMs often require
expert annotations or a large amount of sampling,



making them expensive (Lightman et al., 2024;
Wang et al., 2024c¢; Luo et al., 2024).

Therefore, our research question includes: how
to define appropriate rewards for decisions and ef-
ficiently train such process reward models.

3.2 AgentPRM: Re-Defining Process Rewards
for Decisions in Agent Tasks

Measuring expected future success probability
with value functions. An agent task typically
requires making a sequence of intelligent decisions
to reach the goal state. Conceptually, this means
we need to evaluate whether a decision brings the
state closer to the goal (Yao et al., 2022; Xi et al.,
2023; Liu et al., 2024b). In RL, this is often defined
as the action-value function Q™ (s, a;) (Sutton and
Barto, 2018), which measures the likelihood of
future success after taking a particular action a;
based on state s;:

Qﬂ<3t7 at) - ET~7{‘("St,at) [r(u, 7—)] :

Similarly, we can define the state-value function
V (s¢) (Sutton and Barto, 2018) with:

V7 (st) = Eqpr()s,) [Q (51, at)] -

Now, given annotated labels for each state-action
tuple, Do = {s¢, ay, V(st, ay) }, we train our PRM
M parameterized by ¢ to predict the action value
with mean squared error (MSE) loss (Chen et al.,

20244):

£0(0) = Buang |5 Malon ) ~ Qlsta)?

2
After training, Based on the predictions of M, we
can perform inference-time search or BoN.

Capturing dependencies between steps with ad-
vantages. Nevertheless, the aforementioned
M4 considers only the actions’ contribution to
the final goal, and fails to effectively capture the
relationships and dependencies between consec-
utive states or decisions (Li and Li, 2024; Setlur
et al., 2024). In other words, it primarily mea-
sures promise but not progress. This often leads
to high exploitation while lacking a balance with
exploration (Setlur et al., 2024; Snell et al., 2024).
However, in many agent tasks, models need suffi-
cient exploration to successfully achieve the final
goal (Chevalier-Boisvert et al., 2019; Yao et al.,
2022; Zhou et al., 2024). For example, in a web
navigation task, the model needs to first navigate

to the login page to log in, and then return to the
current page to post a comment. Although the ac-
tion of entering the login page may temporarily
move the model away from the target page, it is
still crucial because it is a necessary step to log in
before posting.

Therefore, we point out that in addition to
promise, process rewards for agent decisions
should capture the dependencies between steps to
measure local progress. This can be measured by
advantage in RL (Sutton et al., 1999), which quan-
tifies the change in the likelihood of success before
and after a given action:

A”(st,at) = Qﬂ-(St, at) - Vﬂ-(St).

The value of A™ (s, a;) can be either positive or
negative. If it is positive, it indicates that the cur-
rent action has contributed to positive progress;
otherwise, it indicates negative progress.

Hence, to train our model M, to capture
progress and dependencies between actions, we
introduce the loss for fitting advantage:

LA()) = Eqya,mnp | (Ag(star) — Alsy, ar))? ]

) 3)
where A(s;,a;) is the annotated labels for advan-
tage. Next, we show how to integrate the fitting
optimization of the advantage into the training of
our PRM. As the state transition in our setting is de-
terministic, we have (Li and Li, 2024; Setlur et al.,
2024):

Q(St,at) - V(St) = Q(St, Gt) - Q(St—l, at—l)
4)

So the loss term for advantage £ 4(¢) becomes:
Eep g | ((M(st, ar) = Mo(si-1,ai-1))

A A 2
~ (Q(s1:a) = Qsi-r.ai1)) |.
®)
In this way, we can optimize our PRMs for consid-
ering not only the contribution to the final outcome
but also the dependencies between adjacent actions,
and our final loss for AgentPRM becomes:

EAgentPRM(¢) - ﬁQ((b) + B x ﬁA(¢)7 (6)

where [ is a scaling factor that balances the two
loss terms.

3.3 Practical Implementation for Training
AgentPRMs

In the previous section, we demonstrate how to
optimize our AgentPRM based on the estimated or
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Figure 3: Performance of Best-of-N evaluation. AgentPRM outperforms other baselines, is more compute-efficient,
and demonstrates a more stable and robust improvement trend as inference compute scales.

annotated data. Next, we explore how to obtain the
data in an effective and scalable way.

