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METHOD AND SYSTEM FOR PREDICTING
GARMENT ATTRIBUTES USING DEEP
LEARNING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the priority of PCT/GB2017/
051481, filed on May 25, 2017, which claims priority to GB
Applications Nos. GB1609245.4, filed May 25, 2016;
GB1620670.8, filed Dec. 5, 2016; and GB1702930.7, filed
Feb. 23, 2017, the entire contents of each of which being
fully incorporated herein by reference.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The field of the invention relates to a computer imple-
mented method and system for predicting garment attributes
using deep learning techniques, and their extended applica-
tions in online fashion.

A portion of the disclosure of this patent document
contains material, which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

2. Technical Background

In online retail, sample images convey as much amount of
information as the text description about the quality and the
nature of the products being sold and affect customers’
decisions to purchase. Being able to build an automatic
system that can understand the visual contents and extract
properties and attributes of the subject from those images
can not only help customers quickly find the items they want
in their online shopping process, but also boost the sales for
retailers and reduce the returns of unwanted items. This will
result in a significant positive impact on the online retailer.

Deep Neural Networks

In general the image-based attribute prediction problem is
defined as a two-step process in computer vision. The first
step is to extract sparse and invariant visual features from the
images, normally by using pre-defined descriptors. Com-
monly-used image descriptors in computer vision include
histograms of oriented gradient (HoG) (N. Dalal and B.
Triggs, Histograms of oriented gradients for human detec-
tion, In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. I[EEE Computer Society Conference on, vol-
ume 1, pages 886-893, IEEE, 2005), scale-invariant feature
transform (SIFT) (D. Lowe, Distinctive image features from
scale-invariant keypoints, International Journal of Com-
puter Vision, 2(60):91-110, 2004), shape context (S. Belon-
gie, J. Malik, and J. Puzicha, Shape matching and object
recognition using shape contexts, /[EEE Trams. Pattern
Analysis and Machine Intelligence (PAMI), 24(24):509-522,
2002), which model different aspects of an image e.g. edges,
corners, colour, texture, shape of silhouettes.

Once the feature extraction is exercised the rest of the
problem (i.e. step 2) can be generally formulated as a
supervised learning problem in the feature space, in which
the machine learning models to solve the problem are
trained on a number of labeled data (i.e. in the form of input
features and output labels pairs). Depending on the nature of
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the attributes to be predicted this supervised learning prob-
lem can be either a classification problem or a regression
problem.

Recent research has shown that deep convolutional neural
networks (CNN) (Y. LeCun, L. Bottou, Y. Bengio, and P.
Haftner, Gradient-based learning applied to document rec-
ognition, Proceedings of the IEEE, 86(11):2278-2324,
November 1998) are very effective for solving classical
supervised learning problems in computer vision, e.g. image
classification and object recognition. The approach is fully
data-driven, and it combines both steps of visual feature
extraction and supervised learning (i.e. classification or
regression) into a unified framework. State-of-the-art deep
learning research in computer vision is focused on investi-
gation into different network architectures, for example
represented by AlexNet (A. Krizhevsky, 1. Sutskever, and G.
E. Hinton, Imagenet classification with deep convolutional
neural networks, NIPS, 1(2):4, 2012), VGGNet (K. Simo-
nyan and A. Zisserman, Very deep convolutional networks
for large-scale image recognition, arXiv preprint arXiv:
1409.1556, 2014), Googl.eNet (C. Szegedy, W. Liu, Y. Jia,
P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, Going deeper with convolutions, In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1-9, 2015), ResNet (K. He,
X. Zhang, S. Ren, and J. Sun, Deep residual learning for
image recognition, arXiv preprint arXiv:1512.03385, 2015),
Inception-ResNet-V2 (C. Szegedy, S. loffe, and V. Van-
houcke, Inception-v4, inception-resnet and the impact of
residual connections on learning, CoRR, abs/1602.07261,
2016), to improve the capability and generality of visual
feature extraction and hence enhance the accuracy of clas-
sification or regression.

The present invention addresses the above vulnerabilities
and also other problems not described above.

Internet Fashion Images

For enhanced visual search of garment or accessories,
there has been a need for a comprehensive dataset covering
garment categories, sub-categories, and attributes (e.g. pat-
terns, color, texture, fabric characteristics). While the
recently released DeepFashion dataset (Z. Liu, P. Luo, S.
Qiu, X. Wang, and X. Tang, Deepfashion: Powering robust
clothes recognition and retrieval with rich annotations, In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1096-1104, 2016) has 1000
classes for fashion attributes, their categories are limited.

SUMMARY OF THE INVENTION

According to a first aspect of the invention, there is
provided a computer implemented method for predicting
garment or accessory attributes using deep learning tech-
niques, comprising the steps of:

(1) receiving and storing one or more digital image
datasets including images of garments or accessories;

(i) training a deep model for garment or accessory
attribute identification, using the stored one or more digital
image datasets, by configuring a deep neural network model
to predict

(a) multiple-class discrete attributes;

(b) binary discrete attributes, and

(c) continuous attributes,

(ii1) receiving one or more digital images of a garment or
an accessory, and
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(iv) extracting attributes of the garment or the accessory
from the one or more received digital images using the
trained deep model for garment or accessory attribute iden-
tification.

An advantage is that users are helped to quickly find the
items they want in their online shopping process; further
advantages are boosting the sales for retailers and reducing
the returns of unwanted items. A further advantage is
improved accuracy provided in the search for garments or
accessories present in one or more digital images. A further
advantage is improved speed provided in the search for
garments or accessories present in one or more digital
images.

The method may further include the step of:

(v) storing the extracted attributes of the garment or
accessory in a memory.

The method may be one wherein the extracted attributes
include one or more of: style, shape, texture, colour, fabric
properties.

The method may be one wherein the one or more digital
image datasets include a digital image dataset based on
garment images.

The method may be one including the step of: generating
annotations for the digital image dataset based on garment
images using natural language processing, and storing the
generated annotations in the digital image dataset based on
garment images. An advantage is improved data quality. A
further advantage is allowing to quickly gather a large
amount of image data with weak semantic labels (i.e.the
labels are somewhat noisy), and build up a structured and
labeled dataset suitable for deep learning.

The method may be one wherein the digital image dataset
based on garment images is a digital image dataset based on
internet garment images.

The method may be one wherein the one or more digital
image datasets includes a digital image dataset based on sets
of garment mannequin photos which includes metadata and
multiple semantic labels associated with sets of garment
mannequin photos. An advantage is that this provides a
well-organized, richly-structured digital image dataset.

The method may be one wherein the digital image dataset
based on sets of garment mannequin photos includes digital
images of garments taken on the mannequin in a controlled
lighting environment, in a standard camera pose.

The method may be one wherein the digital image dataset
based on sets of garment mannequin photos includes high-
resolution unsegmented original photos of the garment
samples and segmented garment texture sprites, both in 8
distinct camera views.

The method may be one wherein the metadata and mul-
tiple semantic labels associated with sets of garment man-
nequin photos include one or more of: Garment name and
description; Garment category and subcategory; Colour;
Pattern and texture; Fit styles; Vertical drops; Fabric and
material composition; Washing method; Price or price range.

The method may be one wherein regarding the digital
image dataset based on sets of garment mannequin photos,
keyword extraction or natural language processing (NLP) is
used to extract style-related attributes and semantic labels
from the garment name and garment description text.

The method may be one wherein regarding the digital
image dataset based on sets of garment mannequin photos,
metadata and/or semantic labels are structured 1) by asso-
ciating groups of different keywords of similar meanings,
and/or 2) assigning label weights with values in a range.

The method may be one wherein the digital image data-
sets include one or more of: unsegmented mannequin photos
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of a garment, either in a single frontal view, or in multiple
distinct camera views; segmented garment texture sprites
from mannequin photos; sample photos of a garment on a
retailer’s website; and synthetic garment images obtained by
rendering a simulated garment model using computer
graphic techniques.

The method may be one wherein in the step of training the
deep model for garment or accessory attribute identification,
the training image dataset is augmented by creating new
samples by processing the base images with one or more of:
some slight random image transforms; random cropping
inside the input image; and/or synthetically encoding light-
ing variations using image processing approaches. An
advantage is improved data quality.

The method may be one wherein to predict a multiple-
class discrete attribute, a Softmax activation is applied on
the last fully-connected (FC) layer. An advantage is con-
verting the multi-dimensional decimal outputs from the FC
layer into a sum-to-one probabilistic vector in which each
dimension i models the likelihood that the attribute is of the
i-th class.

The method may be one wherein the step of training the
deep model for garment or accessory attribute identification
is an optimisation process, in which model parameters of a
neural network are optimised to minimise an objective
function, which is a loss function.

The method may be one wherein a loss function for a
binary discrete attribute is defined based on a symmetric
cross-entropy metric.

The method may be one wherein to train a deep neural
network that can model multiple attributes, the optimisation
problem is then to minimize the overall loss, which is
defined as a weighted sum of the loss function, on each
attribute. An advanatge is that different weights can be
applied on each attribute so that the optimisation can be
made biased towards certain attributes if needed.

The method may be one wherein to predict a continuous
attribute, the deep network is re-architected into a regression
model.

The method may be one wherein a linear FC layer is
directly used as the last output layer of the network for
regressing over the continuous target values or vectors.

The method may be one wherein the step of training the
deep model for garment or accessory attribute identification
is such that a combination of multiple discrete and continu-
ous attributes are modelled simultaneously.

The method may be one wherein a trunk convolutional
layer is used at the input side for common image feature
extraction for all the attributes, while at the output side
separate FC layer branches are used to connect to a common
convolutional layer.

The method may be one wherein each FC layer branch
models an attribute individually and applies different acti-
vation strategies based on a type of the target attribute being
modeled.

The method may be one wherein when multiple photos in
distinct camera views are available for a single target
garment or fashion item, all the multiple photos are used as
the input for attribute prediction. An advantage is improved
accuracy in a search for the single target garment or fashion
item.

The method may be one wherein to support multiple
image input in the deep learning framework, a network
architecture is adopted, in which a weight sharing over all
the convolutional and pooling layers is applied to extract
visual features from each of the input garment photos from
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different camera views. An advantage is improved accuracy
in a search for the single target garment or fashion item.

The method may be one wherein the visual features
extracted from all input images are vectorized and concat-
enated, and then passed to the subsequent fully-connected
(FC) layers for attribute classification or regression. An
advantage is improved speed in a search for the single target
garment or fashion item.

The method may be one wherein the network architecture
for multiple images input is further combined with that for
multiple attribute prediction, which supports multiple
images of the garment in distinct camera views as the input
for multiple attribute prediction.

The method may be one wherein when only a relatively
small labeled image dataset is available for attribute model
training, a transfer-learning-based approach is used to
improve the learning performance.

The method may be one wherein in a further step, which
is the transfer learning step, the parameters of the last few
(e.g. two) fully-connected (FC) layers are re-trained while
refining the parameters of the high convolutional layers of
the pre-trained deep network at a much lower learning rate.

The method may be one wherein the transfer learning step
adapts the visual features of the pre-trained network to a new
training data and/or a new problem.

The method may be one including the further step of using
Support Vector Machines (SVMs) over the last convolu-
tional layer features of the deep network to replace the
original FC layers in the network architecture, and training
a binary classifier separately for each class of the label. An
advantage is improving the prediction precision.

The method may be one including the step of mapping the
stored extracted attributes of the garment to physical fabric
properties of the garment, and/or to model parameters for
garment physics simulation. An advatange is improved
rendering of a photo-realistic garment-clad virtual avatar
image.

The method may be one wherein the garment attribute
predictor is used to initialize model parameters of the
garment physics simulator from the predicted physics attri-
butes or material parameters so that a more accurate draping
simulation can be achieved. An advatange is improved
rendering of a photo-realistic garment-clad virtual avatar
image.

The method may be one including a computer-imple-
mented method of digitising a garment, and estimating the
physics parameters of the garment fabric material, using a
garment digitization apparatus, the apparatus including a
mannequin, a mannequin rotation system, a computer sys-
tem and a camera system, the method including the steps of:

(1) imaging a mannequin wearing a garment using the
camera system,

(ii) rotating the mannequin wearing the garment through
at least 360° using the mannequin rotation system;

(iii) capturing at least three images of the garment using
the camera system during the mannequin rotation,

(iv) generating fast and jerky left-right-left rotations at a
series of configured rotational accelerations and velocities to
disturb the garment on the mannequin with patterned
motion, and

(v) capturing the garment appearance under motion and
estimating the physics parameters of the garment fabric
material. An advatange is improved rendering of a photo-
realistic garment-clad virtual avatar image.

The method may be one wherein multiple images of the
target garment are photographed at scheduled times during
the course of the vibration sequence to capture the appear-
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ance of the garment under different stages of the motion,
wherein the images include (a) at least one image capturing
the static status of the target garment, and (b) one or more
images capturing the target garment under motion.

The method may be one including analyzing captured
garment images in different phases of garment motion and
predicting the garment fabric properties and/or model
parameters for garment physics simulation.

The method may be one including the step of storing the
predicted physics parameters into a garment database. An
advatange is ease of data access for improved rendering of
a photo-realistic garment-clad virtual avatar image.

The method may be one including the step of using a
mannequin with a pressure sensor array embedded on or
under the surface of the mannequin, which captures the
stress/strain of the garment when the garment is dressed on
the mannequin.

The method may be one including the steps of capturing
the garment appearance under motion, measuring the strain
and stretch of the garment when dressed on the mannequin,
and estimating the physical parameters of the garment fabric
material, and using the estimated physical parameters of the
garment fabric material for photo-realistic and dynamic
garment simulation and rendering in the application of
virtual fitting.

The method may be one further including a computer-
implemented method to improve the photo-realism of a
rendered body image or a virtual avatar image.

The method may be one further including a computer-
implemented method to perform automated quality control
and detect digital garment models which yield pathological
or ill-looking renders.

The method may be one further including a computer-
implemented method to compare the rendering quality of
two generated body images.

The method may be one further including a computer-
implemented method to evaluate the level of photo-realism
of synthetic renders of body images against real photos.

The method may be one which includes the steps of:

i) collecting one or more real photos and one or more
synthetic rendered images as positive and negative samples,

ii) training a machine learning model to generate a
difference image,

iii) using the machine learning model to generate a
difference image,

iv) superposing the difference images onto the input
synthetic rendered image to generate a more photo-realistic
synthetic image.

The method may be one wherein the machine learning
model is a deep neural network.

The method may be one wherein training and using the
machine learning model includes the step of using two
adversarial submodules: the first submodule distinguishes
the synthetic virtual avatar renders from real photos of
models wearing garments, and the second submodule makes
modifications to the initial render output and aims to
improve the photo-realism of synthetic renders of body
image.

The method may be one in which the one or more digital
photos of a garment or an accessory are received in a query,
with the goal of finding similar items to the queried item.

The method may be one in which the one or more digital
photos of a garment or an accessory are received in a query,
with the goal of identifying the item provided in the query.

The method may be one wherein the one or more digital
photos are of items which are one or more of: currently
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dressed on user’s virtual avatar; recently browsed by the
user; in an arbitrary photo on the internet.

The method may be one in which an attribute-based
search is provided, in which an input is a set of keywords
describing the query item.

