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Abstract

We study the inductive biases of diffusion models with a conditioning-variable, which have
seen widespread application as both text-conditioned generative image models and observation-
conditioned continuous control policies. We observe that when these models are queried
conditionally, their generations consistently deviate from the idealized “denoising” process
upon which diffusion models are formulated, inducing disagreement between popular sampling
algorithms (e.g. DDPM, DDIM). We introduce Schedule Deviation, a rigorous measure which
captures the rate of deviation from a standard denoising process, and provide a methodology
to compute it. Crucially, we demonstrate that the deviation from an idealized denoising
process occurs irrespective of the model capacity or amount of training data. We posit that this
phenomenon occurs due to the difficulty of bridging distinct denoising flows across different
parts of the conditioning space and show theoretically how such a phenomenon can arise
through an inductive bias towards smoothness.

1 Introduction

Diffusion models (DMs) have seen widespread adoption in domains as diverse as robotic control,
molecule design, and image generation from text prompts. The diffusion formalism is popular both
because it enables stable training of neural generative models, via the denoising training objective,
and because it offers a broad menu of mathematical and algorithmic techniques for inference [Albergo
et al., 2023]. For example, inference can be conducted via both Stochastic Differential Equation
(SDE) [Ho et al., 2020] and Ordinary Differential Equation (ODE) [Karras et al., 2022] formalisms,
the latter of which can be distilled further for accelerated sampling [Song et al., 2023]. The design
of these inference strategies hinges on the following fact: for a given (forward) diffusion process,
there are many distinct “reverse” stochastic processes, each of which can produce the same marginal
distribution over generated samples. Hence, from a sampling perspective, the various stochastic
processes are in effect equivalent.

A trained diffusion model is only an imperfect neural approximation to the idealized reverse processes.
Nevertheless, we might hope that this approximation is not too inaccurate. For example, even if a
diffusion model does not perfectly capture the target training distribution, one might conjecture that
the denoising training objective ensures that the model is at least consistent, in some appropriate
sense, with the forward processes mapping its own generated samples to noise. At the very least,
one would hope that as a diffusion model is trained on more data, or is conditioned on contexts
that are well-represented in a training dataset, a learned diffusion model will converge towards its
mathematical idealization.
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Contributions. In this work, we initiate the study of the inductive biases of conditional diffusional
models: diffusion models whose generations depend on some context z. For example, the context
could represent text descriptions of an image, observational inputs to a robotic control policy, or
molecular properties of a protein binding target. We investigate the extent to which the path probabil-
ities, (ps, Definition 2.1) deviate from those of an idealized diffusion path (pIMCF

s , Definition 2.4) with
the same initial and terminal distribution as our learned model (note: not necessarily the ground truth
data distribution). To facility this study, we introduce a novel, rigorous metric, Schedule Deviation,
that is designed to precisely measure the extent to which a flow field induces non-denoising behavior
in intermediate marginal densities.

In short, we find

Conditional diffusion models routinely and consistently deviate from the idealized model-
consistent diffusion probability path, pIMCF. This effect is a direct byproduct of the inductive
bias of conditional diffusion, and is strongly correlated with the discrepancy between pop-
ular diffusion samplers which, mathematically, should be equivalent in the limit of small
discretization error.

In more detail, our contributions are as follows:

• We introduce Schedule Deviation (SD), our new metric which quantifies the extent to which
a diffusion model (conditional or otherwise) deviates from the idealized diffusion probability
path (Definition 3.1). We show that (SD) is closely related to the average total variation distance
between path measures (Theorem 1), and that SD can be efficiently evaluated as a consequence
of the transport equation (Proposition 3.1). Moreover, unlike most prior metrics used to study
non-denoising behavior, SD does not require access to the true score function or training data,
and can be evaluated with access to only the (potentially conditional) flow-based model.

• Using Schedule Deviation, we show that the probability path of conditional diffusion models
consistently and routinely deviates from the idealized path (Figure 3, Figure 4). Our findings
are consistent across toy examples, conditional image generation, and trajectory planning. Fur-
thermore, we show that SD is often predictive of the Earth Mover Distance (EMD) between the
samples generated by popular inference algorithms.

• We demonstrate the Schedule Deviation cannot be significantly ameliorated by increased model
capacity or training data, and even varies significantly between different classes which are equally
represented in the training data (Figure 5). Rather, we posit that SD in conditional settings
arises as a natural inductive bias of conditional diffusion when interpolating between multimodal
distributions.

• We provide a theoretical model (Section 4, Theorem 2 and 3) of Schedule Deviation that shows
the deviation can be attributed to an inductive bias of conditional diffusion involving smoothing
with respect to the conditioning variable. We prove that, under appropriate conditions, conditional
diffusion engages in “self-guidance,” combining scores from nearby points in the training data set
and demonstrate that this causes deviation from the idealized denoising process.

1.1 Related Work

The origins of diffusion models in machine learning trace back to Sohl-Dickstein et al. [2015] and
were made practical by Ho et al. [2020], Song and Ermon [2019], which show such models are
capable of producing state-of-the-art image generation results. The DDIM sampling scheme [Song
et al., 2020a] generalizes the reverse “denoising" process to allow for a variable level of stochasticity
in the reverse sampling process, spawning a large body of work on improved sampling methodology
[Bansal et al., 2024, Kong and Ping, 2021, Salimans and Ho, 2022, Permenter and Yuan, 2023].

A recent line of work has investigated closed-form diffusion models [Scarvelis et al., 2023] and
their relation to phenomena observed in diffusion models, such as hallucination [Aithal et al., 2024].
Drawing on the well-appreciated inductive bias of neural networks towards low-frequency functions
[Rahaman et al., 2019, Cao et al., 2019], these works highlight the importance of smoothing biases
in understanding hallucination and generalization in unconditional generation, with a focus on an
implicit bias towards “smoothed" versions of the “true” denoiser of the training data.

A concurrent line of works [Vastola, 2025, Bertrand et al., 2025] have also investigated the non-
denoising properties of diffusion models, with a particular emphasis on the role of target stochasticity
in potentially inducing non-denoising behavior. However, these works focus on deviation from the
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Figure 1: We principally consider three datasets: conditional MNIST [LeCun et al., 1998] (left),
conditional Fashion-MNIST [Xiao et al., 2017] (middle), and endpoint-conditional maze path gen-
eration (right). For MNIST and Fashion-MNIST we condition on the t-SNE embedding of the
images (pictured above) as opposed to the classes as a proxy for text-embedding-conditioned image
generation.
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Figure 2: For conditioning values z ∼ Unif(Z), we plot the Total Schedule Deviation (for p0
sampled using DDPM) and optimal transport distance between DDPM/DDIM samples (as measured
by 1-Wasserstein/Earth-Mover-Distance), demonstrating that our prposed metric, Schedule Deviation,
is indeed predictive of divergence between different samplers. In Appendix C we demonstrate
these trends hold across different choices of samplers and show additional experiments on attribute-
conditional Celeb-A, where the conditioning space is more uniform.

true denoiser specified by the training data, whereas we consider denoising self-consistency of the
model itself. In this regard our work is similar to Daras et al. [2024], which introduces an additional
loss term to induce better denoiser self-consistency. Unlike Vastola [2025] and Bertrand et al. [2025],
which reach differing conclusions on whether deviation from an ideal denoiser benefits sample quality,
we take no position on whether non-denoising behavior is beneficial.

Our work is orthogonal yet complementary to these efforts, elucidating the effect of inductive biases
for conditional diffusion models [Ho et al., 2022, Song et al., 2020b]. Unlike the unconditional
setting, where generalization necessitates underfitting the training data, we show that an implicit bias
towards smoothness with respect to the conditioning variable can bias the model to out-of-distribution
conditioning variables while simultaneously overfitting the training data. Of particular interest to
this work is the methodology of classifier-free guidance [Ho and Salimans, 2022], which performs
conditional sampling via a combination of both conditional and unconditional diffusion models.
Although we consider purely conditional models, we show that under the appropriate implicit biases,
a form of classifier-free guidance, which we term “self-guidance," can naturally arise. The exact
effect of guidance on diffused samples remains the subject of ongoing inquiry, but recent work has
shown that special forms of guidance can be (approximately) understood as either sampling from the
manifold of equiprobable density [Skreta et al., 2024] or, alternatively, as a combination of Langevin
dynamics on the weighted product distribution [Bradley and Nakkiran, 2024, Shen et al., 2024]. We
do not further investigate the mechanism by which guidance yields high quality intermediate samples,
but rather demonstrate on simple datasets that the form of “self-guidance" has predictive capabilities.
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Prior work has shown that classifier-free guidance causes the resulting diffusion to no longer constitute
a denoising process [Bradley and Nakkiran, 2024]. We note that our notion of consistency is unrelated
to that of Consistency Models [Song et al., 2023], which may in fact be schedule-inconsistent under
our framework. Daras et al. [2024] explore a similar notion of consistency with a denoiser and
attempt to enforce this condition by a data-augmention-style loss. In contrast, our metric is tailored
to specifically measure how much the evolved density diverges from a reference denoising process,
as opposed to how much it deviates from being a diffusion model.

2 Preliminaries

We apply the framework for flow-based generated models in Lipman et al. [2022] and Albergo et al.
[2023], adapted to our conditional setting. For mathematical elegance, we adopt a continuous-time
formalism; see e.g. Chan et al. [2024] for the discrete-time formalism. We consider pairs (x, z), where
z ∈ Z ⊂ Rdz is a conditioning value and x ∈ X ⊂ Rdz is a datapoint. For a given conditioning
value z, we seek to generate samples from a continuous conditional distribution p⋆(x|z). For instance,
x may be an image or action while z can be a text prompt or observation. We use Z,X to denote
random variables over Z and X , respectively, and z ∈ Z, x ∈ X for particular values.

Flow-based generative models parameterize a time-varying family of conditional densities
ps(x|z), s ∈ [0, 1], where p1(x|z) can be easily sampled, and p0(x|z) a conditional density aimed to
approximate p⋆. These densities can be specified conditional normalizing flows [Lipman et al., 2022],
which describe the per-time-step marginals ps via the evolution of particles moving according to a
specified velocity field vs(x, z).
Definition 2.1 (Probability Paths and Conditional Flows). Let s ∈ [0, 1] be a time index. Fix a flow
field v : [0, 1]×X ×Z → X and a family of conditional densities ps(x|z) indexed by time s ∈ [0, 1],
which we refer to as a probability path. We say (v, p) is a conditional normalizing flow if particles
evolved under v match the marginal densities ps of the probability path, i.e..

ps(·|z) = Law(Xs |Z = z), ∀s ∈ [0, 1], z ∈ Z, (2.1)

where X1|Z = z ∼ p1(·|z),
d

ds
Xs = vs(Xs, z).

The stochastic interpolants framework [Albergo et al., 2023] provides an alternative description for
flow-based models, with a particularly succint description of diffusion models (e.g. Ho et al. [2020]).
Definition 2.2. A diffusion schedule (σ, α) consists of a noise schedule σ : [0, 1]→ R≥0 and signal
schedule α : [0, 1]→ R≥0 such that σ(1) = α(0) = 1, and α(1) = σ(0) = 0.
Definition 2.3 (Diffusion Probability Path). Given a diffusion schedule (σ, α), target and initial
densities p0 and p1, the diffusion probability path is given by,

ps(·|z) = Law(Xs|Zs = z)

where Xs := α(s)X0 + σ(s)X1, denotes the stochastic interpolant [Albergo et al., 2023], where
X1 | Z = z ∼ p1 = N (0, I) and X0|Z = z ∼ p0(·|z) with X1 ⊥ X0|Z.