MC-based estimation. A common method for
automatically estimating the Q-value of an action
is based on Monte Carlo (MC) sampling (Wang
et al., 2024c; Luo et al., 2024). Specifically, it

. . Nirai
first samples Nt seed trajectories {Ti}i:Tl’ from

the policy my. Then, for each action a;; in each
trajectory 7;, we start from the next state s; 11
derived from the action and perform Ny, rollouts
{T;};y:mi with mg. As in previous work, if any of
the rollouts reaches the goal state, the value of this
action is set to be 1:

A 1 37, 7} is successful,
Q(st,a1) = ) (7)

0 otherwise,

Though MC-based estimation is effective, it still
suffers from efficiency and cost issues because it
requires a large number of rollouts for estimating
different actions. Therefore, we explore using other
more efficient methods.

TD-based estimation with GAE. To explore
more efficient estimation methods, we are inspired
by previous work (Sutton, 1988; Schulman et al.,
2016; Ouyang et al., 2022; Sutton et al., 1999) and
introduce TD-based methods, using GAE (General-
ized Advantage Estimation) to reduce variance and
improve stability (Schulman et al., 2016). First, we

define the TD residual for a state as follows:

5(8,5, at) =7+ M(St, CLt) - M(St_l, at_l),
(®)
where 7; is the instant reward at timestep ¢, and
in our setting, sparse rewards are only assigned
when ¢t = T'. Next, we estimate the advantage
for different actions using Generalized Advantage
Estimation (GAE):

T

Alseya) = Y N'(s0), ©)

k=t+1

where A is the discount factor. Finally, the current
estimated ()(s¢, a;) can be considered as the return
of the next state G'/(S¢+1):

Q(st,a) = G(si41) = A(st, ar) + Mg (se, ar).

(10)
In implementation, we sample Ntp trajectories
{Ti}ZN:Tf from the policy 7y for training. Since our
estimation process involves prediction of M, we
iteratively sample a batch from the trajectory set,
conduct estimation based on the current model, and
update the model with Equation 5. We summarize
the training algorithm of AgentPRM in Algorithm
1 of Appendix A.

From the efficiency perspective, TD-based esti-
mation with GAE does not require additional roll-
outs from each state like MC-based method, saving
a significant amount of computational resources



Model Method WebShop BabyAl TextCraft
Fine-tuning-based-methods
SFT 30.5 37.6 27.8
RFT 39.0 54.4 32.9
Qwen2.5-0.5B Reward-Model-based Beam Search
@2 x2 @x4 @Q8x8 @2x2 @x4 @x8 @2x2 @x4 @8x8
ORM 19.5 18.5 8.0 73.8 74.9 78.8 25.7 24.7 27.8
PVM 30.0 50.0 57.5 84.6 86.5 88.1 25.7 26.8 26.8
AgentPRM  30.5 51.5 62.5 82.9 87.7 90.4 28.8 29.9 32.9
Fine-tuning-based-methods
SFT 46.0 67.4 29.8
RFT 48.0 64.5 36.0
Reward-Model-based Beam Search
Qwen2.5-3B @2x2 @x4 @3x8 @2x2 @x4 Q8x8 @x2 @4x4 @8x8
ORM 51.0 59.0 57.0 83.9 83.5 83.7 38.1 41.2 43.3
PVM 50.5 59.0 54.5 72.7 84.9 89.1 39.1 40.2 44.3
AgentPRM  61.0 72.5 76.0 84.4 89.6 89.8 47 .4 51.5 56.7

Table 1: Evaluation results of fine-tuning-based methods and beam search on agent tasks. The best performance is
in bold. Our method is marked in blue . We set the QN x M in each beam search setting.

(See Section 5.3). From the performance perspec-
tive, though TD-based methods have concerns re-
garding high variance, we introduce GAE to reduce
variance and improve stability, ultimately achieving
better performance.

4 Experiments

4.1 Experimental Setup

Tasks. We conduct our experiments on three chal-
lenging agent environments: WebShop (Yao et al.,
2022), BabyAl (Chevalier-Boisvert et al., 2019),
and TextCraft (Prasad et al., 2024). The detailed
description is in Appendix B. To show the compre-
hensiveness of our method, we include reasoning
dataset GSMS8K (Cobbe et al., 2021) Our imple-
mentation is based on the AgentGym framework
(Xi et al., 2024).