The method may be one in which an approach for
image-based search and image retrieval is: (a) obtaining the
extracted attributes of the garment or accessory, (b) com-
puting the feature distances between a query image and each
image in the digital image datasets using a distance metric
based on the extracted attributes of the garment or acces-
sory; (c¢) presenting the search or retrieval results by ranking,
using the computed distance metrics.

The method may be one in which an effective similarity
embedding is used to fine-tune the deep model for garment
or accessory attribute identification, and retrain the fully
connected layers against a triplet-loss objective function.

The method may be one in which the triplet-loss objective
function is a cost function of an optimisation problem that
can enforce distance constraints among positive and nega-
tive sample pairs.

The method may be one in which to train the deep neural
network model for learning a triplet similarity metric, a
three-way Siamese architecture is adopted to handle the
3-way parallel image inputs, in which the model weights are
initialized with those of a pre-trained attributed classification
model, and weight sharing is applied for all the convolu-
tional layers, and the last fully-connected layer is retrained
while fine-tuning the earlier convolutional layers at a lower
learning rate for the similarity learning.

The method may be one in which at the input side of the
image-based garment search and retrieval system an ROI
Detection Module is included, which detects the region-of-
interest (ROI) of the garment in the form of bounding boxes
on both the input query image and all the gallery images as
a pre-processsing step.

The method may be one in which multiple bounding
boxes each surrounding an individual garment or accessory
item are provided as a pre-processsing step.

The method may be one in which an alternative user
interface (UI) for garment or accessory retrieval or search is
provided, based on direct attribute inputs, in which a user is
presented with a number of attribute keyword filters or
drop-down lists, so that the user can reduce the search results
list and find the desired item by providing a few keywords
that best describe the item they are looking for.

The method may be one including a step of performing a
visual search from text descriptions of a garment or acces-
sories, from an online fashion magazine, a fashion-related
social network page, or on a retailer website.

The method may be one in which after the initial search
results are provided, if the desired item is not in the search
results list, the user is then allowed to further refine the
search results by clicking and selecting a few items from the
initial search results which they think are visually similar to
the item they are looking for.

The method may be one including a method of multi-task
learning for size regression or classification, in which one
single deep model is trained on multiple data flows simu-
taneously to perform attribute-classification, similarity-met-
ric-learning, and size-regression or classification together,
based on a mechanism of weight-sharing over all the con-
volutional layers and the first FC layer, and performing
re-training over all the branching FC layers for each task.

The method may be one further based on a mechanism of
feature-enhancement.
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The method may be one including, in a size advice and fit
analysis, receiving user information, including one or more
of, user’s body shape parameters, user’s location, age, and
ethnicity;

receiving garment sizing and measurement information,
including one or more of: garment sizes, size-charts of the
garment, garment measurements on the QC sheets; receiving
garment images and fit-style labels, including one or more
of: the circumferential fits over different body parts and
vertical drops, and

including a step of re-architecting and fine-tuning the
pre-trained deep model.

The method may be one in which the re-architected model
maintains all the convolutional-layers of the pre-trained
model but completely rebuilds the original fully-connected
(FC) layers.

The method may be one in which the input to the new
model includes both a garment mannequin photo and the
user features, and the output of the model are 3D size-chart
feature vectors.

The method may be one wherein in the fine-tuning
process, different layers of the model are re-trained with
different learning rates; the weights of the new FC layers are
trained at a learning rate 10-times higher than those applied
to the weights of the existing convolutional layers, in which
the fine-tuning scheme adapts the pre-trained features to the
new training data for the size recommendation problem.

The method may be one including a preprocessing step to
map all the size labels in the training data into the size-chart
feature vectors.

The method may be one wherein multi-image input is
provided, in which multiple photos in distinct camera views
are available for the target garment.

The method may be one including a size regression
algorithm step which is to look up the size feature on the
target size-chart and recommend the most similar size.

The method may be one wherein the output of the deep
model is simply the size label, which is a multi-class discrete
label instead of a continuous label, and a “softmax” activa-
tion is applied after the final FC layer to convert the network
output into a sum-to-one probability vector.

The method may be one further comprising a method of
garment size and fit recommendation, which includes the
steps of

1) predicting multiple fit-style labels and associated prob-
abilities of a garment from one or more input photos,
including one or more of circumferential fits over different
body parts and vertical drops;

ii) selecting a subset of most relevant fit points by
thresholding the associated probabilities obtained in 1);

iii) predicting the optimal garment size and performing a
fit analysis by analysing user measurements and garment
measurements over the selected fit points obtained in ii);

iv) providing a fit recommendation.

According to a second aspect of the invention, there is
provided a system for predicting garment or accessory
attributes using deep learning techniques, the system includ-
ing a processor configured to:

(1) receive and store one or more digital image datasets
including images of garments or accessories;

(ii) train a deep model for garment or accessory attribute
identification, using the stored one or more digital image
datasets, by configuring a deep neural network model to
predict

(a) multiple-class discrete attributes;

(b) binary discrete attributes, and

(c) continuous attributes,



US 11,080,918 B2

9

(iii) receive one or more digital images of a garment or an
accessory, and

(iv) extract attributes of the garment or the accessory from
the one or more received digital images using the trained
deep model for garment or accessory attribute identification.

The system may be further configured to:

(v) store the extracted attributes of the garment or acces-
sory in a memory.

The system may be further configured to perform a
method of any aspect of the first aspect of the invention.

According to a third aspect of the invention, there is
provided a computer-implemented method of garment size
and fit recommendation, which includes the steps of:

1) predicting multiple fit-style labels and associated prob-
abilities of a garment from one or more input photos,
including one or more of circumferential fits over different
body parts and vertical drops;

ii) selecting a subset of most relevant fit points by
thresholding the associated probabilities obtained in 1);

iii) predicting the optimal garment size and performing a
fit analysis by analysing user measurements and garment
measurements over the selected fit points obtained in ii);

iv) providing a fit recommendation.

According to a fourth aspect of the invention, there is
provided a computer-implemented method to recommend a
garment or accessory for outfit completion, which includes

1) using a voice recognition module, converting a user’s
voice message into a sequence of text messages;

ii) using a module of NLP or sentiment analysis, parsing
the type of garment being queried, desired attributes of the
query garment, outfitting constraints, and filtering con-
straints;

iii) converting the query type and attributes into a vec-
torized query feature by analysing the output probability of
a machine learning model for attribute classification,

iv) comparing the vectorized query feature in iii) with
gallery image features pre-computed and stored in a memory
device, to produce a set of candidate garment items;

v) for each candidate garment item, predicting a recom-
mendation score based on a feature comparison score and
outfitting histories, and

vi) ranking the candidate garment items based on their
predicted recommendation scores.

According to a fifth aspect of the invention, there is
provided a computer-implemented method of digitising a
garment, and estimating the physics parameters of the gar-
ment fabric material, the method using a garment digitiza-
tion apparatus, the apparatus including a mannequin, a
mannequin rotation system, a computer system and a camera
system, the method including the steps of:

(1) imaging a mannequin wearing a garment using the
camera system,

(ii) rotating the mannequin wearing the garment through
at least 360° using the mannequin rotation system;

(iii) capturing at least three images of the garment using
the camera system during the mannequin rotation,

(iv) generating fast and jerky left-right-left rotations at a
series of configured rotational accelerations and velocities to
disturb the garment on the mannequin with patterned
motion, and

(v) capturing the garment appearance under motion and
estimating the physics parameters of the garment fabric
material. An advatange is improved rendering of a photo-
realistic garment-clad virtual avatar image.

The method may be one wherein multiple images of the
target garment are photographed at scheduled times during
the course of the vibration sequence to capture the appear-
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ance of the garment under different stages of the motion,
wherein the images include (a) at least one image capturing
the static status of the target garment, and (b) one or more
images capturing the target garment under motion.

The method may be one including analyzing captured
garment images in different phases of garment motion and
predicting the garment fabric properties and/or model
parameters for garment physics simulation.

The method may be one including the step of storing the
predicted physics parameters into a garment database.

The method may be one including the step of using a
mannequin with a pressure sensor array embedded on or
under the surface of the mannequin, which captures the
stress/strain of the garment when the garment is dressed on
the mannequin.

The method may be one including the steps of capturing
the garment appearance under motion, measuring the strain
and stretch of the garment when dressed on the mannequin,
and estimating the physical parameters of the garment fabric
material, and using the estimated physical parameters of the
garment fabric material for photo-realistic and dynamic
garment simulation and rendering in the application of
virtual fitting.

According to a sixth aspect of the invention, there is
provided a system for digitising a garment, and estimating
the physics parameters of the garment fabric material, the
system including a garment digitization apparatus, the appa-
ratus including a mannequin, a mannequin rotation system,
a computer system and a camera system, the system
arranged to:

(1) image a mannequin wearing a garment using the
camera system,

(ii) rotate the mannequin wearing the garment through at
least 360° using the mannequin rotation system;

(iii) capture at least three images of the garment using the
camera system during the mannequin rotation,

(iv) generate fast and jerky left-right-left rotations at a
series of configured rotational accelerations and velocities to
disturb the garment on the mannequin with patterned
motion, and

(v) capture the garment appearance under motion and
estimate the physics parameters of the garment fabric mate-
rial.

The system may be arranged to perform a method of any
aspect of the fifth aspect of the invention.

Aspects of the invention may be combined.

BRIEF DESCRIPTION OF THE FIGURES

Aspects of the invention will now be described, by way of
example(s), with reference to the following Figures, in
which:

FIG. 1 shows an example of a deep network architecture
for predicting multiple attributes of different types simulta-
neously.

FIG. 2 shows an example of a deep neural network
architecture that supports K multiple images of the garment
in distinct camera views as the input for attribute prediction.

FIG. 3 shows an example of a deep neural network
architecture that supports K multiple images of the garment
in distinct camera views as the input for multiple attribute
prediction.

FIGS. 4A and 4B show an example of repurposing a
general CNN classifier trained on a general image recogni-
tion data set to solve the garment attribute prediction prob-
lem by transfer learning.
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FIG. 5 shows an example of using image-based garment
attribute prediction to initialize the model parameters.

FIG. 6 shows an example of a garment digitisation system
using programmed vibrational mannequin rotations.

FIG. 7 shows an example garment digitisation system
using programmed vibrational mannequin rotations and a
mannequin with a pressure-sensor array embedded.

FIG. 8 shows an example of a deep neural network
architecture for implementing the “Physics analysis mod-
ule” of the garment digitisation system.

FIG. 9 shows an example of a system for improving
image quality and photo-realism of virtual avatar rendering.

FIG. 10 shows an example user interface of image-based
garment or accessory retrieval.

FIG. 11 shows an example end-to-end system diagram of
an image-based garment or accessory retrieval system.

FIG. 12 shows an example deep network architecture
usable for triplet similarity learning.

FIG. 13 shows an example process of region-of-interest
(ROI) detection and image trans form.

FIG. 14 shows an example user interface to facilitate
attribute-based garment or accessory retrieval.

FIG. 15 shows an example end-to-end system diagram of
a variant of an attribute-based garment or accessory retrieval
system.

FIG. 16 shows an example end-to-end system diagram of
a variant of attribute-based garment or accessory retrieval
system with an input of text descriptions.

FIGS. 17A and 17B show an example deep network
architecture for multi-task learning with weight sharing.

FIG. 18 shows an example set of semantic label defini-
tions describing a collection of circumferential fits and
vertical drops.

FIG. 19 shows an example deep network architecture for
multi-class category prediction.

FIG. 20 shows an example re-architected deep network
for size regression.

FIG. 21 shows an example re-architected deep network
for size regression based on multi-view image input.

FIG. 22 shows an example look up module based on the
output of size regression.

FIG. 23 shows an example of a fit analysis process on a
fit-point diagram.

FIG. 24 shows a collection of classification-based deep
size models in different network architecture variants
examples.

FIGS. 25A, 25B and 25C show an example deep network
architecture for multi-task learning.

FIGS. 26A and 26B show example learning algorithms of
a predictive logics size advice engine.

FIG. 27 shows example inference procedures of a pre-
dictive logics size advice engine.

FIG. 28 shows an example end-to-end system diagram of
a voice-chat based outfit completion system.

DETAILED DESCRIPTION

1. Overview

This document describes several novel systems and meth-
ods to solve the problems described above, mainly in the
context of online fashion.

Using advanced computer vision and deep learning algo-
rithms, one or more photos are analysed and both intrinsic
and extrinsic attributes of a garment or other accessories are
automatically extracted (e.g. shoes, handbags, glasses),
including but not limited to: style, shape, texture, colour,
fabric properties. Several different deep neural network
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models and architectural changes have been applied to
model multiple attributes simultaneously from one or more
input images, and improve the prediction accuracy, as
detailed in Section 2.

Sections 3 to 6 further describe the extension of garment
attribute prediction in various other applications in the
context of virtual fitting and online fashion, including:
realistic garment physics simulation and rendering for
virtual fitting (Section 3);

systems for visual retrieval and search of garments or
other accessories (Section 4);

size recommendation and fit advice (Section 5); and

other miscellaneous systems and data applications in
online fashion, including conversion and return predic-
tion, outfit search and completion, style and trend
prediction (Section 6).

Deep learning solutions are provided to solve the afore-
mentioned problems by re-architecting and applying transfer
learning on the deep models trained for garment attribute
predictions. All the applications and systems above can be
easily integrated with a virtual fitting system, e.g. as
described in UK Patent GB2488237, and in
WO2012110828A1, which are incorporated by reference.

2. Using Deep Neural Networks to Predict Garment
Visual Attributes In the subsections below, we will address
in greater detail 1) how to arrange training data for learning
deep models, and 2) the formulation and the process of
model training and prediction.

2.1 Preparing Training Data for Deep Learning In the
context of the prediction of garment attributes, the image
data used for model training can be in the format of:

unsegmented mannequin photos of the garment, either in
a single frontal view, or in multiple distinct camera
views;

segmented garment texture sprites from the mannequin
photos;

sample photos of the garment on a retailer’s website; and

synthetic garment images obtained by rendering a simu-
lated garment model using computer graphic tech-
niques.

To train effective deep models for garment attribution
prediction, we have collected two distinct structured and
labeled image datasets based on internet garment images and
mannequin photos, named “Camtail” and “Cantor” respec-
tively. Details of the datasets are presented in the rest of this
subsection.

2.1.1 Internet Fashion Images

To address the limitation of garment categorisation, we
created a new dataset “Camtail” from public websites (e.g.
Google, Bing and Pinterest) for the fashion categories and
sub-categories, which contains about 130,000 categorised
fashion-related images downloaded from these websites.
Camtail includes 127 garment categories in total and around
80 new categories in comparison to any state-of-the-art
fashion image dataset. In total (the categories should more
appropriately be referred to sub-categories, as a category
such as “maxi-dress” is in reality a part of a super-category
of “dress”), it covers a diverse range of ethnic cultures for
the listing garments or accessories. Almost all the images
have one salient label, which is expected to be predicted
during the testing phase. The annotations have been obtained
through well-engineered Natural Language Processing
(NLP) and have been checked, refined, and cleaned through
manual efforts.