Model-Consistent Diffusion Flows Under appropriate regularity conditions, all diffusion probabil-
ity paths can be realized by an infinite family of conditional normalization flows (v, p). We focus on
one such path, the model-consistent diffusion flow, which corresponds to the solution of the DDPM
objective [Ho et al., 2020]. We use v̂ and p̂ throughout the rest of this paper to emphasize conditional
normalizing flows which may be associated with a learned model, rather than the true data-generating
distribution, i.e. where p̂0 ̸= p⋆.
Definition 2.4 (Ideal Model-Consistent Flow). Fix a (potentially learned) flow and associated
family of densities (v̂, p̂) as defined in Definition 2.1. For a given diffusion schedule (σ, α), let
pIMCF = (pIMCF

s (x|z))s∈[0,1] be the diffusion probability path associated with p̂0. The ideal denoising
diffusion flow (IMCF) of p̂, written vIMCF = IMCF(p̂0), is the unconstrained global minimizer of

L[v] := E[∥vs(Xs, Z)− (α̇(s)X0 + σ̇(s)X1)∥2]. (2.2)

Above, the expectation E is taken w.r.t. the diffusion path Definition 2.3 with s ∼ Unif([0, 1]). The
IMCF is unique, and furthermore the optimization in (2.2) can be decoupled across conditioning
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Figure 3: For t-SNE-conditional MNIST generation, we evaluate the Schedule Deviation and em-
pirical 1-Wassertstein Distance between DDPM/DDIM samples, ablated over the training dataset
size N ∈ {10000, 30000, 60000}. We note strong structural similarity between the two metrics that
appears related to the contours of the conditioning distribution and the conditional data distributions.

variables z. Thus, we will often write vIMCF(·, z) = IMCF(p̂0(· | z)) for a fixed value of z. The
IMCF corrresponds to the unique velocity-minimizing flow consistent with the diffusion probability
path, which can be characterized explicitly as follows (see Appendix A.1.1).
Remark 2.1 (Ideal Model-Consistent Flow vs Ground Truth Flow). We use p̂ instead of p in
Definition 2.4 from here on to emphasize that p̂0 ̸= p⋆, meaning that vIMCF is the ideal flow associated
with the distribution of learned model v̂ under a given sampling algorithm; not necessarily the “true”
flow v⋆. Hence, schedule deviation is potentially orthogonal as a metric to whether p0 matches p⋆.
However, we note that, by the construction of vIMCF, p̂0 = pIMCF

0 and p̂1 = pIMCF
1 .

Proposition 2.1. Adopt the setup of Definition 2.4. Then v = vIMCF = IMCF(p0) is given explicitly
by any of the following identities

vIMCF
s (x, z) = E[α̇(s)X0 + σ̇(s)X1|Xs = x, Z = z] (2.3)

= γ1(s)∇x log ps(x|z) + γ2(s)x. (2.4)
= c1(s)E[X0|Xs = x, Z = z] + c2(s)x (2.5)

where c1(s) := α̇(s)− σ̇(s)
σ(s)α(s), c2(s) :=

σ̇(s)
σ(s) , γ1(s) :=

α̇(s)
α(s)σ(s)

2 − σ̇(s)σ(s), γ2(s) :=
α̇(s)
α(s) .

Eq. (2.4) represents the MCF in terms of the score functions ∇x log ps(x | z), whereas Eq. (2.5)
expresses the flow in the classical “denoising” form [Ho et al., 2020] via the conditional expectation
of the “clean” datapoint X0 given the “noised” Xs = α(s)X0 + σ(s)X1. Hence, the IMCF vIMCF is
just the (continuous-time) denoising objective from DDPM [Ho et al., 2020].

3 Conditional Diffusion is Not Denoising.
This section introduces our first main finding: the probability paths in diffusion consistently
deviate from the idealized model-consistent probability path pIMCF, often in regions with high
data density, and in a manner that does not abate with increased number of training examples.

3.1 Measuring Schedule Deviation

To quantify this effect, we start by introducing Schedule Deviation, a novel, natural metric which
evaluates the extent to the flow field v induces instantaneous deviations from the idealized probability
path pIMCF associated with vIMCF = IMCF(p̂0). Crucially, Schedule Deviation analyzes the behavior
of the learned model v̂ on pIMCF, that is, the forward process associated with the distribution p̂0
generated by the model and not the reverse process p̂t itself (as in Daras et al. [2024]).
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Figure 4: Analogous to Figure 3, we show that Schedule Deviation is predictive of divergence
between the DDPM/DDIM samplers for the trajectory (left) and Fashion-MNIST datasets (right).
Note that the structure of the maze (shown in Figure 1) can clearly be observed in the Schedule
Deviation. We defer full ablations over the training data for both to Appendix C.

Definition 3.1 (Schedule Deviation). Fix a diffusion schedule (α, σ) and conditional flow model (v, p)
where p1(x|z) = N (0, I). Let pIMCF

s (x|z) be the diffusion probability path (Def. 2.3) for p0(x|z) and
consider the tangent probability path pvs|t = Law(Xv

s|t) which begins at time t with Xv
t|t ∼ pIMCF

t (x)

and evolves as d
dsX

v
s|t = vs(Xs). We define the Schedule Deviation at z ∈ Z, s ∈ [0, 1] as

SD(v; z, s) :=

∫
X

∣∣∣∣[∂pvs|t∂s

]
t=s

− ∂pIMCF
s

∂s

∣∣∣∣ dx.
We additionally define the Total Schedule Deviation of v at z ∈ Z by SDtotal(v; z) :=

∫ 1

0
SD(v; z)ds.

Where appropriate, we simply refer to SDtotal as the Schedule Deviation at a given z ∈ Z .

We refer to the random variable Xv
s|t as a tangent process [Falconer, 2003] because it initially

coincides with pIMCF
s at s = t, but the evolves differently according to the flow field dictated by v.

Schedule Deviation (SD) therefore measures the rate at which a learned flow instantaneously departs
from the IMCF associated with its own data generating distribution p0.

In addition to its natural relationship to the instantaneous deviation from the IMCF, Schedule
Deviation can also be tractably estimated (proved in Appendix A.3.2).
Proposition 3.1. It holds that SD(v; z, s) = EpIMCF

s
[|∇ · (vs − vIMCF

s ) + (vs − vIMCF
s ) · ∇ log pIMCF

s |].

Algorithm 1 Schedule Deviation

input: z ∈ Z, s ∈ [0, 1]
R← ∅
for i ∈ {1, . . . , n} do
x0 ← sample(v, z)

xs ← α(s)x
(i)
0 + σ(s)ϵ where ϵ ∼ N (0, I)

S ← ∅
for j ∈ {1, . . . , N} do

S ← S ∪ {sample(v, z)})
end for
compute ∇ log pIMCF

s , vIMCF
s ,∇ · vIMCF

s
using Eq. (2.3), p0(x0|z) ≈ 1

N

∑
x∈S δx

r1 ← ∇ · [vs − vIMCF
s ](xs, z)

r2 ← [vs − vIMCF
s ](xs, z) · ∇ log pIMCF

s (xs|z)
R← R ∪ {r1 + r2}

end for
return mean(R)

For z, s fixed, we can directly sample from
pIMCF
s and estimate the score ∇ log pIMCF

s (x|z),
and consequently, the idealized flow
vIMCF
s (x, z), by constructing an empirical

distribution {xi
0}ni=1 sampled from p0(x|z),

convolving each xi
0 with Gaussian noise

as dictated by the Diffusion Schedule, and
estimating the corresponding score in closed
form. See Algorithm 1 for high-level pseu-
docode for computing Schedule Deviation
given a particular sampling algorithm using n
independent estimates using n · (N + 1) total
samples and Appendix C for implementation
details. Importantly, because we evaluate
∇ log pIMCF

s (x|z) for z, s fixed, our estimator is
not subject to the inductive biases of function
approximation that induce schedule deviation
in the learned neutral network.

6



50k 100k 150k 200k 250k 300k
Training Iteration

0.075

0.080

0.085

0.090

Te
st

 L
os

s

MNIST Test Loss

13.3M parameters
23.5M parameters
36.8M parameters

50k 100k 150k 200k 250k 300k
Training Iteration

80

100

120

140

D
D

PM
 S

ch
ed

ul
e 

D
ev

ia
tio

n

MNIST SD vs Model Size

13.3M parameters
23.5M parameters
36.8M parameters

10k 20k 30k 40k 50k 60k
Training Dataset Size

80

90

100

110

120

130
MNIST Training Samples vs SD

0 1 2 3 4 5 6 7 8 9
Digit Label

60

80

100

120

140

160

MNIST SD by Class

Figure 5: We visualize the test loss (left) and total schedule deviation (center left) for three different
model capacities over the course of a training run. For the 13.3M parameter model, we show the effect
of training dataset size on schedule deviation (center right), and, for the full dataset, the distribution
of total schedule deviation across different classes (right). The median, 30th, and 70th percentile
values are shown across the left three plots for sampled training batches and conditioning values.

The definition of Schedule Deviation closely resembles the formulation of the classical Performance
Difference Lemma in Reinforcement Learning [Kakade and Langford, 2002]. Indeed, under appropri-
ate smoothness assumptions, the schedule deviation both upper and lower bounds the total variation
difference in the probability paths pIMCF and p. We defer the proof to Appendix A.3.1.
Theorem 1. Consider the setting of Definition 3.1, for a conditional flow (v, p). For any probability
measure µ over [0, 1], the total variation distance TV(q, p) := 1

2

∫
|p− q|dx between ps and pIMCF

s
over µ is upper bounded by integrated schedule deviation:∫

TV(ps(·|z), pIMCF
s (·|z))dµ(s) ≤

∫ 1

0

SD(v; z, t)dt = SDtotal(v, z).

Moreover, if |∂2
sp

IMCF
s |, |∂2

stp
v
s|t|, |∂

2
sps| ≤ M < ∞, there exists constants ϵ0 ∈ [0, 1/2], c ≥ 0

depending on M such that, for all 0 < ϵ ≤ ϵ0, s ∈ [0, 1]

sup
t∈[s−ϵ,s+ϵ]∩[0,1]

TV(pt(·|z), pIMCF
t (·|z)) ≥ cϵSD(v; z, s). (3.1)

Remark 3.1 (Schedule Deviation v.s. Generation Fidelity). Note that p0 ̸= p⋆, so vIMCF is the IMCF
associated with the distribution of learned model under a given sampler; not necessarily the IMCF
associated with the true data distribution p⋆. Hence, schedule deviation is potentially orthogonal
as a metric to whether p0 matches p⋆. Moreover, we note that p0 = pIMCF

0 and p1 = pIMCF
1 , so that

schedule deviation principally captures deviations from the reference process in the “middle" of the
denoising.
Remark 3.2. It should be noted that Schedule Deviation is distinct from consistency distillation
[Song et al., 2023]. Consistency distillation enforces a related condition: that a few-step model is
consistent with the integrated flow map of the ODE induced by the flow-field v, whereas Schedule
Deviation measures the deviation of the flow map from the denoising probability path.

3.2 Schedule Deviation is Widely Prevalent

We evaluate the schedule deviation of trained neural networks in two distinct settings and 3 datasets,
as described below. We use a U-Net architecture similar to Dhariwal and Nichol [2021] for all
experiments. For full experiment details, see Appendix C.