Baselines. We compare our AgentPRM with sev-
eral fine-tuning and reward model-based methods.
For fine-tuning-based approaches, supervised fine-
tuning (SFT) uses expert data to fine-tune the base
model, while rejection sampling fine-tuning (RFT)
refines the model by leveraging successful trajec-
tories generated by the base model. For reward
model-based methods, we include ORM (Cobbe
et al., 2021) and PVM (Process Value Models)
(Lightman et al., 2024). ORM estimates the reward
for the outcome, while PVM estimates step-level
values by assigning the reward of a trajectory to in-
dividual steps. We also include MC-based method

Math-Shepherd (Wang et al., 2024c) to estimate
Q-Value of each step in Section 5.3.

Implementation Details. All experiments are
conducted with A100-80GB GPUs. Our backbone
models include Qwen-2.5-0.5B-Instruct and Qwen-
2.5-3B-Instruct. For agent tasks, we use the ReAct
format (Yao et al., 2023) for model outputs. To
initialize the models, we randomly select 300 tra-
jectories from the AgentGym training set. For SFT,
we set the learning rate to 1 x 107°. We report
the success rate for WebShop and TextCraft, and
the reward for BabyAl. For MC-based estimation,
we set Nty = 1 for each query, and Ny, = 16
for each step; for TD-based estimation, we set
Ntp = 16 for each query. We train reward models
for 5 epochs under a learning rate of 1 x 107, For
AgentPRM, we set 3 = 1.0 and A = 0.95. See
more details in Appendix C.

4.2 Main Results

Result 1: Compared to greedy decoding, intro-
ducing RMs for BoN and search can improve
LM performance on agent tasks. The experi-
mental results are shown in Figure 3 and Table
1. Compared to the greedy decoding of SFT and
RFT methods, using reward functions for BoN
and search can significantly improve model perfor-
mance, especially when increasing inference com-
pute for more sampling. This is consistent with
previous work on test-time scaling (Snell et al.,
2024; Bansal et al., 2024).
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Figure 4: Evaluation results of Best-of-N on GSM8K.

Result 2: AgentPRM is more compute-efficient
than other reward models, and outperforms
them consistently in both Best-of-N and test-
time search. As shown in Figure 3, under dif-
ferent sampling budgets in Best-of-N evaluation,
our method consistently outperforms ORM and
PVM across different tasks, demonstrating its ef-
fectiveness. Figure 1 shows that, on average, Agent-
PRM is 8 x more compute-efficient than PVMs and
ORMs. This highlights the potential of AgentPRM
in training stronger agentic LLMs with methods
like reinforcement learning, which we leave for
future work.

As listed in Table 1, in beam search, our method
also outperforms ORMs and PVMs across dif-
ferent tasks significantly, validating its ability to
guide model search and achieve a good exploration-
exploitation balance. For example, using Qwen?2.5-
3B on the WebShop task, with an 8 x 8 sampling
search setting, our method surpasses PVM by more
than 20.0 points.

Result 3: As inference compute scaling, Agent-
PRM demonstrates a more robust and stable
scaling trend. In Figure 1 and Figure 3, we ob-
serve that as the sampling budget increases, PVMs
and ORMs tend to experience performance bottle-
neck or even degradation. This aligns with the find-
ings of Wang et al. (2025), and may be attributed
to issues such as false positives or reward hack-
ing (Wang et al., 2024a), which could limit their
effectiveness in future RL and self-improvement-
based methods for training better policy models. In
contrast, AgentPRM consistently shows stable im-
provement, highlighting its robustness and broad-
ening its potential for future applications.

S Discussion and Analysis

5.1 Performance on Mathematical Reasoning

To demonstrate the versatility of our method, we
also conducted experiments on mathematical tasks,

GSMBK

Model Method
@2x2 @x4 @8x8
ORM 39.5 42.9 44.2
Qwen2.5-0.5B PVM 38.9 41.3 42.9
AgentPRM  41.5 44.7 45.7
ORM 64.1 70.3 72.9
Qwen2.5-3B PVM 63.6 69.6 71.2
AgentPRM  65.1 70.5 73.4

Table 2: Evaluation results of beam search on GSM8K.
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Figure 5: Ablation study on £ 4 with Qwen2.5-3B.

with results shown in Table 2 and Figure 4. As we
can see, our method still performs exceptionally
well on mathematical tasks, surpassing other base-
lines. This also highlights the generalizability and
adaptability of our AgentPRM. We expect to ex-
tend it to more tasks in future work, such as coding
or logical reasoning.