2.1.2 Mannequin Photos

Those garment mannequin photos captured and processed
in the digitisation process for virtual fitting visualisation are
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the other source of labeled training data. This includes
photographs of over 60,000 unique garment stock keeping
units (SKUs) digitised and stored in our garment database
“Cantor”. In the dataset, garment samples are all digitised on
the mannequin in a controlled lighting environment. All the
photos are taken in a standard camera pose and are well
aligned. The Cantor image data include high-resolution
unsegmented original photos of the garment samples and
segmented garment texture sprites, both in 8 distinct camera
views.

Metadata and multiple semantic labels associated with
each set of garment photos are available, including: Garment
name and description (i.e. the text description of the garment
sample on a retailer’s website);

Garment category (e.g. dress, trousers) and subcategory

(e.g. maxi-dress);

Colour;

Pattern and texture (e.g. stripy, checkered, dotted);

Fit styles (i.e. “tight”, “normal”, or “loose” fit over certain
pre-defined fit points such as bust, waist, hips, shoulder,
and thigh);

Vertical drops (e.g. hem-height, leg-hem, sleeve length,
waist drop),

Fabric and material composition;

Washing method (e.g. dry-wash, machine-wash, hand-
wash);

Price or price range.

They are either automatically scraped from websites of
online retailers, or manually annotated using interactive
annotation tools e.g. LabelMe (http://labelme.csail.mit.edu),
or Mechanical Turk (A. M. Turk. https://www.mturk.com/
mturk).

Garment names and descriptions usually contain very rich
information about the garment. A module of keyword
extraction or natural language processing (NLP) (e g.
OpenNLP (https://opennlp.apache.org)) can be used to
extract style-related attributes and semantic labels from the
garment name and garment description text. Some example
labels are: “sleeve”, “collar”, “party”, “dip-hem”, “striped”.
They can be used as the label data for supervised learning
and training a machine-learning-based garment attribute
predictor.

For better data quality and performance, we can also
further structure the semantic labels and keywords e.g. 1) by
associating groups of different keywords of similar mean-
ings, and/or 2) assigning continuous label weights with
values between 0 to 1. This will convert the attribute
prediction problems into regression problems (for continu-
ous attributes) or multi-label classification problems (for
multi-class discrete attributes). The deep learning solutions
to these two types of problems are detailed in Section 2.2.1.

2.1.3 Data Augmentation

In the model training stage, we can also augment the
training image dataset by creating new samples by process-
ing the base images with:

some slight random image transforms (e.g. scaling, trans-
lation, 2D/3D rotation, skewing);

random cropping inside the input image; and/or

synthetically encoding lighting variations using image
processing approaches (e.g. applying gamma correc-
tion or colour balancing).

This helps build a deep network classifier with better
adaptation capability to the variation in the input image
and hence better performance.
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2.2 Deep Learning Formulations for Attribute Predictions
2.2.1 Modelling Discrete and Continuous Attributes
Deep neural network models can be configured to predict
three different types of attributes, including:
1. multiple-class discrete attributes (e.g. colour, garment
type), also known as ‘categorical attributes’;
2. binary discrete attributes (e.g. whether a garment has a
collar), and;
3. continuous attributes (e.g., Young’s moduli of fabric,
locations of landmarks).
The first two are formulated as classification problems,
while the last one is formulated as regression problems.
To predict a multiple-class discrete attribute A, ; a “Soft-
max” activation is applied on the last fully-connected (FC)
layer as follows:

y =1, y2, .- » ¥n. ], where (1

—X. 2

yc=P(Amd=C)=7NeXp( Xe) ,e=1,2,... , N, 2
-Z‘leXp(_xC)

which will convert the multi-dimensional decimal outputs
X=[X,,X5, . . ., X5 ]| from the FC layer into a sum-to-one
probabilistic vector y =[y,,¥», . . . » Y] in which each
dimension i models the likelihood that the attribute A, is of
the i -th class (i=1,2, . .., N).

The process of deep model training is an optimisation
process, in which model parameters of a neural network are
optimised to minimise an objective function, called the “loss
function”. For the multiple-class discrete attribute A, , the
loss function Loss,,,; is normally defined based on a cross-
entropy metric as follows:

N 3
Loss;g = Z gilog(y;)

Mm.

i=1

N
= Z gijlog(yi ;)
i=1

i

S

where y, stands for the final sum-to-one probabilistic vector
output of the current neural network, and g, stands for the
“one-hot” encoding of the ground truth label 1, correspond-
ing to the i-th training sample (i=1,2, . . . , N).

If the ground truth label 1=k, its “one-hot” encoding is
g~le. - “in which g, ;=1 and all the other elements are set
to 0.

In contrast, if the discrete attribute A, ; is a binary attri-
bute, we use “Sigmoid” activation instead, as follows:

exp(—x) (€3]

y = P(Apg = True) = ﬁp(—x)'

This simply yields a scalar probability output y by dis-
carding the redundant false-label probability, given the rela-
tionship P(A,~False)=1-P(A,,~True) . As the conse-
quence, the loss function Loss,; for the binary discrete
attribute is defined based on a symmetric cross-entropy
metric, as shown in (5):

N (&)
Lossps = » (gilog(yn) + (1 - golog(1 = ),
i=1
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where y, stands for the final output of the neural network,
and g, stands for the ground truth binary label corresponding
to the 1 -th training sample (i=1,2, .. ., N).

To predict a continuous attribute A_, it requires to re-
architect the deep network into a regression model. A linear
FC layer (i.e. linear activation) is directly used as the last
output layer of the network for regressing over the continu-
ous target values or vectors. The loss function Loss, is
normally defined as a L1 or L2 (i.e. Euclidean) distance
metric as follows

v ©
Losser2 = . llgi = xll,
i=1

o

s

Losscny = ) lgi —xil.

i

where y, stands for vector output of the neural network and
g, stands for the continuous ground truth label vector cor-
responding to the i -th training sample (i=1,2, . . ., N).

In deep learning, several optimisation methods have been
proposed to solve the optimisation problems defined based
on the loss functions in Egs. (3), (5), (6), and (7). Most
commonly used solvers include stochastic gradient descents
(SGD) (L. Bottou, Stochastic gradient descent tricks, In
Neural Networks: Tricks of the Trade, pages 421-436,
Springer, 2012), Adam (D. Kingma and J. Ba, Adam: A
method for stochastic optimization, /CLR, 2015), AdaGrad
(J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient
methods for online learning and stochastic optimization,
Journal of Machine Learning Research, (12):2121-2159,
2011).

2.2.2 Modelling Multiple Attributes Simultaneously

We aim to learn the deep network that is capable of
modelling a combination of N, multiple discrete and con-
tinuous attributes A, A, . . ., Ay, simultaneously.

FIG. 1 shows an illustration of the deep network archi-
tecture for predicting multiple attributes of different types
simultaneously. The convolutional and pool layers in the
diagram can accommodate an arbitrary recent network
architecture for image classification, e.g. VGG11/16/19,
Googl.eNet. In the network design illustrated in FIG. 1, we
adopt a trunk convolutional layer (Conv) at the input side for
common image feature extraction for all the attributes, while
at the output side we use N, separate FC layer branches
(FC,,FC,, . .., FC, ) connecting to the common convolu-
tional layer (Conv). ‘Fach FC layer branch FC, models an
attribute A, individually and applies different activation
strategies based on the type of the target attribute being
modeled (i.e. multi-class, binary, or continuous). The output
feature vector y is then the concatenation of the feature
vector outputs y, (i=1,2, . . ., N ) from all FC layer branches
FC,, FC,, ..., FC, ,, as shown in the following equation

®).
y=ya -, ya (®)

To train a deep neural network that can model multiple
attributes, the optimisation problem is then to minimize the
overall loss Loss , which is defined as a weighted sum of the
loss function Loss; (i=1,2, . . ., N,) on each attribute A, as
follows:

Na
Loss = Z w;Loss;.
=1

)
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The definition of the loss function Loss, is dependent on
the type of attribute A, (i=1,2, . . ., N) being modeled, as
detailed in Section 2.2.1. Different weights w, (i=1,2, . . .,
N,) can be applied on each attribute A, so that the optimi-
sation can be made biased towards certain attributes if
needed.

2.2.3 Supporting Multiple Image Input

When multiple photos in distinct camera views are avail-
able for a single target garment or fashion item, we can use
all of them as the input for attribute prediction; normally
achieving a better prediction accuracy thanks to the addi-
tional information provided from the additional viewpoints.

FIG. 2 shows a deep neural network architecture that
supports K multiple images of the garment in distinct
camera views as the input for attribute prediction. The
convolutional and pool layers in the diagram can accom-
modate an arbitrary recent architecture for image classifi-
cation, e.g. VGG11/16/19, Googl.eNet . To support multiple
image input in the deep learning framework, we adopt a
network architecture illustrated in FIG. 2, in which we apply
a weight sharing over all the convolutional and pooling
layers to extract visual features from each of the all K input
garment photos in different camera views. The visual fea-
tures extracted from all K input images are vectorized and
concatenated, then passed to the subsequent fully-connected
(FC) layers for attribute classification or regression.

It is worthwhile to mention that the network architecture
for multiple images input can be further combined with that
for multiple attribute prediction, as illustrated in FIG. 3,
which supports K multiple images of the garment in distinct
camera views as the input for multiple attribute prediction,
as described in Section 2.2.3. The convolutional and pool
layers in the diagram can accommodate an arbitrary recent
architecture for image classification, e.g. VGG11/16/19,
Googl.eNet. In the diagrams, “Rel.U” stands for a rectified
linear unit, a nonlinear activation on the output of fully
connected layers, i.e., ReLU(x)=max (0, x).

2.2.4 Transfer Learning and Model Re-Training

A common issue with the deep learning approaches
described in the previous subsection is that training a
working deep CNN model for attribute prediction may
require an enormous amount of labeled data. In the case
when only a relatively small labeled image dataset is avail-
able for attribute model training, a transfer-learning-based
approach can be used to improve the learning performance.
This includes two stages, as follows.

In the first stage (i.e. the pre-training stage), we use a large
public image dataset for object recognition (e.g. ImageNet
(A. Krizhevsky, 1. Sutskever, and G. E. Hinton, Imagenet
classification with deep convolutional neural networks,
NIPS, 1(2):4, 2012), or the “Camtail” dataset described in
Section 2.1.1, which contains a large number of garment
images scraped from public websites, to train an initial deep
neural network and learn the generic visual features at
different levels.

Then, in the second stage (i.e. the transfer learning stage),
we re-train the parameters of the last few fully-connected
(FC) layers while refining the parameters of the high con-
volutional layers of the pre-trained deep network at a much
lower learning rate (called “fine-tuning”). This process will
adjust the network weights of the pretrained neural network
and repurpose the network to model the target garment
image dataset (e.g. the “Cantor” mannequin photo dataset
(see Section 2.1.2), or an arbitrary garment image collection
of a specific retailer). See FIGS. 4A and 4B for a high-level
illustration of an example process. FIGS. 4A and 4B show
an illustration for repurposing a general CNN classifier
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trained on a general image recognition data set to solve the
garment attribute prediction problem by transfer learning.

The transfer learning stage adapts the visual features of
the pre-trained network to a new training data and/or a new
problem. It normally requires a much smaller amount of new
training data compared with what is needed for pre-training.

It is worthwhile to mention that the deep neural network
can also be partially re-architected in the transfer learning
stage to solve a different problem, e.g. similarity learning
(see Section 4.1.1). A typical technique is to maintain all the
convolutional-layers of the architecture but completely
rebuild the original fully-connected (FC) layer(s) with dif-
ferent output dimensions and a different loss function. This
technique of re-architecting and re-training has been applied
to solve the derived problems of image-based visual search
and size recommendation. More details will be presented in
Sections 4 and 5, respectively.

2.3 Improving Prediction Precision using Support Vector
Machine (SVM)

To model the multi-class categorical attributes, we trained
a deep convolutional neural network (CNN) (e.g. Googl.e-
Net) using the Softmax Loss which minimizes the negative
log likelihood. We wished to test if pre-training a CNN on
some large datasets might help, for transfer learning pur-
poses. We thus used the Berg Fashion dataset (M. Hadi
Kiapour, X. Han, S. Lazebnik, A. C. Berg, and T. L. Berg,
Where to buy it: Matching street clothing photos in online
shops, In Proceedings of the IEEE International Conference
on Computer Vision, pages 3343-3351, 2015) for pretraining
the deep model. We then fine-tuned the last fully-connected
(FC) layer of the deep network with our dataset. Where we
saw an improvement with pre-training, we further used
Support Vector Machines (SVMs) over the last convolu-
tional layer features of the deep network to replace the
original FC layers in the network architecture, and trained a
binary classifier separately for each class of the label. For
SVM, in an example we use the implementation of S.
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter,
Pegasos: Primal estimated sub-gradient solver for svm,
Mathematical programming, 127(1):3-30, 2011.

SVM works best when the deep features do not present
sufficient decorrelation between the classes at hand. For
attributes that are subtle to detect (i.e. textures), the deep
feature vector does not present enough decorrelation
between the classes, and thus SVM improves. For colour
categories, the feature vector is quite decorrelated across
pairs of classes, thus, max-margin framework does not
improve much in comparison to the normal fully connected
layer. This has been a consistent observation across the
research community, and thus we normally see SVM being
applied over deep features for attribute detection, and not for
object detection. Till now, there has been no analysis in the
literature for such a cause, and clearly no concrete related
theory exists. An attempt to embark upon such directions
with CNNs has been made in the recent work of S. Shankar,
D. Robertson, Y. Ioannou, A. Criminisi, and R. Cipolla,
Refining architectures of deep convolutional neural net-
works, arXiv preprint arXiv:1604.06832, 2016.

2.4 Further Ablation Studies of Model Designing

We have carried out several ablation studies to decide
what works best for the model design and what does not, as
summarised below:

1. The CNN architecture we mostly used was Googl.eNet.
Alternatively, we could have used VGG-11 (or its
more-layer variants) or ResNet. However since we
were training a small number of classes with each
CNN, we did not want to overfit the training data, and
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thus wanted to have an architecture which has a lower
number of model parameters, but also has been proven
to achieve near state-of-the-art performance. Google-
Net was thus the preferred choice since it contains
almost 4 times fewer parameters than VGG-11 and
ResNet. We experimented with VGG-11, VGG-19,
ResNet-18 and ResNet-34 for training a CNN on
clothing type categories, and found that none exceeds
Googl.eNet in performance. VGG-11 gave a slightly
improved performance on material labels than
Googl.eNet, but the advantage diminished after pre-
training and applying SVMs.

2. We experimented with manually cropping salient image
portions for training and testing. However, we found no
improvement in the accuracy. We shall discuss later
that this is because the CNNs are generally very good
in predicting the saliency maps over the image when
the image has minimal clutter.

3. Since fitting style labels (e.g. over fit-points bust, waist,
hips, thigh) can sometimes be related by an ordering
(like “baggy”>“fit”), we tried Euclidean loss (generally
used for regression tasks using CNNs) for classification
purposes. However, we could not see any improvement
in the classification accuracy. This can be attributed to
the reason that Euclidean loss only orders the classes in
an implicit manner hence no explicit ranking loss is
incorporated. To potentially improve accuracy with
such rank-structure between the output labels, one
might need to use more sophisticated loss functions,
e.g. as disclosed in Y. Gong, Y. Jia, T. Leung, A. Toshev,
and S. loffe, Deep convolutional ranking for multilabel
image annotation, arXiv preprint arXiv:1312.4894,
2013.