Setting 1 (Conditional Image Generation). We evaluate the schedule-deviation of conditional image
diffusion models. For ease of visualization and in order to keep the associated dimensionality of x low
(as Definition 3.1 requires computing the divergence w.r.t. x), we consider the MNIST [LeCun et al.,
1998] and Fashion-MNIST [Xiao et al., 2017] datasets, each conditioned on a 2-dimensional “latent"
obtained via a t-SNE [Van der Maaten and Hinton, 2008] embedding of the data. In Appendix C.1,
we additionally consider a much larger model trained on the Celeb-A dataset, using a t-SNE of the
discrete attribute space for the conditioning variable. We note that the Celeb-A experiments, which
use a simplified Schedule Deviation without the divergence component, are much more noisy and
less conclusive than the corresponding MNIST or Fashion-MNIST experiments.
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Setting 2 (Conditional Maze Paths). Second, we construct a simplified path-planning problem
consisting of generating trajectories in a fixed maze. For a given randomly chosen starting point,
we consider all paths {ri}Ki=0 to the center of the maze and sample a path ri with probability
p(ri) ∝ e−(d(ri)−d(r⋆)), where d(ri) is the length of the ith path and d(r⋆) is the length shortest path.
This artificially introduces multimodality around points where multiple solutions are approximately
equally optimal. For each sampled path, we use 64 points along smooth Bezier curve fit to the path
such that X ⊂ R64×2,Z ⊂ R2.

Finding 1: Prevalence of Schedule Deviation. Our experiments broadly demonstrate that Schedule
Deviation is prevalent across all datasets. We visualize the total Schedule Deviation over z ∈ Z in
Figure 3 and Figure 4 for each of our datasets with varying subsets of the training data.

Finding 2: Schedule Deviation Persists with Model Size and Data Amount. In Figure 5, we
explore the schedule deviation for the MNIST dataset in-depth for both model and data ablations.
Interestingly, we find that while larger models tend to exhibit slightly lower Schedule Deviation-—the
improvements appear to diminish as the model size increases and more training data can potentially
(and somewhat counter-intuitively) increase the Schedule Deviation. Furthermore Figure 5 (right),
shows that the Schedule deviation can vary dramatically between different classes, suggesting that
the Schedule Deviation is both a function of the density and structure of underlying dataset.

Key Takeaways: Our experiments indicate several key properties on the Schedule Deviation of condi-
tional diffusion models: (1) even high-capacity models can exhibit significant Schedule Deviation, (2)
Schedule Deviation appears to be intrinsically related to the underlying structure of the dataset, rather
than the amount of data, and, perhaps most importantly, and (3) as we will show in the following
section, Schedule Deviation is strongly predictive of divergence between different samplers.

3.3 Schedule Deviation Predicts Disagreement Between Samplers

Many popular sampling algorithms, such as DDPM [Ho et al., 2020] and DDIM [Song et al., 2020a]
leverage an SDE formalism to sample from the target distribution p⋆ (see Appendix B for details).
These sampling algorithms implicitly make use of the equivalence in Proposition 2.1 between the
learned flow v and∇ log ps(x|z) to traverse the same denoising probability path with differing levels
of noise in the reverse process. Thus, when v = IMCF(p0), i.e. there is no schedule deviation,
both are guaranteed to generate samples Xs whose marginals coincide with the conditional flow in
Definition 2.1 (provided the number of steps is sufficiently large that discretization error is negligible).

Empirically, significant task-specific differences in performance between DDIM and DDPM have
been observed Chi et al. [2023], Song et al. [2020a], Karras et al. [2022]. In Figure 2, we show that
Schedule Deviation is strongly correlated with the difference between these samplers, as measured by
the empirical 1-Wasserstein (i.e. Earth-Movers-Distance). The heatmaps Figure 3, Figure 4 further
demonstrate the structural similarity of Schedule Deviation and DDPM/DDIM divergence across the
conditioning space. Recall Theorem 1, which confirms that SD is a proxy for the TV distance between
the traversed path the ideal denoising path. Taken together with the strong correlation between SD
and OT Distance (Figures 3 and 4), we conclude

DDPM and DDIM deviate specifically for conditioning values where the trained diffusion
model deviates from the idealization of denoising its generations.

We believe that this finding both (1) sheds light on the underlying cause for sampler divergence and
(2) demonstrates the utility of our proposed metric as an investigatory tool. In Appendix C, we show
our metric is predictive for other sampling strategies, such as the Gradient-Estimation (GE) sampling
algorithm [Permenter and Yuan, 2023].

4 Explaining Schedule Deviation via Smoothness and Self-Guidance

Generalization in unconditional diffusion is broadly understood as a phenomena that arises from
capacity-related underfitting of the empirical score function [Yoon et al., 2023, Scarvelis et al., 2023],
thereby preventing memorization of the training data. Prior work in this area has examined the
effect of an implicit bias towards smoothness and its relation to generalization [Scarvelis et al., 2023,
Pidstrigach, 2022, Aithal et al., 2024]. These works, however, do not fundamentally challenge the
assumption that the learned flows denoise and instead show how “better" denoisers arises by manifold
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learning [Pidstrigach, 2022] or interpolation over convex hulls of the data [Scarvelis et al., 2023].
In fact, as we elucidate in Appendix B, the “natural" nonparametric extension of the closed-form
in [Scarvelis et al., 2023] constitutes an ideal flow. In this section, we provide intuition for how
non-denoising paths can arise from smoothness with respect to the conditioning variable through a
phenomena we term self-guidance.

Self-Guidance and Schedule Deviation under Discrete Support. We begin by considering the
special case where the data generating distribution p⋆(z) is supported by a discrete set Sz . We can
observe in Figure 6 that for the discrete conditioning distribution shown, the schedule deviation is
almost uniformly 0 for z ∈ Sz . Thus, we motivate the following assumptions: (1) the model has
sufficient capacity to exactly fit the training data everywhere where there is conditioning support, (2)
the model is second-order smooth with respect to z, and (3) of all flows which fit on the support of the
training data, the model generalizes via the “smoothest" flow, as measured by ∥∇2

zvs(x, z)∥L2
. Under

these assumptions, we develop the following result for Z ⊂ R, (with proof in Appendix A.4.1):
Theorem 2 (Discrete-support Smooth Interpolant). Let Z be supported on a finite set Sz =
{z(i)}Ni=1 ⊂ R for distinct z(1) < . . . < z(N), ordered without loss of generality. For each z(i) ∈ Sz ,
let v⋆s (x, z

(i)) := E[α̇(s)X0 + σ̇(s)X1|Z = z(i)]. Then, there are piecewise cubic polynomials
p(i)(z), with pieces defined by the intervals [z(j), z(j+1)] such that

vs(x, z) = arg inf
v∈arg infv L[v]

∫
∥∇2

zv∥2Fdx =
∑

z(i)∈Sz

p(i)(z) · v⋆s (x, z(i)).

In the case where |Sz| = 2, p(i)(z) are linear functions.
Remark 4.1. Because diffusion models exhibit both smoothness biases in both x (e.g. Aithal et al.
[2024]) and z (this work), the most comprehensive proxy would consider a smoothness penalty on
the joint Hessian ∇2

x,zv(x, z). This makes a closed form solution considerably more involved, and
thus we focus solely on the∇z effect to isolate functional dependence on z.

The optimal low-z-curvature flow characterized in Theorem 2 extrapolates to out-of-distribution
variables z to by linearly combining flows associated with in-distribution variables zi ∈ Sz , with
weights depending only on the conditioning variable z. We refer to the phenomenon of extrapolating
via combinations of flows from other parts of the conditioning space as self-guidance, as these linear
combinations of flows mirrors the practice of classifier free guidance [Ho and Salimans, 2022], which
composes conditional and unconditional flows v(x|z), v(x) via a linear combination.

Schedule Deviation Emerges from Smoothing. Linear combinations of flows in general cannot be
written as denoising flows (e.g. in classifier guidance, [Bradley and Nakkiran, 2024]). In particular,
for unconditional diffusion probability paths ps(x|z = z(i)), linearly combining v⋆s (x, z

(i)) =
γ1(s)∇ log ps(x|z = z(i)) + γ2(s)x (recall Proposition 2.1) does not yield a diffusion probability
path, i.e. for weights c1, c2,

c1∇ log p(i)s + c2∇ log p(j)s = ∇ log
(
(p(i)s )c1(p̂(j)s )c2

)
̸= ∇ log[(p

(i)
0 )c1(p

(j)
0 )c2 ]s

where [p̃]s denotes the distribution of Xs := α(s)X0+σ(s)X1 in Definition 2.3 under Law[X0] = p̃.
Thus, Theorem 2 suggests that a simple inductive bias towards smoothness can naturally lead to
schedule deviation in v when the interpolated vIMCF

s (x, z(i)). We show specifically how the schedule
deviation arises for particular choices of diffusion probability paths, p(i)s , p(j)s in Appendix B.

Self-Guidance with Uniform Conditioning. We additionally show that self guidance can occur even
in the presence of continuous densities, where the minimize v⋆ of Eq. (2.2) is uniquely specified by
considering a λ-weighted penalty term with respect to the Frobenius norm of the appropriate Hessian:

Lλ[v] = L[v] + λ · EZEXs|Z [∥∇
2
zvs(Xs, Z)∥2F], (4.1)

where L[v] is the original loss in Eq. (2.2) above and the expectation Xs | Z is taken with Defini-
tion 2.3, whose density we recall is pIMCF

s (x, z).
Theorem 3. Fix some diffusion schedule (α, σ) and let v⋆s (x, z) be the IMCF flow associated with
p⋆(x|z), i.e. the minimizer of Eq. (2.2). Assume that p⋆(z) is a uniform density over some set S, i.e.
p⋆(z) = c · 1S for some c > 0 and where 1S the characteristic function of S. Then the minimizer to
Lλ[v] for any z ∈ S is given by,

vs(x, z) =

∫
ξ,z′∈S

e2πiξ(z−z′)

1 + λ∥ξ∥4
v⋆(x, z′)dz′dξ. (4.2)
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Figure 6: We train an MLP and construct a closed-form denoiser for both the discrete-support
dataset (top row) and continuous-support dataset (bottom row) described below. For both the NN
and closed-form interpolator we show generated values across z ∈ [0, 1] as well as the Schedule
Deviation over time. In particular, we note that for each dataset the NN and its closed-form analogue
exhibit similar inductive biases as well as Schedule Deviation away from the training data.
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Figure 7: Training data sam-
ples from each of the toy
datasets used in Figure 6.

In the case of the uniform densities, Theorem 3 reveals that
self-guidance occurs via a local convolution with Fourier-weights∫

1
1+λ∥ξ∥4 e

iξ·(z−z′)dξ. The frequencies ξ are attenuated polynomi-
ally as 1/∥ξ∥4. As λ → 0, the attenuation is removed, and the
integral

∫
eiξ·(z−z′)dξ behaves like a Dirac δ around z [Duistermaat

et al., 2010, Chapter 14]. This passes the “sanity check” that, as the
smoothness penalty vanishes, averaging becomes ever more local.

Toy Datasets. Motivated by Theorem 2 and Theorem 3, we con-
sider two synthetic datasets with scalar x ∈ X ⊂ R and condition
z ∈ Z ⊂ [0, 1] consisting of mixtures with components centered at
µ ∈ {(0,−1), (1, 0), (1, 1)}. The first dataset (with “discrete sup-
port") has Gaussian noise with scale σ = 0.1 applied only to the x
component, while the second (with “continuous support") has IID
noise of magnitude σ applied to both the x, z components.