5.2 Ablation Study on £ 4(¢)

To capture the dependency between steps and eval-
uate their progress, we add L4(¢) for training
AgentPRMs. Here, we conduct an ablation on the
advantage term to validate its effect. Results in Fig-
ure 5 show that without £ 4(¢), the performance on
both agent and mathematical tasks drops regardless
of the sampling strategy, showing that capturing
progress is important for training AgentPRMs.

5.3 Comparing Sampling Efficiency of Our
Method with MC-based Estimation

In Section 3.3, we introduced TD-based estimation
with GAE for the automated labeling process. Here,
we compare it with the previously commonly used
MC-based estimation. The experimental results are
shown in Figure 5. We observe that our method re-
quires fewer tokens for labeling the data compared
to other methods, yet achieves better performance
on Best-of-N and beam search, demonstrating the
higher efficiency and effectiveness of our approach.



Best-of-N Beam Search

Task Method Tokens
@8 @16 @32 @64 @ix4 Q8x8
Webshop MCbased L9x 635 675 690 720 675 705
COSMOP D pased  1.0x 645 69.0 71.0 740 725  76.0
Babva] MCbased 28x< 905 905 916 931 ST6 883
Y TD-based 1.0x 914 91.4 924 944 89.6  89.8
Gsmgk  MCbased 15x  GL8 633 639 650 661 70.1

TD-based 1.0x 68.9 724 739 747 705 73.4

Table 3: Comparing sampling efficiency and perfor-
mance of our method with MC-based estimation.
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Figure 6: Visualization of value distribution of Actions
with AgentPRM.

5.4 Evaluating Value Distributions of Actions
with AgentPRM

To further demonstrate the working mechanism of
AgentPRM, we visualize the value estimates of
the actions predicted by AgentPRM in WebShop
and BabyAl across successful and unsuccessful
trajectories. From the distribution in Figure 6, we
observe that the model assigns higher scores to the
actions that lead to positive goals, and lower scores
to the actions that lead to negative goals, revealing
that our method is effective in credit assignment.

We also perform qualitative analysis in Ap-
pendix D to show how AgentPRM works.

6 Related Work

Developing LLMs for agent tasks. To enable
language models to perform well in multi-turn
decision-making tasks (Chevalier-Boisvert et al.,
2019; Yao et al., 2022; Zhou et al., 2024), previ-
ous work has proposed fine-tuning-based methods,
where expert-labeled trajectories are collected, and
the learner imitates them step by step (Chen et al.,
2023, 2024b). However, this approach is often
difficult to scale and lacks sufficient exploration
of the environment by the model, as well as an
understanding of the value and reasoning behind
each decision (Chen et al., 2025; Lin et al., 2024).
Another line of methods is based on state-of-the-
art commercial models like GPT-40 for prompt
engineering, which is limited by APIs, making it

difficult to customize and the performance meets
bottleneck (Yang et al., 2023; Koh et al., 2024).
In this paper, we explore training PRMs to guide
the exploration of LMs, decoupling it from the op-
timization of the policy model, and the resulted
PRMs can also be used as verifiers for re-ranking
and search.

PRMs for LLMs. PRMs can provide dense re-
ward signals to help LLMs in RL and test-time
search or re-ranking (Snell et al., 2024), and are
widely used in LLM reasoning (Lightman et al.,
2024; Wang et al., 2024c; Yu et al., 2024; Li and
Li, 2024). However, the data labeling required
for this approach is expensive and not scalable
(Lightman et al., 2024). Therefore, recent work
has explored automated annotating methods based
on Monte Carlo sampling to reduce the cost (Wang
et al., 2024c; Li and Li, 2024). In agent tasks, some
works have also used similar MC sampling meth-
ods to label the Q-values of actions (Hao et al.,
2023; Lin et al., 2024; Zhai et al., 2024). However,
they only consider the future success probability
of a step, without accounting for the dependencies
and progress between steps (Yao et al., 2022; Xi
et al., 2023, 2024; Chevalier-Boisvert et al., 2019).
Our AgentPRM captures both of these aspects and
we perform data labeling more efficiently by using
the method of TD-estimation with GAE.