4. It is also noted that predicting the fit-style label would
rely on using mannequin photos as input, as the deep
network would be able to visually analyze the relative
tightness of the garment with respect to the underlying
mannequin.

5. To ameliorate the performance further, one might need
to discover more sophisticated methods for training
with CNNs. One of the potential solutions is described
in Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang,
Deeptashion: Powering robust clothes recognition and
retrieval with rich annotations, In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 1096-1104, 2016, which uses a
CNN trained over clothing landmarks to better infer the
attribute labels.

3. Improving Garment Physics Simulation and Rendering

One application of garment attribute prediction is to
improve the accuracy of garment physics simulation and
rendering quality for virtual fitting.

Achieving an accurate garment physics simulation is
essential for rendering a photo-realistic virtual avatar image.
We can first predict garment attributes (e.g. colour, pattern,
material type, washing method) using a machine learning
model, such as the deep neural network classifiers or regres-
sors described in Section 2, from one or more garment
images and/or garment texture samples, and then map them
to a number of fabric physical properties (e.g. stiffness,
elasticity, friction parameters) and/or model parameters of
the 3D physics model. The garment attribute predictor can
be used to initialize the model parameters of the garment
physics simulator from the predicted physics attributes or
material parameters so that a more accurate draping simu-
lation can be achieved. Fig.5 shows an illustration of an
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example of using image-based garment attribute prediction
to initialize the model parameters for precise garment phys-
ics simulation.

On the other hand, we can further improve the quality of
a virtual avatar image at the output side of the graphics
rendering pipeline. This can be achieved by implementing a
data-driven rendering quality improvement module that will
modify the render output of the virtual avatar visualisation
system to enhance its photo-realism. More details will be
described in Section 3.4.

3.1 Using a Vibrating or an Impulse Mannequin System

An alternative or additional way of input to predict the
physical properties or parameters of garments is to use a
sequence of photos of a garment sample which is dressed on
a mannequin and under a series of patterned motions con-
trolled by circuits or a computer. The patterned motions
include but are not limited to 1) vibrational rotation of
turntable/rotational motor mounting the mannequin with a
known constant rotational acceleration and speed, and con-
trolled by circuits or a computer, or 2) a linear impulsive
displacement at a known constant acceleration and speed
using a gantry system.

FIG. 6 shows a garment digitisation system using pro-
grammed vibrational mannequin rotations. The system can
be used to capture the garment appearance under motion and
estimate the physics parameters of the garment fabric mate-
rial, which can be used for photo-realistic and dynamic
garment simulation and rendering in the application of
virtual fitting. FIG. 6 gives an example of the system design
described above based on a vibrating mannequin-turntable
system. The computer first controls a program called “vibra-
tional rotation control module”, which is implemented using
a software development kit (SDK) for programming against
a turntable or a rotational motor. With the program, fast and
jerky left-right-left rotations at a series of configured rota-
tional accelerations and velocities are generated to disturb
the garment sample on the mannequin with patterned
motion.

The computer also controls another program called “Cam-
era Control Module” (see FIG. 6) in parallel, which is
implemented using a camera SDK to control the settings and
the shutter of the camera. Under the command of the camera
control module, multiple images of the target garment are
photographed at scheduled times during the course of the
vibration sequence to capture the appearance of the garment
under different stages of the motion. They should include 1)
at least one image capturing the static status of the target
garment, and 2) one or more (K) images capturing the target
garment under motion.

The “Physics Analysis Module” is a deep neural network
(DNN) model for fabric attribute prediction or regression, as
described in Section 2, which analyzes the captured garment
images in different phases of the motion and predicts the
garment fabric properties and/or model parameters for gar-
ment physics simulation. Two network architecture options
can be adopted to implement the module; in the first the
captured images are merged into one single multi-channel
image (assuming RGB images are used it will be of 3x(K+1)
channels) and fed as the input of the “Physics Analysis
Module”; the second is to use an attribute prediction net-
work based on multiple images input, as illustrated in FIGS.
2 and 3 in Section 2.2.3.

The output of the model can be 1) a multi-class label of
fabric types of the garment (e.g. “cotton”, “silk”, “polyes-
ter”) and/or associated class probabilities, or 2) an array of
decimal values of fabric parameters (e.g. Young’s modulus,
stress and strain, or model parameters of the garment physics
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engine used in the virtual fitting system). These predicted
physics parameters are stored into a garment database
together, as shown in FIG. 6, with all the original garment
photos digitised from the garment samples.

All the data can be used for later physics simulation,
composition and rendering at run-time. See FIG. 6 for
illustration. The provided scheme allows the system to
predict behaviour of a garment under motion and predict the
fabric composition and physics properties of the target
garment, hence allowing more photo-realistic simulation
and rendering in the virtual fitting applications.

3.2 Using a Mannequin with a Pressure-Sensor Array

Alternatively or additionally, we can further use a man-
nequin with a pressure sensor array embedded on or under
the surface of the mannequin, which may capture the stress/
strain of the garment when the garment is dressed on the
mannequin. The output of the sensor array may be a vector
of'amplitude signals. FIG. 7 shows a sample system diagram
of'the described system using programmed vibrational man-
nequin rotations and a mannequin with a pressure-sensor
array embedded. The system can be used to capture the
garment appearance under motion, measure the strain and
stretch of the garment when dressed on the mannequin, and
estimate the physical parameters of the garment fabric
material, which can be used for photo-realistic and dynamic
garment simulation and rendering in the application of
virtual fitting.

In the “Physics Analysis Module” of the described system
(see FIG. 7), the sensor measurements can be vectorized and
used as additional input in combination with the multiple
garment images as the input for training the machine-
learning-based garment physics attribute predictor. For
example, it can be implemented using a deep neural network
with a network architecture illustrated in FIG. 8.

FIG. 8 shows an example of a deep neural network
architecture for implementing the “Physics analysis mod-
ule” of the garment digitisation system in FIG. 7, as
described in Section 3.2. The convolutional and pool layers
in the diagram can accommodate an arbitrary recent archi-
tecture for image classification, e.g. VGG11/16/19, Googl e-
Net. In the architecture, we apply a weight sharing mecha-
nism over all the convolutional and pooling layers to extract
visual features from each of the all K garment photos
captured under different stages of the motion. The vectorized
sensor measurements input first pass through an additional
fully-connected layer for dimension reduction and then the
output feature is merged with other feature vectors extracted
from all K input images by vector concatenation for attribute
classification or regression.

3.3 Error Functions and Validation of Physics Simulation

To train the model that captures the actual physics prop-
erties and draping of the garment, we can define a cost
function based on 1) the difference of hem height of the
source and the target garment, and/or 2) silhouette difference
in multiple views using features of the source garment and
the target garment (e.g. Chamfer distance (H. Barrow,

J. Tenenbaum, R. Bolles, and H. Wolf, Parametric corre-
spondence and chamfer matching: Two new techniques for
image matching, Proc. S5th Int. Joint Conf: Artificial Intel-
ligence, pages 659-663, 1977; A. Thayananthan, B. Stenger,
P. Ton, and R. Cipolla, Shape context and chamfer matching
in cluttered scenes, In IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 127-133, 2003) or
Hausdorft distance (D. Huttenlocher, R. Lilien, and C.
Olson, View-based recognition using an eigenspace approxi-
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mation to the hausdorff measure, IEEE Trans. Pattern
Analysis and Machine Intelligence (PAMI), 21(9):951-955,
1999).

3.4 Improving Rendering Quality

In addition to the mechanisms for improving the physics
simulation as described in Section 3.1 and 3.2, we can
further improve the rendering quality of the virtual-avatar
images by introducing an additional “Rendering Quality
Improvement Module” to the output side of the conventional
visualisation pipeline for a virtual avatar visualisation sys-
tem. FIG. 9 shows an example of a system for improving
image quality and photo-realism of virtual avatar rendering
using an adversarial architecture.

To implement such a “Rendering Quality Improvement
Module”, we can adopt a deep neural network model using
an architecture of generative adversarial networks (GAN) (L.
Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, Generative
adversarial nets, In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 2672-
2680, Curran Associates, Inc., 2014). It includes two adver-
sarial submodules: 1) a “Synthetic/Real Photo Classifier”
(“Discriminator”), which aims to distinguish the synthetic
virtual avatar renders from real photos of models wearing
garments, and 2) a “Render Modifier” (“Generator”), which
makes modifications to the initial render output and aims to
improve the photo-realism of synthetic renders to fool the
“Discriminator”, as shown for example in FIG. 9.

The “Synthetic/Real Photo Classifier” submodule (i.e.
“Discriminator”) adopts a deep network architecture and
loss functions for binary attribute classification, as described
in Section 2.2.1. It takes the input of an image, and the
output of the network is a binary label defining whether the
input image is synthetic or not, and its associated label
probability ranges between 0 and 1. Various network archi-
tectures (e.g. VGG11/16/19, Googl.eNet) can be adopted for
convolutional and pooling layers. The training data of the
submodule is a balanced mixture of real model photos
obtained from retailer websites and the internet and the
synthetic renders generated from the rendering pipeline and
revised by the “Render Modifier” as detailed in the follow-
ing.

The “Render Modifier” (i.e. “Generator”) submodule
adopts an “Auto-encoder” architecture (S. Lange and M. A.
Riedmiller, Deep auto-encoder neural networks in reinforce-
ment learning, In IJCNN, pages 1-8. IEEE, 2010). It takes
the input of an image I and the network generates an output
in the form of a difference image Al in the same dimension
as the input image I. This difference image can be super-
posed onto the input image I to obtain a more photo-realistic
revised render I, ..., as the following equation (10) shows.

Levisea™limisiart M.

The loss function of the “Generator” is the negative of that
used for training the

“Discriminator” and it is computed based on all the
revised renders 1,.,,,., generated. The optimisation goal of
“Generator” is hence opposite to that of the “Discriminator”.

In the model training, the optimisation of “Generator” and
“Discriminator” are carried out in an alternating manner. In
each epoch of training, the new batch of revised synthetic
renders obtained from the “Render Modifier” may be mixed
with real model photos for training the “Discriminator” in
the next epoch of training.
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3.4.1 Automated Quality Control and Comparison

The “Synthetic/Real Photo Classifier” (i.e. the “Discrimi-
nator” part of the GAN) predicts a probability of how much
a rendered avatar image will look like a real photo of a
model dressed in garments.

This output (i.e. the probability) from the “Discriminator”
can be used as an automated quality control and monitoring
engine for the garment digitisation operation process, which
can automatically spot those garment models which yield
pathological or ill-looking renders.

By looking at the outputs of “Synthetic/Real Photo Clas-
sifier” of two or more rendered avatar images and/or a real
photo, we can also obtain comparative measurements of
image quality or photo-realism. A ranking or statistics based
on such measurements can be used as indicators to 1)
evaluating the level of photo-realism of synthetic renders
against real photos, or 2) evaluating the overall rendering
quality of two or more distinct versions of virtual avatar
visualisation engines as a replacement or complement to
human user testing.

4. Visual Search and Retrieval of Fashion Items

The second derived application of garment attribute pre-
diction is visual search and retrieval of garments or acces-
sories.

The goal of a visual search system is focused on finding
“similar” items in the gallery to the given query item, whilst
for the retrieval system the goal is to find and match exactly
the “same” item from a gallery of items in different pho-
tography styles, including but not limited to the changes in
lighting variation, camera viewpoint, model pose, image
context. The query items in the context of online fashion can
be garments, shoes, or accessories, which are

currently dressed on user’s virtual avatar;

recently browsed by the user;

in an arbitrary photo on the internet.

The challenge of the visual search or retrieval lies in the
variation of photography styles between input query data
and target gallery images. Within the context of online
fashion, the possible photography styles may include:

standard mannequin photos captured in the process of

garment digitisation, in which the mannequin pose and
camera views are well constrained;

model images or garment sample images on the websites

of retailers, including both synthetic and composite
model images, in which the subject can be in distinct
body poses, but the images have a relatively clean
background;

internet fashion images from e.g. Google, Pinterest, in

which the subject can be in different body poses, and
the images have a cluttered background;

selfies, phone photos, and web-cam photos, in which the

subject can be in different body poses and different
camera poses, and the images not only have a cluttered
background but also are more often than not taken in
poor lighting conditions.

To address the problem we provided two types of search
and retrieval user interfaces: 1) image-based search, in
which the input is one or more images of the query item, and
2) attribute-based search, in which the input is a set of
keywords describing the query item. In both cases the search
and retrieval engines are constructed based on machine
learning models such as deep neural networks, as detailed in
the following subsections.

4.1 Image-Based Search or Retrieval

The image-based search or retrieval aims to find the same
or similar items from the gallery by analyzing a single
sample image of the query item. See FIG. 10 for an example
user interface of image-based garment or accessory
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retrieval, and FIG. 11 for an example end-to-end diagram of
the system. FIG. 11 shows an example end-to-end system
diagram of the image-based garment or accessory retrieval
system. In the offline stage of feature pre-computation and
storage, those modules marked with “*” symbol are the
duplicates of the corresponding modules in the stage of live
search and retrieval.

The standard approach for image-based search and image
retrieval is: 1) performing feature extraction on both the
query and the gallery images, 2) computing the feature
distances between the query image and each gallery image
using a distance metric (e.g. Euclidean distance or L1
distance); 3) presenting the search or retrieval results by
ranking the similarity scores.

To achieve good retrieval and search performance, step 1)
is most critical. The goal is to learn an invariant feature
transform and similarity embedding such that images of the
same item but in different photography styles (e.g. shop
images vs. mannequin images), or images of visually similar
items should stay together in the feature space whilst those
of visually dissimilar items should stay apart. In our system,
we solve this problem in a unified framework by adopting a
deep learning approach. For feature extraction, instead of
using hand-crafted visual features (e.g. histogram of ori-
ented gradient (HoG), SIFT) we take the outputs of the deep
neural network model used for attribute classification (de-
scribed in Section 2) as the visual features. To learn an
effective similarity embedding we fine-tune the deep model
and retrain the fully connected layers against a triplet-loss
objective function as detailed in the following Section 4.1.1.

4.1.1 Learning Similarity Embedding

To learn a similarity embedding with the aforementioned
desired behaviour we adopt the triplet loss (J. Huang, R. S.
Feris, Q. Chen, and S. Yan, Cross-domain image retrieval
with a dual attribute-aware ranking network, In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1062-1070, 2015) as the cost function of the optimi-
sation problem that can enforce distance constraints among
positive and negative sample pairs. For a training sample i,
we denote its feature (i.e. the output from the convolutional
layers) as x,. Then, from the same training set, we select a
different image of the same item as the positive sample (here
denoting its corresponding feature vector as x,*), and an
image of a randomly-selected different item as a negative
sample (denoting its corresponding feature vector as x,”).
This forms a sample triplet (x,, x,", x,”). We define the triplet
loss Loss,,;,,;,, as:

N (1D
LosStipter = Z max(0, 1+ d (x; , x7) = d(x;, x7)),
o1

where d(-,") can be an arbitrary distance metric, and t is a
parameter that enforces the minimum separation between
the positive sample pair and the negative sample pair. In the
implementation, we define d(-,”) based on the similarity
metric as follows:

Ay (12)
dlx, y)=1- =2
IR

where t is set to 1 in our implementation. The objective of
optimisation in the model training is to minimise the overall
triplet loss on all N training sample triplets as defined in
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(11). Common optimisers (e.g stochastic gradient descent
(SGD), AdaGrad) can be used for solving the optimisation
problem.