We visualize these datasets and samples from a learned denoiser,
as well as a closed-form interpolants, in Figure 6. For the discrete-
conditioning setting, our closed form interpolant considers a simple
linear guidance-style interpolation of the flows at z = 0 and z =
1. In the continuous-conditioning setting, inspired by the Fourier-
convolution weighting in Theorem 3, we construct an interpolation with a nonlinear guidance
function. See Appendix C for additional details. These experiments validate that self-guidance can
be a fundamental primitive for extrapolation in conditional settings and predict the learned behavior
of neural networks.

5 Discussion

We introduce Schedule Deviation, a novel, principled metric for measuring divergence of diffusion
models from their idealized denoising paths. This metric is strongly predictive of deviation between
different samplers and is difficult to ameliorate via increased model capacity and data quantity. Taken
together, our findings reveal that the central mathematical abstraction upon which equivalent
inference algorithms are derived may not be representative of actual diffusion models trained
in practice, and the breakdown thereof cause seemingly equivalent methods to differ. This finding
has major implications for the development of future sampling and distillation methods, and serves
as a broader word of caution for the use of mathematical principles, in isolation, as a sole basis for
algorithm design. However, our study has a number of limitations (see Appendix D: in short, our
metric requires computing the divergence of the flow over generated samples, an inherently expensive
operation).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce and extensively explore a new metric for investigating the
properties conditional diffusion models and show how non-denoising processes naturally
arise in conditional models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include an explicit Limitations section in the supplementary appendix and
briefly reference the limitations in the discussion at the end of the main body.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide full proofs for all results in the deferred proofs appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the experimental methodology (including architecture descrip-
tions) in-depth in our supplementary material, in addition to providing the underlying code
for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the full code from running sweeps and measuring the schedule
deviation in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See the relevant experimental details appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Most of our plots are qualitative heatmaps or scatter plots. Our line plots depict
median values with 30th and 70th percentile values shown across random samples from the
latent space/test error for a given run.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide these details in our experiments appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any models or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the MNIST and Fashion-MNIST datasets. All other data
and images were synthesized by the authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We provide code for reference, but our paper does not inherently introduce
new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Deferred Proofs

In this section, we provide the omitted proofs of all propositions and theorems in our main text.

A.1 Appendix for Preliminaries (Section 2)

In addition to estabilishing the characterization in Proposition 2.1, we also show an additional fact
that aids in our interpretation: the IMCF flow minimizes Euclidean velocity.

Proposition A.1. v = IMCF(p) is the unique flow minimizing the objective

L̃[v] := EZ,s∼Unif[0,1]EXs|Z [∥v
′
s(Xs, Z)∥2],

subject to the constraint that (v, p) is a conditional normalizing flow.

The proof of this statement and Proposition 2.1 rely on the following standard transport equation, for
a flow.

A.1.1 Proof of Proposition 2.1, Proposition A.1

Proposition 2.1. Adopt the setup of Definition 2.4. Then v = vIMCF = IMCF(p0) is given explicitly
by any of the following identities

vIMCF
s (x, z) = E[α̇(s)X0 + σ̇(s)X1|Xs = x, Z = z] (2.3)

= γ1(s)∇x log ps(x|z) + γ2(s)x. (2.4)
= c1(s)E[X0|Xs = x, Z = z] + c2(s)x (2.5)

where c1(s) := α̇(s)− σ̇(s)
σ(s)α(s), c2(s) :=

σ̇(s)
σ(s) , γ1(s) :=

α̇(s)
α(s)σ(s)

2 − σ̇(s)σ(s), γ2(s) :=
α̇(s)
α(s) .

Proof. For simplicity, without loss of generality we consider unconditional flows vs(x) and distribu-
tions ps(x).

We begin by showing that Eq. (2.3) is contained in V(p), reproducing the proof of Albergo et al.
[2023], Proposition 2.6, using characteristic functions. The characteristic function g(s, k) for ps(x)
is given by:

g(s, k) := E[eik
⊤(α(s)X0+σ(s)X1)]

=

∫
eik

⊤xps(x)dx

Taking the time derivative, by the Liebniz rule we have,∫
eik

⊤x∂sps(x)dx = ∂sg(s, k)

= E[ik⊤(α̇(s)X0 + σ̇(s)X1)e
ik⊤(α(s)X0+σ(s)X1)]

= ik⊤
∫

E[α̇(s)X0 + σ̇(s)X1|Xs = x]eik
⊤xps(x)dx

= ik⊤
∫

eik
⊤xvs(x)ps(x)dx.

Note that for a differentiable scalar function f : R→ R such that lim|x|→∞ f(x) = 0, integration by
parts yields the basic property of Fourier transforms,∫

eikx
df

dx
(x)dx = lim

L→∞
[f(x)eikx]L−L −

∫
f(x)

d

dx
eikxdx

= −ik
∫

eikxf(x)dx.
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Applying this in the above, we have

ik⊤
∫

eik
⊤xvs(x)ps(x)dx =

∑
j

ikj

∫
eikjvj(x, s)ps(x)dxj

= −
∑
j

∫
eikj

∂

∂x
[vj(x, s)ps(x)]dxj

= −
∫

eikj

∑
j

∂

∂x
[vj(x, s)ps(x)]

 dxj

= −
∫

eik
⊤x∇ · (vs(x)ps(x))dx.

We can conclude therefore that,

∂sps(x) +∇ · (vs(x)ps(x)) = 0,

meaning that (v, p) constitute a normalizing flow per Eq. (A.2).

We now proceed to additionally show that Eq. (2.3) is the minimum-norm such solution. Consider
any perturbation δv such that v + δv remains a solution of Eq. (A.2), i.e. ∇ · (δvs(x)ps) = 0.

We begin by forming the Lagrangian:

inf
v
sup
λ

L(v, λ) =

∫
∥v∥2ps(x)dx+

∫
λ(x)(∇ · (vps) + ∂sps(x))(x)dx

We now apply the optimality condition and use integration by parts to obtain:

0 = L(v + δv, λ)− L(v, λ)−O(∥δv∥2) ∀ δv

=

∫
δv⊤vps(x)dx+

∫
λ(x)∇ · (δvps)dx ∀ δv

=

∫
δv⊤vps(x)dx+

∫
ps(x)δv

⊤∇λ(x)dx ∀ δv

=

∫
ps(x)δv

⊤ [v +∇λ(x)] dx ∀ δv

v = −∇λ(x).

This implies that a flow v is optimal provided it satisfies the constraint ∂sps(x) +∇ · (vps(x)) = 0
and there exists a λ such that v = −∇λ(s), i.e. if v is conservative. Therefore all that remains is to
show that v is in fact conservative. We use Tweedie’s formula to rewrite v:

vs(x) = E[α̇(s)X0 + σ̇(s)X1|Xs = x]

= E[α̇(s)X0 +
σ̇(s)

σ(s)
(Xs − α(s)X0)|Xs = x, Z = z]

=

(
α̇(s)− σ̇(s)

σ(s)
α(s)

)
E[X0|Xs = x, Z = z] +

σ̇(s)

σ(s)
x

=

(
α̇(s)− σ̇(s)

σ(s)
α(s)

)
1

α(s)
(x+ σ(s)2∇x log ps(x|z)) +

σ̇(s)

σ(s)
x

=

(
α̇(s)

α(s)
− σ̇(s)

σ(s)

)
(x+ σ(s)2∇x log ps(x|z)) +

σ̇(s)

σ(s)
x

=

(
α̇(s)

α(s)
σ(s)2 − σ̇(s)σ(s)

)
∇x log ps(x) +

α̇(s)

α(s)
x.

This shows both the equivalence of Eq. (2.3) and Eq. (2.4) and that Eq. (2.3) is conservative and
hence, the ideal flow.
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A.2 Proofs Regarding Forward and Reverse Processes (Appendix B)

Proposition B.1 (Stochastic Generative Processes). Given a conditional flow (v, p) and conditioning
value z ∈ Z , let ϵ : [0, 1] → R≥0 be a time-dependent noise scale. Use {XF

s }s∈[0,1]|Z and
{XB

s }s∈[0,1]|Z to denote the forward and reverse processes where Law(XF
0 |Z = z) = p0(·|z),

Law(XB
1 |Z = z) = p1(·|z) and XF

s , XB
ŝ are evolved according to,

d(XF
s |Z) = [vs(X

F
s , Z) + ϵ(s)∇x log ps(X

F
s |Z)]ds+

√
2ϵ(s)dBs (B.1)

d(XR
ŝ |Z) = [−vŝ(XB

ŝ , Z) + ϵ(ŝ)∇x log pŝ(X
R
s |Z)]dŝ+

√
2ϵ(s)dBŝ. (B.2)

where ŝ := 1− s and Bs, Bŝ are standard Brownian noise processes. In particular, XF
s , XR

s these
processes satisfy,

Law(XF
s |Z = z) = Law(XR

s |Z = z) = ps(·|z).

Proof. For simplicity we only consider the following unconditional forward SDE.

dXF
s = f(XF

s , s)ds+
√
2ϵ(s)dBs (A.1)

Let pt(x) be the continuous density associated with (A.1) with X0 ∼ p0(x). The Fokker-Planck
equation [Risken, 1996] yields,

∂

∂s
ps(x) = −

dx∑
i=1

∂

∂xi
[f(x, s)ps(x)] + ϵ(t)

dx∑
i=1

dx∑
j=1

∂2

∂xi∂xj
[I · ps(x)]ij

= −
dx∑
i=1

∂

∂xi
[f(x, s)ps(x)] + ϵ(t)ps(x)

dx∑
i=1

∂2

∂x2
i

[log ps(x)]

= −∇ · [f(x, s)ps(x)− ϵ(t)ps(x)∇ log ps(x)]

Letting f(x, s) = vs(x) + ϵ(s)∇ log ps(x) = 0, we have

∂

∂s
ps = −∇ · (vs(x)ps(x)).

Which we can see is precisely the transport equation Eq. (A.2) for the (v, p) flow. The reverse follows
similarly:

∂

∂ŝ
pŝ = ∇x · (vŝ(x)pŝ(x)) = −∇x · (−vŝ(x)pŝ(x)).

Let g(x, ŝ) := −vŝ(x) + ϵ(ŝ)∇ log pŝ(x). Then,

∂

∂ŝ
pŝ = −∇ · (g(x, ŝ)pŝ(x)− ϵ(s)∇pŝ(x) log pŝ(x))

Thus we can see that,

dXR
ŝ = g(XR

ŝ , ŝ)dŝ+
√

2ϵ(s)dBs.

A.3 Proofs for Section 3

A.3.1 Proof of Theorem 1

The proof of Theorem 1 is a variant of the performance-difference lemma, adapted to the control of
the solution to PDEs.

Lemma A.2 (Finite-Horizon Deterministic Performance-Difference Lemma). Consider states x ∈ S
and actions u ∈ A and a continuous-time dynamical system ẋ(t) = ft(x(t), u(t)) defined over

23



t ∈ [0, T ] for some T > 0. Let π(x, t) to denote a feedback policy π : S × [0, T ]→ A and µ be any
finite positive measure over B([0, T ]), the Borel σ-algebra on [0, T ]. Define,

V π
t1,t2(x) :=

∫ t2

t1

rs(x
π(s), π(xπ(s)))dµ(s) where ẋπ(s) = fs(x(s), π(x(s))), x

π(t1) = x.