More detailed discussion of related work can be
found in Appendix E.

7 Conclusion

In this paper, we present AgentPRM, a process
supervision model designed for language model
agents. It captures both the probability of each step
achieving the goal (promise) and the interdepen-
dence between sequential steps (progress). Exten-
sive experiments and analysis demonstrate that our
method outperforms other baselines across various
sampling strategies, models, and tasks. Addition-
ally, our approach is more compute-efficient, and
its performance shows stable and robust improve-
ment as inference compute increases, highlighting
its potential for training stronger policy models in
the future (e.g., via reinforcement learning). More-
over, our method generalizes well to mathematical
tasks, showcasing its versatility. We hope our work
provides valuable insights for the language model
agent field.



Limitations

In this paper, we introduce AgentPRM to guide
language models’ search and perform trajectory re-
ranking for agent tasks, enhancing the performance.
However, our work still has some limitations: (1)
Our approach primarily focuses on performance
improvement and does not address safety concerns.
Safety in language models and agents has become a
critical issue (Bai et al., 2022; Zhiheng et al., 2023;
Xi et al., 2023, 2024; Zheng et al., 2024; Yang
et al., 2024), especially for digital agents capable
of manipulating web pages or embodied agents op-
erating in the real world. Therefore, future work
should consider reward models aligned with safety
for agents and integrate them with our approach
to ensure development within safe boundaries. (2)
Our experiments were mainly conducted on a series
of models discussed earlier, and in the future, we
expect to include a broader range of model types to
further demonstrate the generalizability of Agent-
PRM.
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A Algorithms

We summarize the training algorithm of Agent-
PRM in Algorithm 1. We list the process of beam
search in Algorithm 2.

B Details of Agent Tasks

We conducted experiments on three agent tasks:
WebShop (Yao et al., 2022), BabyAl (Chevalier-
Boisvert et al., 2019), and TextCraft (Prasad et al.,
2024).

WebShop WebShop (Yao et al., 2022) is a simu-
lated e-commerce website environment with 1.18
million real-world products. In this environment,
an agent needs to navigate multiple types of web-
pages and perform diverse actions to find, cus-
tomize, and purchase a product given an instruction.
We set the max interaction rounds to 6.

BabyAl The BabyAl platform (Chevalier-
Boisvert et al., 2019) comprises an extensible
suite of 19 levels of increasing difficulty. The
levels gradually lead the agent towards acquiring
a combinatorially rich synthetic language which
is a proper subset of English. The environment is
populated with entities of different colors, such as
the agent, balls, boxes, doors and keys. Objects can
be picked up, dropped and moved around by the
agent. Doors can be unlocked with keys matching
their color. At each step, the agent receives a 7 x 7
representation of its field of view (the grid cells in
front of it) as well as a Baby Language instruction
(textual string). We set the max interaction rounds
to 20.

TextCraft The TextCraft task (Prasad et al.,
2024) is designed to test the ability of agents to
plan and execute complex tasks that require craft-
ing items from available resources. The dataset fea-
tures a natural compositional structure, with tasks
that involve a series of steps of varying complex-
ity. The agent needs to identify and adapt to the
varying task complexity. The dataset includes a
variety of atomic skills, such as crafting and fetch-
ing items, and uses Minecraft’s crafting recipes to
specify craftable items and their ingredients. The
agent’s objective is to obtain target Minecraft items
by crafting them from available items in the en-
vironment. We set the max interaction rounds to
20.
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C More Implementation Details

We set the temperature to 1.0 in trajectory collec-
tion to maintain diversity in training data. For BoN
and beam search, we set the temperature to 0.7. Fol-
lowing AgentGym (Xi et al., 2024), we include 100,
90, 97 queries for evaluation on WebShop (Yao
et al., 2022), BabyAlI (Chevalier-Boisvert et al.,
2019), TextCraft (Prasad et al., 2024), respectively.
For GSM8K, we include 1319 evaluation queries
as in Cobbe et al. (2021). For math tasks, we ini-
tialize the policy model with 5863 trajectories from
Math-Shepherd (Wang et al., 2024c).

D Qualitative Analysis

We perform a qualitative analysis to show how
AgentPRM works. We provide examples in Figure
7 and Figure 8.