FIG. 12 shows an illustration of an example of a deep
network architecture usable for triplet similarity learning.
The convolutional and pool layers in the diagram can
accommodate an arbitrary recent architecture for image
classification, e.g. VGG11/16/19, Googl.eNet.

To train the deep neural network model for learning a
triplet similarity metric, we adopt a three-way Siamese
architecture to handle the 3-way parallel image inputs, as
illustrated in FIG. 12, in which we first initialise the model
weights with those of a pre-trained attributed classification
model (as described in Section 2) and apply weight sharing
for all the convolutional layers, and we then retrain the last
fully-connected layer while fine-tuning the earlier convolu-
tional layers at a lower learning rate for the similarity
learning. By doing so, the query image, the positive sample
image, and the negative sample image in a triplet all pass
through the same network for visual feature evaluation. For
the training data, we rearrange the training data for attribute
classification (as described in Section 2.1) into triplet groups
and then perform data augmentation. For each possible pair
of positive samples (x,,x,") of sample i, we generate M=20
randomly selected negative sample pairs (X,.X,,, ),
m=1,2,..., M.

In the prediction stage we simply evaluate the feature
vectors of each image, by feeding it through the convolu-
tional and fully-connected layers of the trained network. A
“Feature Comparison & Ranking Module” (see FIG. 11)
then models the similarity between the query and each
gallery item i. The similarity score S of the query image and
each gallery image can be defined by e.g. 1) computing the
distance of their corresponding feature vectors in the visual
feature space; or 2) counting the number of overlapping
attributes or keywords predicted from the attribute classifier.
In the implementation, we adopt the [.2-distance metric (i.e.
Euclidean distance) in the visual feature space to evaluate
the similarity between samples as follows:

St )=ll—qlP, 13)

where q and x, stand for the feature vectors of the query item
and the gallery item i, respectively. Other similarity metrics
(e.g. L1 distance, or cosine-similarity (J. Huang, R. S. Feris,
Q. Chen, and S. Yan, Cross-domain image retrieval with a
dual attribute-aware ranking network, In Proceedings of the
IEEE International Conference on Computer Vision, pages
1062-1070, 2015)) are also applicable here. Once the simi-
larity scores are evaluated over all the gallery items, the
results of visual search or retrieval can be then presented
based on a ranking of similarity scores of the candidate
gallery garments to the query garment in a descending order.

For the run-time performance consideration, we always
pre-compute and store the categorical probability vector X,
as image features for each gallery sample i (i=1,2, ..., N)
offline using the deep neural network for similarity metric
embedding as described above (see “Feature Pre-computa-
tion & Storage” module in FIG. 11) so that we can directly
use (13) for run-time similarity evaluation.

4.1.2 Detect Region-of-Interests

At the input side of our image-based garment search and
retrieval system (see FIG. 11 for the system diagram), we
also include an “ROI Detection Module”, which detects the
region-of-interest (ROI) of the garment in the form of
bounding boxes on both the input query image and all the
gallery images as a pre-processsing step. An “Image Trans-
form Module” follows the “ROI Detection Module” which
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crops the input image with the bounding box returned from
the ROI detection and deform the cropped image to the
stardard image dimensions (e.g. 224x224) required by the
“Garment Image Analysis Module”, i.e. the deep neural
network described in Section 4.1.1, for feature extraction.
See FIG. 13 for an example illustration of a ROI detection
and the image transform process described above. Further
data augmentation schemes, e.g. random cropping of a
number of slightly different sub-regions based on the ROI
detection results, can be implemented in this module at the
model training stage to help improve the generalisation
power of the model.

In an example system, ROI detection is implemented
using the faster R-CNN model (S. Ren, K. He, R. Girshick,
and J. Sun, Faster r-cnn: Towards real-time object detection
with region proposal networks, In C. Cortes, N. D. Law-
rence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28,
pages 91-99, Curran Associates, Inc., 2015)—one of the
latest deep-learning-based algorithms for object detection.
For the garment detection, in an example, we use a number
of garment image data with manually-annotated ROI bound-
ing boxes to fine-tune a standard model for generic object
detection and recognition pre-trained on Pascal VOC2007
object recognition dataset (M. Everingham, L.. Van Gool, C.
K. I. Williams, J. Winn, and A. Zisserman, The pascal visual
object classes (voc) challenge, International Journal of
Computer Vision, 88(2):303-338, June 2010) to obtain a
dedicated garment detector. The garment detector gives the
corner positions of the bounding box as well as a confidence
score of the detection (between 0 and 1), for each item
detected. Experiments show that including the step of ROI
detection would considerably improve the retrieval accuracy
of the model for visual search and retrieval in Section 4.1.1
with the same network architecture.

ROI detection can be used to build a system for retrieving
or searching multiple items from an image of a person in an
outfit of multiple garments (e.g. a T-shirt with a pair of
trousers). It can be implemented by first detecting multiple
bounding boxes each surrounding an individual garment or
accessory item (e.g. glasses, shoes, handbag) on the person,
and then applying the algorithms described in Section 4.1.1
for visual search or retrieval on each individual garment or
accessory. This can lead to a system for searching a complete
outfit consisting of multiple garments from the image (see
Section 6.2.1 for further details).

4.2 Attribute-based Garment Item Retrieval or Look-Up
Systems

An alternative user interface (UI) for garment or acces-
sory retrieval or search is based on direct attribute inputs. In
such a Ul users are presented a number of attribute keyword
filters or drop-down lists, as exemplified in FIG. 14, so that
they can quickly reduce the candidate list and find the
desired item by providing a few keywords that best describe
the item they are looking for (e.g. “dress”, “black”, “no
pattern”, “sleeve to the elbow”, “hem to the knee”, and “no
collar”). An end-to-end system diagram of an example
attributed-based garment retrieval or search system is illus-
trated in FIG. 15.

In the system, a “Feature Encoding Module” translates the
input query attributes provided by the user into a vectorized
feature format that is suitable for similarity evaluation.
Given a collection of query attributes, we first create an
attribute vector q=[a,,a,, . . . , ap] from the list of provided
attributes as the query vector. The query vector is con-
structed as follows.
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Assume K multi-class attributes A, (k=1,2, ..., K) have
been defined in the input, the number of classes defined for
each attribute are d, (if attribute A, is a binary attribute, we
set d,=1 and discard the other dimension as it is redundant.).

If a user has specified the attribute A, (k=1,2, ..., K) to its
j-th label (=1,2, . . ., dy), a “one-hot” attribute vector a, is
created as:

ak[ak,lx (275 R ak,dk]a (14)

where a; =1 if the user specifies the attribute A, to the j -th
label, otherwise a, /=0. Note that this scheme can be easily
generalised to model “OR” relationship by letting multiple
dimension of a, to be 1, if multiple possible class labels are
selected by the users for the attribute A, (k=1,2, ... ,K).In
the case that the user hasn’t specified the attribute A, (i.e.
user selects “Any”), then the attribute vector a, will be a d,.
dimensional zero vector.

All these individual attribute vectors {a,},_,* are concat-
enated together to form a single query vector q as follows:
(15)

g=la.a,, . . ., ag],

and the total dimensionality D of the query vector q is

(16
D=

K
de.
k=1

Similar to the image-based search system, to improve
run-time performance we pre-compute and store the cat-
egorical probability vector X, as the image feature for each
gallery sample i (i=1,2, . . ., N) offline. These vectors are
predicted by a pre-trained multi-label deep neural network
(DNN) attribute classifier (see “Feature Pre-computation &
Storage” section in FIG. 14). The model predicts the same
set of attributes in the same order as defined in the query
input. Details of deep model training for attribute prediction
can be found in Section 2.

A “Feature Comparison & Ranking Module” (see FIG.
15) then models the similarity between the query and each
gallery item i . In the implementation, we adopt an asym-
metric cross entropy metric to measure the likelihood of
each candidate sample given the combination of the query
attributes q as follows:

D (17
S0, @) = ) qjlog, ).
=1

This works well for feature comparison when “one-hot”
encoded query feature vectors in Eq. (14) are used. How-
ever, other similarity metrics (e.g. Euclidean distance, .1
distance, or cosine-similarity (J. Huang, R. S. Feris, Q.
Chen, and S. Yan, Cross-domain image retrieval with a dual
attribute-aware ranking network, In Proceedings of the IEEE
International Conference on Computer Vision, pages 1062-
1070, 2015)) are also applicable here.

Once the similarity scores are evaluated over all the
gallery items, we then rank the samples as the retrieval
results in a descending order of the similarity scores defined
above.

4.2.1 Search Based on Names or Text Descriptions

The attribute-based retrieval approach can be extended to
an automated system that performs visual search from text
descriptions of a garment or accessories, from the online
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fashion magazine, fashion-related social network page, or on
the retailer website. An illustration of an example of such a
derived attribute-based search garment or accessory
retrieval system with an input of text descriptions is given in
FIG. 16.
For example, for each garment SKU sold on a retailer
website, we can normally find a long name containing the
key features of the garment, and a paragraph of detailed text
description associated with the item. From them we can:
1. extract the relevant garment attributes related to e.g.
colour, pattern, shape, style, material, using a keyword
extractor or an NLP module (e.g. OpenNLP, see “NLP
& Sentiment Analysis Module” in FIG. 16),

2. map them into the list of defined garment attributes, and

3. encode them as a single query vector required as the
input of the deep neural network system with the
approach described in Section 4.2 (see “Feature Encod-
ing Module” in FIG. 16).

4.2.2 Refining the Retrieval or Search Results

An interactive search result refinement mechanism can be
added to either an image-based search system (see Section
4.1) or an attribute-based search system (see Section 4.2).
Once the initial retrieval is done, if the desired item is not in
the list, the user is then allowed to further refine the search
results by clicking and selecting a few items from the initial
retrieval results which they think are visually similar to the
item they are looking for.

Assume the user has selected J samples with indices
{r(G}, the new similarity metric S* in the refined search may
further include the average or the nearest distance to all the
selected samples in the feature space, as shown in (18) and

(19).

2 (18)

. B
Sinerage (- ) = S, 4) + 7; e =5 I

Sarest (612 @) = 51, @) + Bminll; — xplI% (19)
4

where f§ is a weighting factor balancing the contribution of
initial query and selected samples for refinement.

Multiple iterations of this refinement process can be done
until the desired item is found.

4.2.3 Multi-Task Learning

To improve the performance of visual search and retrieval
we also propose to use multi-task learning schemes for deep
model training.

In the multi-tasking architecture, one unified deep net-
work is trained to simultaneously handle a combination of
attribute prediction and similarity learning tasks or subprob-
lems.

FIGS. 17A and 17B show an illustration of an example of
the deep network architecture for multi-task learning with
weight sharing, which allows the prediction of multiple
attributes of different types, and learning a similarity embed-
ding, simultaneously. The convolutional and pool layers in
the diagram can accommodate an arbitrary recent architec-
ture for image classification, e.g. VGG11/16/19, Googl.e-
Net.

This involves implementing a network weight sharing
over all the convolutional layers of multiple input stream for
common feature extraction, while branching out with mul-
tiple fully-connected (FC) layers with different loss func-
tions to handle each of the sub-problems.
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In the process of model training, a unified parameter
optimisation is performed against the sum of all the loss
functions of the sub-problems. In each iteration, a batch of
training data for each subproblem (e.g. attribute prediction
and similarity learning) is pushed through the respective
data-flow of the network (as shown by dashed bounding
boxes in FIGS. 17A and 17B for example) in an alternating
manner. It is noted that the training datasets for each
individual task can be independent and different. The com-
mon visual feature extraction network is optimised for all
the training data through the weight sharing mechanism. The
prediction stage is a feature extraction process, the query
data will again first pass through the common convolution
layer for generic visual feature evaluation, and then enter the
specific branch of FC layers to obtain the dedicated feature
optimised for the target subproblem.

This multi-task learning scheme allows the deep model to
capture a very strong and general visual feature representa-
tion across different datasets and different problems, accel-
erating convergence and avoiding over-fitting. In particular,
we find that the common visual features obtained from
multi-task learning useful for generating sensible results in
visual search and retrieval. An intuitive explanation is that
since the training objective function is against multiple
distinct vision problems, the resulting features and similarity
embedding are hence more likely to be consistent with a
human’s perception.

5. Size Advice and Fit Analysis

As the third major extension to the garment attribute
prediction framework as described in Section 2, we can
further predict what garment size a user should buy and how
well it fits (e.g. tight, normal, loose) around different body
areas (e.g. bust, waist, hips, thigh) using a machine learning
model. This is based on not only the labeled image data of
the garments but also user data and garment sizing data (as
detailed in Section 5.1). An example machine model for the
prediction task above is to use a deep neural network for
attribute classification described in Section 2 as the starting
point and further apply transfer learning for the task of size
recommendation.

In this section we present two different sets of algorithms
for size and fit advice based on the garment attributes
predicted from the deep neural network in Section 2. The
first set of algorithms is a unified deep learning framework
based on re-architecting and fine-tuning the attribute clas-
sification deep networks for the purpose of size and fit
regression or classification (see Section 5.2 for details). The
second set of algorithms is to implement an independent
predictive logic module that can estimate the most suitable
top-k sizes and associated fit analysis based on the user
information, garment sizing information, and fit-style attri-
butes estimated by the deep attribute classification network
in Section 2 (see Section 5.3 for details).

5.1 Training Data

To learn a classifier or a regressor for size and fit analysis,
the following data need to be collected as training data.

1. User information: including but not limited to, user’s
body shape parameters (i.e. height, weight, bust, waist,
hips, cup size), user’s location, age, and ethnicity.

2. Garment sizing and measurement information, includ-
ing but not limited to: garment sizes (either in alpha-
betical codes (e.g. “S”, “M”,“L”) or in numerical codes
(e.g. <407, “42”), size-charts of the garment, garment
measurements on the QC sheets.

3. Garment images and fit-style labels, including but not
limited to: the circumferential fits over different body
parts (e.g. around bust, underbust, waist, hip, thigh,
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bicep) and vertical drops (i.e. describing by which area
of the body of the mannequin or fit reference the edge
of garments strikes).

FIG. 18 shows a set of semantic label definitions describ-
ing a collection of circumferential fits and vertical drops.
These data are used for training a deep model for size and
fit analysis.

Any or all of the above labels and metadata can be used
for direct supervised learning or as a basis for extended
transfer learning.

5.2 Regression and Classification Based Size Recommen-
dation by Transfer Learning

We provided above a unified deep-learning-based algo-
rithm for size and fit recommendation using the garment
attributes extracted from the mannequin photos of garment
samples (see Section 2.1.2). The algorithm is based on
fine-tuning a pre-trained attribute classification network
using the combination of the image and user features.