Aπ
t1,t2(x, π

′) := lim
ϵ→0

1

ϵ
(V

π̂t1,ϵ

t1,t2 (x)− V π
t1,t2(x)) where π̂t1,ϵ(x, t) =

{
π′(x, t) if t ≤ t1 + ϵ

π(x, t) if t > t1 + ϵ

for any µ-integrable function rs(x
π(s), π(xπ(s)). Then, for any t1, t2 ∈ [0, T ], x ∈ S and policies

π, π′,

V π′

t1,t2(x)− V π
t1,t2(x) =

∫ t2

t1

Aπ
t (x

π′
(t), π′)dt

Proof. Consider any ϵ ∈ (0, t2 − t1). Then,

V π′

t1,t2(x)− V π
t1,t2(x) = V π′

t1,t1+ϵ(x) + V π′

t1+ϵ,t2(x
π′
(t1 + ϵ))− V π

t1,t1+ϵ(x)− V π
t1+ϵ,t2(x

π(t1 + ϵ))

= V π′

t1+ϵ,t2(x
π′
(t1 + ϵ))− V π

t1+ϵ,t2(x
π′
(t1 + ϵ))

+ V π
t1+ϵ,t2(x

π′
(t1 + ϵ))− V π

t1+ϵ,t2(x
π(t1 + ϵ)) + V π′

t1,t1+ϵ(x)− V π
t1,t1+ϵ(x)

= V π′

t1+ϵ,t2(x
π′
(t1 + ϵ))− V π

t1+ϵ,t2(x
π′
(t1 + ϵ))

+ V
π̂t1,ϵ

t1,t2 (x)− V π
t1,t2(x)

Choose ϵ := t2−t1
K for some K ≥ 0. Then, recursively applying the above identity yields,

V π′

t1,t2(x)− V π
t1,t2(x) =

K−1∑
k=0

V
π̂t1+kϵ,ϵ

t1+kϵ,t2
(xπ′

(t1 + kϵ))− V π
t1+kϵ,t2(x

π′
(t1 + kϵ))

Taking the limit K →∞,

V π′

t1,t2(x)− V π
t1,t2(x) = lim

K→∞

K−1∑
k=0

[Aπ
t (x

π′
(t1 + kϵ), π′))ϵ+ o(ϵ)]

=

∫ t2

t1

Aπ
t (x

π′
(t), π′)dt

Notation. We use pvt|s to denote the solution to Eq. (A.2) with v and initial condition pvs|s = ps.

Lemma A.3 (Diffusion Performance-Difference Lemma). Let rs be some time-varying functional
defined over s ∈ [0, 1] which maps continuous densities to scalar values. For any finite positive
measure µ over B([0, 1]), define

V v
s (ps) =

∫ 1

s

rt(p
v
t|s)dµ(t)

Av
s(ps, v

′) = lim
ϵ→0

1

ϵ

[
V

wϵ
t|s

s (ps)− V v
s (ps)

]
where wϵ

t|s =

{
v′t if t ≤ s+ ϵ

vt otherwise.
. Then the difference between V v′

s (ps) and V v
s (ps) can be written:

V v′

s (ps)− V v
s (ps) =

∫ 1

s

Av
t (p

v′

t|s, v
′)dt

Proof. This is just Lemma A.2, where S ⊂ C1(X ,R+) are densities over X , actions A are maps
X → Rdx and policies π are flows v : [0, 1]×X → Rdx .
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Lemma A.4. Let ps, p′s be densities and v be a flow such that (ps, v), (p′s, v) satisfy Eq. (A.2). Then
for any p̄s, t ∈ [0, 1]

|TV(p′s, p̄s)− TV(ps, p̄s)| ≤ 2TV(pt, p
′
t)

Proof. Fix any s, t ∈ [0, 1] and let α := TV(pt, p
′
t). Without loss of generality assume that

TV(p′s, p̂s) ≥ TV(ps, p̂s).

Decompose p′t = (1− α)pt + αp̂t, where p̂t is a signed density such that
∫
|p̂t|dx = 1 and (p̂s, v)

satisfy Eq. (A.2). Since Eq. (A.2) is linear in p, we can write p′s = (1− α)ps + αp̂s for all s. Thus,

TV(p′s, p̄s) ≤ (1− α)TV(ps, p̄s) + αTV(|p̂s|, p̄s).

Combining, we have that

|TV(p′s, p̄s)− TV(ps, p̄s)| ≤ |(1− α)TV(ps, p̄s) + αTV(|p̂s|, p̄s)− TV(ps, p̄s)|
≤ |−αTV(ps, p̄s) + αTV(|p̂s|, p̄s)| ≤ 2α.

Lemma A.5. Let (ps, vs), (p̂s, v̂s) be pairs of solutions to Eq. (A.2). Let (ps|t, vs) be a solution to
Eq. (A.2) such that pt|t = p̂t. Then, for any t, s,

TV(pt, p̂t) ≥
1

2
(TV(ps|t, p̂s)− TV(ps, p̂s))

Proof. Applying Lemma A.4 using p′s = ps|t, ps = p̂s,

2TV(pt, pt|t) ≥ |TV(ps|t, p
′
s)− TV(ps, p

′
s)|.

Since we chose pt|t = p̂t, this yields the desired statement

TV(pt, p̂t) ≥
1

2
|TV(ps|t, p̂s)− TV(ps, p̂s)|

≥ 1

2
(TV(ps|t, p̂s)− TV(ps, p̂s)).

Theorem 1. Consider the setting of Definition 3.1, for a conditional flow (v, p). For any probability
measure µ over [0, 1], the total variation distance TV(q, p) := 1

2

∫
|p− q|dx between ps and pIMCF

s
over µ is upper bounded by integrated schedule deviation:∫

TV(ps(·|z), pIMCF
s (·|z))dµ(s) ≤

∫ 1

0

SD(v; z, t)dt = SDtotal(v, z).

Moreover, if |∂2
sp

IMCF
s |, |∂2

stp
v
s|t|, |∂

2
sps| ≤ M < ∞, there exists constants ϵ0 ∈ [0, 1/2], c ≥ 0

depending on M such that, for all 0 < ϵ ≤ ϵ0, s ∈ [0, 1]

sup
t∈[s−ϵ,s+ϵ]∩[0,1]

TV(pt(·|z), pIMCF
t (·|z)) ≥ cϵSD(v; z, s). (3.1)

Proof. We omit z without loss of generality and consider the value function V v
s (ps) given by

V v
s (ps) =

∫
1{t ≥ s} · TV(pvt , p

IMCF
t )dµ(t)

The Diffusion Performance Difference Lemma Lemma A.3 gives the upper bound∫
TV(pt, p

IMCF
t )dµ(t) = V v

0 (p0)− V vIMCF

0 (p0)

= −
∫ 1

0

Av
s(p

IMCF
s , vIMCF)ds
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Expanding Av
s(p

IMCF
s , vIMCF),

Av
s(p

IMCF
s , vIMCF) = lim

ϵ→0

1

ϵ

[ ∫
1{t ∈ [s, s+ ϵ]} · [−TV(pt|s, p

vIMCF

t )]dµ(t)

+

∫
1{t ≥ s+ ϵ} · [TV(pt|s+ϵ, p

IMCF)− TV(pt|s, p
IMCF
t )]dµ(t)

]
Applying Lemma A.4, we can bound the integrand in the second integral by TV(ps+ϵ|s, p

IMCF
s+ϵ )

|Av
s(p

vIMCF

s , vIMCF)| ≤ lim
ϵ→0

1

ϵ

[
sup

t∈[s,s+ϵ]

2TV(pt|s, p
IMCF
t )

]
Taking a first order expansion, we have that for small ϵ

TV(pvs+ϵ|s, p
IMCF
s+ϵ ) =

ϵ

2

∫ ∣∣∣∣[∂pvs|t∂s

]
t=s

− ∂pIMCF
s

∂s

∣∣∣∣ dx+ o(ϵ)

Thus |Av
s(p

vIMCF

s , vIMCF)| ≤ SD(v; z, t). Note that the proof also holds for the time-reversed direction
since p1 = pIMCF

1 . This yields the upper bound,∫
TV(pt(·|z), pIMCF

s (·|z))dµ(s) ≤
∫ 1

0

SD(v; z, t)dt.

Lower Bound: For the lower bound, assuming that |[∂2
sp

v
s|t]t=s|, |∂s[∂spvs|t]t=s|, and |∂2

spt| all
bounded by M , there exist constants c > 0, ϵ0 ∈ [0, 1/2] depending only on M such that for any,
s ∈ [0, 1], t, t′ ∈ [s− ϵ0, s+ ϵ0].

TV(pt|t′ , p
IMCF
t ) ≥ 3cϵ

∫ ∣∣∣∣[∂pt|s∂t

]
t=s

− ∂pIMCF
s

∂s

∣∣∣∣ dx = 3cϵSD(v; z, s).

Fix any ϵ ∈ [0, ϵ0], s ∈ [0, 1− ϵ].

Case 1: TV(ps, p
IMCF
s ) ≤ cϵSD(v, z, s). Pick any ϵ′ ∈ [−ϵ, ϵ]. By Lemma A.5,

TV(ps+ϵ′ , p
IMCF
s+ϵ′) ≥

1

2
[TV(ps|s+ϵ′ , p

IMCF
s )− TV(ps, p

IMCF
s )]

≥ 1

2
[3cϵ′SD(v; z, s)− cϵSD(v; z, s)]

≥ cϵ′SD(v; z, s).

Thus,

sup
ϵ′∈[0,ϵ0]

TV(ps+ϵ, p
IMCF
s+ϵ ) ≥ cϵ0SD(v; z, s).

Case 2: TV(ps, p
IMCF
s ) ≥ cϵSD(v, z, s). In this case we trivially have

sup
ϵ′∈[0,ϵ]

TV(ps+ϵ, p
IMCF
s+ϵ ) ≥ cϵSD(v; z, s).

Note that since the argument is symmetric with respect to time, for s ≥ 1 − ϵ0, we can consider
ϵ ∈ [−ϵ, 0]. Thus for any s ∈ [0, 1], ϵ ∈ [0, ϵ0]

sup
t∈[s−ϵ,s+ϵ]

TV(pt, p
IMCF
t ) ≥ cϵSD(v; z, s)

A.3.2 Proof of Proposition 3.1

Proposition 3.1. It holds that SD(v; z, s) = EpIMCF
s

[|∇ · (vs − vIMCF
s ) + (vs − vIMCF

s ) · ∇ log pIMCF
s |].
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Proof. An equivalent condition for the pair (p, v) to constitute a conditional flow is that it satisfies
the differential transport equation [Albergo et al., 2023],

∂tpt(x|z) +∇x · [vt(x, z)pt(x|z)] = 0. (A.2)

This permits us to compute

SD(v; z, s) :=

∫
X

∣∣∣∣[∂pss|t∂s

]
t=s

− ∂pIMCF
s

∂s

∣∣∣∣ dx =

∫
X
|∇ · [vspIMCF

s ]−∇ · [vIMCF
s pIMCF

s ]| dx

=

∫
X
|∇ · (vs − vIMCF

s ) + (vs − vIMCF
s ) · ∇ log pIMCF

s | · pIMCF
s (x)dx

= EpIMCF
s

[|∇ · (vt − vIMCF
t ) + (vt − vIMCF

t ) · ∇ log pIMCF
s |]. (A.3)

A.4 Appendix for Extrapolation Behavior (Section 4)

A.4.1 Proof of Theorem 2

Theorem 2 (Discrete-support Smooth Interpolant). Let Z be supported on a finite set Sz =
{z(i)}Ni=1 ⊂ R for distinct z(1) < . . . < z(N), ordered without loss of generality. For each z(i) ∈ Sz ,
let v⋆s (x, z

(i)) := E[α̇(s)X0 + σ̇(s)X1|Z = z(i)]. Then, there are piecewise cubic polynomials
p(i)(z), with pieces defined by the intervals [z(j), z(j+1)] such that

vs(x, z) = arg inf
v∈arg infv L[v]

∫
∥∇2

zv∥2Fdx =
∑

z(i)∈Sz

p(i)(z) · v⋆s (x, z(i)).