The example shown in Figure 7 demonstrates
Best-of-N selection on 4 trajectories by ORM and
AgentPRM. ORM fails to select the correct trajec-
tory and shows little difference in the score esti-
mates across the different trajectories. In contrast,
AgentPRM successfully identifies the correct tra-
jectory, assigning low scores to negative trajecto-
ries and high scores to positive ones.

The second case shown in Figure 8 compares
the process of beam search guided by AgentPRM
and the baseline PVM. The policy model success-
fully solves this task under the guidance of Agent-
PRM, while it fails with PVM. We can also find that
AgentPRM effectively distinguishes between good
and bad actions (assigning high scores to good ac-
tions and low scores to bad ones), whereas PVM
does not, with less clear differentiation in scoring
between different actions.

E More Detailed Discussion of Related
Work

We list the comparison of our method and other
related methods in Table 4.

In the LLM agent domain, ARMAP constructs
outcome reward models (ORMs) through data la-
beling to re-rank trajectories, providing better BoON
performance (Chen et al., 2025). Q* AGENT uses
the Bellman equation (Barron and Ishii, 1989) to
estimate the Q-value of each step to train process
reward models (Lin et al., 2024). DPO-Q (Zhai
et al., 2024) uses a MCTS-based method for build-
ing a planning tree and use DPO (Rafailov et al.,
2023) to estimate the value of each step. However,



Algorithm 1: Training of AgentPRM.

Input: Initialized AgentPRM model M 4; Reward function r; Sample number per query Ntp;

Agent task query set {sé} fV:T‘i°k; Actor mg; Number of training iterations m.

Procedure Trajectories collection
Dtram — [ ]
for s} in {53}, s+ do
for n = 1 to Ntp do
T < ma(sh);
Add 7 to Dyyain;
end

end

Procedure AgentPRM model training
for n = 1tom do

for batch in Dyyqin, do

for trajectory 7 in batch do
Q« [

for (s¢,a;) in 7 do

Qt M¢(8t, at)
Add Q; to 9;

end

A« GAE(Q,r(7));
Q « TD(A, Q)

Lo=E [}~ 0]

end
end

end

> Initialize AgentPRM Train set Dy,.qip

> AgentPRM model estimated value list O

EA =E {%((Qn - Qn—l) - (Qn - Qn—l))ﬂ
M < Back_Propagation(Lg + 8L A)

they only consider the promise of each step, with-
out accounting for the dependencies and progress
between actions. In contrast, our approach uses TD-
based estimation with GAE to estimate the value at
different steps, capturing the dependencies between
actions.

In the LLM reasoning domain, PQM also con-
siders the relationships between different steps, but
unlike us, they use MC-based estimation and intro-
duce a ranking loss to optimize the model (Li and
Li, 2024). PAYV, on the other hand, estimates the
reward of the entire trajectory through ORM and
incorporates the advantages of individual steps to
assist RL and search (Setlur et al., 2024).
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Algorithm 2: Beam search with PRM.
Input: Trained PRM M ; Policy mg; Number of actions expanded at each node M; Size of beam
search IV; Max steps T
Procedure Step-level beam search with PRM

C=[so]*M,t=0 > Initialize candidates
while ¢ < T and non-terminal path in C do
Civ1 <[ ] > Initialize priority queue

for s; in C do
Sample {a(b)}fjl ~ Tp(st)
forb =110 M do
s¢+1 = Concat [st, a(b)]
Add (St+1, M¢(St+1)) to Ct+1
end
C < Top-N of Cyyy

end

end

return Top-1 of C > Return top-1 as the final solution path
Method Data Labeling  Supervision Gra.  Progress Task Type
PRM (Lightman et al., 2024) Human Process x Reasoning
Math-Shepherd (Wang et al., 2024c) ~ MC-based Process x Reasoning
PAV (Setlur et al., 2024) MC-based Process v Reasoning
PQM (Li and Li, 2024) MC-based Process v Reasoning
ARMAP (Chen et al., 2025) MC-based Outcome X Agent
Q* Agent (Lin et al., 2024) TD-based Process X Agent
DPO-Q (Zhai et al., 2024) MC-based Process X Agent
AgentPRM(Ours) TD-based Process v Agent, Reasoning

Table 4: Comparison of different process supervision paradigms. “Supervision Gra.” means Supervision Granularity.
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Trajectory 1

Thought 1: Since | have successfully picked up the
blue key, the next step is to get closer to the grey box
tograb it.