We have provided two related models; one for retailers
adopting multiple size-charts, and the other for retailers with
a single size-chart, respectively. The former is a regression
model and involves three stages as detailed in Section 5.2.1,
5.2.1, and 5.2.1. The latter is a multi-class classification
model involving two stages as detailed in Section 5.2.1 and
5.2.4. Details of the algorithms are presented in the rest of
the subsection.

5.2.1 Pre-Train the Attribute Classifier

The common first step for training both size classifiers
and regressors is to pre-train a generic deep garment-
attribute classifier on a labeled garment image dataset using
the approaches described in Section 2. Fashion image data-
sets described in Section 2.1 can be used as the training data
for such a classifier. For example, in the implementation we
use our Camtail dataset which contains public internet
fashion images (see Section 2.1.1) as the pre-training data-
set.

FIG. 19 shows an illustration of the deep network archi-
tecture for multi-class category prediction, which is pre-
trained on the Camtail dataset. The convolutional and pool
layers in the diagram can accommodate an arbitrary recent
architecture for image classification, e.g. VGG11/16/19,
Googl.eNet. Typical network architectures of multi-level
convolutional neural networks (CNN) (e.g. GoogleNet ,
VGG11/16/19, ResNet, Inception-ResNet-V2) can be used
to learn visual features representing different fashion cat-
egories at different scales. Standard data augmentation and
preprocessing schemes (e.g. multi-scale random cropping,
left-right mirroring, contrast adjustment) can be applied to
achieve better generalisation power for the model. The
outputs of the model are multi-class categorical labels.

5.2.2 Model Re-Architecting and Fine-Tuning

The second step of the size regression algorithm is to
re-architect and fine-tune the pre-trained CNN classifier
obtained in Section 5.2.1. The re-architected model main-
tains all the convolutional-layers of the pre-trained model
but completely rebuilds the original fully-connected (FC)
layers. FIG. 20 illustrates an example re-architected deep
network for size regression. The convolutional and pool
layers in the diagram can accommodate an arbitrary recent
architecture for image classification, e.g. VGG11/16/19,
Googl.eNet. The input of the new model includes both the
image (i.e. the garment mannequin photo) and the user
features (in the form of a vector), and the output of the model
are 3D size-chart feature vectors. The new FC layers adopt
a concatenate vector | of image feature I and normalized user
feature B as the input:

I=[1, wB), (20)
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in which the weighting ratio w is set between 3 to 5 to give
the best performance.

In this fine-tuning process, we re-train different layers of
the model with different learning rates. In the implementa-
tion, the weights of the new FC layers are trained at a
learning rate 10-times higher than those applied to the
weights of the existing convolutional layers. This fine-
tuning scheme adapts the pre-trained features to the new
training data for the size recommendation problem.

To prepare the training data for fine tuning, we need a
preprocessing step to map all the size labels in the training
data into the size-chart feature vectors (e.g. [bust=74 cm,
waist=71 cm, hips=90 cm]). Normalization is required to
fill-in a regressed/average value when a fit-point dimension
is missing, e.g. “bust” is not available for size-charts of
trousers.

The deep neural network for size regression can be
generalised to handle the multi-image input scenario as
described in Section 2.2.3, in which multiple photos in
distinct camera views are available for the target garment. In
general, we can adopt a similar network architecture with
weight sharing on the convolutional layers, as illustrated in
FIG. 2. In particular, we notice that the accuracy of size
regression can be improved by the additional profile view of
the garment, which provides additional shape and fit style
constraints of the garment. The example deep neural net-
work for size regression based on both front view and profile
view of the garment is illustrated in FIG. 21.

FIG. 20 shows an example re-architected deep network
for size regression based on multi-view image input. With-
out loss of generality, here we illustrate 2-view cases, in
which both the front view and the profile view images of the
garment are given as input for size regression. The convo-
Iutional and pool layers in the diagram can accommodate an
arbitrary recent architecture for image classification, e.g.
VGG11/16/19, GoogleNet.

5.2.3 Size Lookup and Fit Analysis

The third and last step of the size regression algorithm is
to look up the size feature on the target size-chart and
recommend the most similar size as illustrated for example
in FIG. 22. Either L2 (Euclidean distance) or L1 distance on
specified fit points can be used as the distance metric. This
look up approach can be easily adaptable to the scenario
when multiple different size-charts are used by a retailer. In
addition, it can give intuitive fit analysis on specified fit-
points f (e.g. bust, waist, hips), simply by comparing the
difference of the predicted user feature u, with the defined
measurement m,of the given size on each defined fit point
f, as follows:

fit(f)=g(um,, (21)

where g(+) is a thresholding function that maps the decimal
input into a set of discrete fit labels e.g. “very tight”, “tight”,
“fitted”, “loose”, “very loose”. See FIG. 23 for an illustra-
tion of a fit analysis process on a fit-point diagram.

5.2.4 Classification Models for Single Size-chart Retailers

In the special case when a retailer only adopts a single
size-chart for all the garments of its collection, we could
adopt a simpler classification-based model instead which
will directly make predictions in the form of size labels
defined on each size-chart.

The classification model may be fine-tuned based on the
same pre-trained attribute classifier described in Section
5.2.1. The re-architected network used in the second stage is
illustrated in FIG. 24(a). The model is slightly different from
the regression model in which 1) the output of the deep
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model is simply the size label, which is a multi-class discrete
label instead of a continuous label, 2) a “softmax” activation
is applied after the final FC layer to convert the network
output into a sum-to-one probability vector. Other imple-
mentation details, e.g. the selection of weighting ratio w , are
the same as those of the regression model described in
Section 5.2.2. It is worth mentioning that we can adopt the
strategy in Section 2.3 and use some architecture variants to
improve the size prediction accuracy. For example, we may
use a SVM instead of, or in addition to the FC layers with
“Softmax” activation, as illustrated in FIGS. 24(b) and (c¢),
respectively. The convolutional and pool layers in the dia-
gram can accommodate an arbitrary recent architecture for
image classification, e.g. VGG11/16/19, Googl.eNet.

In the prediction stage, given the new user feature and the
image of the garment she tries, the model will yield the
probability of each possible size label, from which the
optimal size(s) can be recommended based on a ranking of
the class probabilities. Since the size labels are directly
predicted as the output, no size lookup stage is required in
the classification-based model.

Without loss of generality, the deep models illustrated in
FIG. 24 are all based on single view input. They can be
generalised to handle multi-view input by adopting similar
architectural changes to those shown in FIG. 21.

5.2.5 Multi-Task Learning for Size Regression or Classi-
fication

It is worthwhile to mention that the multi-task learning
framework for simultaneous similarity learning and attribute
classification, as described in Section 4.2.3, can also be
further extended to include the garment-size regression or
classification problems defined in Section 5.2.2 and 5.2.4 as
well.

The network architecture to support such multi-task learn-
ing involves weight sharing over all the convolutional layers
and the first FC layer, and performing re-training over all the
branching FC layers for each task, similar to the process
described in Section 4.2.3. An example network architecture
diagram is given in FIGS. 25A, 25B and 25C in which three
distinct data flows are present in the model training: 1)
attribute prediction, 2) similarity learning, and 3) size
regression or classification. The deep network architecture
example for multi-task learning shown in FIGS. 25A, 25B
and 25C supports prediction of multiple attributes of differ-
ent types, learning a similarity embedding with a triplet loss,
and performing size regression simultaneously. The convo-
Iutional and pool layers in the diagram can accommodate an
arbitrary recent architecture for image classification, e.g.
VGG11/16/19, GoogleNet.

5.3 Using Predicate Logics for Size and Fit Advice

This subsection presents an alternative size and fit advice
algorithm based on predicate logics on the predicted fit style
attributes. Given an RGB image of a garment, and a user
with body shape parameters (e.g. measurements of their
bust, waist, hips) who might be interested in buying the
garment, we estimate the plausible sizes for the user from a
pre-specified size dictionary with relevant fitting advice. We
suggest that the problem is inherently different from typical
machine learning problems, since the input-output mapping
is heavily dependent on the user’s preferences. Following
this postulation, we provide a rather simple approach based
on predicate logic for predicting the size of the garment the
user will want to buy. The approach involves some heuris-
tics, but generalizes well across various datasets, and we
expect that it produces outputs more amenable to the user
requirements.
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5.3.1 Nature of the Size Advice Problem

We consider the problem of predicting plausible garment
sizes for a user, given their body shape parameters, and the
image of the garment he/she is interested in buying. The
plausible sizes are output with relevant fit advice, thus
presenting a virtual fitting room experience, and the aim is
to make it as useful as the physical fitting room scenario.

Naively, the above looks like a machine learning problem,
where one needs to learn an input-output mapping from the
given data; here the inputs are user’s body shape parameters
and the garment image, and the output is the set of plausible
sizes. After carefully analyzing the data, it turns out that the
problem of garment size prediction is inherently different
from typical machine learning problems.

In a machine learning problem, any two input instances
which can be deemed similar by a human, cannot have
different sets of categorical ground truth labels (L. G.
Valiant, A theory of the learnable, In Communications of the
ACM, pages 1134-1142. ACM, 1984). However, in the
garment size prediction problem, this is not the case, as users
with the same or similar body shape parameters can order
different sizes of the same garment, based on the fitting style
they prefer (loose, tight, or fitted at different parts of the
body).

To confirm this further, we collate the order data from
retailers to depict the ambiguity in the input-output ground
truth mapping. We observe that for a given cluster of body
shape measurements, multiple sizes (generally two) are
ordered by different users depending upon their fit style
preferences. However, in cases, where the users have unique
body shape parameters, they can prefer more than two,
typically three sizes. In our approach, we tend to learn these
types of variations from the data to present the user with
more meaningful choices.

The rest of this subsection describes the details of the
approach.

5.3.2 Basic Formulations

We are given the RGB image of the garment I as the input.
Without loss of generality, we consider three measurements
of the user, i.e. bust, waist, and hips, as a user’s body shape
parameters. Let the user-specified sizes of their bust, waist,
and hips be denoted as real numbers by u,, u,,, u, respec-
tively.

Let the garment belong to a size-chart (note that normally
a size-chart contains a number of size specifications, each
size is defined by ranges of body measurements or the body
measurements of a representative body shape) having M
number of sizes. Then, the size-chart can be denoted by a
poset (note that in our case, the poset S is a totally ordered
set; usually, a poset is a partially ordered set) S=
{s', s>, ..., s™}, where each element is a size with bust,
waist, hips measurements of the representative body shape
fitted to the size, denoted as s’={s,’, s,,’, 5,’}; i€{1, ..., M}.
The ordering of the elements in poset S is defined as follows:

s'<s@D il ... M) (22)

Distance between sizes in a size-chart: For a size-chart
S={s', %, s sM_}, we define the distance d(.) between any
two sizes s’ and ¢ as follows:

(s =11,
where 1, jE{1, ..., M}.
5.3.3 Deep Learning Based Estimation of Fit Style
This subsection discusses the details of modern deep
learning techniques used in the prediction of fit styles from

a garment image, i.e. how a garment fits over the bust, waist,
hips of a user.

(23)
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Given the garment image, we infer how the garment is
generally worn over bust, waist and hips. Specifically, for
each of bust, waist and hips, we estimate whether the
garment covers the body part, and whether it is worn in a
comfortable or a fitted manner.

To do this, we use convolutional neural networks (CNN)
(A. Krizhevsky, 1. Sutskever, and G. E. Hinton, Imagenet
classification with deep convolutional neural networks,
NIPS, 1(2):4, 2012) based deep learning techniques. We
obtain a dataset of garments, where for each of bust, waist,
and hips, the annotations from the label set L={Comfortable,
Fitted, NotApplicable} are provided. Splitting the dataset
appropriately into training and validation sets, we fine-tune
three deep neural networks implemented using GoogleNet,
one each for bust, waist and hips. The deep neural networks
were initially trained on the Cantor Garment Category
Dataset (see Section 2.1.2). The deep neural network fine-
tuned for bust gives out a probability vector p,={p,°, p,',
0,2} P50 Dus P52El0, 1] over L for an input image, where
p,° denotes the probability that the garment is worn com-
fortably over the bust, p,' denotes the probability that the
garment is worn fitted over the bust, while p,> denotes the
probability that the garment is not worn over the bust.
Similar probability vectors p,,={p..%s P.."s D2} P05 Do’
P, *€10, 11 and p,={p;’, Ps's "} Pi' Pu's P4 E[0,1] are
obtained for waist and hips respectively from the corre-
sponding deep neural networks.

Note here that we have trained each deep neural network
for the output label set L. This implies that we expect the
CNN to infer whether the garment is covering the body part
(by giving a probability of the label Not Applicable) or not,
and if covering, then whether comfortably or not. This
scenario can alternatively be achieved by training a CNN
with the label set containing only two labels {Comfortable,
Fined}. In such a case, to infer whether a garment is worn
over or not, an empirical threshold © can be utilized, and if
the probabilities for both Comfortable and Fitted are less
than T, one can then merely surmise that the garment is not
covering the body part. To avoid the requirement for an extra
tunable parameters, we employed the former approach.

5.3.4 Model Learning

Inputs and Outputs: With the fit style information inferred
from the CNNs, we are now in a position to specify the input
and the output sets for learning our predicate logic. Machine
learning methods inherently operate on a propositional level
(R. de Salvo Braz, E. Amir, and D. Roth, A survey of
first-order probabilistic models, In Innovations in Bayesian
Networks, pages 289-317, Springer, 2008). For instance,
probabilistic graphical models tend to output a look-up table
for a partial set (based on dependencies between the random
variables) of joint input-output combinations. This scenario
can be considered as a special case of outputting facts for
input-output mapping (S. Russell, Unifying logic and prob-
ability: A new dawn for ai? In International Conference on
Information Processing and Management of Uncertainty in
Knowledge-Based Systems, pages 10-14, Springer, 2014).
In contrast, predicate logic tends to model some generalized
underlying theme in the data; however, manual data analysis
is required for this.

For N training examples, we have the input training set
X={x!, x%, , X'} where x"={u., p.°, p* . Pk
n<{1, . N} and *= ={b, w, h} for n” garment image (for
notational 51mphcity, we omit n in elements of x”). Here u.
refers to user’s body measurements at the fit-point * and p.°,
p.', p.> are the fit-style probabilities defined in Section
5.3.3. Let the corresponding output size ordered (ground
truth) be s”, where s” belongs to a pre-specified size-chart S.
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The training set then can be seen as taking on the mappings
from XxS . Extending the same notation, we denote a
validation set as having the mappings from X xS, and a test
set having the mappings from X, xS

Training Objective: For each input x”, K outputs (sizes)
rt, ..., 7"® from S are predicted. For a parameter set © that
is to be learnt, we then have the following error to minimize:

24
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1=

N
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n=1
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1

0" = argminE(O). 25)
Q

For our purposes, we keep K=2, i.e. we wish to optimize the
parameters for the top-2 accuracy measure. We see below
what exactly the parameter set ® represents in our system.