In the case where |Sz| = 2, p(i)(z) are linear functions.

Proof. This is the cubic spline interpolation, which traces back to the classic work of Kochanek and
Bartels [1984], but we apply here in function space. The Euler-Lagrange equation for the functional
J(f) =

∫ x2

x1
|f ′′(x)|2 dx is:

d4

dx4
f(x) ≡ 0 when x ∈ (x1, x2).

Thus, applied to our setting, we have,

∂4

∂z4
vs(x, z) ≡ 0 ∀z ∈ (z(i), z(i+1)), s ∈ [0, 1], x ∈ X ,

for each i = 0, 2, . . . , N , where for convenience we let z(0) = −∞, z(N+1) = +∞. This means
that on each interval z ∈ [z(i), z(i+1)], i ∈ {1, . . . , N − 1}, the interpolator vs(x, z) can be written
as a piecewise cubic polynomial in z of the form

vs(x, z) = a(i)s (x) + b(i)s (x)(z − z(i)) + c(i)s (x)(z − z(i))2 + d(i)s (x)(z − z(i))3

where for z ∈ (−∞, z(1)] we let vs(x, z) = vs(x, z
(1)) + b

(1)
s (x) · (z − z(1)) and similarly for the

interval z ∈ [z(N),∞), we have vs(x, z) = vs(x, z
(N)) + b

(N)
s (x) · (z − z(N)).

Let ∆zi = z(i+1)−z(i) and using a(i), b(i), c(i), d(i) as shorthand for a(i)s (x), b
(i)
s (x), c

(i)
s (x), d

(i)
s (x),

we have the following boundary conditions for the endpoints:

a(i) = v⋆s (x, z
(i)) ∀i ∈ {1, . . . , N − 1}

a(i) + b(i)∆zi + c(i)∆z2i + d(i)∆z3i = v⋆s (x, z
(i+1)) ∀i ∈ {1, . . . , N − 1}

and additionally, with boundary conditions to ensure the first and second derivatives match between
the different pieces

b(i) + 2c(i)∆zi + 3d(i)∆z2i = b(i+1) ∀i ∈ {1, . . . , N − 2}
2c(i) + 6d(i)∆zi = 2c(i+1) ∀i ∈ {1, . . . , N − 2}

and we additionally constrain the second derivatives at the endpoint to be zero so that c(1) = 0,
2c(i) + 6d(i)∆zi = 0.
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This yields a linear system with 4(N − 1) unknowns and equations. In fact, Bartels et al. [1995]
shows that this system is guaranteed to be linearly independent.

Thus, we can write a(i), b(i), c(i), d(i)’s as a linear combination of the v⋆(x, z(i))’s. Therefore there
exist piecewise polynomials p(i)(x) such that,

v(x, z) =

N∑
i=1

p(i)(z)v⋆(x, z(i)).

A.4.2 Proof of Theorem 3

Lemma A.6.

L[v] = EZEXs
∥vs(Xs, Z)− v⋆s (Xs, Z)∥2 =

∫ 1

0

∫
Z

∫
X
∥vs(x, z)− v⋆s (x, z)∥2pIMCF

s (x, z)dxdzds

(A.4)

Theorem 3. Fix some diffusion schedule (α, σ) and let v⋆s (x, z) be the IMCF flow associated with
p⋆(x|z), i.e. the minimizer of Eq. (2.2). Assume that p⋆(z) is a uniform density over some set S, i.e.
p⋆(z) = c · 1S for some c > 0 and where 1S the characteristic function of S. Then the minimizer to
Lλ[v] for any z ∈ S is given by,

vs(x, z) =

∫
ξ,z′∈S

e2πiξ(z−z′)

1 + λ∥ξ∥4
v⋆(x, z′)dz′dξ. (4.2)

Proof. In light of Lemma A.6,

Lλ[v] =

∫ 1

0

(∥vs(x, z)− v⋆s (x, z)∥2 + λ∥∇ 2
z vs(x, z)∥2)pIMCF

s (x, z)ds. (A.5)

Notice that the loss decouples across s ∈ [0, 1] and x ∈ X . Hence, let us consider the optimization
problem for s fixed. Set ω(z) = pIMCF

s (x, z), f(z) = vs(x, z) and f⋆(z) = v⋆s (x, z). Then the
corresponding optimization for s, x fixed becomes∫

z

(∥f(z)− f⋆(z)∥2 + λ∥∇ 2
z f∥2)ω(z)dz. (A.6)

Since ω(z) = c · 1S is uniform, the Euler-Lagrange equation yields that for z ∈ S,

2c (f(z)− f⋆(z)) + 2cλ

n∑
i,j

∂4

∂2zi∂2zj
= 0 (A.7)

Thus, equivalently, for all z ∈ Z ,

f(z) · 1S + λ
n∑
i,j

∂4

∂z2i ∂z
2
j

[f(z) · 1S ] = f⋆(z) · 1S

We may therefore apply a Fourier transform to obtain

F (z) + ∥ξ∥42F (z) = F ⋆(z), (A.8)

where F (z) and F ⋆(z) denote the Fourier transforms of f · 1S and f⋆ · 1S respectively, and where
we invoke the conversion between differentiation and multiplication under the Fourier transform.
Solving for F (z), we have

F (z) =
1

1 + λ∥ξ∥42
F ⋆(z) =

1

1 + λ∥ξ∥42

∫
S

f⋆(z)e−2πiξz′
dz′ (A.9)

Inverting gives, for any z ∈ S,

f(z) =

∫
e2πiξz

1

1 + λ∥ξ∥42

∫
S

f⋆(z)e−2πiξz′
dz′ (A.10)

=

∫
ξ,z′∈S

1

1 + λ∥ξ∥42
e2πiξ(z−z′)f⋆(z′)dz′dxi′ (A.11)
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B Sampling Algorithms and Schedule Deviation

The sampling process Definition 2.1 can equivalently be described using the following stochastic
differential equation (see Appendix A.2 for proof):
Proposition B.1 (Stochastic Generative Processes). Given a conditional flow (v, p) and conditioning
value z ∈ Z , let ϵ : [0, 1] → R≥0 be a time-dependent noise scale. Use {XF

s }s∈[0,1]|Z and
{XB

s }s∈[0,1]|Z to denote the forward and reverse processes where Law(XF
0 |Z = z) = p0(·|z),

Law(XB
1 |Z = z) = p1(·|z) and XF

s , XB
ŝ are evolved according to,

d(XF
s |Z) = [vs(X

F
s , Z) + ϵ(s)∇x log ps(X

F
s |Z)]ds+

√
2ϵ(s)dBs (B.1)

d(XR
ŝ |Z) = [−vŝ(XB

ŝ , Z) + ϵ(ŝ)∇x log pŝ(X
R
s |Z)]dŝ+

√
2ϵ(s)dBŝ. (B.2)

where ŝ := 1− s and Bs, Bŝ are standard Brownian noise processes. In particular, XF
s , XR

s these
processes satisfy,

Law(XF
s |Z = z) = Law(XR

s |Z = z) = ps(·|z).

Sampling Algorithms with IMCF Flows. Given Corollary B.1, the continuous-time analogous of
the sampling algorithms we chiefly consider (DDPM [Ho et al., 2020], DDIM [Song et al., 2020a],
GE [Permenter and Yuan, 2023]). In particular, we note that DDPM/DDIM thus should sample from
the equivalent distributions (in the continuous-time limit) under the assumption that the learned flow
v is IMCF:
Corollary B.1 (IMCF-based generation). Given an (α, σ)-IMCF flow (p, v), for any ϵ : [0, 1]→ R+,
using Eq. (2.4) the forward and reverse processes Eq. (B.1), and Eq. (B.2) can be written as,

d(XF
s |Z) =

[(
1 +

ϵ(s)

γ1(s)

)
vs(X

F
s , Z) +

γ2(s)

γ1(s)
XF

s

]
ds+

√
2ϵ(s)dBs, (B.3)

d(XR
ŝ |Z) =

[(
ϵ(ŝ)

γ1(ŝ)
− 1

)
vŝ(X

R
ŝ , Z) +

γ2(ŝ)

γ1(ŝ)
XR

ŝ

]
dŝ+

√
2ϵ(ŝ)dBŝ, (B.4)

where γ1(s) :=
α̇(s)
α(s)σ(s)

2 − σ̇(s)σ(s) and γ2(s) :=
α̇(s)
α(s) .

Example B.1 (DDPM [Ho et al., 2020]). The SDE-analogue of the DDPM sampling algorithm
corresponds to the choice ϵ(s) = −γ1(s) (note that γ1(s), γ2(s) ≤ 0), making the forward process
independent of v and thus a purely Ornstein-Uhlenbeck process and the reverse process simplifies to,

d(XR
ŝ |Z) =

[
−2vŝ(XR

ŝ , Z) +
γ2(ŝ)

γ1(ŝ)
XR

ŝ

]
dŝ+

√
2ϵ(ŝ)dBŝ. (B.5)

Example B.2 (DDIM [Song et al., 2020a]). The DDIM algorithm strictly generalizes DDPM and
technically allows for any choice of ϵ(s) ≥ 0. In practice (e.g. Karras et al. [2022], Chi et al. [2023])
DDIM is used in a “noiseless" fashion with ϵ = 0, in which case the reverse process simply becomes
the regular flow ODE,

d(Xŝ|Z) = −vŝ(XR
ŝ , Z)dŝ

Example B.3 (Gradient Estimation (GE) [Permenter and Yuan, 2023]). The Gradient Estimation
algorithm is a variant of DDIM which introduces a correction term based on the previous estimate of
v, i.e. it uses the filtered flow v̄(xs|z) = µv(xs|z)+(1−µ)v(xs+δs|z) where δs is the discretization
interval of the SDE. Note that in the continuous time limit where δs→ 0, we recover the standard
DDIM. We use µ = 2 for the experiments presented here.

B.1 Schedule Deviation Emerges from Linear Interpolation

To examine how schedule deviation can emerge from linear interpolation, we consider combining
normal distributions with differing means and variances, respectively:
Lemma B.2. Consider two scalar normal distributions, p(1)(x) = N (µ1, σ̄

2) and p(2)(x) =
N (µ2, σ̄

2). For a given a Diffuion Schedule (σ, α), the associated score functions of the distributions
at time s are,

∇ log p(1)s (x) = −x− α(s)µ1

σ̄2 + σ2(s)
, ∇ log p(2)s (x) = −x− α(s)µ2

σ̄2 + σ2(s)
.
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and, for any c ∈ R, the combined score function c∇ log p
(1)
s (x) + (1 − c)∇ log p

(2)
s (x) is also

consistent with the Diffusion Schedule (σ, α):

c∇ log p(1)s (x) + (1− c)∇ log p(2)s (x) = −x− α(s)(cµ1 + (1− c)µ2)

σ̄2 + σ2(s)
.

We can recognize this as the score function for p(x) = N (cµ1 + (1 − c)µ2, σ̄), interpolated in
accordance with the Diffusion Schedule (σ, α).