Action 1: go to grey box 1

Observation 1: There is a grey box 1 right in front of
you 1 steps away.

Thought 2: The grey box is now right in front of me,
and | have the grey box.

Action 2: pickup grey box 1

Observation 2: The task is completed.

Value of ORM: 0.9528
Value of AgentPRM: 0.9976

ick up a grey object

Observation: There is a blue key 1 0 steps in front of you and 1 steps to your left.
There is a red key 1 0 steps in front of you and 2 steps to your left. There is a grey box
13 steps in front of you and 1 steps to your right. You are facing a wall 4 steps away.

N\

Thought 1: The blue key and red key are within range,
I should approach them to get the grey box.

Action 1: go to blue key 1

Observation 1: There is a blue key 1 right in front of
you 1 steps away. There is a red key 1 right in front of
you 2 steps away. There is a purple box 1 2 steps in
front of you and 1 steps to your left. You are facing a
wall 3 steps away.

Thought 2: The purple box must contain the grey
object.

Action 2: pickup grey box 1

Observation 2: The action is not recognized. Please
check valid actions.

Value of ORM: 0.9534
Value of AgentPRM: 0.4827

Thought 1: 1 should go to the blue key 1 to work on it
before picking up the grey box 1.

Action 1: go to blue key 1

Observation 1: There is a blue key 1 right in front of
you 1 steps away. There is a red key 1 right in front of
you 2 steps away. There is a purple box 1 2 steps in
front of you and 1 steps to your left. You are facing a
wall 3 steps away.

Thought 2: The blue key 1 is too close for me to pick
up, so | need to go to the red key 1 to first work on
this.

Action 2: go to red key 1

Observation 2: The action is not recognized. Please
check valid actions.

Value of ORM: 0.8850
Value of AgentPRM: 0.1933

Thought 1: To accomplish the given goal of picking
up agrey object, | need to first locate the grey object,
which is red, as it was visible in the step | am
currently in. Next, I should use my yellow pin to pick
up the red key, as this key is required to open the grey
box.

Action 1: pickup blue key 1

Observation 1: There is a red key 1 right in front of
you 2 steps away. There is a purple box 1 2 steps in
front of you and 1 steps to your left. You are facing a
wall 3 steps away. You are carrying a blue key.
Thought 2: I have successfully picked up the red key,
but there are still 2 red keys left to pick up in the blue
key. I should continue to uncover more objects until
there are no more red keys left.

Action 2: pickup red key 1

Observation 2: The action is not recognized. Please
check valid actions.

Value of ORM: 0.9350
Value of AgentPRM: -0.0137

v

X X X

Figure 7: Example of qualitative analysis on BabyAl. ORM fails to select the correct trajectory and shows little
difference in the score estimates across the different trajectories. In contrast, AgentPRM successfully identifies the
correct trajectory, assigning low scores to negative trajectories and high scores to positive ones.
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Nelty)