The Parameter Set @: The parameter set © is composed
of two entities, a vector 6 and a matrix M. Thus, ©={6,M}.
M and 0 are inter-dependent, and thus are jointly learnt
under an alternate optimization scheme, which we describe
later in this subsection. The vector 6={8,, 8, 6,}; 6,<6,<6;,
where 0,, 0,, 05 are the fit-style cut-offs, i.e. they decide
what difference between the measurement of a user body
parameter and the corresponding size measurement should
be termed as fit, tight/loose, very tight/very loose. These
parameters thus also help us to obtain fit advice, and also
derive our training procedure. We keep 6 same for all of
bust, waist and hips, meaning that we assume that a garment
is deemed tight/loose at the bust in the same way as on the
waist or hips. Specifically, for a selected size s={s,,s,,,5,}:
s&S and user body shape parameters {u,,u,.u,}, we do the
following:

fitting= 0 V (Js, — .| < 6)) 26)
fitting= 1 V (s, — 2| < 62)

fitting= -1 V (|5, — ] < 62)

fitting=2 V (|s, —ut,| < 63)

fitting= =2 ¥ (|s, — | < 63)

max(p}, p., p) # pi:

fitting=3 V¥ (Is, — 1, > 63)
fitting= =3 V¥ (|5, —u.| > 63)

where *={b, w, h}, fitting={0,1,-1,2-2,3,-3,} correspond to
the garment being {fit, loose, tight, very loose, very tight,
uncomfortably loose, uncomfortably tight} respectively in
our implementation. When max(p.°, p.", p->)=p", it implies
that the garment is not worn over the body part represented
by *, and thus, no fitting preference can be measured there.

For a given 0, the matrix M records the fitting preferences
for discrete combinations of possible user body shape
parameters. We consider the {bust, waist, hips} combina-
tions from the ranges in the sets M,°, M, ©, M, © (specified in
Algorithm 1 in FIGS. 26A and 26B)). For each user body
shape combination, we want to know (under a normalized
sense) how often the user preferred a fitting of {0,1,-1,2,-
2,3,-3,} on their bust, waist, and hips. Thus each row of M
contains 7 entries for each of bust, waist and hips, making
21 entries in all.

Learning M and 6: M and 0 are jointly learnt to minimize
the error in Eq. (24). The procedure is completely described
in Algorithm 1 (see FIGS. 26A and 26B). A precise descrip-
tion of Algorithm 1 is as follows: we sweep through the set
of possible choices 0,°, 0, and 0;° of the parameters 0, and
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for each value (vector), we learn M using the mappings in
XxS (training set), and record the error of Eq. (24) using the
mappings in X xS (validation set). Note that it is strongly
preferred to learn 6 from the validation set since such values
when learnt through sweeping mechanisms heavily overfit if
estimated through the training set (S. Kong, X. Shen, Z. Lin,
R. Mech, and C. Fowlkes, Photo aesthetics ranking network
with attributes and content adaptation. In EFuropean Confer-
ence on Computer Vision, pages 662-679, Springer, 2016).
The value vector for 6 that satisfies Eq. (25) (minimizes the
error of Eq. (24)), and the corresponding M are contained in
sk

Inference Procedure: Note that in order to calculate the
error in Eq. (24), we need to infer r"*; k=1, . . ., K using a
learnt M and 6. Our inference procedure is described in
Algorithm 2 (see FIG. 27). Intuitively, we do the following:
for a given vector containing the measurements of a user’s
bust, waist and hips, we find the row m, in M that best
describes this combination. We then record the fit style
preferences of these users’ body shape parameters with all
the available sizes in size dictionary S using Eq. (26). The
calculated fit style preference vectors are then compared
with the fit style preferences recorded at m, in M(M(M,))
using the dot product. The top-K sizes from S are then
selected by sorting the dot product values in a descending
order. We ensure that the dot product comparison is only
done over relevant fit-points i.e. those over which the
garment is worn. Please refer to Algorithm 2 (see FIG. 27)
for a mathematical delineation of this inference procedure.

5.3.5 Model Testing

Predicting Initial Sizes For the given bust, waist, and hips
measurements, one can predict three sizes (from the size-
chart), one of which will fit the user best on the bust, the
other of which will fit best on the waist, and the last of which
will fit best on the hips, using a nearest neighbour search. We
call sizes predicted by such a procedure as initially predicted
sizes. We will use these for making an important choice
during inference.

To carry out a nearest neighbour search between the bust,
waist and hips measurements of the sizes in the size-chart S
and the given user’s bust, waist and hips parameters, we do
the following for a garment image:

bitst : i
oSt — arg_mmlub _Szllmax(pg,p},,pﬁ)#pﬁ’ @n
s'es
st . .
st _ argrmn|uw - chllmaX(p%vpbvp&#p&’ (28)
stes
b . .
Shis _ argmin|u, — s‘hllmax(pgyp}l'pz)m% s 29
ses
ST = max(sbust | graist | ghips) (30)
S = min(sPt | st Jipsy @D

where %7 indicates the size that would fit the user’s bust in

the best way, irrespective of how this size might fit over the
waist and the hips. Similar connotations hold for s**** and
§"7°_Further, if s”*" and s™ are the same or near to each
other, it implies the existence of a single size where the
garment will fit reasonably well over all of bust, waist and
hips of the user. However, if the difference between s™** and
s”" is large (typically greater than 2), this indicates that
perhaps no single size may be suitable for the user at all of
bust, waist, and hips. In such cases, we observe that the
diversity of the user’s preferences increases. The notation
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1oz 10 equations (27), (28), and (29) refers to checking the

validity of the measurement under the condition cond (i.e.
the most likely predicted fit style at the specified fit point is
not “Not Applicable”). If the condition cond is not met for
the fit point f&{bust,waist,hip}, then the corresponding size
candidate s will be removed from the calculation in Egs.
(30) and (31).

Estimating the Top-K Sizes: The estimation of the top-K
sizes is done on the test set X, with mappings in X xS, by
using the inference procedure as described in Algorithm 2 in
FIG. 27. Note that this is the same inference mechanism as
used for the validation set in Algorithm 1 in FIGS. 26 A and
26B. However, in order to give users more useful choices
and let them know that our system is intelligent enough to
surmise about the user preferences, we output top three sizes
(K=3) whenever d(s"*, ,s""")22, else we keep K=2. This is
learnt from the data, wherein we have observed that if the
variation in the user body shape parameters is large, the
users tend to prefer a larger number of sizes.

Fit Advice: For each of the K predicted sizes r', .. ., I’
for the n” test image, the fit-advice is calculated according
to Eq. (26), with the calculations being made between
{r, " x,”*}; k=1, . . ., K and the user body shape
parameters {u,,u,,,u,}.

6. Other Applications of Attribute Predictions

This section presents several other online-fashion related
applications derived from garment attribute prediction prob-
lems, and their deep learning solutions. This includes:

1) conversion and return prediction (Section 6.1), 2) outfit
recommendation (Section 6.2) and 3) learning the trend of
fashion and style (Section 6.3). Details are presented in the
rest of this section.

6.1 Conversion and Return Prediction

As an extension of the garment attribute prediction frame-
works as described in Section 2 and size and fit prediction
framework as described in Section 5, we can further predict:

1. when/whether a conversion will happen (i.e. when a

particular user will buy a particular kind of garment),
and

2. when/whether a return or an exchange will happen.
using a machine learning model e.g. a deep neural network
for binary attribute classification as described in Section 2.2.

6.1.1 Training Data Preparation

To train such a model it requires training data based on the
images and metadata used for attribute prediction (see
Section 2.1) in combination with the following additional
data:

user features (i.e. body shape measurements, age, ethnic-

ity, location);

user journey, browsing history, order, and other traffic data

from the virtual fitting room application (including but
not limited to order time, order location, order volume,
engagement level, and user browsing history), and
derived data (e.g. a binary label indicating whether a
conversion happens, which can be inferred based on the
engagement level;

historical sales data from the retailer, including whether

and when the garment was returned or exchanged, and
the reason for the return/exchange, and derived label
data (e.g. a binary label indicating whether the garment
has been exchanged or returned).

A keyword extractor or an NLP module (e.g. OpenNLP)
can be used to extract additional semantic labels for classi-
fier training from the return and exchange reasons.

6.1.2 Formulation

An example of deep model classifiers suitable for the
prediction task above is to use a similar classification-
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version network architecture provided for size and fit advice
as described in Section 5.2.4, in which the input is a
combination of an image and additional features described
in Section 6.1.1 and the output of the model are now binary
labels indicating i.e. 1) whether a return will happen, and/or
2) whether a conversion will happen. To train the model, we
can again apply the transfer learning scheme based on a
pre-trained deep attribute predictor (see Section 2.2).

The system may also provide an uncertainty estimate of
the prediction results. For a deep learning framework, this
can be implemented using the technique of test-time dropout
(N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, Dropout: A simple way to prevent neural
networks from overfitting, The Journal of Machine Learning
Research, 15(1):1929-1958, 2014), which provides an
uncertainty measurement to the prediction label. The system
is meant to represent all the important things a human could
say about fit from just looking at a garment.

6.2 Outfit Recommendation and Completion

As an extension of garment visual search and retrieval
(see Section 4), the machine learning models for garment
attribute prediction can also be extended to build an outfit
recommendation and search system. The system can search
and recommend an outfit of multiple garments, either with
or without the history data of outfitting. See Section 6.2.1 for
details.

A different problem for outfitting is outfit completion, in
which we aim to find one or more garments from a garment
database that best matches the garment(s) that is (are)
currently browsed, purchased, or worn on the user’s virtual
avatar to make a complete outfit. Another example is to
predict the best complementary garment to fill in the gap(s)
and complete the outfit for the user, for example, when the
user is looking for a pair of trousers to pair with their shirt
and coat, and making a perfect combination. Systems pro-
vided to solve such a problem are detailed in Section 6.2.2
and 6.2.3.

6.2.1 Outfit Search and Recommendation

Recommending a complete outfit or searching multiple
garments from the image input are natural extensions of the
garment search or retrieval problem described in Section 4.
Approaches for image-based garment search or retrieval
described in Section 4.1 can be modified to handle the outfit
search problems.

For image-based outfit search, a divide-and-conquer
approach can be applied. Firstly, given a query image of a
person in an outfit O of N, garments or accessories, we use
the object detection algorithm to detect the region-of-interest
(ROI) RO, of each garment or accessory g,£0(1=1,2, . . .,
N,) in the image. Then, we retrieve the similar item g,” in
the garment database from each region-of-interest RO, to
form an outfit O*, as described in Section 4.1.2.

As for each item g,£0, multiple (assume M) similar
candidate items g, J* can be retrieved by the garment search
engine. This can form M" candidate outfit combinations in
total. For each candidate outfit O* in the pool, we evaluate
its overall similarity score S with respect to the query outfit
O in the input image which can be computed as the product
of the individual similarity score s of each corresponding
item pairs (g,,g,"), as the following equation shows:
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Finally, we can rank all the proposal outfits by their
overall similarity scores and choose top-K combinations for
recommendation.

Commercially, this outfit search approach can be
extended into an intelligent fashion-recommendation appli-
cation that combines the steps of 1) applying an outfit search
from an image on the internet or online fashion magazine to
find all the similar garments or accessories provided by the
target retailer/brand and/or are available on a specified
website, and 2) display the “similar” outfit comprising of
those garments or accessories and the source item on the 3D
virtual avatar, and 3) recommend the items by providing the
links for item shopping.

6.2.2 Recommending Complementary Items

Systems to recommend complementary garments or
accessories to those which have been viewed or tried-on by
a user based on the outfitting history have been introduced
in Section 1.10 of Patent Application Number
WO2016097732A1, which is incorporated by reference.
Such systems can be directly integrated with the deep neural
networks trained for image-based garment-attribute predic-
tors (presented in Section 2) and/or for image-based garment
search (presented in Section 4.1.1) at the input side for visual
feature extraction and similarity embedding learning. Simi-
larity scores used for ranking and recommendation are then
computed based on these deep features extracted and the
similarity metric learned.

6.2.3 Voice Chat Systems for Outfit Completion

On top of the systems for recommending items which
complement those already owned by the user, we can further
build a voice chat system for outfit completion. It will
respond to a user’s speech request (e.g. “I’m going to a party.
1 want a pair of trousers to go with my XYZ shirt in my
wardrobe.”). An end-to-end diagram of an example of this
system is illustrated in FIG. 28.

The system may first use a “Voice Recognition Module”
(e.g. CMU Sphinx library (P. Lamere, P. Kwok, W. Walker,
E. Gouvea, R. Singh, B. Raj, and P. Wolf. Design of the cmu
sphinx-4 decoder, In IN 8TH EUROPEAN CONF. ON
SPEECH COMMUNICATION AND TECHNOLOGY (EU-
ROSPEECH, 2003))) to convert the user’s voice message
into a sequence of text messages.

Then, a module of NLP (e.g. OpenNLP or sentiment
analysis algorithms (e.g. P. Liang, M. 1. Jordan, and D.
Klein, Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP:
Volume 1-Volume 1, pages 91-99, Association for Compu-
tational Linguistics, 2009)) is used to parse the keywords
and semantic terms (e.g. “party”, “trousers”, “shirt”), and
analyze the underlying grammar and word composition. The
output of the module includes:

1. the type of garment being queried (e.g. “trousers” in the

previous example);

2. desired attributes of the query garment (e g. “party” in

the previous example), and

3. outfitting contraints(e.g. “go with XYZ shirt” in the

previous example); and

4. filtering constraints (e g. “in the wardrobe” in the

previous example).

Output 1 and 2 of the NLP module are fed into an
“Attribute-Based Garment Search System” as detailed in
Section 4.2. The module will convert the query type and
attributes into a vectorized query feature, compare with
gallery image features pre-computed and stored in the
garment database, and return a ranked list of retrieval items
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in the form of garment IDs. All the gallery image features
were pre-computed using a multiple-label deep neural net-
work classifier (see Section 2.2.2) from images to multiple
binary attribute labels of given keywords representing vari-
ous trends and styles (e g. “dip-hem”, “party”, “collar”).

This list may be refined and filtered by a “Garment Filter
Module” based on any additional filtering constraints
detected (i.e. Output 4 of the NLP module).

The last module of the system is the “Outfit Analysis
System” as described in Section 6.2.2, which takes a com-
bined input of 1) the similarity scores of all the candidate
garments returned by the “Attributed-Based Garment
Search / Retrieval System” and filtered by a “Garment Filter
Module”, 2) the pre-computed image features of the candi-
date garments fetched from the garment database based on
the garment IDs, and 3) outfitting constraints (i.e. Output 3
of'the NLP module). The module predicts a recommendation
score between 0 and 1 for each input candidate garment,
indicating whether or not it is a good match. The final
recommendation results can be presented by ranking the
items based on their predicted recommendation scores.

6.3 Learning the Trend of Fashion and Style

We can also extend the machine learning method for
garment-attribute prediction to predict 1) whether a garment
is or may be “in fashion” or “out of fashion”, or 2) whether
a garment is in a certain style, from one or more garment
images along with the metadata. For example, we can use
deep convolutional neural networks to solve the problem, as
described in Section 2.

To learn a predictive deep model of reliable performance,
we need to prepare a large amount of labeled data. The
following options can be used to populate labeled training
data in an automated way. We first implement web crawlers
to retrieved the images from multiple fashion websites, and
also the keywords or the associated texts (e.g. item descrip-
tion) on the webpage. We can then use some keyword
extractors or natural language processing (NLP) libraries
(e.g. OpenNLP), to find the histogram of the text section and
extract the keywords automatically. This scheme allows us
to quickly gather a large amount of image data with weak
semantic labels (i.e. the labels are somewhat noisy), and
build up a structured and labeled dataset suitable for deep
learning.