Proof. The proof follows by straightforward substitution.

Lemma B.3. Consider two scalar normal distributions, p(1)(x) = N (0, σ̄2) and p(2)(x) =
N (0, k2σ̄2) for k ≥ 0, k ̸= 1. Then, given a Diffusion Schedule (σ, α), the associated score
functions of the distributions at time s are,

∇ log p(1)s (x) = − x

σ̄2α2(s) + σ2(s)
= − 1

α2(s)
· x

σ̄2 + σ̂2(s)
,

∇ log p(2)s (x) = − x

k2σ̄2α2(s) + σ2(s)
= − 1

α2(s)
· x

k2σ̄2 + σ̂2(s)
.

where σ̂(s) = σ(s)
α(s) . Then for any c ∈ R \ {0, 1}, the linear interpolation of the score function is

given by,

c∇ log p(1)s (x) + (1− c)∇ log p(2)s (x) = − 1

α2(s)
· x

σ̄2 + σ̄2(1− c)(k2 − 1)βc,k(s) + σ̂2(s)
.

where βc,k(s) =
σ̄2+σ2(s)

(1+c(k2−1))σ̄2+σ2(s) .

Proof.

c∇ log p(1)s (x) + (1− c)∇ log p(2)s (x) = − 1

α2(s)
·
(
(1− c)(σ̄2 + σ̂2(s)) + c(k2σ̄2 + σ̂2(s))

(k2σ̄2 + σ̂2(s))(σ̄2 + σ̂2(s))

)
x

= − 1

α2(s)
·
(

(1− c+ ck2)σ̄2 + σ̂2(s)

(k2σ̄2 + σ̂2(s))(σ̄2 + σ̂2(s))

)
x

= − 1

α2(s)
·
(

(1− c+ ck2)σ̄2 + σ̂2(s)

k2σ̄4 + (1 + k2)σ̄2σ̂2(s) + σ̂4(s)

)
x

= − 1

α2(s)
· x

k2σ̄4+(1+k2)σ̄2σ̂2(s)+σ̂4(s)
(c+(1−c)k2)σ̄2+σ̂2(s)

= − 1

α2(s)
· x

k2σ̄4+(c+(1−c)k2)σ̄2σ̂2(s)+(1−c+ck2)σ̄2σ̂2(s)+σ̂4(s)
(1−c+ck2)σ̄2+σ̂2(s)

= − 1

α2(s)
· x

k2σ̄4+(c+(1−c)k2)σ̄2σ̂2(s)

(1−c+ck2 )̄̂σ2+σ̂2(s)
+ σ̂2(s)

.

Letting σ̄2
c (s) :=

k2σ̄4+(c+(1−c)k2)σ̄2σ2(s)
(1−c+ck2)σ̄2+σ2(s) , we can see that the linear combination is consistent with

the Diffusion Schedule (σ, α) only if σ̂2
c (s) is independent of s.

σ̄2
c (s) =

k2σ̄4 + (c+ (1− c)k2)σ̄2σ2(s)

(1− c+ ck2)σ̄2 + σ2(s)

= σ̄2

(
k2σ̄2 + (c+ (1− c)k2)σ2(s)

(1− c+ ck2)σ̄2 + σ2(s)

)
= σ̄2

(
(1− c+ ck2)σ̄2 + σ̂2(s) + (c− 1 + (1− c)k2)σ̄2 + (c− 1 + (1− c)k2)σ̂2(s)

(1− c+ ck2)σ̄2 + σ̂2(s)

)
= σ̄2 + σ̄2

(
(c− 1 + (1− c)k2)σ̄2 + (c− 1 + (1− c)k2)σ̂2(s)

(1− c+ ck2)σ̄2 + σ̂2(s)

)
= σ̄2 + σ̄2(1− c)(k2 − 1)

(
σ̄2 + σ̂2(s)

(1 + c(k2 − 1))σ̄2 + σ̂2(s)

)
.
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Thus,

c∇ log p(1)s (x) + (1− c)∇ log p(2)s (x)

=− 1

α2(s)
· x

σ̄2 + σ̄2(1− c)(k2 − 1)
(

σ̄2+σ2(s)
(1+c(k2−1))σ̄2+σ2(s)

)
+ σ̂2(s)

.

We can see that for any fixed s, the combined c∇ log p
(1)
s + (1− c)∇ log p

(2)
s resembles the score

function of a normal distribution, but the dependence of βc,k(s) on s in the denominator indicates
that it is noised according to a different schedule from (σ, α).

Taken together Lemma B.2 and Lemma B.3 suggest that schedule inconsistency can arise through
differences in variance, but not simple transformations such as translation.

C Experiment Details

All experiments were performed using a cluster of 4 NVIDIA A100 GPUs and took approximately
100 GPU/hrs of compute to train and evaluate all visualized experiments. Combined, all experiments
took approximately one week worth of GPU/hours to train and evaluate.

C.1 Conditional CelebA Experiments

We additionally consider an ablation on the CelebA [Liu et al., 2015] dataset, using a t-SNE of the
40-dimensional conditional attribute space to conditionally generate 64x64 images, as described in
Appendix C.5. We use training datasets of size N ∈ {50000, 100000, 160000} for our experiments.

Notably, for these experiments we omit the divergence term from the Schedule Deviation computation
(i.e. setting r1 = 0 in Algorithm 1). This is principally for computational reasons–we do not have
enough memory to evaluate the divergence.

In Figure 8 we visualize the corresponding conditioning space, highlighting 3 different conditioning at-
tributes (Male/Female, Young/Not Young, Smiling/Not Smiling), as well as the OT distance/Schedule
Deviation over the space.

Similar to the MNIST, Fashion-MNIST and trajectory datasets, we observe little change in Schedule
Deviation based on the amount of training data used. However, unlike the MNIST, Fashion-MNIST
and Maze datasets, we observe no correlation between Schedule Deviation and the computed Optimal
Transport distances, despite similar overall structure in the OT distances and Schedule Deviation as
visualized in Figure 9.

We hypothesize the lack of correlation is related to the relatively uniform coverage of the dataset
over the conditioning space and the much higher dimension for the generated space X . Notably, we
also observe very little variance in the OT cost. By contrast, MNIST, Fashion-MNIST, and the Maze
experiments all have very non-uniform coverage over the conditioning space and exhibit much lower
noise (i.e. smoother heatmaps) for the Schedule Deviation estimates.

Overall, we believe these experiments are somewhat inconclusive, partially due to the modified
methodology (using r1 = 0) and the lack of significant structure either for the OT distances or the
Schedule Deviation.

C.2 Measuring Schedule Deviation

For simplicity we consider Diffusion Schedules (Definition 2.3) which are purely noising, i.e where
α(s) = 1. In practice we assume that s ∈ (0, 1), so any such schedule can easily be normalized into
the standard form via the transformation x→ x

1+σ(s) .

Thus, in this simplified setting, the loss simply becomes,

Lv := Ex,ϵ[∥vs(x+ σ(s)ϵ, z)− σ̇(s)ϵ}∥2] (C.1)
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where x ∼ p⋆(x) and ϵ ∼ N (0, I). Under this framework, per Eq. (2.4), the minimizer to
Eq. (C.1) can be written vIMCF

s (x, z) := −σ̇(s)σ(s)∇x log p
IMCF
s (x, z). For convenience, we use the

“ϵ-parameterization" of the flow introduced in [Ho et al., 2020], wherein vs(x, z) = −σ̇(s)ϵs(x, z)
Schedule Deviation Estimator Thus, we can estimate the schedule deviation using,

SD(v; z, s) = EpIMCF
s

[|∇ · (vs − vIMCF
s ) + (vs − vIMCF

s ) · ∇ log pIMCF
s |]

= σ̇(s)EpIMCF
s

[|∇ · (ϵs − ϵIMCF
s ) + (ϵIMCF

s − ϵs) · σ−1(s)ϵIMCF
s |]

= EpIMCF
s

[|σ̇(s)∇ · (ϵs − ϵIMCF
s ) +

σ̇(s)

σ(s)
(ϵIMCF

s − ϵs) · ϵIMCF
s |].

Empirical Estimation of ϵIMCF
s . The quantity ϵs above is directly parameterized by the neural

network and we can sample from xs ∼ pIMCF
s (xs|z) by generating samples from p0(x|z) (using the

designated sampling algorithm) and then noising to time s using the forward process. Estimating ϵIMCF
s

is less straightforward. Here we use that for N samples {x(i)}Ni=1 from p0(x|z), we can approximate
∇ log pIMCF

s (x|z) and therefore ϵIMCF (using N (·;µ, σ∈) to denote the Gaussian PDF with mean µ
and variance σ2):

ϵIMCF
s (x, z) ≈ σ(s)∇ log

(
1

N

N∑
i=1

N (x;x(i), σ2(s))

)

= σ(s)
1∑N

i=j exp
(
−∥x−x(j)∥2

2

2σ2(s)

) N∑
i=1

exp

(
−∥x− x(i)∥22

2σ2(s)

)(
x− x(i)

σ2(s)

)

=

N∑
i=1

 exp
(
−∥x−x(i)∥2

2

2σ2(s)

)
∑N

j=1 exp
(
−∥x−x(j)∥2

2

2σ2(s)

)
(x− x(i)

σ(s)

)
.

In the MNIST, Fashion-MNIST, CelebA, and Trajectory experiments we use N = 128 whereas for
the toy experiments in Section 4 we use N = 2000.

Empirical Estimation of ∇ · (ϵs − ϵIMCF
s ). Computing ∇ · (ϵs − ϵIMCF

s ) requires computing the
divergence of a neural network, i.e. the trace of the Jacobian. For a function f : Rn → Rn, computing
the divergence requires O(n) Jacobian-vector products, i.e. it is as computationally expensive as
materializing the full n× n Jacobian. Thus, we consider instead a randomized approximation to the
divergence wherein we randomly sample a standard basis vector (i.e. an element of the diagonal of
the Jacobian) to use as an estimate of the true divergence for each sample x

(i)
s ∼ pIMCF

s (xs|z).
Schedule Deviation with Log-Linear Schedules. In practice (see Appendix C.5) we use a log-linear
noise schedule σ(t), where σ(s) = c1e

c2s and c1, c2 are chosen based on the desired σ(0) and σ(1),
i.e. c1 = σ(0), c2 = log(σ(1)/σ(0)). Thus, as σ̇(s) = c2σ(s) we can write

SD(v; z, s) = c2EpIMCF
s

[|σ(s)∇ · (ϵs − ϵIMCF
s ) + (ϵIMCF

s − ϵs) · ϵIMCF
s |] (C.2)

For simplicity we compute and report SD(v; z, s) using c2 = 1. This is such that the “schedule
deviation" at a given noise level σ(s) can be computed independent of the upper and lower bounds
on σ.