I Selected Candidate Steps Thought: I have already moved to front, now I need to move
i i towards the grey ball 2 to pick it up. The grey ball s in front of
mmmm Discarded Candidate Step: me but | need to first reach it to confirm i its already picked.
i Action: go to grey ball 2
B Successful Terminal Steps Observation: There s a grey ball 1 rightin front of you 1 steps
away. Thereis ared ball 1 rightin front of you 2 steps away.
Thereis a red box 1 1 steps in front of you and 1 steps to your Unsolved
. ; right. There s a red ball 2 2 steps in front of you and 2 steps to
;'y“’f‘]‘?;l“sm:)'mg ffr:;fe‘:‘:nf;ydf:" £ your right. Thereis a grey box 12 steps in front of you and 3
explore he room s i
Action: go to blue ball 1 = suum: o
Observation: There s a blue ball 10 steps in .
frntofyou 2 stps oy ight. The
Foom has wallsaround you. You are fainga Thought; 1 nee to continue exploring and ind agrey box 0 pick It
- - wiall 1 steps away. up, which will help me aim for the grey ball 2. I've already achieved
EREPaEE/E Value:0.2622 two points in exploration so far. Let's add a‘pickup grey box 1 to
have more options.
Observation: There s a blue ball 10 steps gtbtwﬂi I;ICkUl: 9;%' l:oc; 1 - '
in front of you and 2 steps to your right. The servation: In front of you in this room, you can see several
e e e objects: There s a blue ball 10 steps in frontof you and 1 steps to Unsolved
CRCE your right. The room has walls around you. You are facing a wall 1
steps away. You are not carrying anything.
Value:0.1831
Thought: 1 need to pick up a grey ball. The
possible actions | have are "turn left," "turn Thought: | need to continue exploring to find the grey ball. Since |
right," and "pickup blue ball 1.” However, | can'tdo anything to pickup the grey ball rightnow, | should continue
need to give me the "blue ball 1" in order to facing the wall to explore further. Unsolved
accomplish the goal. I should check which Action: go to blue ball 1
action will get me to the blue ball 1 to ensure Action: No change i state.
1m on the right path. Value:0.3952
Action: go to blue ball 1 ) suui
Observation: Thereis a grey ball 1.0 steps in
front of you and 1 steps to your right. The
room has walls around you. You are facing a State 10
wall 3 steps away. You are carrying a blue Thought: The grey ball is 1 step in front of me and 1 step to my
Gl right. I can use the "pickup grey ball 1" action to pick it up.
Value:0.1612 Action: pickup grey ball 1 Solved
Observation: The task is completed.
Value:0.8913
Thought: | need to move forward to pick up the blue ball or the
grey ball to complete my goal. The grey ball is located to my left, so
1 should first want to pick up the grey ball to reach it
Action: go to grey ball 1
Observation : There s a grey ball 1 rightin front of you 1 steps Unsolved
away. Thereis a blue ball 1.2 steps in front of you and 1 steps to
3 ’ your left. Thereis a grey ball 2 0 steps in front of you and 3 steps to
E::%":(’ p'og‘;?:"“; ﬁ'g;ﬂ:‘:;‘:fﬂﬁl Your right. The room has walls around you. You are facing a wall 4
right direction to get closer. [
Action: go to blue ball 1 i
Observation: I front of you in this room, - sun:
you can see several objects: There s a grey
your right. The room has walls around you.
You are facing a wall 3 steps away. You are Thought: I should pick up grey ball 1 first to maximize my
carrying a blue ball. chances of successfully picking up the grey ball 2 in the future.
Value:1.2188 Action: pickup grey ball 1 Unsolved
Observation: The action is not recognized. Please check valid
Goal: pick up a grey ball actions.
Value:1.0247
Observation: There is a blue ball 1 0 steps
in front of you and 2 steps to your right. The
room has walls around you. You are facing a
wall 1 steps away.
Thought: 1 need to pick up the grey ball 1 to complete my goal
Action: pickup grey ball 1
OfseryationiThecton st ecomfzed Fiesecreck el Unsolved
Value: 0.9969
Thought: 1 need to be closer to the green
ball 1 to pick it up, s0 I should first get closer
with my rightaction until | find blue ball 1.
Action: turn right
Observation: There is a blue ball 1.0 steps in — wuns
front of you and 1 steps to your right. There
i a blue ball 2 rightin front of you 2 steps State 10
away. Thereis a grey ball 11 steps in front
e s'lepsgwywu, it o Thought: I need to pick up both the red ball and the grey ball to
has walls around you. You are facing a wall 4 complete the goal.
e Action: go to red ball 1
i 20 Observation : In front of you in this room, you can see several
objects: There s a red ball L rightin front of you 1 steps away. Unsolved
Thereis a grey ball 1 1 steps in front of you and 1 steps to your right. nsolve
Thereis a red ball 2 rightin front of you 3 steps away. Thereisa
ed box 12 steps in front of you and 1 steps to your right. The room
has walls around you. You are facing a wall 4 steps away. You are
carrying a blue ball.
Value: 0.9593

Figure 8: Example of qualitative analysis on beam search. The upper part of this figure demonstrates a successful
solution with beam search guided by AgentPRM, and the lower part demonstrates an unsuccessful one guided by
PVM. The policy model solves this task in 10 steps under the guidance of AgentPRM, while it fails with PVM.
We can also find that AgentPRM effectively distinguishes between good and bad actions (assigning high scores to
good actions and low scores to bad ones), whereas PVM does not, with less clear differentiation in scoring between
different actions.
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