The model training process is a two-stage approach as
described in Section 2.2.4, in which we first pre-train the
model based on the large scale image dataset with weak
semantic labels as described above, and then apply transfer
learning to fine-tune and improve the model performance
using a relatively small but high-quality labeled dataset. By
training and validation on distinct time windows of the
historical data, we can extend this framework to predict
whether a certain style will be in fashion in the future, e.g.
in the next 6 months, 1 year, or 2 years periods.

Note

It is to be understood that the above-referenced arrange-
ments are only illustrative of the application for the prin-
ciples of the present invention. Numerous modifications and
alternative arrangements can be devised without departing
from the spirit and scope of the present invention. While the
present invention has been shown in the drawings and fully
described above with particularity and detail in connection
with what is presently deemed to be the most practical and
preferred example(s) of the invention, it will be apparent to
those of ordinary skill in the art that numerous modifications
can be made without departing from the principles and
concepts of the invention as set forth herein.
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The invention claimed is:

1. Computer implemented method for predicting garment
attributes using deep learning techniques, comprising the
steps of:

(1) receiving and storing one or more digital image

datasets including images of training garments;

(ii) training a deep model for garment attribute identifi-
cation, using the stored one or more digital image
datasets, by configuring a deep neural network model
to predict
(a) multiple-class discrete attributes;

(b) binary discrete attributes, and
(c) continuous attributes,
(iii) receiving one or more digital images of a garment,
wherein the one or more digital images of the garment
are not present in the one or more digital image
datasets, and
(iv) extracting attributes of the garment from the one or
more received digital images of the garment using the
trained deep model for garment attribute identification,
wherein the extracted attributes include one or more of:
multiple-class discrete attributes, binary discrete attri-
butes, continuous attributes;
wherein the method includes, in a size advice and fit
analysis, receiving user information, including one
or more of: user’s body shape parameters, user’s
location, age, and ethnicity;

receiving garment sizing and measurement informa-
tion, including one or more of: garment sizes, size-
charts of the garment, garment measurements;

receiving fit-style labels relating to the training garment
images in the one or more digital image datasets,
including one or more of: the circumferential fits
over different body parts and vertical drops, and

including a step of re-architecting and fine-tuning the
trained deep model.

2. The method of claim 1, wherein the extracted attributes
include one or more of: style, shape, texture, colour, fabric
properties, which are multiple-class discrete attributes,
binary discrete attributes, or continuous attributes.

3. Method of claim 1, the method including the step of:
generating annotations for the one or more digital image
datasets including the training garment images using natural
language processing, and storing the generated annotations
in the one or more digital image datasets including the
training garment images.

4. Method of claim 1, wherein the one or more digital
image datasets including the training garment images
include a digital image dataset including internet training
garment images.

5. The method of claim 1, wherein the one or more digital
image datasets includes a digital image dataset based on sets
of garment mannequin photos which includes metadata and
multiple semantic labels associated with the sets of garment
mannequin photos.

6. Method of claim 5, wherein the digital image dataset
based on the sets of garment mannequin photos includes
digital images of training garments taken on the mannequin
in a controlled lighting environment, in a standard camera
pose.

7. Method of claim 5, wherein the digital image dataset
based on the sets of garment mannequin photos includes
high-resolution unsegmented original photos of training
garment samples and segmented garment texture sprites,
both in eight distinct camera views.
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8. The method of claim 5, wherein the metadata and
multiple semantic labels associated with the sets of garment
mannequin photos include one or more of:

Garment name and description; Garment category and

subcategory; Colour; Pattern and texture;

Fit styles; Vertical drops; Fabric and material composi-

tion; Washing method; Price or price range.

9. Method of claim 7, wherein regarding the digital image
dataset based on the sets of garment mannequin photos,
keyword extraction or natural language processing (NLP) is
used to extract style-related attributes and semantic labels
from training garment name and training garment descrip-
tion text, wherein the style-related attributes are multiple-
class discrete attributes, binary discrete attributes, or con-
tinuous attributes.

10. The method of claim 5, wherein regarding the digital
image dataset based on the sets of garment mannequin
photos, the metadata and/or the semantic labels are struc-
tured 1) by associating groups of different keywords of
similar meanings, and/or 2) assigning label weights with
values in a range.

11. Method of claim 1, wherein the digital image datasets
include one or more of: unsegmented mannequin photos of
a training garment, either in a single frontal view, or in
multiple distinct camera views; segmented training garment
texture sprites from mannequin photos; sample photos of a
training garment on a retailer’s website; and synthetic train-
ing garment images obtained by rendering a simulated
garment model using computer graphic techniques.

12. The method of claim 1, wherein the step of training
the deep model for garment attribute identification is such
that a combination of the multiple class discrete attributes
and the continuous attributes are modelled simultaneously.

13. The method of claim 1, the method including of
digitising a garment, and estimating physics parameters of
garment fabric material, using a garment digitization appa-
ratus, the apparatus including a mannequin, a mannequin
rotation system, a computer system and a camera system,
including the steps of:

(1) imaging a mannequin wearing the garment using the

camera system,

(ii) rotating the mannequin wearing the garment through

at least 360° using the mannequin rotation system;

(iii) capturing at least three images of the garment using

the camera system during the mannequin rotation,

(iv) generating fast and jerky left-right-left rotations at a

series of configured rotational accelerations and veloci-
ties to disturb the garment on the mannequin with
patterned motion, and

(v) capturing garment appearance under the motion and

estimating the physics parameters of the garment fabric
material.

14. The method of claim 13, wherein multiple images of
the garment are photographed at scheduled times during a
course of a vibration sequence to capture the appearance of
the garment under different stages of the motion, wherein the
images include (a) at least one image capturing a static status
of the garment, and (b) one or more images capturing the
garment under the motion.

15. The method of claim 13, including analyzing captured
garment images in different phases of garment motion and
predicting garment fabric properties and/or model param-
eters for garment physics simulation.

16. The method of claim 15, including the step of storing
the physics parameters into a garment database.

17. The method of claim 13, including the step of using
a pressure sensor array embedded on or under a surface of
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the mannequin, which captures a stress/strain of the garment
when the garment is dressed on the mannequin.

18. The method of claim 13, including the steps of
measuring a strain and stretch of the garment when dressed
on the mannequin, and estimating the physics parameters of
the garment fabric material, and using the estimated physics
parameters of the garment fabric material for photo-realistic
and dynamic garment simulation and rendering in an appli-
cation of virtual fitting.

19. The method of claim 1, which includes the steps of:

i) collecting one or more real photos and one or more

synthetic rendered images,

ii) training the deep model to generate a difference image,

iii) using the deep model to generate a difference image,

iv) superposing the difference image onto an input syn-

thetic rendered image to generate a photo-realistic
synthetic image.

20. The method of claim 19, wherein training and using
the deep model includes the step of using two adversarial
submodules comprising a first submodule and a second
submodule: the first submodule distinguishes synthetic vir-
tual avatar renders from real photos of models wearing
garments, and the second submodule makes modifications to
an initial render output and provides the photo-realism of
synthetic renders of body image.

21. The method of claim 1, in which the one or more
digital images of a garment are received in a query, to find
similar items to a queried item.

22. The method of claim 21, wherein the one or more
digital images are of items which are one or more of:
currently dressed on user’s virtual avatar;

recently browsed by the user; in an arbitrary photo on

internet.

23. The method of claim 1, in which the one or more
digital images of a garment are received in a query, to
identify an item provided in the query.

24. The method of claim 1, in which an attribute-based
search for a query item is provided, in which an input is a
set of keywords describing the query item.

25. The method of claim 1, in which an approach for
image-based search and image retrieval is: (a) obtaining the
extracted attributes of the garment, (b) computing feature
distances between a received digital image of the garment
and each image in the digital image datasets using a distance
metric based on the extracted attributes of the garment; (c)
presenting the search or retrieval results by ranking, using
computed distance metrics.

26. The method of claim 1, in which at an input side of an
image-based garment search and retrieval system an ROI
Detection Module is included, which detects the region-of-
interest (ROI) of the garment in the form of bounding boxes
on both a received digital image of the garment and all the
images of the one or more digital image datasets as a
pre-processing step.

27. The method of claim 26, in which multiple bounding
boxes each surrounding an individual garment item are
provided as a pre-processing step.

28. The method of claim 1, in which the re-architected
model maintains all convolutional-layers of the pre-trained
model but completely rebuilds original fully-connected (FC)
layers.

29. The method of claim 28, in which an input to the
re-architected model includes both a garment mannequin
photo and user features, and an output of the re-architected
model are 3D size-chart feature vectors.

30. The method of claim 1, wherein in a fine-tuning
process, different layers of the model are re-trained with
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different learning rates; the weights of the new FC layers are
trained at a learning rate 10-times higher than those applied
to weights of existing convolutional layers, in which the
fine-tuning scheme process adapts pre-trained features to
new training data for size recommendation.

31. The method of claim 1, including a preprocessing step
to map all size labels in the training data into size-chart
feature vectors.

32. The method of claim 1, wherein multi-image input is
provided, in which multiple photos in distinct camera views
are available for the garment.

33. The method of claim 1, including a size regression
algorithm step which is to look up a size feature on a target
size-chart and recommend a most similar size.

34. The method of claim 1, wherein an output of the deep
model is a size label, which is a multi-class discrete label
instead of a continuous label, and a softmax activation is
applied after a final FC layer to convert a network output
into a sum-to-one probability vector.

35. The method of claim 1, further comprising a method
of garment size and fit recommendation, which includes the
steps of

1) predicting multiple fit-style labels and associated prob-
abilities of a garment from the one or more digital
images of the garment, including one or more of
circumferential fits over different body parts and ver-
tical drops;

ii) selecting a subset of most relevant fit points by
thresholding the associated probabilities obtained in 1);

iii) predicting a garment size and performing a fit analysis
by analysing user measurements and garment measure-
ments over the selected fit points obtained in ii);

iv) providing a fit recommendation.

36. System for predicting garment attributes using deep
learning techniques, the system including a processor con-
figured to:

(1) receive and store one or more digital image datasets

including images of training garments;

(ii) train a deep model for garment attribute identification,
using the stored one or more digital image datasets, by
configuring a deep neural network model to predict
(a) multiple-class discrete attributes;

(b) binary discrete attributes, and
(c) continuous attributes,

(iii) receive one or more digital images of a garment,
wherein the one or more digital images of the garment
are not present in the one or more digital image
datasets, and

(iv) extract attributes of the garment from the one or more
received digital images of the garment using the trained
deep model for garment attribute identification,
wherein the extracted attributes include one or more of:
multiple-class discrete attributes, binary discrete attri-
butes, continuous attributes;

wherein the processor is configured to: receive user
information, including one or more of: user’s body
shape parameters, user’s location, age, and ethnicity;

receive garment sizing and measurement information,
including one or more of: garment sizes, size-charts of
the garment, garment measurements;

receive fit-style labels relating to the training garment
images in the one or more digital image datasets,
including one or more of: the circumferential fits over
different body parts and vertical drops, and

re-architect and fine-tune the trained deep model.

37. A computer-implemented method of digitising a gar-

ment, and estimating the physics parameters of fabric mate-
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rial of the garment, the method using a garment digitization
apparatus, the apparatus including a mannequin, a manne-
quin rotation system, a computer system and a camera
system, the method including the steps of:

(1) imaging the mannequin wearing the garment using the
camera system,

(ii) rotating the mannequin wearing the garment through
at least 360° using the mannequin rotation system;

(iii) capturing at least three images of the garment using
the camera system during the mannequin rotation,

(iv) generating fast and jerky left-right-left rotations at a
series of configured rotational accelerations and veloci-
ties to disturb the garment on the mannequin with
patterned motion, and

(v) capturing garment appearance under the motion and
estimating the physics parameters of the garment fabric
material.

38. The method of claim 37, wherein multiple images of
the garment are photographed at scheduled times during
course of a vibration sequence to capture an appearance of
the garment under different stages of motion, wherein the
images include

(a) at least one image capturing a static status of the
garment, and

(b) one or more images capturing the garment under the
motion.

39. The method of claim 37, including analyzing captured
in step (v) capturing garment images in different phases of
garment motion.

40. The method of claim 39, including the step of storing
the physics parameters into a garment database.

41. The method of claim 37, including the steps of
measuring strain and stretch of the garment when dressed on
the mannequin, and using the estimated physics parameters
of the garment fabric material for photo-realistic and
dynamic garment simulation and rendering in an application
of virtual fitting.

42. The method of claim 37, the method further including
predicting garment attributes using deep learning tech-
niques, comprising the steps of:

(D receiving and storing one or more digital image

datasets including images of training garments;

(I) training a deep model for garment attribute identifi-
cation, using the stored one or more digital image
datasets, by configuring a deep neural network model
to predict
(a) multiple-class discrete attributes;

(b) binary discrete attributes, and
(c) continuous attributes,

(II) receiving the at least three digital images of the
garment, wherein the at least three digital images of the
garment are not present in the one or more digital image
datasets, and

(IV) extracting attributes of the garment from the at least
three digital images of the garment using the trained
deep model for garment attribute identification,
wherein the extracted attributes include one or more of:
multiple-class discrete attributes, binary discrete attri-
butes, continuous attributes.

43. A system for digitising a garment, and estimating
physics parameters of fabric material of the garment, the
system including a garment digitization apparatus, the appa-
ratus including a mannequin, a mannequin rotation system,
a computer system and a camera system, the system
arranged to:

(1) image the mannequin wearing the garment using the

camera system,
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(ii) rotate the mannequin wearing the garment through at

least 360° using the mannequin rotation system;

(iii) capture at least three images of the garment using the
camera system during the mannequin rotation,

(iv) generate fast and jerky left-right-left rotations at a
series of configured rotational accelerations and veloci-
ties to disturb the garment on the mannequin with
patterned motion, and

(v) capture a garment appearance under the motion and
estimate the physics parameters of the garment fabric
material.

44. Computer implemented method for predicting gar-
ment attributes using deep learning techniques, comprising
the steps of:

(1) receiving and storing one or more digital image
datasets including images of training garments;

(ii) training a deep model for garment attribute identifi-
cation, using the stored one or more digital image
datasets, by configuring a deep neural network model
to predict
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(a) multiple-class discrete attributes;
(b) binary discrete attributes, and
(c) continuous attributes,

(iii) receiving one or more digital images of a garment,
wherein the one or more digital images of the garment
are not present in the one or more digital image
datasets, and

(iv) extracting attributes of the garment from the one or
more received digital images of the garment using the
trained deep model for garment attribute identification,
wherein the extracted attributes include one or more of:
multiple-class discrete attributes, binary discrete attri-
butes, continuous attributes;

and further including the steps of:

(D) collecting one or more real photos and one or more
synthetic rendered images,

(II) training the deep model to generate a difference
image,

(IIT) using the deep model to generate a difference
image, and

(IV) superposing the difference image onto an input
synthetic rendered image to generate a photo-realis-
tic synthetic image.
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