Empirical Estimation of Optimal Transport Distances: We use N = 128 samples from each
sampler, for each conditioning value, to estimate the 1-Wasserstein (i.e. earth-mover distance).
Computations were performed using the Python Optimal Transport toolbox. We used the exact
LP-based solution, as opposed to e.g. entropic Optimal Transport using Sinkhorn.
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Figure 8: Similar to the MNIST/Fashion-MNIST datasets, we visualize the Celeb-A condition-
ing space (top) and show the clustering of 3 different attributes (Male/Female, Smiling/Not Smil-
ing, Young/Not Young). Although there is some similarity visually between the OT distance and
DDIM/DDPM OT distance, the correlation between Schedule Deviation and OT is weak. We discuss
these experiments further in Appendix C.1.
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C.3 Closed-Form Interpolants

Note that we can write the flows v⋆(x, z = 0) and v⋆(x, z = 1) under Eq. (C.1) as

v⋆(x, z = 0) = − σ(s)(x+ 1)

0.12 + σ2(s)

v⋆(x, z = 1) = − e
− −(x−1)2

2(0.12+σ2(s))

e
− (x−1)2

2(0.12+σ2(s)) + e
− x2

2(0.12+σ2(s))

(
σ(s)(x− 1)

0.12 + σ2(s)

)

− e
− −x2

2(0.12+σ2(s))

e
− (x−1)2

2(0.12+σ2(s)) + e
− x2

2(0.12+σ2(s))

(
σ(s)x

0.12 + σ2(s)

)
Discrete-Support Interpolant. For the discrete support dataset (Figure 7, upper), we use the
interpolant based on Theorem 2:

v(x, z) = (1− z) · v⋆(x, z = 0) + z · v⋆(x, z = 1)

Continuous-Support Interpolant. For the distribution with continuous support (Figure 7, lower), we
take inspiration from Theorem 3, which suggests that for uniform densities, the flow v(x, z) should
be convolved with the kernel ∫

ξ

e2πiξz

1 + λ∥ξ∥4
dξ. (C.3)

We use the approximation F−1
[

e2πiξz

1+λ∥ξ∥4

]
≈ c1

(1+c2z2)3/2
. We note this has the same tail behavior,

as the Fourier transform of 1
∥ξ∥4 attenuates with 1

z3 . In particular, we use c1 = 1.5, c2 = 16 for the
associated experiments. Thus, we use,

v(x, z) =
γ(x)

γ(x) + γ(1− x)
v⋆(x, z = 0) +

γ(1− x)

γ(x) + γ(1− x)
v⋆(x, z = 1)

where γ(x) = 1.5(1 + 16x2)−3/2.

C.4 Datasets

We visualize the conditioning spaces for the datasets in Section 3 in Figure 1 and show the conditioning
space for the CelebA dataset in Figure 8.

MNIST/Fashion-MNIST: For the MNIST and Fashion-MNIST datasets, we t-SNE [Van der Maaten
and Hinton, 2008] the images to construct the two-dimensional latent spaces seen in Figure 1. We
used SciKit-Learn implementation (which uses a Barnes-Hut style approximation for large datasets)
with a perplexity of 30 and an early exaggeration of 12 for both MNIST and Fashion-MNIST.

CelebA: We use a setup similar to the MNIST/Fashion-MNIST for the CelebA dataset, except that
we (a) downsample the images to 64x64 and (b) t-SNE the 40 discrete attributes provided by CelebA
(using a hypercube), as opposed to the images themselves. We visualize the resulting embedding in
Figure 8.

Maze Solutions Dataset: The maze dataset (Figure 1, left) consists of maze solutions from different
starting points to the center of the maze. We use the fixed maze depicted in Figure 1. The row of the
starting cell is picked uniformly at random and the column c (indexed at 0) is picked with probability
p(c) ∝ e−c/2 + e−(7−c)/2, i.e. we are more likely to pick starting points near the end in order to start
further from the goal point. For each starting point, we randomly sample a solution s based on its
length compared to the optimal solution such that p(s) ∝ e−(ℓ(s)−ℓ(s⋆)), where ℓ(s) is the length of
s and ℓ(s⋆) is the length of the shortest path to the origin. For a given solution, we then construct
a Bezier curve which fits control points along the trajectory which have been slightly perturbed by
noise w ∼ N (0; 0.04). We then take 64 evenly spaced points along the Bezier curve use this as the
final “trajectory" in the maze which we attempt to generate.
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C.5 Model Architectures and Hyperparameters

For all experiments we used the ϵ-parameterization introduced in Ho et al. [2020] and a “variance-
exploding" setup for the Diffusion Schedule as detailed in Appendix B. In particular, we use a
log-linear noise schedule where σ(s) = c1e

c2s, with 512 training timesteps (and 64 sampling
timesteps) ranging from σ = 5× 10−4 to σ = 5 for the experiments in Section 3 and σ = 0.01 to
σ = 35 for the CelebA experiments.

For the toy dataset in Section 4, we used 1024 training timesteps (and 128 sampling timesteps) with
noise values ranging from σ = 8× 10−3 to σ = 10.

MNIST/Fashion-MNIST: We use a U-Net with 5.9 million parameters as the “default" for the
MNIST and Fashion-MNIST experiments. We use the same UNet architecture described in Dhariwal
and Nichol [2021] with a base channel dimension of 64 and using 2 ResNet blocks per down-
sampling/upsampling step. We used GroupNorm, with 32 channels per group, for the ResNet
normalization layers.

After the first downsampling step we use 128 dimensions (2x the “base channels"). We additionally
include an attention block before the 3rd downsampling layer.

Conditioning on the time s and conditioning value z is performed via first embedding each into a
256 dimension (4x “the base channels") into an MLP and a 2 layer MLP. The time s is fed in using a
sin/cos embedding.

In Figure 5, we show an ablation where we increase the base channels to [96, 128, 160], corresponding
to 13.3M, 23.5M, and 36.8M parameters respectively.

For both MNIST/Fashion-MNIST we train the model using AdamW (with weight decay 1× 10−4)
and a cosine decay schedule with an initial learning rate of 3 × 10−4 over 300, 000 total training
iterations and a batch size of 256 samples.

Maze Solutions: For the Maze solutions, we consider a similarly constructed UNet to the
MNIST/Fashion-MNIST, but using 1-D convolutions instead of 2-D convolutions. Our training
parameters are also similar to the MNIST experiments, but we use instead 100, 000 iterations, an
initial learning rate of 5× 10−4, and a batch size of 128.

Toy Data: For the toy datasets in Figure 6, we consider a 5 layer MLP with a hidden dimension of
64, input dimension of 2 (value + conditioning) and output dimension of 1 (“denoised value"). The
time value is first embedded using sin/cosine and then mapped to a 64 dimensional vector. For each
layer in the MLP, we modulate the activations using a FiLM [Perez et al., 2018] conditioning scheme.

For training we use AdamW with 10, 000 iterations, cosine decay with an initial learning rate of
4× 10−3 and a weight decay of 0.01. We use a batch size of 128 and generated synthetic datasets of
size N = 100, 000 samples as described in Section 4 and shown in Figure 7.

C.6 Full Main-body Experiment Set with Additional Samplers

For completeness, we include additional visualization for the DDPM Ho et al. [2020], DDIM
Song et al. [2020a], and Gradient Estimator (GE) Permenter and Yuan [2023] sampling algorithms
(described in Appendix B) for each of the MNIST (Fig. 12), Fashion-MNIST (Fig. 13), and Maze
solution (Fig. 14) datasets.

Additionally in Figure 10 we show scatter plots analogous to those in Figure 2 for all sampler/dataset
combinations we evaluate. In Figure 11 we show an ablation over training samples and per-class
Schedule Deviation distributions for the Fashion-MNIST dataset.

D Broader Impacts and Limitations

Broader Impact: We believe that Schedule Deviation is an important step towards understanding the
generalization behavior of conditional diffusion models. This may yield insights into downstream
phenomena such as hallucination and the synthesis of completely “novel” samples. The insight that
conditional diffusion models generally do not denoise also has implications for the design of future
sampling algorithms, and more broadly cautions against making strong assumptions on the properties
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of learned models in generative settings, irrespective of the original objective inherent in the training
loss (in this case, for the model to “denoise”).

We hope that these results will motivate greater theoretical and empirical study of non-denwoising
flows and, specifically, phenomena such as self-guidance. The exact effect of classifier-free guidance
remains poorly understood, despite widespread adoption and deployment. This work highlights that
better theoretical and practical understanding of different flow composition rules can potentially yield
insights into the behavior of trained models.

Limitations: Our proposed metric, Schedule Deviation, has a number of limitations. Namely, it
requires sampling from p0(x|z) (i.e. running the reverse process of a chosen sampling algorithm)
and necessitates estimating both (1) the divergence of the neural network and (2) the gradient of
the p0(x|z) noise distribution. Estimating the gradient for small noise levels can require a large
number of samples to do accurately, as the variance of the∇ log ps(x|z) estimator increases as s→ 0.
Furthermore, computing the divergence through the neural network using back propagation is as
expensive in practice as computing the full n× n input-output Jacobian, as it requires n Jacobian-
vector-product queries to compute. Both of these computational bottlenecks suggest that computing
our metric may be difficult for X of very high dimensions. However, with greater computational
resources and alternative methods for computing the divergence, these concerns may ultimately prove
negligible.

We demonstrate feasbility on a toy Conditional-MNIST (d = 784) problem, but note that even in
this setting, computing the Schedule Deviation for the several thousand points needed to create the
heatmaps seen in Figure 12 took multiple hours per checkpoint, longer than the time to train the
model itself.

Lastly we note that in this work we consider conditional diffusion in three particular contexts: a low
dimensional “toy" environment, a maze solving dataset, and a conditional image generation dataset.
We hope that the trends we have identified hold in other domains (e.g. audio or video synthesis) but
have not thoroughly investigated precisely how universal the Schedule Deviation is in other settingngs.
The evidence we present does suggest that the behavior of diffusion models should not be taken for
granted.
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Figure 9: Analogous to Figure 12, we visualize the Schedule Deviation and OT distances for different
choices of sampling algorithms.
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Figure 10: Optimal transport distances vs Schedule Deviation using p0 corresponding to the DDPM,
DDIM, and GE samplers, for each of the MNIST, Fashion-MNIST, and Maze datasets.
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Figure 11: Ablation over training samples and per-class Schedule Deviation for Fashion-MNIST. For
the left, 30th, median, and 70th percentiles are visualized for z sampled uniformly over Z .
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Figure 12: Optimal transport distances (as measured by the empirical 1-Wasserstein distance) and
Schedule Deviation for each of the DDPM/DDIM/GE sampling algorithms on the Conditional MNIST
dataset.
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Figure 13: Optimal transport distances (as measured by the empirical 1-Wasserstein distance) and
Schedule Deviation for each of the DDPM/DDIM/GE sampling algorithms on the Conditional
Fashion-MNIST dataset. Note the per-row scaling on the right differs between sampling algorithms.
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Figure 14: Optimal transport distances (as measured by the empirical 1-Wasserstein distance) and
Schedule Deviation for each of the DDPM/DDIM/GE sampling algorithms on the Maze Solutions
dataset.

41


	Introduction
	Related Work

	Preliminaries
	Conditional Diffusion is Not Denoising.
	Measuring Schedule Deviation
	Schedule Deviation is Widely Prevalent
	Schedule Deviation Predicts Disagreement Between Samplers

	Explaining Schedule Deviation via Smoothness and Self-Guidance
	Discussion
	Deferred Proofs
	Appendix for Preliminaries  
	Proof of 

	Proofs Regarding Forward and Reverse Processes 
	Proofs for 
	Proof of 
	Proof of 

	Appendix for Extrapolation Behavior 
	Proof of 
	Proof of 


	Sampling Algorithms and Schedule Deviation
	Schedule Deviation Emerges from Linear Interpolation

	Experiment Details
	Conditional CelebA Experiments
	Measuring Schedule Deviation
	Closed-Form Interpolants
	Datasets
	Model Architectures and Hyperparameters
	Full Main-body Experiment Set with Additional Samplers

	Broader Impacts and Limitations

